1
|
Cui M, Li W, Liu L, Chen Y, Liu H, Ji M, Yang F, Wang P. Sulfatase-mediated peroxidase-like activity: A chemiluminescence-based platform for high-throughput screening of natural inhibitors in cancer therapy. Biosens Bioelectron 2025; 284:117562. [PMID: 40373529 DOI: 10.1016/j.bios.2025.117562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Sulfatase, traditionally known for its role in sulfate ester hydrolysis, has recently emerged as a potential player in tumor biology through its involvement in oxidative stress pathways. Here, we demonstrate for the first time that sulfatase exhibits peroxidase-like activity, catalyzing the generation of singlet oxygen (1O2) in the presence of oxygen. Based on the sulfatase-dependent 1O2 generation, the developed adamantly-enolether chemiluminescence probe QM-CF for imaging tumors of high sulfatase expression further verified the theory that sulfatase can be involved in tumor development. High-throughput screening (HTS) of natural compounds and clinical drugs identified scutellarin and sinomenine as potent sulfatase inhibitors that suppress tumor growth in mice. Mechanistic investigations revealed that these inhibitors modulate oxidative stress by downregulating MAPK and NF-κB pathways. Our findings unveil a previously unappreciated role of sulfatase in tumor-related oxidative stress and provide a promising platform for the discovery of novel sulfatase inhibitors, and advancing cancer therapeutics.
Collapse
Affiliation(s)
- Mengyuan Cui
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Wenqing Li
- Department of Biomedical Engineering School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Li Liu
- Department of Biomedical Engineering School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yan Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Huijia Liu
- Department of Biomedical Engineering School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Min Ji
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| | - Peng Wang
- Department of Biomedical Engineering School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
2
|
Simon G, Casalot L, Valette C, Burot C, Rontani JF, Bonin P. Do carotenoids protect phytodetritus-associated bacteria from oxidative stress? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11167-11178. [PMID: 40198437 PMCID: PMC12014824 DOI: 10.1007/s11356-025-36080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/05/2025] [Indexed: 04/10/2025]
Abstract
This study focused on how carotenoid pigments in bacteria attached to phytoplankton protect them from singlet oxygen produced by phytoplankton during senescence, specifically under illumination of the diatom Thalassiosira sp. Its effect was analyzed on bacterial membrane structure (photooxidation of bacterial membrane lipids such as mono-unsaturated fatty acids (MUFAs) and on DNA repair system in two bacterial species, non-pigmented Pseudomonas stutzeri and pigmented Dinoroseobacter shibae. In P. stutzeri cells, 1O₂ transferred from phytodetritus was not completely scavenged by bacterial membranous MUFAs and reached the cytoplasm, allowing both 1O₂ and UV radiation to cause a rapid response of DNA repair systems. In D. shibae, scavenging by bacterial membrane MUFAs and quenching by spheroidenone allowed only a small fraction of 1O₂ to reach the cytoplasm, as shown by a delayed and lower repair system activation. The fact that Rhodobacteriales is the dominant order in bacterioplankton communities associated with algal blooms could thus be partly due to the protective effect of its constituent carotenoids against 1O₂- and UV-induced damage.
Collapse
Affiliation(s)
- Gwénola Simon
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Laurie Casalot
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Corinne Valette
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Christopher Burot
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | | | - Patricia Bonin
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| |
Collapse
|
3
|
Emmanuel OP, Sandrine MNY, Claude BD, Ronald BAG, Vicky AM, Désiré DDP, Pierre K, Aziz T, Alamri AS, Alsanie WF, Alhomrani M. Exploring the Effects of Pterocarpus Soyauxii Against Menopause-Related NAFLD Based on Network Pharmacology, Molecular Docking, and Experimental Validation. Chem Biodivers 2025:e202403384. [PMID: 39964816 DOI: 10.1002/cbdv.202403384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/20/2025]
Abstract
Pterocarpus soyauxii (P. soyauxii) is a Fabaceae family traditionally used to treat menopausal disorders. This study aims to investigate the effect of P. soyauxii on menopause-related non-alcoholic fatty liver disease (NAFLD) and to determine its mechanisms of action and signaling pathways. The pharmacokinetic and dynamic properties and the toxicological profile of P. soyauxii compounds were assessed using the SwissADME and Protox III databases. A pharmacology network was constructed to identify active compound targets and corresponding genes. Compound target and protein-protein interaction networks were created using Cytoscape software. Molecular docking studies were conducted to assess the binding affinity of P. soyauxii compounds with specific proteins. In vitro experiments evaluated the antioxidant properties of P. soyauxii. In vivo studies using ovariectomized (Ovx) rat models underlined pathways and effects of P. soyauxii on biochemical and histological features linked with NAFLD. Findings suggest that P. soyauxii compounds are readily absorbed through the intestine and exhibit a relatively low level of toxicity. Protein-protein interaction, compound-target networks, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed several pathways and target proteins of P. soyauxii compounds. Indeed, they target specific proteins such as estrogen receptor alpha/beta ERα/β, nicotinamide adenine dinucleotide phosphate oxidase (NADPH-O), epidermal growth factor receptor (EGFR), MAPK1, peroxisome proliferator-activated receptors alpha/gamma (PPARα/G), and HMG-CoA reductase. Molecular docking revealed that P. soyauxii compounds demonstrate high binding affinity to various proteins. In vitro, P. soyauxii inhibits the oxidative power of OH, H2O2, and NO. In vivo, P. soyauxii significantly (p < 0.01, p < 0.001, and p < 0.01, respectively) reduces ALAT (25.14%), hepatic cholesterol (15.27%), and malondialdehyde (MDA) (26.78%) levels at 200 mg/kg and prevents steatosis in the liver. These findings suggest that P. soyauxii may have a protective role against menopause-related NAFLD.
Collapse
Affiliation(s)
- Owona Pascal Emmanuel
- Department of Animal Biology and Physiology Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Mengue Ngadena Yolande Sandrine
- Department of Animal Biology and Physiology Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
- Neurosciences and Psychogerontology Axis, Laboratory of Development and Maldevelopment, Department of Psychology, Faculty of Arts, Letters, and Social Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Bilanda Danielle Claude
- Department of Animal Biology and Physiology Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Bidingha A Goufani Ronald
- Department of Animal Biology and Physiology Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Ama Moor Vicky
- Faculty of Medicine and Biomedical Sciences, Clinical Biochemistry Laboratory, University Hospital Centre, Yaoundé, Cameroon
| | - Dzeufiet Djomeni Paul Désiré
- Department of Animal Biology and Physiology Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Kamtchouing Pierre
- Department of Animal Biology and Physiology Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Tariq Aziz
- Laboratory of Animal Health Food Hygiene and Quality, University of Ioannina, Arta, Greece
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa F Alsanie
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
4
|
Urian B, Harsch R, Yurasits L, Proger C, Basu S. Aggregated gold nanoparticles as photoactivators for the photopolymerization of proteins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 263:113099. [PMID: 39787976 DOI: 10.1016/j.jphotobiol.2025.113099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Photopolymerization of bovine serum albumin was carried out using reactive oxygen species (ROS) generated by the irradiation of citrate-stabilized gold nanoparticles by a pulsed Nd3+:YAG laser. The ROS in this case, singlet oxygen (1O2), targets aromatic amino acids within the protein to induce photopolymerization or crosslinking. Other ROS, like the hydroxyl radical, can also form in solution and under high-energy irradiation. The gold nanoparticles were aggregated using different cations in order to maximize singlet oxygen production. Experimental parameters like exposure time and laser power were optimized to minimize damage and maximize crosslinking efficiency, and damage-free crosslinking was observed at laser exposures up to 60 s with samples containing calcium demonstrating most efficient crosslinking. To confirm the role of ROS in crosslinking, the reactive oxygen scavengers sodium azide and mannitol were added at different concentrations to scavenge the singlet oxygen and hydroxyl radical, respectively, and both were observed to stop or slow the formation of crosslinking. The use of gold nanoparticles offers an inert and biocompatible alternative to organic crosslinking agents like rose Bengal and methylene blue.
Collapse
Affiliation(s)
- Bryce Urian
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Rachael Harsch
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Lukas Yurasits
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Carolyn Proger
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA
| | - Swarna Basu
- Department of Chemistry, Susquehanna University, 514 University Avenue, Selinsgrove, PA 17870, USA.
| |
Collapse
|
5
|
De Rosa M, Barnes RP, Detwiler AC, Nyalapatla PR, Wipf P, Opresko PL. OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts. Nat Commun 2025; 16:893. [PMID: 39837827 PMCID: PMC11751180 DOI: 10.1038/s41467-024-55638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts. Glycosylase deficiency also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that downstream single-stranded break (SSB) repair intermediates impair telomere replication. Preventing BER initiation suppresses PARylation and confers resistance to the synergistic effects of PARP inhibitors on 8oxoG-induced senescence. However, OGG1 activity is essential for preserving cell growth after chronic telomeric 8oxoG formation, whereas MUTYH promotes senescence to prevent chromosomal instability from unrepaired damage. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which disrupt telomere function.
Collapse
Affiliation(s)
| | - Ryan P Barnes
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ariana C Detwiler
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Peter Wipf
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L Opresko
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Querini-Sanguillén W, Otero-González J, García-Sánchez M, Zúñiga-Núñez D, Günther G, Miranda ML, Castro-Pérez E, Ramos C, Fuentealba D, Robinson-Duggon J. Toluidine blue O demethylated photoproducts as type II photosensitizers. Photochem Photobiol 2025. [PMID: 39833094 DOI: 10.1111/php.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Toluidine blue O (TBO) is a type I-type II photosensitizer that has shown good efficacy and selectivity in antimicrobial and anticancer photodynamic therapy applications. However, its complex photochemistry with multiple photoproducts hinders its application as a photosensitizer. We have previously described the mechanism for photooxidative demethylation of TBO which in acetonitrile yields two main products: demethylated-TBO (d-TBO) and double-demethylated-TBO (dd-TBO). In the current work, we describe the photophysical properties of these two photoproducts. In acetonitrile and phosphate buffer, demethylation induces an hypsochromic shift in the absorption and fluorescence emission maxima. Fluorescence quantum yields increase slightly for the demethylated photoproducts, in agreement with the lengthening of the fluorescence lifetimes. Triplet excited states lifetimes in the presence of oxygen decreased slightly upon demethylation. However, the singlet oxygen quantum yield increased significantly reaching unity for the dd-TBO photoproduct. These results are interpreted in terms of the competing pathways of TBO photochemistry. For TBO, demethylation is the main pathway for deactivation of the excited state, while for d-TBO, demethylation and singlet oxygen generation are significant. For dd-TBO, singlet oxygen generation is the main deactivation pathway. Overall, TBO demethylated photoproducts demonstrate good potential as candidates for photodynamic therapy applications.
Collapse
Affiliation(s)
- Whitney Querini-Sanguillén
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
| | - Jennifer Otero-González
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
| | - Melannie García-Sánchez
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
| | - Daniel Zúñiga-Núñez
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Germán Günther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mario L Miranda
- Departamento de Química Analítica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá, Republic of Panama
| | - Edgardo Castro-Pérez
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá, Republic of Panama
- Centro de Biología Celular y Molecular de Las Enfermedades, INDICASAT-AIP, Clayton, Republic of Panama
- Departamento de Genética y Biología Molecular, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
| | - Carlos Ramos
- Departamento de Genética y Biología Molecular, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
| | - Denis Fuentealba
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Robinson-Duggon
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Republic of Panama
- Sistema Nacional de Investigación (SNI), Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panamá, Republic of Panama
| |
Collapse
|
7
|
Paredes-Hernández U, Aguilar-Peña LV, Isaac-Olivé K, Ocampo-García B, Contreras I, Estrada JA, Izquierdo G, Morales-Avila E, Aranda-Lara L. Enhancing photodynamic and radionuclide therapy by small interfering RNA (siRNA)-RAD51 transfection via self-emulsifying delivery systems (SNEDDS). Cytotherapy 2025; 27:66-77. [PMID: 39186024 DOI: 10.1016/j.jcyt.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND AIMS Gene-silencing by small interfering RNA (siRNA) is an attractive therapy to regulate cancer death, tumor recurrence or metastasis. Because siRNAs are easily degraded, it is necessary to develop transport and delivery systems to achieve efficient tumor targeting. Self-nanoemulsifying systems (SNEDDS) have been successfully used for pDNA transport and delivery, so they may be useful for siRNA. The aim of this work is to introduce siRNA-RAD51 into a SNEDDS prepared with Phospholipon-90G, Labrafil-M1944-CS and Cremophor-RH40 and evaluate its efficacy in preventing homologous recombination of DNA double-strand breaks caused by photodynamic therapy (PDT) and ionizing radiation (IR). METHODS The siRNA-RAD51 was loaded into SNEDDS using chitosan. Transfection capacity was estimated by comparison with Lipofectamine-2000. RESULTS SNEDDS(siRNA-RAD51) induced gene silencing effect on the therapies evaluated by cell viability and clonogenic assays using T47D breast cancer cells. CONCLUSIONS SNEDDS(siRNA-RAD51) shown to be an effective siRNA-delivery system to decrease cellular resistance in PDT or IR.
Collapse
Affiliation(s)
- Ulises Paredes-Hernández
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Leslie V Aguilar-Peña
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, Mexico
| | - Irazú Contreras
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - José A Estrada
- Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Germán Izquierdo
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Enrique Morales-Avila
- Laboratorio de Toxicología y Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico.
| |
Collapse
|
8
|
Hajimohammadi M, Sheikh Mahboobi F, Wu H. Suppressing Effect of Flavonoid Compounds on Lipids Photooxidation of Sheep Red Blood Cells and Oleic Acid Photooxidation. Food Sci Nutr 2024; 12:10405-10411. [PMID: 39723064 PMCID: PMC11666813 DOI: 10.1002/fsn3.4539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 12/28/2024] Open
Abstract
Photosensitizers and pigments in raw meat such as porphyrins, riboflavin, and myoglobin after incorporation with light beam prompt the generation of singlet oxygen (1O2) from triplet oxygen (3O2) and cause oxidative rancidity of meat products. In this study, the results of photooxidation reactions of sheep erythrocyte (red blood cell) model as a model rich in hemoglobin and phospholipids bilayer, and oleic acid model were obtained by 1H NMR spectroscopy, TBARS assay, and iodometric titration. In both models, the rate of lipid photooxidation in the presence of hydroalcoholic extracts of Turmeric (Curcuma longa L.) and Cumin (Cuminum cyminum L.) as natural antioxidants, Butyl hydroxytoluene (BHT) as a synthetic antioxidant, and sodium azide (NaN3) as a well-known 1O2 scavenger were decreased in the order of NaN3 > Turmeric > Cumin > BHT. It was proven that during the photooxidation process, there is a direct association between the amount of flavonoid compounds and 1O2 scavenging.
Collapse
Affiliation(s)
| | | | - Haizhou Wu
- College of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Department of Biology and Biological Engineering, Food and Nutrition ScienceChalmers University of TechnologyGothenburgSweden
| |
Collapse
|
9
|
Zeng Y, Tao G, Zeng Y, He J, Cao H, Zhang L. Bibliometric and visualization analysis in the field of epigenetics and glioma (2009-2024). Front Oncol 2024; 14:1431636. [PMID: 39534093 PMCID: PMC11555291 DOI: 10.3389/fonc.2024.1431636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Glioma represents the most prevalent primary malignant tumor in the central nervous system, a deeper understanding of the underlying molecular mechanisms driving glioma is imperative for guiding future treatment strategies. Emerging evidence has implicated a close relationship between glioma development and epigenetic regulation. However, there remains a significant lack of comprehensive summaries in this domain. This study aims to analyze epigenetic publications pertaining to gliomas from 2009 to 2024 using bibliometric methods, consolidate the extant research, and delineate future prospects for investigation in this critical area. Methods For the purpose of this study, publications spanning the years 2009 to 2024 were extracted from the esteemed Web of Science Core Collection (WoSCC) database. Utilizing advanced visualization tools such as CiteSpace and VOSviewer, comprehensive data pertaining to various aspects including countries, authors, author co-citations, countries/regions, institutions, journals, cited literature, and keywords were systematically visualized and analyzed. Results A thorough analysis was conducted on a comprehensive dataset consisting of 858 publications, which unveiled a discernible trend of steady annual growth in research output within this specific field. The nations of the United States, China, and Germany emerged as the foremost contributors to this research domain. It is noteworthy that von Deimling A and the Helmholtz Association were distinguished as prominent authors and institutions, respectively, in this corpus of literature. A rigorous keyword search and subsequent co-occurrence analysis were executed, ultimately leading to the identification of seven distinct clusters: "epigenetic regulation", "DNA repair", "DNA methylation", "brain tumors", "diffuse midline glioma (DMG)", "U-87 MG" and "epigenomics". Furthermore, an intricate cluster analysis revealed that the primary foci of research within this field were centered around the exploration of glioma pathogenesis and the development of corresponding treatment strategies. Conclusion This article underscores the prevailing trends and hotspots in glioma epigenetics, offering invaluable insights that can guide future research endeavors. The investigation of epigenetic mechanisms primarily centers on DNA modification, non-coding RNAs (ncRNAs), and histone modification. Furthermore, the pursuit of overcoming temozolomide (TMZ) resistance and the exploration of diverse emerging therapeutic strategies have emerged as pivotal avenues for future research within the field of glioma epigenetics.
Collapse
Affiliation(s)
- Yijun Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Ge Tao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Jihong He
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Hui Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
10
|
De Paepe L, Madder A, Cadoni E. Exploiting G-Quadruplex-DNA Damage as a Tool to Quantify Singlet Oxygen Production. SMALL METHODS 2024; 8:e2301570. [PMID: 38623961 DOI: 10.1002/smtd.202301570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/18/2024] [Indexed: 04/17/2024]
Abstract
G-Quadruplexes (G4s) are highly dynamic and polymorphic nucleic acid structures that can adopt a variety of conformations. When exposed to oxidative conditions, more specifically singlet oxygen, the guanosine nucleobases can be oxidized, which in turn can affect the conformation and folding of the G4. Based on this peculiar phenomenon, it is rationalized that G4s can serve as quantification sensors for the production of singlet oxygen. Here, a method for determining the quantum yield of singlet oxygen generation for visible as well as UV-light excited photosensitizers, using a short G4 DNA sequence, readily available from common DNA companies, as a biological and water-soluble probe, is presented.
Collapse
Affiliation(s)
- Lessandro De Paepe
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, Ghent, B-9000, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, Ghent, B-9000, Belgium
| | - Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, Ghent, B-9000, Belgium
| |
Collapse
|
11
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
12
|
Andres Garcia-Diosa J, Grundmeier G, Keller A. Highly Efficient Quenching of Singlet Oxygen by DNA Origami Nanostructures. Chemistry 2024; 30:e202402057. [PMID: 38842532 DOI: 10.1002/chem.202402057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
DNA origami nanostructures (DONs) are able to scavenge reactive oxygen species (ROS) and their scavenging efficiency toward ROS radicals was shown to be comparable to that of genomic DNA. Herein, we demonstrate that DONs are highly efficient singlet oxygen quenchers outperforming double-stranded (ds) DNA by several orders of magnitude. To this end, a ROS mixture rich in singlet oxygen is generated by light irradiation of the photosensitizer methylene blue and its cytotoxic effect on Escherichia coli cells is quantified in the presence and absence of DONs. DONs are found to be vastly superior to dsDNA in protecting the bacteria from ROS-induced damage and even surpass established ROS scavengers. At a concentration of 15 nM, DONs are about 50 000 times more efficient ROS scavengers than dsDNA at an equivalent concentration. This is attributed to the dominant role of singlet oxygen, which has a long diffusion length and reacts specifically with guanine. The dense packing of the available guanines into the small volume of the DON increases the overall quenching probability compared to a linear dsDNA with the same number of base pairs. DONs thus have great potential to alleviate oxidative stress caused by singlet oxygen in diverse therapeutic settings.
Collapse
Affiliation(s)
- Jaime Andres Garcia-Diosa
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, Paderborn, 33098, Germany
| |
Collapse
|
13
|
Orts A, Navarro-Torre S, Macías-Benítez S, Orts JM, Naranjo E, Castaño A, Parrado J. A new biostimulant derived from soybean by-products enhances plant tolerance to abiotic stress triggered by ozone. BMC PLANT BIOLOGY 2024; 24:580. [PMID: 38890606 PMCID: PMC11186251 DOI: 10.1186/s12870-024-05290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Tropospheric ozone is an air pollutant that causes negative effects on vegetation, leading to significant losses in crop productivity. It is generated by chemical reactions in the presence of sunlight between primary pollutants resulting from human activity, such as nitrogen oxides and volatile organic compounds. Due to the constantly increasing emission of ozone precursors, together with the influence of a warming climate on ozone levels, crop losses may be aggravated in the future. Therefore, the search for solutions to mitigate these losses becomes a priority. Ozone-induced abiotic stress is mainly due to reactive oxygen species generated by the spontaneous decomposition of ozone once it reaches the apoplast. In this regard, compounds with antioxidant activity offer a viable option to alleviate ozone-induced damage. Using enzymatic technology, we have developed a process that enables the production of an extract with biostimulant properties from okara, an industrial soybean byproduct. The biostimulant, named as OEE (Okara Enzymatic Extract), is water-soluble and is enriched in bioactive compounds present in okara, such as isoflavones. Additionally, it contains a significant fraction of protein hydrolysates contributing to its functional effect. Given its antioxidant capacity, we aimed to investigate whether OEE could alleviate ozone-induced damage in plants. For that, pepper plants (Capsicum annuum) exposed to ozone were treated with a foliar application of OEE. RESULTS OEE mitigated ozone-induced damage, as evidenced by the net photosynthetic rate, electron transport rate, effective quantum yield of PSII, and delayed fluorescence. This protection was confirmed by the level of expression of genes associated with photosystem II. The beneficial effect was primarily due to its antioxidant activity, as evidenced by the lipid peroxidation rate measured through malondialdehyde content. Additionally, OEE triggered a mild oxidative response, indicated by increased activities of antioxidant enzymes in leaves (catalase, superoxide dismutase, and guaiacol peroxidase) and the oxidative stress index, providing further protection against ozone-induced stress. CONCLUSIONS The present results support that OEE protects plants from ozone exposure. Taking into consideration that the promotion of plant resistance against abiotic damage is an important goal of biostimulants, we assume that its use as a new biostimulant could be considered.
Collapse
Affiliation(s)
- Angel Orts
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Sandra Macías-Benítez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - José M Orts
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Emilia Naranjo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Angélica Castaño
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain.
| | - Juan Parrado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| |
Collapse
|
14
|
Goggin FL, Fischer HD. Singlet oxygen signalling and its potential roles in plant biotic interactions. PLANT, CELL & ENVIRONMENT 2024; 47:1957-1970. [PMID: 38372069 DOI: 10.1111/pce.14851] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
Singlet oxygen (SO) is among the most potent reactive oxygen species, and readily oxidizes proteins, lipids and DNA. It can be generated at the plant surface by phototoxins in the epidermis, acting as a direct defense against pathogens and herbivores (including humans). SO can also accumulate within mitochondria, peroxisomes, cytosol and the nucleus through multiple enzymatic and nonenzymatic processes. However, the majority of research on intracellular SO generation in plants has focused on transfer of light energy to triplet oxygen by photopigments from the chloroplast. SO accumulates in response to diverse stresses that perturb chloroplast metabolism, and while its high reactivity limits diffusion distances, it participates in retrograde signalling through the EXECUTER1 sensor, generation of carotenoid metabolites and possibly other unknown pathways. SO thereby reprogrammes nuclear gene expression and modulates hormone signalling and programmed cell death. While SO signalling has long been known to regulate plant responses to high-light stress, recent literature also suggests a role in plant interactions with insects, bacteria and fungi. The goals of this review are to provide a brief overview of SO, summarize evidence for its involvement in biotic stress responses and discuss future directions for the study of SO in defense signalling.
Collapse
Affiliation(s)
- Fiona L Goggin
- Department of Entomology and Plant Pathology, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Hillary D Fischer
- Department of Entomology and Plant Pathology, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| |
Collapse
|
15
|
De Silva WGM, Sequeira VB, Yang C, Dixon KM, Holland AJA, Mason RS, Rybchyn MS. 1,25-Dihydroxyvitamin D 3 Suppresses UV-Induced Poly(ADP-Ribose) Levels in Primary Human Keratinocytes, as Detected by a Novel Whole-Cell ELISA. Int J Mol Sci 2024; 25:5583. [PMID: 38891771 PMCID: PMC11171802 DOI: 10.3390/ijms25115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Photoprotective properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce UV-induced DNA damage have been established in several studies. UV-induced DNA damage in skin such as single or double strand breaks is known to initiate several cellular mechanisms including activation of poly(ADP-ribose) (pADPr) polymerase-1 (PARP-1). DNA damage from UV also increases extracellular signal-related kinase (ERK) phosphorylation, which further increases PARP activity. PARP-1 functions by using cellular nicotinamide adenine dinucleotide (NAD+) to synthesise pADPr moieties and attach these to target proteins involved in DNA repair. Excessive PARP-1 activation following cellular stress such as UV irradiation may result in excessive levels of cellular pADPr. This can also have deleterious effects on cellular energy levels due to depletion of NAD+ to suboptimal levels. Since our previous work indicated that 1,25(OH)2D3 reduced UV-induced DNA damage in part through increased repair via increased energy availability, the current study investigated the effect of 1,25(OH)2D3 on UV-induced PARP-1 activity using a novel whole-cell enzyme- linked immunosorbent assay (ELISA) which quantified levels of the enzymatic product of PARP-1, pADPr. This whole cell assay used around 5000 cells per replicate measurement, which represents a 200-400-fold decrease in cell requirement compared to current commercial assays that measure in vitro pADPr levels. Using our assay, we observed that UV exposure significantly increased pADPr levels in human keratinocytes, while 1,25(OH)2D3 significantly reduced levels of UV-induced pADPr in primary human keratinocytes to a similar extent as a known PARP-1 inhibitor, 3-aminobenzamide (3AB). Further, both 1,25(OH)2D3 and 3AB as well as a peptide inhibitor of ERK-phosphorylation significantly reduced DNA damage in UV-exposed keratinocytes. The current findings support the proposal that reduction in pADPr levels may be critical for the function of 1,25(OH)2D3 in skin to reduce UV-induced DNA damage.
Collapse
Affiliation(s)
| | - Vanessa Bernadette Sequeira
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chen Yang
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Katie Marie Dixon
- Department of Anatomy and Histology and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Andrew J. A. Holland
- Douglas Cohen Department of Paediatric Surgery, The Children’s Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mark Stephen Rybchyn
- Department of Physiology, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Koizumi T, Fujimoto A, Kawaguchi H, Kurosaki T, Kitamura A. Stress Granule Dysfunction via Chromophore-Associated Light Inactivation. ACS OMEGA 2024; 9:21298-21306. [PMID: 38764671 PMCID: PMC11097178 DOI: 10.1021/acsomega.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
Stress granules (SGs) are cytoplasmic condensates composed of various proteins and RNAs that protect translation-associated machinery from harmful conditions during stress. However, the method of spatiotemporal inactivation of condensates such as SGs in live cells to study cellular phenotypes is still in the process of being demonstrated. Here, we show that the inactivation of SGs by chromophore-associated light inactivation (CALI) using a genetically encoded red fluorescence protein (SuperNova-Red) as a photosensitizer leads to differences in cell viability during recovery from hyperosmotic stress. CALI delayed the disassembly kinetics of SGs during recovery from hyperosmotic stress. Consequently, CALI could inactivate the SGs, and the cellular fate due to SGs could be analyzed. Furthermore, CALI is an effective spatiotemporal knockdown method for intracellular condensates/aggregates and would contribute to the elucidation of importance of such condensates/aggregates.
Collapse
Affiliation(s)
- Takumi Koizumi
- Laboratory
of Cellular and Molecular Sciences, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Ai Fujimoto
- Laboratory
of Cellular and Molecular Sciences, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Haruka Kawaguchi
- Laboratory
of Cellular and Molecular Sciences, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Tsumugi Kurosaki
- Laboratory
of Cellular and Molecular Sciences, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Akira Kitamura
- Laboratory
of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
- PRIME, Japan
Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-004, Japan
| |
Collapse
|
17
|
Park J, Evangelopoulos M, Vasher MK, Kudruk S, Ramani N, Mayer V, Solivan AC, Lee A, Mirkin CA. Enhancing Endosomal Escape and Gene Regulation Activity for Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306902. [PMID: 37932003 PMCID: PMC10947971 DOI: 10.1002/smll.202306902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/19/2023] [Indexed: 11/08/2023]
Abstract
The therapeutic potential of small interfering RNAs (siRNAs) is limited by their poor stability and low cellular uptake. When formulated as spherical nucleic acids (SNAs), siRNAs are resistant to nuclease degradation and enter cells without transfection agents with enhanced activity compared to their linear counterparts; however, the gene silencing activity of SNAs is limited by endosomal entrapment, a problem that impacts many siRNA-based nanoparticle constructs. To increase cytosolic delivery, SNAs are formulated using calcium chloride (CaCl2 ) instead of the conventionally used sodium chloride (NaCl). The divalent calcium (Ca2+ ) ions remain associated with the multivalent SNA and have a higher affinity for SNAs compared to their linear counterparts. Importantly, confocal microscopy studies show a 22% decrease in the accumulation of CaCl2 -salted SNAs within the late endosomes compared to NaCl-salted SNAs, indicating increased cytosolic delivery. Consistent with this finding, CaCl2 -salted SNAs comprised of siRNA and antisense DNA all exhibit enhanced gene silencing activity (up to 20-fold), compared to NaCl-salted SNAs regardless of sequence or cell line (U87-MG and SK-OV-3) studied. Moreover, CaCl2 -salted SNA-based forced intercalation probes show improved cytosolic mRNA detection.
Collapse
Affiliation(s)
- Jungsoo Park
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Michael Evangelopoulos
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, United States
| | - Matthew K. Vasher
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, United States
| | - Sergej Kudruk
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Namrata Ramani
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Material Sciences and Engineering, Northwestern University, Evanston, Illinois, 60208, United States
| | - Vinzenz Mayer
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Alexander C. Solivan
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Andrew Lee
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208
| | - Chad A. Mirkin
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Material Sciences and Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208
| |
Collapse
|
18
|
Wang YZ, An XL, Fan XT, Pu Q, Li H, Liu WZ, Chen Z, Su JQ. Visible light-activated photosensitizer inhibits the plasmid-mediated horizontal gene transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132564. [PMID: 37734313 DOI: 10.1016/j.jhazmat.2023.132564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Inhibition of plasmid transfer, including transformation and conjugation, is essential to prevent the spread of plasmid-encoded antimicrobial resistance. Photosensitizers have been successfully used in the treatment of serious infectious diseases, however, the effects of photosensitizers on the plasmid transfer are still elusive. In this study, we determined the transformation and conjugation efficiency of plasmid pUC19 and pRP4, respectively, when exposed to a photosensitizer (Visible Light-activated Rose Bengal, VLRB). The results showed that the activation of VLRB resulted in up to a 580-fold decrease in the transformation frequency of pUC19 and a 10-fold decrease in the conjugation frequency of pRP4 compared with the non-VLRB control. The inhibition of pUC19 transformation by VLRB exhibited a dose-dependent manner and was attributed to the changes in the plasmid conformation. The inhibition of pRP4 conjugation was associated with the generation of extracellular free radicals, induced oxidative stress, suppression of the mating pair formation gene (trbBp) and DNA transfer and replication gene (trfAp), and enhanced expression of the global regulatory genes (korA, korB, and trbA). These findings highlight the potential of visible light-activated photosensitizer for mitigating the dissemination of plasmid-encoded antibiotic resistance genes.
Collapse
Affiliation(s)
- Yan-Zi Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ting Fan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Wen-Zhen Liu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhuo Chen
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
19
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
20
|
Domka W, Bartusik-Aebisher D, Rudy I, Dynarowicz K, Pięta K, Aebisher D. Photodynamic therapy in brain cancer: mechanisms, clinical and preclinical studies and therapeutic challenges. Front Chem 2023; 11:1250621. [PMID: 38075490 PMCID: PMC10704472 DOI: 10.3389/fchem.2023.1250621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 09/13/2024] Open
Abstract
Cancer is a main cause of death and preferred methods of therapy depend on the type of tumor and its location. Gliomas are the most common primary intracranial tumor, accounting for 81% of malignant brain tumors. Although relatively rare, they cause significant mortality. Traditional methods include surgery, radiotherapy and chemotherapy; they also have significant associated side effects that cause difficulties related to tumor excision and recurrence. Photodynamic therapy has potentially fewer side effects, less toxicity, and is a more selective treatment, and is thus attracting increasing interest as an advanced therapeutic strategy. Photodynamic treatment of malignant glioma is considered to be a promising additional therapeutic option that is currently being extensively investigated in vitro and in vivo. This review describes the application of photodynamic therapy for treatment of brain cancer. The mechanism of photodynamic action is also described in this work as it applies to treatment of brain cancers such as glioblastoma multiforme. The pros and cons of photodynamic therapy for brain cancer are also discussed.
Collapse
Affiliation(s)
- Wojciech Domka
- Department of Otolaryngology, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Izabela Rudy
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - Karolina Pięta
- Students English Division Science Club, Medical College of the University of Rzeszów, Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
21
|
Akbar A, Khan S, Chatterjee T, Ghosh M. Unleashing the power of porphyrin photosensitizers: Illuminating breakthroughs in photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 248:112796. [PMID: 37804542 DOI: 10.1016/j.jphotobiol.2023.112796] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
This comprehensive review provides the current trends and recent developments of porphyrin-based photosensitizers. We discuss their evolution from first-generation to third-generation compounds, including cutting-edge nanoparticle-integrated derivatives, and explores their pivotal role in advancing photodynamic therapy (PDT) for enhanced cancer treatment. Integrating porphyrins with nanoparticles represents a promising avenue, offering improved selectivity, reduced toxicity, and heightened biocompatibility. By elucidating recent breakthroughs, innovative methodologies, and emerging applications, this review provides a panoramic snapshot of the dynamic field, addressing challenges and charting prospects. With a focus on harnessing reactive oxygen species (ROS) through light activation, PDT serves as a minimally invasive therapeutic approach. This article offers a valuable resource for researchers, clinicians, and PDT enthusiasts, highlighting the potential of porphyrin photosensitizers to improve the future of cancer therapy.
Collapse
Affiliation(s)
- Alibasha Akbar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Syamantak Khan
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology & Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India
| | - Mihir Ghosh
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
22
|
Li XC, Chang C, Pei ZM. Reactive Oxygen Species in Drought-Induced Stomatal Closure: The Potential Roles of NPR1. PLANTS (BASEL, SWITZERLAND) 2023; 12:3194. [PMID: 37765358 PMCID: PMC10537201 DOI: 10.3390/plants12183194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Stomatal closure is a vital, adaptive mechanism that plants utilize to minimize water loss and withstand drought conditions. We will briefly review the pathway triggered by drought that governs stomatal closure, with specific focuses on salicylic acid (SA) and reactive oxygen species (ROS). We propose that the non-expressor of PR Gene 1 (NPR1), a protein that protects plants during pathogen infections, also responds to SA during drought to sustain ROS levels and prevent ROS-induced cell death. We will examine the evidence underpinning this hypothesis and discuss potential strategies for its practical implementation.
Collapse
Affiliation(s)
- Xin-Cheng Li
- East Chapel Hill High School, 500 Weaver Dairy Rd, Chapel Hill, NC 27514, USA
| | - Claire Chang
- East Chapel Hill High School, 500 Weaver Dairy Rd, Chapel Hill, NC 27514, USA
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
23
|
De Silva WGM, McCarthy BY, Han J, Yang C, Holland AJA, Stern H, Dixon KM, Tang EKY, Tuckey RC, Rybchyn MS, Mason RS. The Over-Irradiation Metabolite Derivative, 24-Hydroxylumister-ol 3, Reduces UV-Induced Damage in Skin. Metabolites 2023; 13:775. [PMID: 37512482 PMCID: PMC10383208 DOI: 10.3390/metabo13070775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
The hormonal form of vitamin D3, 1,25(OH)2D3, reduces UV-induced DNA damage. UV exposure initiates pre-vitamin D3 production in the skin, and continued UV exposure photoisomerizes pre-vitamin D3 to produce "over-irradiation products" such as lumisterol3 (L3). Cytochrome P450 side-chain cleavage enzyme (CYP11A1) in skin catalyzes the conversion of L3 to produce three main derivatives: 24-hydroxy-L3 [24(OH)L3], 22-hydroxy-L3 [22(OH)L3], and 20,22-dihydroxy-L3 [20,22(OH)L3]. The current study investigated the photoprotective properties of the major over-irradiation metabolite, 24(OH)L3, in human primary keratinocytes and human skin explants. The results indicated that treatment immediately after UV with either 24(OH)L3 or 1,25(OH)2D3 reduced UV-induced cyclobutane pyrimidine dimers and oxidative DNA damage, with similar concentration response curves in keratinocytes, although in skin explants, 1,25(OH)2D3 was more potent. The reductions in DNA damage by both compounds were, at least in part, the result of increased DNA repair through increased energy availability via increased glycolysis, as well as increased DNA damage recognition proteins in the nucleotide excision repair pathway. Reductions in UV-induced DNA photolesions by either compound occurred in the presence of lower reactive oxygen species. The results indicated that under in vitro and ex vivo conditions, 24(OH)L3 provided photoprotection against UV damage similar to that of 1,25(OH)2D3.
Collapse
Affiliation(s)
| | - Bianca Yuko McCarthy
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jeremy Han
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chen Yang
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J A Holland
- Douglas Cohen Department of Paediatric Surgery, The Children's Hospital at Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Harvey Stern
- Department of Plastic and Constructive Surgery, The Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- Strathfield Private Hospital, Sydney, NSW 2042, Australia
| | - Katie Marie Dixon
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edith Kai Yan Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Robert Charles Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Mark Stephen Rybchyn
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rebecca Sara Mason
- School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
24
|
Hormazábal DB, Reyes ÁB, Castro F, Cabrera AR, Dreyse P, Melo-González F, Bueno SM, González IA, Palavecino CE. Synergistic effect of Ru(II)-based type II photodynamic therapy with cefotaxime on clinical isolates of ESBL-producing Klebsiella pneumoniae. Biomed Pharmacother 2023; 164:114949. [PMID: 37267640 DOI: 10.1016/j.biopha.2023.114949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023] Open
Abstract
Multidrug-resistant bacteria, such as ESBL producing-Klebsiella pneumoniae, have increased substantially, encouraging the development of complementary therapies such as photodynamic inactivation (PDI). PDI uses photosensitizer (PS) compounds that kill bacteria using light to produce reactive oxygen species. We test Ru-based PS to inhibit K. pneumoniae and advance in the characterization of the mode of action. The PDI activity of PSRu-L2, and PSRu-L3, was determined by serial micro dilutions exposing K. pneumoniae to 0.612 J/cm 2 of light dose. PS interaction with cefotaxime was determined on a collection of 118 clinical isolates of K. pneumoniae. To characterize the mode of action of PDI, the bacterial response to oxidative stress was measured by RT-qPCR. Also, the cytotoxicity on mammalian cells was assessed by trypan blue exclusion. Over clinical isolates, the compounds are bactericidal, at doses of 8 µg/mL PSRu-L2 and 4 µg/mL PSRu-L3, inhibit bacterial growth by 3 log10 (>99.9%) with a lethality of 30 min. A remarkable synergistic effect of the PSRu-L2 and PSRu-L3 compounds with cefotaxime increased the bactericidal effect in a subpopulation of 66 ESBL-clinical isolates to > 6 log10 with an FIC-value of 0.16 and 0.17, respectively. The bacterial transcription response suggests that the mode of action occurs through Type II oxidative stress. The upregulation of the extracytoplasmic virulence factors mrkD, magA, and rmpA accompanied this response. Also, the compounds show little or no toxicity in vitro on HEp-2 and HEK293T cells. Through the type II effect, PSs compounds are bactericidal, synergistic on K. pneumoniae, and have low cytotoxicity in mammals.
Collapse
Affiliation(s)
- Dafne Berenice Hormazábal
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago 8330546, Chile
| | - Ángeles Beatriz Reyes
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago 8330546, Chile
| | - Francisco Castro
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Alan R Cabrera
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Paulina Dreyse
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 2390123, Valparaíso, Chile
| | - Felipe Melo-González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Iván A González
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile.
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 418, Santiago 8330546, Chile.
| |
Collapse
|
25
|
El-Yazbi AF, Elgammal FAH, Moneeb MS, Sabry SM. Sensitive MALDI-TOF MS and 'turn-on' fluorescent genosensor for the determination of DNA damage induced by CNS acting drugs. Int J Biol Macromol 2023; 241:124547. [PMID: 37094646 DOI: 10.1016/j.ijbiomac.2023.124547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
The genotoxic and carcinogenic adverse effects of various drugs should be considered for assessing drug benefit/risk ratio. On that account, the scope of this study is to examine the kinetics of DNA damage triggered by three CNS acting drugs; carbamazepine, quetiapine and desvenlafaxine. Two precise, simple and green approaches were proposed for probing drug induced DNA impairment; MALDI-TOF MS and terbium (Tb3+) fluorescent genosensor. The results revealed that all the studied drugs induced DNA damage manifested by the MALDI-TOF MS analysis as a significant disappearance of the DNA molecular ion peak with the appearance of other peaks at smaller m/z indicating the formation of DNA strand breaks. Moreover, significant enhancement of Tb3+ fluorescence occurred, proportional to the amount of DNA damage, upon incubation of each drug with dsDNA. Furthermore, the DNA damage mechanism is examined. The proposed Tb3+ fluorescent genosensor showed superior selectivity and sensitivity and is significantly simpler and less expensive than other methods reported for the detection of DNA damage. Moreover, the DNA damaging potency of these drugs was studied using calf thymus DNA in order to clarify the potential safety hazards associated with the studied drugs on natural DNA.
Collapse
Affiliation(s)
- Amira F El-Yazbi
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt.
| | - Feda A H Elgammal
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Marwa S Moneeb
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Suzy M Sabry
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| |
Collapse
|
26
|
Yang CR, Lin YS, Wu RS, Lin CJ, Chu HW, Huang CC, Anand A, Unnikrishnan B, Chang HT. Dual-emissive carbonized polymer dots for the ratiometric fluorescence imaging of singlet oxygen in living cells. J Colloid Interface Sci 2023; 634:575-585. [PMID: 36549206 DOI: 10.1016/j.jcis.2022.12.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Singlet oxygen (1O2) is a type of reactive oxygen species (ROS), playing a vital role in the physiological and pathophysiological processes. Specific probes for monitoring intracellular 1O2 still remain challenging. In this study, we develop a ratiometric fluorescent probe for the real-time intracellular detection of 1O2 using o-phenylenediamine-derived carbonized polymer dots (o-PD CPDs). The o-PD CPDs possessing dual-excitation-emission properties (blue and yellow fluorescence) were successfully synthesized in a two-phase system (water/acetonitrile) using an ionic liquid tetrabutylammonium hexafluorophosphate as a supporting electrolyte through the electrolysis of o-PD. The o-PD CPDs can act as a photosensitizer to produce 1O2 upon white LED irradiation, in turn, the generated 1O2 selectively quenches the yellow emission of the o-PD CPDs. This quenching behavior is ascribed to the specific cycloaddition reaction between 1O2 and alkene groups in the polymer scaffolds on o-PD CPDs. The interior carbon core can be a reliable internal standard since its blue fluorescence intensity remains unchanged in the presence of 1O2. The ratiometric response of o-PD CPDs is selective toward 1O2 against other ROS species. The developed o-PD CPDs have been successfully applied to monitor the 1O2 level in the intracellular environment. Furthermore, in the inflammatory neutrophil cell model, o-PD CPDs can also detect the 1O2 and other ROS species such as hypochlorous acid after phorbol 12-myristate 13-acetate (PMA)-induced inflammation. Through the dual-channel fluorescence imaging, the ratiometric response of o-PD CPDs shows great potential for detecting endogenous and stimulating 1O2in vivo.
Collapse
Affiliation(s)
- Cheng-Ruei Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Syuan Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ren-Siang Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chin-Jung Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Han-Wei Chu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Anisha Anand
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
27
|
Arnhold J. Host-Derived Cytotoxic Agents in Chronic Inflammation and Disease Progression. Int J Mol Sci 2023; 24:ijms24033016. [PMID: 36769331 PMCID: PMC9918110 DOI: 10.3390/ijms24033016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
28
|
Seo C, An HW, Han W, Lee JW, Shrestha KK, Jung WK, Shin JH, Lee SG. Screening of antioxidant capacity of Nepali medicinal plants with a novel singlet oxygen scavenging assay. Food Sci Biotechnol 2023; 32:221-228. [PMID: 36647521 PMCID: PMC9839913 DOI: 10.1007/s10068-022-01175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 01/19/2023] Open
Abstract
Pollutant exposure due to industrial development increases oxidative stress in human bodies. Dietary intake of antioxidant shows a protective effect against oxidative damage induced by oxidative stress. Therefore, the development of natural antioxidants is needed. In this study, the antioxidant activities of some Nepali medicinal plant extracts were measured. Using Rose bengal and 3,3',5,5'-tetramethylbenzidine, a novel assay was utilized to evaluate the singlet oxygen scavenging capacity, and showed a strong correlation with other antioxidant assays. Also, antioxidant capacities based on four assays including the singlet oxygen scavenging assay were highly correlated (≥ 0.858) with the total phenolic contents in the medicinal plant extracts. Among the selected extracts, Persicaria capitata, Elaphoglossum marginatum and Eurya acuminata showed the highest antioxidant capacities. Overall, this study presents a novel approach for evaluating singlet oxygen scavenging capacity, and performed a screening of antioxidant capacities of 54 Nepali herbal medicines. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01175-z.
Collapse
Affiliation(s)
- Chan Seo
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Hyun Woo An
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| | - Won Han
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513 Korea
| | - Joo Won Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| | | | - Won-Kyo Jung
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513 Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513 Korea
| | - Joong Ho Shin
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513 Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513 Korea
| | - Sang Gil Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| |
Collapse
|
29
|
Li Y, Xie S, Yao J. Singlet oxygen generation for selective oxidation of emerging pollutants in a flow-by electrochemical system based on natural air diffusion cathode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17854-17864. [PMID: 36201074 DOI: 10.1007/s11356-022-23364-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The decay of free radicals involved in side reactions is one of the challenges faced by electrochemical degradation of organic pollutants. To this end, a non-radical oxidation system was constructed by a natural air diffusion cathode (ADC) and a Ti-based dimensional stable anode coated by RuO2 (RuO2-Ti anode) for cathodic hydrogen peroxide activation by anodic chlorine evolution. The ADC fabricated by the carbon black of BP2000 produced a stable concentration of hydrogen peroxide of 339.94 mg L-1 (current efficiency of 73.4%) without aeration, which was superior to the cathode made by the XC72 carbon black. The flow-by ADC-RuO2 system consisted of an ADC and a RuO2-Ti anode showed high selectivity to aniline (AN) compared to benzoate (BA) in a NaCl electrolyte, whose degradation efficiencies were 97.72% and 1.3%, respectively. Rapid degradations of a mixture of emerging pollutants and AN were also observed in the ADC-RuO2 system, with pseudo-first-order kinetic constants of 0.51, 1.29, 0.89, and 0.99 min-1 for Bisphenol A (BPA), tetracycline (TC), sulfamethoxazole (SMX) and AN, respectively. Quenching experiments revealed the main reactive oxygen species for the pollutant degradation was singlet oxygen (1O2), which was also identified by the electron spin resonance (ESR) analysis. Finally, the steady-stable content of 1O2 was quantitatively determined to be 6.25 × 10-11 M by the method of furfuryl alcohol (FFA) probe. Our findings provide a fast, low energy consumption and well controlled electrochemical oxidation method for selective degradation of organic pollutants. H2O2 generated on an air diffusion cathode by naturally diffused O2, reacts with ClO- produced from chloride oxidation on the RuO2-Ti anode to form singlet oxygen (1O2). The electrochemical system shows an efficient oxidation to electron-rich emerging pollutants including bisphenol A, tetracycline, sulfamethoxazole and aniline, but a poor performance on the electron-deficient compounds (e.g., benzoate).
Collapse
Affiliation(s)
- Yi Li
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Shiwei Xie
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.
- Institute of High Performance Engineering Structure, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.
| | - Jiaxiong Yao
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
- Shenzhen Bao'an Songgang Water Supply Co., Ltd., Shenzhen, 518100, People's Republic of China
| |
Collapse
|
30
|
Kanamori T, Kaneko S, Hamamoto K, Yuasa H. Mapping the diffusion pattern of 1O 2 along DNA duplex by guanine photooxidation with an appended biphenyl photosensitizer. Sci Rep 2023; 13:288. [PMID: 36690669 PMCID: PMC9871026 DOI: 10.1038/s41598-023-27526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
To realize nucleic acid-targeting photodynamic therapy, a photosensitizer should be attached at the optimal position on a complementary oligonucleotide, where a guanine photooxidation is maximized. Here we show the photooxidation of 22 DNA duplexes with varied lengths between a 1O2-generating biphenyl photosensitizer attached at a midchain thymine in a strand and the single guanine reactant in the other strand. The best photooxidation efficiencies are achieved at 9, 10, and 21 base intervals, which coincides with the pitch of 10.5 base pairs per turn in a DNA duplex. The low efficiencies for near and far guanines are due to quenching of the biphenyl by guanine and dilution of 1O2 by diffusion, respectively. The 1O2-diffusion mapping along DNA duplex provides clues to the development of efficient and selective photosensitizer agents for nucleic acid-targeting photodynamic therapy, as well as an experimental demonstration of diffusion of a particle along cylindrical surface in molecular level.
Collapse
Affiliation(s)
- Takashi Kanamori
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259, Nagatsuta, Midoriku, Yokohama, 226-8501, Japan.
| | - Shota Kaneko
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259, Nagatsuta, Midoriku, Yokohama, 226-8501, Japan
| | - Koji Hamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259, Nagatsuta, Midoriku, Yokohama, 226-8501, Japan
| | - Hideya Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, J2-10 4259, Nagatsuta, Midoriku, Yokohama, 226-8501, Japan.
| |
Collapse
|
31
|
Lyu J, Cheng M, Liu J, Lv J. An Aggregation-Induced Emission Nanosensor for Real-Time Chemiluminescent Sensing of Light-Independent Intracellular Singlet Oxygen. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54081-54089. [PMID: 36398932 DOI: 10.1021/acsami.2c14685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Characterizing the transient ultratrace light-independent intracellular singlet oxygen (1O2), which plays a vital role in multiple biological processes in living organisms, brings about tremendous help for understanding the nature of 1O2-mediated or related bioevents. Nevertheless, an approach to detect the light-independent intracellular 1O2 is hard to find. Herein, we developed a chemiluminescent nanosensor by compacting a great number of TPE-N(Ph)-DBT-PH molecules in one nanostructure via autoaggregation. Taking advantage of the aggregation-induced emission property, this TPE-N(Ph)-DBT-PH nanosensor is highly fluorescent and promises a bright red-light CL and the convenience of mapping in vivo sensor distribution. Experiments demonstrate the nanosensor's unprecedented selectivity toward 1O2 against other reactive oxygen species. The 3.7 nmol L-1 limit of detection renders this nanosensor with the best-known sensitivity of 1O2 chemical sensors. Meanwhile, fluorescence confocal microscope imaging results suggest that our nanosensor simultaneously targets mitochondria and lysosomes in RAW 264.7 cells via the energy-dependent endocytosis pathway, thereby implying an attractive potential for the detection of intracellular 1O2. Such a potential is demonstrated by detecting 1O2 in RAW 264.7 cells during a lipopolysaccharide and phorbol myristate acetate stimulated respiration burst. This study represents the first approach to detect light-independent intracellular 1O2 during cell bioregulation. Thus, our nanosensor provides an effective tool for investigating the 1O2-related bioprocesses and pathological processes.
Collapse
Affiliation(s)
- Jitong Lyu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, People's Republic of China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516007, People's Republic of China
| | - Mengqi Cheng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Jing Liu
- Shaanxi Zhengze Biotechnology Co., Ltd, Xi'an 710018, People's Republic of China
| | - Jiagen Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
32
|
Yao S, Ye J, Xia J, Hu Y, Zhao X, Xie J, Lin K, Cui C. Inactivation and photoreactivation of bla NDM-1-carrying super-resistant bacteria by UV, chlorination and UV/chlorination. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129549. [PMID: 35868090 DOI: 10.1016/j.jhazmat.2022.129549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The excessive dissemination of New Delhi metallo-β-lactamase-1 (NDM-1), which mediates resistance to a majority of clinical β-lactam antibiotics, has created a major public health problem worldwide. Herein, a blaNDM-1-carrying (plasmid encoded) super-resistant bacterium, Acinetobacter sp. CS-2, was selected to reveal its mechanisms of inactivation and photoreactivation during UV, chlorination and UV/chlorination disinfection. The inactivated CS-2 underwent a certain photoreactivation after UV and chlorination. The logistic model precisely fitted the data obtained in the photoreactivation experiments by UV treatment, with the estimated kinetic parameters Sm (0.530%-12.071%) and k2 (0.0009-0.0471). The photoreactivation of Acinetobacter sp. CS-2 was observed when treated by chlorination at a dosage of 0.5 mg/L with a survival ratio of 34.04%. UV/chlorination not only resulted in the high-efficiency reduction of CS-2 but also effectively controlled its photoreactivation with a survival ratio of 0%- 0.87%. UV/chlorination showed great advantages in causing the irreversible destruction of bacterial surface structures by making the cell membranes wrinkled and incomplete compared with UV disinfection. The singlet oxygen (1O2) generated during UV/chlorination treatment played a vital role in blaNDM-1 removal. This study proposed new insights into the mechanism of inactivation and the characteristics of photoreactivation for the super-resistant bacteria by UV, chlorination and UV/chlorination.
Collapse
Affiliation(s)
- Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianfeng Ye
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jing Xia
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuetao Zhao
- Center for Disease Control & Prevention of Xuhui, Shanghai 200237, China
| | - Jianhao Xie
- Children's Hospital of Fudan University, Shanghai 200233, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai environmental protection key laboratory on environmental standard and risk management of chemical pollutants, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
33
|
Improvement of Stevia rebaudiana Bertoni In Vitro Propagation and Steviol Glycoside Content Using Aminoacid Silver Nanofibers. PLANTS 2022; 11:plants11192468. [PMID: 36235334 PMCID: PMC9572510 DOI: 10.3390/plants11192468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
Abstract
The food industry is interested in replacing artificial sweeteners with natural sugars that possess zero calories and carbohydrates and do not cause spikes in blood sugar levels. The steviosides leaves, synthesized at Stevia rebaudiana Bertoni, are 300 times sweeter than common table sugar. Stevia propagation is limited due to the poor viability of the seeds, the long time and low germination rate, and the poor rooting ability of vegetative cuttings. Because of this, an alternative biotechnological method for its reproduction is being studied, such as multiple shoot production through direct organogenesis using nanofibers, formed from a derivative of amino acid valine as a carrier of the biologically active agent silver atoms/particles (NF-1%Ag and NF-2%Ag). The stevia explants were cultured on a medium containing NF-1%Ag and NF-2%Ag at concentrations of 1, 10, 50, and 100 mg L−1. The NF-1%Ag and NF-2%Ag treatment caused hormetic effects on stevia plantlets. At low concentrations of from 1 to 50 mg L−1 of nanofibers, the stimulation of plant growth was observed, with the maximum effect being observed at 50 mg L−1 nanofibers. However, at the higher dose of 100 mg L−1, inhibition of the values of parameters characterizing plant growth was recorded. The presence of nanofibers in the medium stimulates stevia root formatting.
Collapse
|
34
|
Nascimento RO, Prado FM, de Medeiros MHG, Ronsein GE, Di Mascio P. Singlet Molecular Oxygen Generation in the Reaction of Biological Haloamines of Amino Acids and Polyamines with Hydrogen Peroxide. Photochem Photobiol 2022; 99:661-671. [PMID: 36047912 DOI: 10.1111/php.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Leucocytes generate hypohalous acids (HOCl and HOBr) to defend against pathogens. In cells, hypohalous acids react with amine-containing molecules, such as amino acids and polyamines, producing chloramines and bromamines, reservoirs of oxidizing power that can potentially damage host tissues at sites of inflammation. Hypohalous acids also react with H2 O2 to produce stoichiometric amounts of singlet molecular oxygen (1 O2 ), but its generation in leucocytes is still under debate. Additionally, it is unclear if haloamines generate 1 O2 following a reaction with H2 O2 . Herein, we provide evidence of the generation of 1 O2 in the reactions between amino acid-derived (taurine, N-α-acetyl-Lysine, and glycine) and polyamine-derived (spermine and spermidine) haloamines and H2 O2 in an aqueous solution. The unequivocal formation of 1 O2 was detected by monitoring its characteristic monomol light emission at 1270 nm in the near-infrared region. For amino acid-derived haloamines, the presence of 1 O2 was further confirmed by chemical trapping with anthracene-9,10-divinylsulfonate and HPLC-MS/MS detection. Altogether, photoemission and chemical trapping studies demonstrated that chloramines were less effective at producing 1 O2 than bromamines of amino acids and polyamines. Thus, 1 O2 formation via bromamines and H2 O2 may be a potential source of 1 O2 in non-illuminated biological systems.
Collapse
Affiliation(s)
| | - Fernanda Manso Prado
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
35
|
Puppel K, Slósarz J, Grodkowski G, Solarczyk P, Kostusiak P, Kunowska-Slósarz M, Grodkowska K, Zalewska A, Kuczyńska B, Gołębiewski M. Comparison of Enzyme Activity in Order to Describe the Metabolic Profile of Dairy Cows during Early Lactation. Int J Mol Sci 2022; 23:9771. [PMID: 36077169 PMCID: PMC9456141 DOI: 10.3390/ijms23179771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Enzymatic diagnostics have practical applications in diseases of the liver, heart, pancreas, muscles, blood, and neoplastic diseases. This study aimed to compare enzyme activity to describe dairy cows' metabolism during early lactation. Based on their general health symptoms, the cows were assigned to one of three groups: acidotic, healthy and ketotic. Samples of milk, blood and rumen fluid were collected at 12 ± 5 days postpartum. Ketotic cows were characterized by the highest malondialdehyde (MDA, 76.098 nM/mL), glutathione reductase (GluRed, 109.852 U/L), superoxide dismutase (SOD, 294.22 U/L) and gamma-glutamyltranspeptidase (GGTP, 71.175 U/L) activity. In comparing ketotic and acidotic cows, MDA, GluRed, SOD and GGTP activity were higher by a factor of almost: 1.85, 1.89, 0.79 and 2.50, respectively. Acidotic cows were characterized by the highest aspartate aminotransferase activity (AspAT, 125.914 U/L). In comparing acidotic and ketotic cows, AspAT activity was higher by a factor of almost 1.90. The use of enzymatic markers could limit the frequency of sampling for laboratory analyses and may result in a faster diagnosis of metabolic disorders. AspAT activity in blood serum seems to be a good indicator of acidosis; GGTP may participate in the pathogenesis of ketosis.
Collapse
Affiliation(s)
- Kamila Puppel
- Institute of Animal Sciences, Departments of Animal Breeding, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sabino CP, Ribeiro MS, Wainwright M, Dos Anjos C, Sellera FP, Dropa M, Nunes NB, Brancini GTP, Braga GUL, Arana-Chavez VE, Freitas RO, Lincopan N, Baptista MS. The Biochemical Mechanisms of Antimicrobial Photodynamic Therapy. Photochem Photobiol 2022; 99:742-750. [PMID: 35913428 DOI: 10.1111/php.13685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022]
Abstract
The unbridled dissemination of multidrug-resistant pathogens is a major threat to global health and urgently demands novel therapeutic alternatives. Antimicrobial photodynamic therapy (aPDT) has been developed as a promising approach to treat localized infections regardless of drug resistance profile or taxonomy. Even though this technique has been known for more than a century, discussions and speculations regarding the biochemical mechanisms of microbial inactivation have never reached a consensus on what is the primary cause of cell death. Since photochemically generated oxidants promote ubiquitous reactions with various biomolecules, researchers simply assumed that all cellular structures are equally damaged. In this study, biochemical, molecular, biological, and advanced microscopy techniques were employed to investigate whether protein, membrane or DNA damage correlates better with dose-dependent microbial inactivation kinetics. We showed that although mild membrane permeabilization and late DNA damage occur, no correlation with inactivation kinetics was found. On the other hand, protein degradation was analyzed by 3 different methods and showed a dose-dependent trend that matches microbial inactivation kinetics. Our results provide a deeper mechanistic understanding of aPDT that can guide the scientific community towards the development of optimized photosensitizing drugs and also rationally propose synergistic combinations with antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Caetano P Sabino
- BioLambda, Scientific and Commercial Ltd., São Paulo, SP, Brazil, 05595-000.,Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil, 05508-000
| | - Martha S Ribeiro
- Center for Lasers and Applications, Energy and Nuclear Research Institute, São Paulo, SP, Brazil, 05508-000
| | - Mark Wainwright
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Carolina Dos Anjos
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil, 05508-270.,Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil, 05508-270.,School of Veterinary Medicine, Metropolitan University of Santos, Santos, SP, Brazil, 11080-300
| | - Milena Dropa
- Public Health Laboratory, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Nathalia B Nunes
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Guilherme T P Brancini
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Gilberto U L Braga
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Victor E Arana-Chavez
- Department of Biomaterials and Oral Biology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Raul O Freitas
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, SP, Brazil, 13083-970
| | - Nilton Lincopan
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil, 05508-000.,Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil, 05508-000
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil, 05513-970
| |
Collapse
|
37
|
Barnes RP, de Rosa M, Thosar SA, Detwiler AC, Roginskaya V, Van Houten B, Bruchez MP, Stewart-Ornstein J, Opresko PL. Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening. Nat Struct Mol Biol 2022; 29:639-652. [PMID: 35773409 PMCID: PMC9287163 DOI: 10.1038/s41594-022-00790-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
Abstract
Oxidative stress is a primary cause of cellular senescence and contributes to the etiology of numerous human diseases. Oxidative damage to telomeric DNA has been proposed to cause premature senescence by accelerating telomere shortening. Here, we tested this model directly using a precision chemoptogenetic tool to produce the common lesion 8-oxo-guanine (8oxoG) exclusively at telomeres in human fibroblasts and epithelial cells. A single induction of telomeric 8oxoG is sufficient to trigger multiple hallmarks of p53-dependent senescence. Telomeric 8oxoG activates ATM and ATR signaling, and enriches for markers of telomere dysfunction in replicating, but not quiescent cells. Acute 8oxoG production fails to shorten telomeres, but rather generates fragile sites and mitotic DNA synthesis at telomeres, indicative of impaired replication. Based on our results, we propose that oxidative stress promotes rapid senescence by producing oxidative base lesions that drive replication-dependent telomere fragility and dysfunction in the absence of shortening and shelterin loss. This study uncovers a new mechanism linking oxidative stress to telomere-driven senescence. A common oxidative lesion at telomeres causes rapid premature cellular aging by inducing telomere fragility, rather than telomere shortening.
Collapse
Affiliation(s)
- Ryan P Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mariarosaria de Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Sanjana A Thosar
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Vera Roginskaya
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marcel P Bruchez
- Departments of Biological Sciences and Chemistry and the Molecular Biosensors and Imaging Center, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jacob Stewart-Ornstein
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA. .,UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Cuny AP, Schlottmann FP, Ewald JC, Pelet S, Schmoller KM. Live cell microscopy: From image to insight. BIOPHYSICS REVIEWS 2022; 3:021302. [PMID: 38505412 PMCID: PMC10903399 DOI: 10.1063/5.0082799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/18/2022] [Indexed: 03/21/2024]
Abstract
Live-cell microscopy is a powerful tool that can reveal cellular behavior as well as the underlying molecular processes. A key advantage of microscopy is that by visualizing biological processes, it can provide direct insights. Nevertheless, live-cell imaging can be technically challenging and prone to artifacts. For a successful experiment, many careful decisions are required at all steps from hardware selection to downstream image analysis. Facing these questions can be particularly intimidating due to the requirement for expertise in multiple disciplines, ranging from optics, biophysics, and programming to cell biology. In this review, we aim to summarize the key points that need to be considered when setting up and analyzing a live-cell imaging experiment. While we put a particular focus on yeast, many of the concepts discussed are applicable also to other organisms. In addition, we discuss reporting and data sharing strategies that we think are critical to improve reproducibility in the field.
Collapse
Affiliation(s)
| | - Fabian P. Schlottmann
- Interfaculty Institute of Cell Biology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Jennifer C. Ewald
- Interfaculty Institute of Cell Biology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Serge Pelet
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
39
|
Ren M, Sun S, Wu Y, Shi Y, Wang ZJ, Cao H, Xie Y. The structure-activity relationship of aromatic compounds in advanced oxidation processes:a review. CHEMOSPHERE 2022; 296:134071. [PMID: 35216974 DOI: 10.1016/j.chemosphere.2022.134071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Advanced oxidation processes (AOPs) are widely used as efficient technologies to treat highly toxic and harmful substances in wastewater. Taking the most representative aromatic compounds (monosubstituted benzenes, substituted phenols and heterocyclic compounds) as examples, this paper firstly introduces their structures and the structural descriptors studied in AOPs before, and the influence of structural differences in AOPs with different reactive oxygen species (ROS) on the degradation rate was discussed in detail. The structure-activity relationship of pollutants has been previously analyzed through quantitative structure-activity relationship (QSAR) model, in which ROS is a very important influencing factor. When electrophilic oxidative species attacks pollutants, aromatic compounds with electron donating groups are more favorable for degradation than aromatic compounds with electron donating groups. While nucleophilic oxidative species comes to the opposite conclusion. The choice of advanced oxidation processes, the synergistic effect of various active oxygen species and the used catalysts will also change the degradation mechanism. This makes the structure-dependent activity relationship uncertain, and different conclusions are obtained under the influence of various experimental factors.
Collapse
Affiliation(s)
- Mingzhu Ren
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Sihan Sun
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiqiu Wu
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanchun Shi
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; National Basic Public Science Data Center, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhou-Jun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; National Basic Public Science Data Center, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongbing Xie
- Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; National Basic Public Science Data Center, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
40
|
Bloyet C, Sciortino F, Matsushita Y, Karr PA, Liyanage A, Jevasuwan W, Fukata N, Maji S, Hynek J, D'Souza F, Shrestha LK, Ariga K, Yamazaki T, Shirahata N, Hill JP, Payne DT. Photosensitizer Encryption with Aggregation Enhanced Singlet Oxygen Production. J Am Chem Soc 2022; 144:10830-10843. [PMID: 35587544 DOI: 10.1021/jacs.2c02596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromophores that generate singlet oxygen (1O2) in water are essential to developing noninvasive disease treatments using photodynamic therapy (PDT). A facile approach for formation of stable colloidal nanoparticles of 1O2 photosensitizers, which exhibit aggregation enhanced 1O2 generation in water toward applications as PDT agents, is reported. Chromophore encryption within a fuchsonarene macrocyclic scaffold insulates the photosensitizer from aggregation induced deactivation pathways, enabling a higher chromophore density than typical 1O2 generating nanoparticles. Aggregation enhanced 1O2 generation in water is observed, and variation in molecular structure allows for regulation of the physical properties of the nanoparticles which ultimately affects the 1O2 generation. In vitro activity and the ability of the particles to pass through the cell membrane into the cytoplasm is demonstrated using confocal fluorescence microscopy with HeLa cells. Photosensitizer encryption in rigid macrocycles, such as fuchsonarenes, offers new prospects for the production of biocompatible nanoarchitectures for applications involving 1O2 generation.
Collapse
Affiliation(s)
- Clarisse Bloyet
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Flavien Sciortino
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshitaka Matsushita
- Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, United States
| | - Anuradha Liyanage
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070 Denton, Texas 76203, United States
| | - Wipakorn Jevasuwan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Fukata
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Subrata Maji
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jan Hynek
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, 305070 Denton, Texas 76203, United States
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Naoto Shirahata
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Daniel T Payne
- International Center for Young Scientists, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
41
|
Whittock AL, Abiola TT, Stavros VG. A Perspective on Femtosecond Pump-Probe Spectroscopy in the Development of Future Sunscreens. J Phys Chem A 2022; 126:2299-2308. [PMID: 35394773 PMCID: PMC9036518 DOI: 10.1021/acs.jpca.2c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Given
the negative impacts of overexposure to ultraviolet radiation
(UVR) on humans, sunscreens have become a widely used product. Certain
ingredients within sunscreens are responsible for photoprotection
and these are known, collectively herein, as ultraviolet (UV) filters.
Generally speaking, organic UV filters work by absorbing the potentially
harmful UVR and dissipating this energy as harmless heat. This process
happens on picosecond time scales and so femtosecond pump–probe
spectroscopy (FPPS) is an ideal technique for tracking this energy
conversion in real time. Coupling FPPS with complementary techniques,
including steady-state spectroscopy and computational methods, can
provide a detailed mechanistic picture of how UV filters provide photoprotection.
As such, FPPS is crucial in aiding the future design of UV filters.
This Perspective sheds light on the advancements made over the past
two years on both approved and nature-inspired UV filters. Moreover,
we suggest where FPPS can be further utilized within sunscreen applications
for future considerations.
Collapse
Affiliation(s)
- Abigail L Whittock
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Temitope T Abiola
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vasilios G Stavros
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
42
|
Wang Y, Li J, Zhou R, Zeng X, Zhao H, Chen Q, Wu P. Universal "Three-in-One" Matrix to Maximize Reactive Oxygen Species Generation from Food and Drug Administration-Approved Photosensitizers for Photodynamic Inactivation of Biofilms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15059-15068. [PMID: 35343225 DOI: 10.1021/acsami.2c02376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biofilms, an accumulation of microorganisms, cause persistent bacterial infection and low cure rate due to the remarkable drug resistance. Photodynamic inactivation (PDI) is a promising treatment modality for bacterial infections, but the formation of biofilms raises new challenges for photosensitizers (PSs), particularly the reactive oxygen species (ROS) generation efficiency. Herein, through targeting the Jablonski energy diagram, we proposed a universal "three-in-one" matrix of Gd3+-ADP assembly for encapsulation and fixing of PSs to inhibit non-radiative transitions and promoting intersystem crossing (ISC) by the heavy atom and paramagnetic effects of Gd3+, eventually resulted in boosted ROS generation from the existing PSs (1.5-9.0-fold). Particularly, photophysical studies indicated that the matrix resulted in simultaneous ISC promotion and triplet-state lifetime lengthening, which is essential for ROS boosting. The PDI performance of the matrix was confirmed through fast and effective elimination of bacterial biofilms in 10-30 min. Moreover, successful therapy of a Pseudomonas aeruginosa biofilm-infected all-thickness third-degree burn wound was achieved within 11 days with Ce 6@CNs (matrix) but not feasible for matrix-free PSs (Ce 6 only), which highlighted the role of "three-in-one" matrix in ROS boosting.
Collapse
Affiliation(s)
- Ying Wang
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Jiazhuo Li
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Wu
- Analytical & Testing Centre, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
43
|
El-Yazbi AF, Khalil HA, Belal TS, El-Kimary EI. Inexpensive bioluminescent genosensor for sensitive determination of DNA damage induced by some commonly used sunscreens. Anal Biochem 2022; 651:114700. [DOI: 10.1016/j.ab.2022.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/01/2022]
|
44
|
Barnes RP, Thosar SA, Fouquerel E, Opresko PL. Targeted Formation of 8-Oxoguanine in Telomeres. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2444:141-159. [PMID: 35290636 DOI: 10.1007/978-1-0716-2063-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian telomeres are guanine-rich sequences which cap the ends of linear chromosomes. While recognized as sites sensitive to oxidative stress, studies on the consequences of oxidative damage to telomeres have been primarily limited to experimental conditions which cause oxidative damage throughout the whole genome and cell. We developed a chemoptogenetic tool (FAP-mCER-TRF1) to specifically induce singlet oxygen at telomeres, resulting in the formation of the common oxidative lesion 8-oxo-guanine. Here, we describe this tool and detail how to generate cell lines which express FAP-mCER-TRF1 at telomeres and verify the formation of 8-oxo-guanine.
Collapse
Affiliation(s)
- Ryan P Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Sanjana A Thosar
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Elise Fouquerel
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Kumar N, Theil AF, Roginskaya V, Ali Y, Calderon M, Watkins SC, Barnes RP, Opresko PL, Pines A, Lans H, Vermeulen W, Van Houten B. Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins. Nat Commun 2022; 13:974. [PMID: 35190564 PMCID: PMC8861037 DOI: 10.1038/s41467-022-28642-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
UV-DDB, consisting of subunits DDB1 and DDB2, recognizes UV-induced photoproducts during global genome nucleotide excision repair (GG-NER). We recently demonstrated a noncanonical role of UV-DDB in stimulating base excision repair (BER) which raised several questions about the timing of UV-DDB arrival at 8-oxoguanine (8-oxoG), and the dependency of UV-DDB on the recruitment of downstream BER and NER proteins. Using two different approaches to introduce 8-oxoG in cells, we show that DDB2 is recruited to 8-oxoG immediately after damage and colocalizes with 8-oxoG glycosylase (OGG1) at sites of repair. 8-oxoG removal and OGG1 recruitment is significantly reduced in the absence of DDB2. NER proteins, XPA and XPC, also accumulate at 8-oxoG. While XPC recruitment is dependent on DDB2, XPA recruitment is DDB2-independent and transcription-coupled. Finally, DDB2 accumulation at 8-oxoG induces local chromatin unfolding. We propose that DDB2-mediated chromatin decompaction facilitates the recruitment of downstream BER proteins to 8-oxoG lesions. Nucleotide excision repair proteins are involved in the repair of UV-induced DNA damage. Here, the authors show that NER proteins, DDB2, XPC, and XPA play a vital role in the 8-oxoguanine repair by coordinating with base excision repair protein OGG1.
Collapse
|
46
|
Nadalutti CA, Ayala-Peña S, Santos JH. Mitochondrial DNA damage as driver of cellular outcomes. Am J Physiol Cell Physiol 2022; 322:C136-C150. [PMID: 34936503 PMCID: PMC8799395 DOI: 10.1152/ajpcell.00389.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mitochondria are primarily involved in energy production through the process of oxidative phosphorylation (OXPHOS). Increasing evidence has shown that mitochondrial function impacts a plethora of different cellular activities, including metabolism, epigenetics, and innate immunity. Like the nucleus, mitochondria own their genetic material, but this organellar genome is circular, present in multiple copies, and maternally inherited. The mitochondrial DNA (mtDNA) encodes 37 genes that are solely involved in OXPHOS. Maintenance of mtDNA, through replication and repair, requires the import of nuclear DNA-encoded proteins. Thus, mitochondria completely rely on the nucleus to prevent mitochondrial genetic alterations. As most cells contain hundreds to thousands of mitochondria, it follows that the shear number of organelles allows for the buffering of dysfunction-at least to some extent-before tissue homeostasis becomes impaired. Only red blood cells lack mitochondria entirely. Impaired mitochondrial function is a hallmark of aging and is involved in a number of different disorders, including neurodegenerative diseases, diabetes, cancer, and autoimmunity. Although alterations in mitochondrial processes unrelated to OXPHOS, such as fusion and fission, contribute to aging and disease, maintenance of mtDNA integrity is critical for proper organellar function. Here, we focus on how mtDNA damage contributes to cellular dysfunction and health outcomes.
Collapse
Affiliation(s)
- Cristina A. Nadalutti
- 1Mechanistic Toxicology Branch, Division of the National Toxicology
Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina
| | - Sylvette Ayala-Peña
- 2Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Janine H. Santos
- 1Mechanistic Toxicology Branch, Division of the National Toxicology
Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina
| |
Collapse
|
47
|
Elshafei ME, Minamiyama Y, Ichikawa H. Singlet oxygen from endoperoxide initiates an intracellular reactive oxygen species release in HaCaT keratinocytes. J Clin Biochem Nutr 2022; 71:198-205. [DOI: 10.3164/jcbn.22-51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Maryam E. Elshafei
- Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University
| | - Yukiko Minamiyama
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Hiroshi Ichikawa
- Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University
| |
Collapse
|
48
|
Tasso TT, Baptista MS. Photosensitized Oxidation of Intracellular Targets: Understanding the Mechanisms to Improve the Efficiency of Photodynamic Therapy. Methods Mol Biol 2022; 2451:261-283. [PMID: 35505023 DOI: 10.1007/978-1-0716-2099-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of improved photosensitizers is a key aspect in the establishment of photodynamic therapy (PDT) as a reliable treatment modality. In this chapter, we discuss how molecular design can lead to photosensitizers with higher selectivity and better efficiency, with focus on the importance of specific intracellular targeting in determining the cell death mechanism and, consequently, the PDT outcome.
Collapse
Affiliation(s)
- Thiago Teixeira Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Maurício S Baptista
- Biochemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
49
|
H2A.X Phosphorylation in Oxidative Stress and Risk Assessment in Plasma Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2060986. [PMID: 34938381 PMCID: PMC8687853 DOI: 10.1155/2021/2060986] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
At serine139-phosphorylated gamma histone H2A.X (γH2A.X) has been established over the decades as sensitive evidence of radiation-induced DNA damage, especially DNA double-strand breaks (DSBs) in radiation biology. Therefore, γH2A.X has been considered a suitable marker for biomedical applications and a general indicator of direct DNA damage with other therapeutic agents, such as cold physical plasma. Medical plasma technology generates a partially ionized gas releasing a plethora of reactive oxygen and nitrogen species (ROS) simultaneously that have been used for therapeutic purposes such as wound healing and cancer treatment. The quantification of γH2A.X as a surrogate parameter of direct DNA damage has often been used to assess genotoxicity in plasma-treated cells, whereas no sustainable mutagenic potential of the medical plasma treatment could be identified despite H2A.X phosphorylation. However, phosphorylated H2A.X occurs during apoptosis, which is associated with exposure to cold plasma and ROS. This review summarizes the current understanding of γH2A.X induction and function in oxidative stress in general and plasma medicine in particular. Due to the progress towards understanding the mechanisms of H2A.X phosphorylation in the absence of DSB and ROS, observations of γH2A.X in medical fields should be carefully interpreted.
Collapse
|
50
|
Wang L, Lu Z, Zhao J, Schank M, Cao D, Dang X, Nguyen LN, Nguyen LNT, Khanal S, Zhang J, Wu XY, El Gazzar M, Ning S, Moorman J, Yao ZQ. Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells. Aging Cell 2021; 20:e13513. [PMID: 34752684 PMCID: PMC8672791 DOI: 10.1111/acel.13513] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/27/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere erosion and mitochondrial injury, leading to impaired cellular functions and cell death. Whether oxidative stress-mediated telomere erosion induces mitochondrial injury, or vice versa, in human T cells-the major effectors of host adaptive immunity against infection and malignancy-is poorly understood due to the pleiotropic effects of ROS. Here we employed a novel chemoptogenetic tool that selectively produces a single oxygen (1 O2 ) only at telomeres or mitochondria in Jurkat T cells. We found that targeted 1 O2 production at telomeres triggered not only telomeric DNA damage but also mitochondrial dysfunction, resulting in T cell apoptotic death. Conversely, targeted 1 O2 formation at mitochondria induced not only mitochondrial injury but also telomeric DNA damage, leading to cellular crisis and apoptosis. Targeted oxidative stress at either telomeres or mitochondria increased ROS production, whereas blocking ROS formation during oxidative stress reversed the telomeric injury, mitochondrial dysfunction, and cellular apoptosis. Notably, the X-ray repair cross-complementing protein 1 (XRCC1) in the base excision repair (BER) pathway and multiple mitochondrial proteins in other cellular pathways were dysregulated by the targeted oxidative stress. By confining singlet 1 O2 formation to a single organelle, this study suggests that oxidative stress induces dual injury in T cells via crosstalk between telomeres and mitochondria. Further identification of these oxidation pathways may offer a novel approach to preserve mitochondrial functions, protect telomere integrity, and maintain T cell survival, which can be exploited to combat various immune aging-associated diseases.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Zeyuan Lu
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Lam Nhat Nguyen
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Hepatitis (HCV/HBV/HIV) ProgramDepartment of Veterans AffairsJames H. Quillen VA Medical CenterJohnson CityTennesseeUSA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and ImmunityQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Division of Infectious, Inflammatory and Immunologic DiseasesDepartment of Internal MedicineQuillen College of MedicineEast Tennessee State UniversityJohnson CityTennesseeUSA
- Hepatitis (HCV/HBV/HIV) ProgramDepartment of Veterans AffairsJames H. Quillen VA Medical CenterJohnson CityTennesseeUSA
| |
Collapse
|