1
|
Guo L, Fu Z, Li H, Wei R, Guo J, Wang H, Qi J. Smart hydrogel: A new platform for cancer therapy. Adv Colloid Interface Sci 2025; 340:103470. [PMID: 40086017 DOI: 10.1016/j.cis.2025.103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Cancer is a significant contributor to mortality worldwide, posing a significant threat to human life and health. The unique bioactivity, ability to precisely control drug release, and minimally invasive properties of hydrogels are indispensable attributes that facilitate optimal performance in cancer therapy. However, conventional hydrogels lack the ability to dynamically respond to changes in the surrounding environment, withstand drastic changes in the microenvironment, and trigger drug release on demand. Therefore, this review focuses on smart-responsive hydrogels that are capable of adapting and responding to external stimuli. We comprehensively summarize the raw materials, preparation, and cross-linking mechanisms of smart hydrogels derived from natural and synthetic materials, elucidate the response principles of various smart-responsive hydrogels according to different stimulation sources. Further, we systematically illustrate the important role played by hydrogels in modern cancer therapies within the context of therapeutic principles. Meanwhile, the smart hydrogel that uses machine learning to design precise drug delivery has shown great prospects in cancer therapy. Finally, we present the outlook on future developments and make suggestions for future related work. It is anticipated that this review will promote the practical application of smart hydrogels in cancer therapy and contribute to the advancement of medical treatment.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ziming Fu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Haoran Li
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ruibo Wei
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jing Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Gu Z, He Y, Xiang H, Qin Q, Cao X, Jiang K, Zhang H, Li Y. Self-healing injectable multifunctional hydrogels for intervertebral disc disease. Mater Today Bio 2025; 32:101655. [PMID: 40166378 PMCID: PMC11957681 DOI: 10.1016/j.mtbio.2025.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is increasingly prevalent in aging societies and poses a significant health challenge. Due to the limited blood supply to the disc, oral medications and systemic treatments are often ineffective. Consequently, localized injection therapies, which deliver therapeutic agents directly to the degenerated disc, have emerged as more efficient. Self-healing injectable hydrogels are particularly promising due to their potential for minimally invasive delivery, precise implantation, and targeted drug release into hard-to-reach tissue sites, including those requiring prolonged healing. Their dynamic viscoelastic properties accurately replicate the mechanical environment of the natural nucleus pulposus, providing cells with an adaptive biomimetic microenvironment. This review will initially discuss the anatomy and pathophysiology of intervertebral discs, current treatments, and their limitations. Subsequently, we conduct bibliometric analysis to explore the research hotspots and trends in applying injectable hydrogel technology to treat IVDD. It will then explore the promising features of injectable hydrogels in biomedical applications such as drug, protein, cells and gene delivery, tissue engineering and regenerative medicine. We discuss the construction mechanisms of injectable hydrogels via physical interactions, chemical and biological crosslinkers, and discuss the selection of biomaterials and fabrication methods for developing novel hydrogels for IVD tissue engineering. The article concludes with future perspectives on the application of injectable hydrogels in this field.
Collapse
Affiliation(s)
- Zhengrong Gu
- Department of Orthopedics, Affiliated Guang'an District People's Hospital of North Sichuan Medical College, Guang'an County, 638000, PR China
| | - Yi He
- Department of Orthopedics, Affiliated Nanbu People's Hospital of North Sichuan Medical College, Nanbu County, Nanchong, 637000, PR China
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Qiwei Qin
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xinna Cao
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Haoshaqiang Zhang
- Department of Orthopedics Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, PR China
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
3
|
Chen J, Ouyang X, Yu C, Xiang J. Functionalized pNIPAM-DNA Hydrogel Colorimetric Platform for Visual Detection of Low-Mass Soluble β-Amyloid Oligomers. Anal Chem 2025. [PMID: 40334134 DOI: 10.1021/acs.analchem.5c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Low-mass soluble β-amyloid oligomers (LSAβO) are critical Alzheimer's disease (AD) biomarkers with significant diagnostic and therapeutic potential. However, their application in early screening and detection is limited by the reliance on complex analytical instruments and procedures. To address this, we developed a visual sensing platform for LSAβO detection using a functionalized pNIPAM-DNA hydrogel. Exploiting the temperature-responsive nature of pNIPAM, the hydrogel selectively incorporates and enriches LSAβO from solution via temperature-induced expansion and contraction. LSAβO binding to aptamers on the hydrogel triggers the formation of G-quadruplex DNAzymes, which catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine to generate a visible colorimetric signal. The hydrogel's small pore size further enhances selectivity by excluding larger oligomers during real sample analysis. This sensor exhibits a linear detection range of 0.1-7.5 nM for LSAβO and a detection limit of 50 pM. Combining LSAβO enrichment and size exclusion, this functionalized pNIPAM-DNA hydrogel platform provides a cost-effective, highly sensitive, selective, and high-throughput approach for preliminary LSAβO screening and detection.
Collapse
Affiliation(s)
- Jia Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xuliang Ouyang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chenxiao Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
4
|
Zhang C, Fei Y, Li M, Li J, Tang M, Wang G, Li J, Wang Y, Ding Y, Peng C, Li M, Gui S, Guo J. Chitosan-P407-PNIPAM hydrogel loaded with AgNPs/lipid complex for antibacterial, inflammation regulation and alveolar bone regeneration in periodontitis treatment. Int J Biol Macromol 2025; 307:142080. [PMID: 40107529 DOI: 10.1016/j.ijbiomac.2025.142080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Periodontitis is an oral chronic inflammatory disease induced by pathogenic bacteria. Pathogens continuously activate immune cells to express a large number of pro-inflammatory factors and reactive oxygen species, eventually leading to periodontal tissue damage. Poor eradication of pathogenic bacteria, persistent inflammatory response and impaired periodontal tissue regeneration are the main challenges to control the progression of periodontitis. However, current clinical drug treatment fails to comprehensively address these issues. In this paper, a chitosan-P407-PNIPAM scaffold multi-crosslinked hydrogel (A/CQ-ML@Gel) encapsulating AgNPs and lipid complex (CQ-ML) is developed. This hydrogel shows thermo- and pH-sensitive properties, exhibits excellent injectability, high viscosity and reliable post-injection mechanical strength. A/CQ-ML@Gel possesses a significant antibacterial effect to Porphyromonas gingivalis after implantation, and then by virtue of the programmed release of quercetin microemulsion and caffeic acid phenethyl ester in CQ-ML, exerting excellent inflammation regulation and osteogenic differentiation of periodontal ligament stem cells. Notably, A/CQ-ML@Gel could activate mitophagy through PINK1/Parkin in inflammatory macrophages, thereby inhibiting the production of excess reactive oxygen species, ultimately reprogramming M1/M2 macrophages phenotype for inflammation suppression. In summary, we present an innovative insight into periodontal delivery system for trimodal synergistic therapy strategy in periodontitis.
Collapse
Affiliation(s)
- Chengdong Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yachen Fei
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Meng Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jing Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Maomao Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Guichun Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jiaxin Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yang Ding
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chengjun Peng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Mengjie Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department, Hefei, Anhui 230012, China.
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department, Hefei, Anhui 230012, China.
| |
Collapse
|
5
|
Liu L, Gao M, Fan X, Lu Z, Li Y. Fast fabrication of stimuli-responsive MXene-based hydrogels for high-performance actuators with simultaneous actuation and self-sensing capability. J Colloid Interface Sci 2025; 684:469-480. [PMID: 39799629 DOI: 10.1016/j.jcis.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/T3C2Tx MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties. The rapid thermoresponsive behavior of the PNIPAM/CMC/MXene layer bestows its corresponding bilayer actuator with an extraordinary actuation speed of 9.36°/s in hot water. Owing to the high photothermal conversion of MXenes, this PNIPAM/CMC/MXene hydrogel displays a range of remote-controlled actuations upon NIR light irradiation, including bending, rolling, displacement, and simulations of the sea eel's hunting behaviors in a water environment. More importantly, based on the excellent electrical properties of MXene, the PNIPAM/CMC/MXene-based hydrogel actuators have accomplished a self-sensing function by integrating the surface temperature-bending angle-the relative resistance changes during the NIR light-driven actuation process. The photothermal actuator's integrated actuation and sensing capabilities have facilitated the feedback of the contact and movement dynamics of the bioinspired artificial tongue. The straightforward preparation and multifunctional design of MXene-based hydrogel may facilitate the development of soft smart actuators.
Collapse
Affiliation(s)
- Lingke Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China
| | - Minjuan Gao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China
| | - Xingyu Fan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China
| | - Zichun Lu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China
| | - Yueqin Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China.
| |
Collapse
|
6
|
Liang Y, He J, Li M, Li Z, Wang J, Li J, Guo B. Polymer Applied in Hydrogel Wound Dressing for Wound Healing: Modification/Functionalization Method and Design Strategies. ACS Biomater Sci Eng 2025; 11:1921-1944. [PMID: 40169450 DOI: 10.1021/acsbiomaterials.4c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Hydrogel wound dressings have emerged as a promising solution for wound healing due to their excellent mechanical and biochemical properties. Over recent years, there has been significant progress in expanding the variety of raw materials used for hydrogel formulation along with the development of advanced modification techniques and design approaches that enhance their performance. However, a comprehensive review encompassing diverse polymer modification strategies and design innovations for hydrogel dressings is still lacking in the literature. This review summarizes the use of natural polymers (e.g., chitosan, gelatin, sodium alginate, hyaluronic acid, and dextran) and synthetic polymers (e.g., poly(vinyl alcohol), polyethylene glycol, Pluronic F-127, poly(N-isopropylacrylamide), polyacrylamide, and polypeptides) in hydrogel wound dressings. We further explore the advantages and limitations of these polymers and discuss various modification strategies, including cationic modification, oxidative modification, double-bond modification, catechol modification, etc. The review also addresses design principles and synthesis methods, aligning polymer modifications with specific requirements in wound healing. Finally, we discuss future challenges and opportunities in the development of advanced hydrogel-based wound dressings.
Collapse
Affiliation(s)
- Yongping Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiahui He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenlong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaxin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Juntang Li
- Research Centre of Immunity, Trauma and Environment Medicine, Collaborative Innovation Centre of Medical Equipment, PLA Key Laboratory of Biological Damage Effect and Protection, Luoyang, Henan 471031, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Wang Z, Sheng W, Tang X, Ya T, Jin Z, Wang S, Ji Q, Fan C, Liu Y. Temperature-sensitive driving assembled fluorescence hydrogel based dual-mode sensor for adsorbing and detecting of heavy metal cadmium ions in food and water. Food Chem 2025; 470:142727. [PMID: 39752743 DOI: 10.1016/j.foodchem.2024.142727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025]
Abstract
The denatured bovine serum albumin (dBSA) is coupled with the CdTe/CdS quantum dot and the resulting CdTe/CdS@dBSA complex is assembled and retained in the poly(n-isopropyl acrylamide) (PNIPAM) hydrogel via regulating temperature and pH to form the CdTe/CdS@dBSA-PNIPAM fluorescence hydrogel substrate, which is able to adsorb and sense cadmium ions (Cd2+). Based on this fluorescence hydrogel, a fluorescence and colorimetric dual-mode detection system is established to quantitatively detect Cd2+ with a limit of detection (LOD) of 2.88 nM for fluorescence detection and 11.66 nM for colorimetric detection. Here, the fluorescence and colorimetric detection mode can obtain the dual test signal including the fluorescence signal and visual orange-red color signal. Therein, the utilization of smartphone can achieve the conversion of visual color signals into RGB digital signals, facilitating the interconnection of data among the communication devices. This research provides a novel and advanced strategy for the accurate and real-time detection of Cd2+.
Collapse
Affiliation(s)
- Ziwuzhen Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xinshuang Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tingting Ya
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zixin Jin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Qiuyue Ji
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Caixu Fan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yamin Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
8
|
Sadraei A, Naghib SM, Rabiee N. 4D printing chemical stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 2. Expert Opin Drug Deliv 2025; 22:491-510. [PMID: 39953663 DOI: 10.1080/17425247.2025.2466768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION The incorporation of 4D printing alongside chemical stimuli-responsive hydrogels represents a significant advancement in the field of biomedical engineering, effectively overcoming the constraints associated with conventional static 3D-printed structures. Through the integration of time as the fourth dimension, 4D printing facilitates the development of dynamic and adaptable structures that can react to chemical alterations in their surroundings. This innovation presents considerable promise for sophisticated tissue engineering and targeted drug delivery applications. AREAS COVERED This review examines the function of chemical stimuli-responsive hydrogels within the context of 4D printing, highlighting their distinctive ability to undergo regulated transformations when exposed to particular chemical stimuli. An in-depth examination of contemporary research underscores the collaborative dynamics between these hydrogels and their surroundings, focusing specifically on their utilization in biomimetic scaffolds for tissue regeneration and the advancement of intelligent drug delivery systems. EXPERT OPINION The integration of 4D printing technology with chemically responsive hydrogels presents exceptional prospects for advancements in tissue engineering and targeted drug delivery, facilitating the development of personalized and adaptive medical solutions. Although the potential is promising, it is essential to address challenges such as material optimization, biocompatibility, and precise control over stimuli-responsive behavior to facilitate clinical translation and scalability.
Collapse
Affiliation(s)
- Alireza Sadraei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
9
|
Sadraei A, Naghib SM, Rabiee N. 4D printing biological stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 1. Expert Opin Drug Deliv 2025; 22:471-490. [PMID: 39939161 DOI: 10.1080/17425247.2025.2466772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION The advent of 3D printing has revolutionized biomedical engineering, yet limitations in creating dynamic human tissues remain. The emergence of 4D printing, which introduces time as a fourth dimension, offers new possibilities by enabling the production of adaptable, stimuli-responsive structures. A thorough literature search was performed across various databases, including Google Scholar, PubMed, Scopus, and Web of Science, to identify pertinent studies published up to 2025. The search parameters were confined to articles published in English that concentrated on peer-reviewed clinical studies. AREAS COVERED This review explores the transition from 3D to 4D printing and focuses on stimuli-responsive materials, particularly hydrogels, which react to environmental changes. The literature search examined recent studies on the interaction of these materials with biological stimuli, emphasizing their application in tissue engineering and drug delivery applications. EXPERT OPINION 4D printing, combined with smart materials, holds immense promise for advancing biomedical treatments, including customized therapies and regenerative medicine. However, technological challenges must be addressed to realize its full potential.
Collapse
Affiliation(s)
- Alireza Sadraei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
10
|
Zhou J, Teng Z, Han Z, Wang K, Hu J, Li Y, Wang S, Xia Y. Artificial Cephalopod Skins with Switchable Appearance Color. Macromol Rapid Commun 2025; 46:e2400937. [PMID: 39838586 DOI: 10.1002/marc.202400937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Cephalopods such as squids, octopuses, and cuttlefishes can change their bodies' color to match the surrounding environments by contracting or expanding the sac just below the surface of the skin. Inspired by this mechanism, artificial cephalopod chromatophores which are prepared by thermoresponsive poly(N-isopropyl acrylamide)-based hydrogel films embedded with black, red, and yellow pigments are presented, they can swell and shrink under temperature stimuli, like the natural chromatophores. The artificial chromatophores embedded with cuttlefish ink are further used to fabricate artificial J.heathi octopus skin by sandwiched between a transparent outer layer and a transparency-switchable substrate, thus camouflage skin can be achieved by controlling temperature or NIR irradiation. The artificial chromatophores with red and yellow pigments are further incorporated with the colloidal photonic crystals patches which are embedded in a white substrate, and the iridescence patches keep disappearing-reappearing with the expanding-contracting behavior of the pigment-containing chromatophores, like the skin of squids. These bioinspired artificial skins with the excellent capability of dynamic camouflage have potential applications for color displaying, camouflage, and smart wearable devices.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ziqi Teng
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zongchen Han
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kaiyuan Wang
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jianfeng Hu
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yiran Li
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shengjie Wang
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yongqing Xia
- Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
11
|
Narayana S, Gowda BHJ, Hani U, Ahmed MG, Asiri ZA, Paul K. Smart Poly(N-isopropylacrylamide)-Based Hydrogels: A Tour D'horizon of Biomedical Applications. Gels 2025; 11:207. [PMID: 40136912 PMCID: PMC11942434 DOI: 10.3390/gels11030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels are innovative materials characterized by a water-swollen, crosslinked polymeric network capable of retaining substantial amounts of water while maintaining structural integrity. Their unique ability to swell or contract in response to environmental stimuli makes them integral to biomedical applications, including drug delivery, tissue engineering, and wound healing. Among these, "smart" hydrogels, sensitive to stimuli such as pH, temperature, and light, showcase reversible transitions between liquid and semi-solid states. Thermoresponsive hydrogels, exemplified by poly(N-isopropylacrylamide) (PNIPAM), are particularly notable for their sensitivity to temperature changes, transitioning near their lower critical solution temperature (LCST) of approximately 32 °C in water. Structurally, PNIPAM-based hydrogels (PNIPAM-HYDs) are chemically versatile, allowing for modifications that enhance biocompatibility and functional adaptability. These properties enable their application in diverse therapeutic areas such as cancer therapy, phototherapy, wound healing, and tissue engineering. In this review, the unique properties and behavior of smart PNIPAM are explored, with an emphasis on diverse synthesis methods and a brief note on biocompatibility. Furthermore, the structural and functional modifications of PNIPAM-HYDs are detailed, along with their biomedical applications in cancer therapy, phototherapy, wound healing, tissue engineering, skin conditions, ocular diseases, etc. Various delivery routes and patents highlighting therapeutic advancements are also examined. Finally, the future prospects of PNIPAM-HYDs remain promising, with ongoing research focused on enhancing their stability, responsiveness, and clinical applicability. Their continued development is expected to revolutionize biomedical technologies, paving the way for more efficient and targeted therapeutic solutions.
Collapse
Affiliation(s)
- Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - B. H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (Z.A.A.)
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Zahrah Ali Asiri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (Z.A.A.)
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India;
| |
Collapse
|
12
|
Ye H, Dong T, Wu S, Han G, Chen Q, Lou CW, Chi S, Liu Y, Liu C, Lin JH. Thermoresponsive and Strain-Sensitive Hydrogels with Inscribable Transparency-Based Dynamic Memory Behaviors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15921-15937. [PMID: 40019150 DOI: 10.1021/acsami.4c19368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Personal health management drives the development of intelligent hydrogel dressings, which pursue optical transparency, stretchability, and conductivity and are required to perceive specific environmental stimuli by dynamic structure, shape, or color memory. However, the incorporation of weak perceptive elements or black conductive polymers limits the fabrication of these hydrogels. Herein, we propose smart hydrogels with inscribable dynamic memorizing-forgetting transparency behavior by in situ degrading and immobilizing conductive polydopamine-doped polypyrrole (PDA-PPy) nanodots into an interpenetrating poly(NIPAm-co-acrylic acid) copolymer/polyacrylamide (PNAc/PAM) network. These hydrogels are not only optically transparent (∼64.99%), stretchable (∼1052%), self-adhesive (21-105 kPa), and highly conductive (∼0.8 S/m), but also can perceive temperature changes via structure shifts, which enables temperature-induced reversible transparency control. Especially, the temperature-dependent transparent-opaque transition kinetics of the hydrogels are tuned by the protonation of -COOH groups at pH < pKa, utilizing which the hydrogels achieve inscribed programmed dynamic memory for information memorizing-forgetting-recalling based on a pH-engraved dynamic transparency evolution of the hydrogel in response to temperature changes. These intelligent hydrogels can not only be used as efficient near-infrared (NIR) light-controlled drug release carriers to realize on-demand drug release, but also serve as a soft sensor to recognize different body postures and movement behaviors with high strain sensitivity (gauge factor, GF = 5.98), broad working strain (5-500%), rapid response (139 ms), and excellent sensing reliability (≈1000 cycles at 50% strain).
Collapse
Affiliation(s)
- Huabiao Ye
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Ting Dong
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Shaohua Wu
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Guangting Han
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
| | - Que Chen
- Fujian Aton Advanced Materials Science and Technology Co., Ltd., Fujian 350304, PR China
| | - Ching-Wen Lou
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Shan Chi
- Bestee Material Co., Ltd., Qingdao, Shandong 266001, P.R. China
| | - Yanming Liu
- Sinotech Academy of Textile Co., Ltd., Qingdao, Shandong 266001, P.R. China
| | - Cui Liu
- Qingdao Byherb New Material Co., Ltd., Qingdao, Shandong 266001, P.R. China
| | - Jia-Horng Lin
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao 266071, P.R. China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
| |
Collapse
|
13
|
Bonelli M, Allémann E, Stefano MD. Rational design and analytical characterization of self-assembling poly(N‑isopropylacrylamide) and poly(2‑alkyl‑2‑oxazoline) hyaluronic acid copolymers. Int J Pharm 2025; 671:125250. [PMID: 39842738 DOI: 10.1016/j.ijpharm.2025.125250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
In this study, we applied a systematic approach to establish an iterative workflow and to drive the chemical design of thermosensitive, in situ forming injectables as a function of the intended target product profile. Self-assembly, mechanical properties, physical state, and thermal transition behavior were assessed via nuclear magnetic resonance, oscillatory rheology, turbidimetry and visual inspection techniques. Thus, poly(N-isopropylacrylamide) (PNIPAM) and poly(2-alkyl-2-oxazoline)s (PAOx)s with LCSTs below body temperature were studied before and after grafting them onto azido-substituted hyaluronic acid (HA) via strain-promoted azide-alkyne cycloaddition (SPAAC). Ultimately, we identified critical material attributes able to guide the pharmaceutical development of in situ gelling thermosensitive polymers.
Collapse
Affiliation(s)
- Mirko Bonelli
- Novartis Pharma AG, GDD, TRD Biologics & CGT 4002 Basel, Switzerland; School of Pharmaceutical Sciences, University of Geneva CH-1206 Geneva, Switzerland
| | - Eric Allémann
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva CH-1206 Geneva, Switzerland.
| | - Mauro Di Stefano
- Novartis Pharma AG, GDD, TRD Biologics & CGT 4002 Basel, Switzerland
| |
Collapse
|
14
|
Kopecz-Muller C, Gaunand C, Tran Y, Labousse M, Raphaël E, Salez T, Box F, McGraw JD. Swelling and Evaporation Determine Surface Morphology of Grafted Hydrogel Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2400-2410. [PMID: 39841865 DOI: 10.1021/acs.langmuir.4c04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
We experimentally study the formation of surface patterns in grafted hydrogel films of nanometer-to-micrometer thickness during imbibition-driven swelling followed by evaporation-driven shrinking. Creases are known to form at the hydrogel surface during swelling; the wavelength of the creasing pattern is proportional to the initial thickness of the hydrogel film with a logarithmic correction that depends on microscopic properties of the hydrogel. We find that, although the characteristic wavelength of the pattern is determined during swelling, the surface morphology can be significantly influenced by evaporation-induced shrinking. We observe that the elastocapillary length based on swollen mechanical properties gives a threshold thickness for a surface pattern formation and consequently an important change in morphology.
Collapse
Affiliation(s)
- Caroline Kopecz-Muller
- Gulliver, CNRS, ESPCI Paris, Université PSL, Paris 75005, France
- Institut Pierre Gilles de Gennes (IPGG), ESPCI Paris, Université PSL, Paris 75005, France
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, Talence F-33400, France
| | - Clémence Gaunand
- Gulliver, CNRS, ESPCI Paris, Université PSL, Paris 75005, France
- Institut Pierre Gilles de Gennes (IPGG), ESPCI Paris, Université PSL, Paris 75005, France
| | - Yvette Tran
- Sciences et Ingénierie de la Matière Molle, CNRS, ESPCI Paris, Université PSL, 75005 Paris, France
- Sorbonne-Universités, UPMC Université Paris 06, Paris 75005, France
| | | | - Elie Raphaël
- Gulliver, CNRS, ESPCI Paris, Université PSL, Paris 75005, France
| | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, Talence F-33400, France
| | - Finn Box
- Gulliver, CNRS, ESPCI Paris, Université PSL, Paris 75005, France
- Institut Pierre Gilles de Gennes (IPGG), ESPCI Paris, Université PSL, Paris 75005, France
- Physics of Fluids & Soft Matter, Department of Physics & Astronomy, University of Manchester, Manchester M13 9PL, U.K
| | - Joshua D McGraw
- Gulliver, CNRS, ESPCI Paris, Université PSL, Paris 75005, France
- Institut Pierre Gilles de Gennes (IPGG), ESPCI Paris, Université PSL, Paris 75005, France
| |
Collapse
|
15
|
Bai HY, Zhu QL, Cheng HL, Wen XL, Wang ZJ, Zheng Q, Wu ZL. Muscle-like hydrogels with fast isochoric responses and their applications as soft robots: a minireview. MATERIALS HORIZONS 2025; 12:719-733. [PMID: 39530734 DOI: 10.1039/d4mh01187b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydrogels with abundant water and responsiveness to external stimuli have emerged as promising candidates for artificial muscles and garnered significant interest for applications as soft actuators and robots. However, most hydrogels possess amorphous structures and exhibit slow, isotropic responses to external stimuli. These features are far inferior to real muscles, which have ordered structures and endow living organisms with programmable deformations and motions through fast, anisotropic responses in complex environments. In recent years, this issue has been addressed by a conceptual new strategy to develop muscle-like hydrogels with highly oriented nanosheets. These hydrogels exhibit fast, isochoric responses based on temperature-mediated electrostatic repulsion between charged nanosheets rather than water diffusion, which significantly advances the development of soft actuators and robots. This minireview summarizes the recent progress in muscle-like hydrogels and their applications as soft actuators and robots. We first introduce the synthesis of muscle-like hydrogels with monodomain structures and the unique mechanism for rapid and isochoric deformations. Then, the developments of hydrogels with complex ordered structures and hydrogel-based soft robots are discussed. The morphing mechanisms and motion kinematics of the hydrogel actuators and robots are highlighted. Finally, concluding remarks are given to discuss future opportunities and challenges in this field.
Collapse
Affiliation(s)
- Hui Ying Bai
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Qing Li Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Han Lei Cheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Xin Ling Wen
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Zhi Jian Wang
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan.
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Li Q, Liang W, Wu H, Li J, Wang G, Zhen Y, An Y. Challenges in Application: Gelation Strategies of DAT-Based Hydrogel Scaffolds. TISSUE ENGINEERING. PART B, REVIEWS 2025; 31:76-87. [PMID: 38666688 DOI: 10.1089/ten.teb.2023.0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Decellularized adipose tissue (DAT) has great clinical applicability, owing to its abundant source material, natural extracellular matrix microenvironment, and nonimmunogenic attributes, rendering it a versatile resource in the realm of tissue engineering. However, practical implementations are confronted with multifarious limitations. Among these, the selection of an appropriate gelation strategy serves as the foundation for adapting to diverse clinical contexts. The cross-linking strategies under varying physical or chemical conditions exert profound influences on the ultimate morphology and therapeutic efficacy of DAT. This review sums up the processes of DAT decellularization and subsequent gelation, with a specific emphasis on the diverse gelation strategies employed in recent experimental applications of DAT. The review expounds upon methodologies, underlying principles, and clinical implications of different gelation strategies, aiming to offer insights and inspiration for the application of DAT in tissue engineering and advance research for tissue engineering scaffold development.
Collapse
Affiliation(s)
- Qiaoyu Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Jingming Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
17
|
Keshavarz M, Mohammadi M, Shokrolahi F. Progress in injectable hydrogels for hard tissue regeneration in the last decade. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-39. [PMID: 39853308 DOI: 10.1080/09205063.2024.2436292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Bone disorders have increased with increasing the human lifespan, and despite the tissue's ability to self-regeneration, in many congenital problems and hard fractures, bone grafting such as autograft, allograft, and biomaterials implantation through surgery is traditionally used. Because of the adverse effects of these methods, the emergence of injectable hydrogels without the need for surgery and causing more pain for the patient is stunning to develop a new pattern for hard tissue engineering. These materials are formed with various natural and synthetic polymers with a crosslinked network through various chemical methods such as click chemistry, Michael enhancement, Schiff's base and enzymatic reaction and physical interactions with high water absorption which can mimic the environment of cells. The purpose of this research is to review the capabilities of this class of materials in hard tissue regeneration in the last decade through adaptable physical and chemical properties, the ability to fill defect sites with an irregular shape, and the ability to grow hormones or release drugs, in response to external stimuli.
Collapse
Affiliation(s)
- Mahya Keshavarz
- Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran
| | - Mohsen Mohammadi
- Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
18
|
Jin X, Li H, Zhang W, Qin K, Wu C. Research progress on the performance of expandable systems for long-term gastric retention. Acta Biomater 2025; 193:1-19. [PMID: 39794222 DOI: 10.1016/j.actbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Gastroretentive systems have gained attention due to their prolonged retention time in the human body, and they have the potential to improve treatment effects, simplify treatment regimens, and improve patient compliance. Among these systems, expandable gastroretentive systems (EGRSs) have emerged as an important type of carrier that can reside in the stomach for a desired period through on-demand expansion for drug delivery, obesity intervention, and medical diagnosis. As the physiological environment significantly influences the performance of EGRSs, here, the physiological factors such as the stomach's physiological structure and activity pattern, and the character of gastric juice are summarized. Following this, the research progress of EGRSs from ingestion to removal for long-term gastric retention is discussed with respect to the influencing factors and reinforcement strategies in mechanics. Additionally, as the duration of gastric retention increases, safety concerns arise. As such, safety issues in terms of removal after retention or in an emergency are also analyzed. Finally, the biomedical application of EGRSs as diagnostic and therapeutic tools and the potential direction for further research are discussed. STATEMENT OF SIGNIFICANCE: Expandable gastroretentive systems (EGRSs) resist gastric emptying due to their size exceeding the pylorus diameter, offering promising advantages for obesity intervention, drug delivery, and carrying sensors. However, a long gastroretentive time only by such a size mismatch is hard to be achieved due to the uninterrupted stomach contraction and gastric juice erosion. Recent studies indicate that the retention time and stability of EGRSs can be regulated by adjusting their mechanical properties. Hence, this review summarizes the state-of-art progress of EGRSs for long-term gastric retention from a mechanical perspective for the first time, focuses on material components and synthesis methods, and the reinforcement strategies, and suggests the required mechanical property parameters of EGRSs.
Collapse
Affiliation(s)
- Xin Jin
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; Faculty of Medicine, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Heng Li
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; Faculty of Medicine, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wei Zhang
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China.
| | - Kairong Qin
- Faculty of Medicine, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chengwei Wu
- Department of Engineering Mechanics, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Heo S, Noh M, Kim Y, Park S. Stem Cell-Laden Engineered Patch: Advances and Applications in Tissue Regeneration. ACS APPLIED BIO MATERIALS 2025; 8:62-87. [PMID: 39701826 DOI: 10.1021/acsabm.4c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Stem cell-based therapies are emerging as significant approaches in tissue engineering and regenerative medicine, applicable to both fundamental scientific research and clinical practice. Despite remarkable results in clinical studies, challenges such as poor standardization of graft tissues, limited sources, and reduced functionality have hindered the effectiveness of these therapies. In this review, we summarize the engineering approaches involved in fabricating stem cell assisted patches and the substantial strategies for designing stem cell-laden engineered patches (SCP) to complement the existing stem cell-based therapies. We then outline the potential applications of SCP in advancing tissue regeneration and regenerative medicine. By combining living stem cells with engineered patches, SCP can enhance the functions of both components, particularly for tissue engineering applications. Finally, we addressed current challenges, such as ethical considerations, high costs, and regulatory hurdles and proposed future research directions to overcome these barriers.
Collapse
Affiliation(s)
- Seyeong Heo
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Minhyeok Noh
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Yeonseo Kim
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Sunho Park
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
20
|
Yang H, Whitby CP, Travas-Sejdic J. Dual-network hydrogel capsules for controlled molecular transport via pH and temperature responsiveness. J Colloid Interface Sci 2025; 677:942-951. [PMID: 39178673 DOI: 10.1016/j.jcis.2024.08.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
We have developed innovative core-shell hydrogel capsules with a dual-network shell structure designed for precise control of molecular transport in response to external stimuli such as pH and temperature. The capsules were fabricated using a combination of microfluidic electrospray techniques and water-in-water (w/w) core-shell droplets templating. The primary network of the shell, calcium alginate (Ca-Alg), with a pKa around 3.4, exhibits sensitivity to pH. The secondary network of the shell, poly(ethylene glycol) methyl ether methacrylate (PEGMA), undergoes a volume phase transition near 60 °C. These properties enable precise molecular transport control in/out of the capsules by modulating the surface charges through varying pH and modifying pore size through temperature changes. Moreover, the dual-network shell structure not only significantly enhances the mechanical strength of the capsules but also improves their stability under external stimulus, ensuring structural integrity during the transport of molecules. This research lays the groundwork for further investigations into the multimodal stimuli-responsive hydrogel systems to control molecular transport, important in applications such as sensors and reactors for chemical cascade reactions.
Collapse
Affiliation(s)
- Hui Yang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Catherine P Whitby
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
21
|
Choi G, Kim J, Kim H, Bae H, Kim B, Lee HJ, Jang H, Seong M, Tawfik SM, Kim JJ, Jeong HE. Motion-Adaptive Tessellated Skin Patches With Switchable Adhesion for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412271. [PMID: 39428834 PMCID: PMC11775872 DOI: 10.1002/adma.202412271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Skin-interfaced electronics have emerged as a promising frontier in personalized healthcare. However, existing skin-interfaced patches often struggle to simultaneously achieve robust skin adhesion, adaptability to dynamic body motions, seamless integration of bulky devices, and on-demand, damage-free detachment. Here, a hybrid strategy that synergistically combines these critical features within a thin, flexible patch platform is introduced. This design leverages shape memory polymers (SMPs) arranged in a tessellated array, comprising both rigid and compliant SMPs. This configuration enables exceptional deformability, motion adaptability, and ultra-strong, repeatable skin adhesion while offering on-demand adhesion control. Furthermore, the design facilitates the seamless integration of bulky electronics without compromising skin adhesion. By incorporating sizeable electronics including signal acquisition circuits, sensors, and a battery, it is demonstrated that the proposed tessellated patch can be securely mounted on the skin, accommodate dynamic body motions, precisely detect physiological signals with an outstanding signal-to-noise ratio (SNR), wirelessly transmit data, and be effortlessly released from the skin.
Collapse
Affiliation(s)
- Geonjun Choi
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jaeil Kim
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Hyunjoong Kim
- Department of Electrical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Haejin Bae
- Ecological Technology Team, Division of Ecological Application ResearchNational Institute of EcologySeocheon33657Republic of Korea
| | - Baek‐Jun Kim
- Ecological Technology Team, Division of Ecological Application ResearchNational Institute of EcologySeocheon33657Republic of Korea
| | - Hee Jin Lee
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Hyejin Jang
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Minho Seong
- Department of Fire Protection EngineeringPukyong National UniversityBusan48513Republic of Korea
| | - Salah M. Tawfik
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jae Joon Kim
- Department of Electrical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| |
Collapse
|
22
|
Kalkan B, Orakdogen N. Smart Crowding on pH-Induced Elasticity of Weakly Anionic poly(N-Isopropylacrylamide)-Based Semi-Interpenetrating Polymer Networks via Integration of Methacrylic Acid and Linear Polyacrylamide Chains. Macromol Rapid Commun 2025; 46:e2400642. [PMID: 39545849 DOI: 10.1002/marc.202400642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Indexed: 11/17/2024]
Abstract
Weakly anionic semi-interpenetrating polymer networks (semi-IPNs), comprised of copolymer poly(N-isopropylacrylamide-co-methacrylic acid) P(NIPA-MA) and linear poly(acrylamide) (LPA) chains as macromolecular crowding agent, are designed to evaluate pH-induced swelling and elasticity. Uniaxial compression testing after swelling in various pH-conditions is used to analyze the compressive elasticity as a function of swelling pH and LPA-content. The swelling of P(NIPA-MA)/LPA semi-IPNs is strongly pH-dependent due to MA units incorporated into the copolymer network which already exhibits temperature-sensitivity by presence of PNIPA counterpart. Since the behavior of semi-IPNs is a combination of PMA, LPA, and PNIPA moieties, the sensitivity of swelling to external pH can be modified with increasing swelling temperature. At high pH conditions, LPA-doped semi-IPNs show elasticity representing soft and loosely cross-linked structure. Elastic modulus is higher in acidic pH condition due to the less swelling tendency, while in basic pH, the modulus decreases significantly in coordination with swelling. Oscillatory swelling reveals how fast semi-IPNs can respond to environmental pH change (2.1-10.7). By describing adsorption potential of semi-IPNs for cationic methylene blue uptake by pseudo-first-order and Freundlich model, the designed poly(NIPA-MA)/LPA semi-IPNs emerge as promising smart materials in applications requiring rapid response to changes in temperature and pH via diffusional properties.
Collapse
Affiliation(s)
- Birgul Kalkan
- Graduate School of Science Engineering and Technology, Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Nermin Orakdogen
- Faculty of Science and Letters, Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
23
|
Li Y, Orange JS. A Thermo-responsive collapse system for controlling heterogeneous cell localization, ratio and interaction for three-dimensional solid tumor modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.26.630018. [PMID: 39764015 PMCID: PMC11703237 DOI: 10.1101/2024.12.26.630018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing in vitro models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels. By embedding cells in these hydrogels, we constructed 3D models to organize multiple cell populations at specified ratios on-demand and gently position them by exploiting the hydrogel phase transition. These systems were amenable to imaging at low- and high-resolution to evaluate cell-to-cell interactions, as well as to dissociation to allow for single cell analyses. We have called this approach "thermal collapse of strata" (TheCOS) and demonstrated its use in creating complex cell assemblies on demand in both layers and spheroids. As an application, we utilized TheCOS to evaluate the impact of directionality of degranulation of natural killer (NK) cell lytic granules. Blocking lytic granule convergence and polarization by inhibiting dynein has been shown to induce bystander killing in single cell suspensions. Using TheCOS we showed that lytic granule dispersion induced by dynein inhibition can be sustained in 3D and results in a multi-directional killing including that of non-triggering bystander cells. By imaging TheCOS experiments, we were able to map a "kill zone" associated with multi-directional degranulation in simulated solid tumor environments. TheCOS should allow for the testing of approaches to alter the mechanics of cytotoxicity as well as to generate a wide-array of human tumor microenvironments to assist in the acceleration of tumor immunotherapy.
Collapse
Affiliation(s)
- Yu Li
- Columbia University Vagelos College of Physicians and Surgeons
| | - Jordan S Orange
- Columbia University Vagelos College of Physicians and Surgeons
| |
Collapse
|
24
|
Şahin FC, Şimşek C, Erbil C. Sulfobetaine/Alginate/Chitosan Supported Hybrid N‐Isopropylacrylamide Hydrogels: Composition‐Dependent Diffusion/Compression Properties and Theophylline/Diclofenac Sodium/Ciprofloxacin Release Kinetics. J Appl Polym Sci 2024. [DOI: 10.1002/app.56507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/01/2024] [Indexed: 01/03/2025]
Abstract
ABSTRACTPoly(N‐isopropylacrylamide) (N), poly([3‐(methacryloylamino)propyl] dimethyl(3‐sulfopropyl) ammonium hydroxide) (SB) and SB/N hydrogels were prepared using N,N′‐methylenebisacrylamide as crosslinker, while their hybrid semi‐/full‐IPNs N1A, N1C, N1CA, SB/N1A, SB/N1C, and SB/N1CA were synthesized in the presence of Alginate (A)/Chitosan (C). All the hydrogels were evaluated by taking into account their appearances, compression strengths and swelling behaviors in the ranges of pH 1.2–9.0 and temperature 4°C–40°C. The compressive moduli of N and SB/N hydrogels increased from ~10 to 80 kPa by changing composition (from N, SB/N to N1CA, SB/N1CA), swelling solution (from DDW to PBS) and temperature (from 25° to 37°C). The release profiles of diclofenac sodium (DFNa), theophylline (Thp), and ciprofloxacin (CIP) from N, SB/N, and their semi‐/full‐IPNs were investigated at pH 1.2 and pH 7.4, mimicking gastric and intestinal fluids. Higuchi, Peppas, and Weibull models were used, to describe the mechanisms of DFNa, Thp, and CIP releases from the hybrid IPNs of N and SB/N. The values of n (> 0.45) and β (> 0.75) at 37°C for Peppas and Weibull equations showed that DFNa and CIP releases from SB/N hybrids, which are more hydrophilic than IPNs of N, are mainly controlled by swelling/relaxation process.
Collapse
Affiliation(s)
| | - Ceyda Şimşek
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| | - Candan Erbil
- Department of Chemistry Istanbul Technical University Istanbul Turkey
| |
Collapse
|
25
|
Liu N, Xue B, Cheng W, Liu Y, Niu M, Yang Y, Yu S, Zhang L. Healing mechanism of cotton bandages loaded with PNIPAM/GO-Ag hydrogel on deep second-degree burn wounds in a rat model. Burns 2024; 50:107235. [PMID: 39317533 DOI: 10.1016/j.burns.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 09/26/2024]
Abstract
Dressings play a crucial role in the management of burn wounds. In this study, cotton bandages were modified with poly (N-isopropylacrylamide)/graphite oxide/nano silver (PNIPAM/GO-Ag) hydrogel to obtain a novel dressing (PNIPAM/GO-Ag/COT). The healing effect of the PNIPAM/GO-Ag/COT dressing on deep second-degree burn wounds in rats and the changes of related inflammatory factors were explored and analyzed systematically. The deep second-degree burn model was established by the steam scald method in Sprague-Dawley (SD) rats. The granulation tissue, collagen deposition, the expression of tumor necrosis factor-α (TNF-α), and basic fibroblast growth factor (bFGF) in the wound were evaluated by means of HE staining, Masson staining, ELISA, and immunohistochemistry methods. The results showed that, compared with the blank group (rats without the dressing treatment), the PNIPAM/GO-Ag/COT dressing reduced the expression of TNF-α by approximately 18 % and promoted the bFGF expression in wound tissue. Compared to the control group (rats with the gauze treatment), the wound healing rate in the PNIPAM/GO-Ag/COT dressing group was 58 % on the 14th day, with an increase of 30 %. These results demonstrated that the PNIPAM/GO-Ag/COT dressing primarily promoted burn wound healing by reducing inflammatory reactions, promoting collagen deposition, and enhancing the expression of bFGF.
Collapse
Affiliation(s)
- Ning Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China; The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Baoxia Xue
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China; College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wei Cheng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Yong Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Mei Niu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shiping Yu
- Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Li Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China.
| |
Collapse
|
26
|
Liu H, Wang Z, Wang H, Liu Z, Yang J, Zhang H, Liang H, Bai L. Innovative temperature-responsive membrane with an elastic interface for biofouling mitigation in industrial circulating cooling water treatment. WATER RESEARCH 2024; 267:122528. [PMID: 39366326 DOI: 10.1016/j.watres.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
To address the issues of scaling caused by heat and water evaporation in regard to circulating cooling water (CCW), TFC membrane filtration systems have been increasingly considered for terminal treatment processes because of their excellent separation performance. However, membrane biofouling phenomenon significantly hinders the widespread utilization of TFC membranes. In this study, to harness the thermal phenomenon of CCW and establish a stable and durable multifunctional antibiofouling layer, temperature-responsive Pnipam and the spectral antibacterial agent Ag were organically incorporated into commercially available TFC membranes. Biological experimental findings demonstrated that above the lower critical solution temperature (LCST), the contraction of Pnipam molecular chains facilitated the inactivation of bacteria by the antibacterial agent, resulting in an impressive sterilization efficiency of up to 99 %. XDLVO analysis revealed that below the LCST, the establishment of a hydration layer on the functional interface resulted in the creation of elevated energy barriers, effectively impeding bacterial adhesion to the membrane surface. Consequently, a high bacterial release rate of 98.4 % was achieved on the low-temperature surface. The alterations in the functional membrane surface conformation induced by temperature variations further amplified the separation between the pollutants and the membrane, creating an enhanced "elastic interface." This efficient and straightforward cleaning procedure mitigated the formation of irreversible fouling without compromising the integrity of the membrane surface. This study presents a deliberately engineered thermoresponsive antibiofouling membrane interface to address the issue of membrane fouling in membrane-based CCW treatment systems while shedding new light on the mechanisms of "inactivation" and "defense."
Collapse
Affiliation(s)
- Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
27
|
Tanaka N, Suyama K, Tomohara K, Nose T. Exploring LCST- and UCST-like Behavior of Branched Molecules Bearing Repeat Units of Elastin-like Peptides as Side Components. Biomacromolecules 2024; 25:7156-7166. [PMID: 39383337 PMCID: PMC11558673 DOI: 10.1021/acs.biomac.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Elastin-like peptides (ELPs) exhibit lower critical solution temperature (LCST)-type behavior, being soluble at low temperatures and insoluble at high temperatures. While the properties of linear, long-chain ELPs are well-studied, short-chain ELPs, especially those with branched architectures, have been less explored. Herein, to obtain further insights into multimeric short ELPs, we investigated the temperature-responsive properties of branched molecules composed of a repeating pentapeptide unit of short ELPs, Phe-Pro-Gly-Val-Gly, as side components and oligo(Glu) as a backbone structure. In turbidimetry experiments, the branched ELPs showed LCST-like behavior similar to conventional ELPs and upper critical solution temperature (UCST)-like behavior, which are rarely observed in ELPs. In addition, the morphological aspects and mechanisms underlying the temperature-responsiveness were investigated. We observed that spherical aggregates formed, and the branched ELPs underwent structural changes through the self-assembly process. This study demonstrates the unique temperature-responsiveness of branched short ELPs, providing new insights into the future development and use of ELPs with tailored properties.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department
of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keitaro Suyama
- Faculty
of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keisuke Tomohara
- Faculty
and Graduate School of Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| | - Takeru Nose
- Department
of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
- Faculty
of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
28
|
Zhang QP, Zhang Q, Sun YL, Tao X, Zhao YT, Guo F, Li ZK, Wang Z, Liang ZH, Yi CH. Thermo-controlled Water Microenvironment Inducing Fluorescence Enhancement of Chalcone Nanohydrogels for Mitochondrial Temperature Sensing. ACS Biomater Sci Eng 2024; 10:7167-7175. [PMID: 39405091 DOI: 10.1021/acsbiomaterials.4c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Developing aggregation-induced emission (AIE)-based hydrogels that exhibit fluorescence enhancement as to thermal properties is an interesting and challenging task. In this work, we employed the fluorophore 2'-hydroxychalcone (HC), fluorescence properties of which are easily influenced by the excited-state intramolecular proton transfer and twisted intramolecular charge transfer (TICT) effects, to develop a novel type of temperature-sensitive polymers, hydroxychalcone-based polymers (HCPs). By controlling the temperature-dependent water microenvironments in HCPs, the intramolecular hydrogen bonds between water and HCPs can be regulated, thereby influencing the TICT process and leading to thermo-induced fluorescence enhancement, which shows a contrary tendency compared to typical AIEgens that always exhibit fluorescence attenuation as the thermal energy accelerates the molecular motion. Following the decoration with triphenylphosphine, the resulting polymer P-HCP assembled into nanohydrogels and served as a fluorescent probe for intracellular mitochondrial temperature sensing.
Collapse
Affiliation(s)
- Qing-Pu Zhang
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Qingqing Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu-Ling Sun
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Tao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu-Ting Zhao
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Fei Guo
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Zhen-Ke Li
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Zhen Wang
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Zi-Hui Liang
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei 430200, China
| | - Chang-Hai Yi
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei 430200, China
| |
Collapse
|
29
|
Rahmat A, Altunkeyik B, Safdari Shadloo M, Montenegro-Johnson T. Numerical modeling of heterogeneous stimuli-responsive hydrogels. Phys Rev E 2024; 110:055303. [PMID: 39690604 DOI: 10.1103/physreve.110.055303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/10/2024] [Indexed: 12/19/2024]
Abstract
In this paper, we introduce a computational technique for modeling heterogeneous thermoresponsive hydrogels. The model resolves local fluid-solid interactions in hydrogel pores during the deswelling process. The model is a Lagrangian particle-based technique, which benefits from computational grids that represent polymer beads inside hydrogel scaffolds. The results show that the mechanical properties of hydrogels during deswelling, e.g., shrinkage ratio and elastic modulus, have a direct effect on the development of the front of expelled fluid. It is also observed that in certain parameter regimes the hydrogel may generate inertial fluid jets at the early stages of deswelling. Finally, simple heterogeneous designs are developed using Menger sponge-inspired shapes to investigate the effect of design heterogeneity on promoting directional release.
Collapse
Affiliation(s)
| | | | - Mostafa Safdari Shadloo
- CORIA Laboratory, Normandie University, CNRS and INSA of Rouen, France; INSA Rouen Normandie, CNRS, Normandie University, CORIA UMR 6614, F-76000 Rouen, France; and Institut Universitaire de France, Rue Descartes, F-75231 Paris, France
| | | |
Collapse
|
30
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
31
|
Khodami S, Gharakhloo M, Dagdelen S, Fita P, Romanski J, Karbarz M, Stojek Z, Mackiewicz M. Rapid Photoinduced Self-Healing, Controllable Drug Release, Skin Adhesion Ability, and Mechanical Stability of Hydrogels Incorporating Linker-Modified Gold Nanoparticles and Nanogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57659-57671. [PMID: 39378138 PMCID: PMC11503619 DOI: 10.1021/acsami.4c11908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Appropriately modified thermoresponsive hydrogels, such as poly(N-isopropylacrylamide) hydrogels, bring an opportunity for a variety of biomedical applications. Incorporating compounds with different properties into poly(N-isopropylacrylamide) hydrogels offers opportunities to enhance their mechanical, self-healing ability, adhesiveness, thermal responsiveness, and drug release capabilities. In this study, we investigated the influence of Au-sulfur interactions on the properties of the poly(N-isopropylacrylamide) hydrogels after introducing N,N'-bis(acryloyl)cystine (a newly synthesized cross-linker), modified gold nanoparticles, and a p(NIPAm-BISS) nanogel into the hydrogel matrix. Our findings demonstrated that poly(N-isopropylacrylamide) hydrogels with these compounds exhibited higher mechanical strength (65% tensile stress and 25% elongation), faster thermal responsiveness, controllable self-healing [85% recovery after 2 min, using a NIR laser (800 nm, 0.75 W)], skin adhesiveness, and enhanced drug release (0.08 mg·mL-1, a 93% improvement). These results may contribute to advancements in the design of temperature-responsive hydrogels tailored for specific biomedical needs, such as targeted drug delivery with the use of a NIR laser and tissue engineering.
Collapse
Affiliation(s)
- Samaneh Khodami
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Mosayeb Gharakhloo
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Serife Dagdelen
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
| | - Piotr Fita
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Jan Romanski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Marcin Karbarz
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Zbigniew Stojek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Marcin Mackiewicz
- Biological
and Chemical Research Center, University
of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
| |
Collapse
|
32
|
Appavoo D, Azim N, Elshatoury M, Antony DX, Rajaraman S, Zhai L. Four-Dimensional Printing of Multi-Material Origami and Kirigami-Inspired Hydrogel Self-Folding Structures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5028. [PMID: 39459734 PMCID: PMC11509088 DOI: 10.3390/ma17205028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Four-dimensional printing refers to a process through which a 3D printed object transforms from one structure into another through the influence of an external energy input. Self-folding structures have been extensively studied to advance 3D printing technology into 4D using stimuli-responsive polymers. Designing and applying self-folding structures requires an understanding of the material properties so that the structural designs can be tailored to the targeted applications. Poly(N-iso-propylacrylamide) (PNIPAM) was used as the thermo-responsive material in this study to 3D print hydrogel samples that can bend or fold with temperature changes. A double-layer printed structure, with PNIPAM as the self-folding layer and polyethylene glycol (PEG) as the supporting layer, provided the mechanical robustness and overall flexibility to accommodate geometric changes. The mechanical properties of the multi-material 3D printing were tested to confirm the contribution of the PEG support to the double-layer system. The desired folding of the structures, as a response to temperature changes, was obtained by adding kirigami-inspired cuts to the design. An excellent shape-shifting capability was obtained by tuning the design. The experimental observations were supported by COMSOL Multiphysics® software simulations, predicting the control over the folding of the double-layer systems.
Collapse
Affiliation(s)
- Divambal Appavoo
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Nilab Azim
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
| | - Maged Elshatoury
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Dennis-Xavier Antony
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Swaminathan Rajaraman
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| | - Lei Zhai
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
33
|
Al Enezy-Ulbrich MA, Belthle T, Malyaran H, Kučikas V, Küttner H, de Lange RD, van Zandvoort M, Neuss S, Pich A. Fibrin Hydrogels Reinforced by Reactive Microgels for Stimulus-Triggered Drug Administration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309912. [PMID: 38898722 DOI: 10.1002/smll.202309912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Tissue engineering is a steadily growing field of research due to its wide-ranging applicability in the field of regenerative medicine. Application-dependent mechanical properties of a scaffold material as well as its biocompatibility and tailored functionality represent particular challenges. Here the properties of fibrin-based hydrogels reinforced by functional cytocompatible poly(N-vinylcaprolactam)-based (PVCL) microgels are studied and evaluated. The employment of temperature-responsive microgels decorated by epoxy groups for covalent binding to the fibrin is studied as a function of cross-linking degree within the microgels, microgel concentration, as well as temperature. Rheology reveals a strong correlation between the mechanical properties of the reinforced fibrin-based hydrogels and the microgel rigidity and concentration. The incorporated microgels serve as cross-links, which enable temperature-responsive behavior of the hydrogels, and slow down the hydrogel degradation. Microgels can be additionally used as carriers for active drugs, as demonstrated for dexamethasone. The microgels' temperature-responsiveness allows for triggered release of payload, which is monitored using a bioassay. The cytocompatibility of the microgel-reinforced fibrin-based hydrogels is demonstrated by LIVE/DEAD staining experiments using human mesenchymal stem cells. The microgel-reinforced hydrogels are a promising material for tissue engineering, owing to their superior mechanical performance and stability, possibility of drug release, and retained biocompatibility.
Collapse
Affiliation(s)
- Miriam Aischa Al Enezy-Ulbrich
- Institute for Technical and Macromolecular Chemistry, Research Area Functional and Interactive Polymers, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Thomke Belthle
- Institute for Technical and Macromolecular Chemistry, Research Area Functional and Interactive Polymers, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Hanna Malyaran
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Vytautas Kučikas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Hannah Küttner
- Institute for Technical and Macromolecular Chemistry, Research Area Functional and Interactive Polymers, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Robert Dirk de Lange
- Institute for Technical and Macromolecular Chemistry, Research Area Functional and Interactive Polymers, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Marc van Zandvoort
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Department of Genetics and Cell Biology, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, Netherlands
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, 52074, Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Andrij Pich
- Institute for Technical and Macromolecular Chemistry, Research Area Functional and Interactive Polymers, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074, Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, the Netherlands
| |
Collapse
|
34
|
Shajari G, Erfan-Niya H, Fathi M, Amiryaghoubi N. In situ forming hydrogels based on modified gellan gum/chitosan for ocular drug delivery of timolol maleate. Int J Biol Macromol 2024; 278:135071. [PMID: 39187113 DOI: 10.1016/j.ijbiomac.2024.135071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 08/28/2024]
Abstract
In situ forming hydrogels are suitable candidates for increasing drug residence time in ocular drug delivery. In this study, gellan gum (GG) was oxidized to form aldehyde groups and in situ gelling hydrogels were synthesized based on a Schiff-base reaction between oxidized GG (OGG) and chitosan (CS) in the presence of β-glycerophosphate. The effect of OGG and CS concentration on the physical and chemical properties of the resulting hydrogels was investigated. The FT-IR spectroscopy confirmed the chemical modification of OGG as well as the functional groups of the prepared hydrogels. The scanning electron microscope (SEM) revealed the highly porous structure of hydrogels. The obtained hydrogels indicated a high swelling degree and degradability. Also, the rheological studies demonstrated self-healing behavior, shear thinning, thixotropy, and mucoadhesion properties for the developed hydrogels. The results of in vitro and ex vivo studies showed that the timolol-loaded hydrogel with a higher amount of OGG has a higher release rate. Moreover, the MTT cytotoxicity test on bone marrow mesenchymal stem cells (BMSCs) confirmed that developed hydrogels are not toxic. The obtained results revealed that the developed hydrogels can be a desirable choice for the ocular drug delivery of timolol in the treatment of glaucoma.
Collapse
Affiliation(s)
- Golnaz Shajari
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Liu K, Ma Z, Mai K, Wang X, Li B, Chu J. Fabrication of Flexible and Re-entrant Liquid-Superrepellent Surface Using Proximity and PNIPAM-Assisted Soft Lithography. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50012-50026. [PMID: 39238398 DOI: 10.1021/acsami.4c12185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The nature-inspired flexible and re-entrant liquid-superrepellent surface has attracted significant attention due to its excellent superomniphobic performance against low-surface-tension liquids. Although conventional photolithography and molding methods offer the advantage of large-area manufacturing, they often involve multiple double-sided alignment and exposure steps, resulting in complex procedures with long processing cycles. In this study, we proposed a straightforward single-exposure ultraviolet proximity lithography method for re-entrant liquid-superrepellent surface fabrication using a photomask with a coaxial circular aperture and ring. A theoretical calculation model for the three-dimensional light intensity distribution in proximity lithography was developed for the prediction of feature sizes for both singly and doubly re-entrant microstructures. Soft lithography techniques, which rely on surface modification and the modulation of the transfer material's flexibility, efficiently optimized the fabrication of flexible re-entrant molds and patterns. By incorporating nanoclay-modified poly(N-isopropylacrylamide) (PNIPAM) into the molding process, we fabricated a three-layer hierarchical structure featuring micrometer-scale wrinkles, re-entrant microstructures, and nanoscale fluorinated silica particles, significantly enhancing the surface's robustness and pressure resistance. The resulting large-area flexible and re-entrant liquid-superrepellent surface demonstrated excellent superomniphobic self-cleaning performance and satisfactory optical transparency, as evidenced by reflection and transmission experiments, showcasing its potential applications in self-cleaning, membrane distillation, and digital microfluidics.
Collapse
Affiliation(s)
- Kai Liu
- Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zesen Ma
- Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Keqing Mai
- Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaojie Wang
- Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Baoqing Li
- Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiaru Chu
- Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
36
|
Cho YE, Park JM, Song WJ, Lee MG, Sun JY. Solvent Engineering of Thermo-Responsive Hydrogels Facilitates Strong and Large Contractile Actuations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406103. [PMID: 39036840 DOI: 10.1002/adma.202406103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/23/2024] [Indexed: 07/23/2024]
Abstract
Thermo-responsive hydrogels can generate the actuation force through volumetric transitions in response to temperature changes. However, their weak mechanical properties and fragile actuation performance limit robust applications. Existing approaches to enhance these properties have typically depended on additional components, leading to an unavoidable interference to the actuation performance. In this work, robust thermo-responsive hydrogels are fabricated through solvent engineering. A particular solvent, N-methylformamide, interacts affinitively with the carbonyl group of N-isopropylacrylamide monomer, solubilizes the monomer with extremely high concentration, stabilizes chain propagation during polymerization, and greatly increases chain lengths and entanglements of the resulting polymer. The synthesized hydrogels are highly elastic, strong, and tough, displaying remarkable thermo-responsive contractile actuation. The simple synthetic process can broaden its applicability in designing robust functional hydrogel applications.
Collapse
Affiliation(s)
- Yong Eun Cho
- Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Man Park
- Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Jun Song
- Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Gyu Lee
- Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Yun Sun
- Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
37
|
Younus ZM, Ahmed I, Roach P, Forsyth NR. A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100099. [PMID: 39221155 PMCID: PMC11364006 DOI: 10.1016/j.bbiosy.2024.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
The bone-cartilage interface is defined by a unique arrangement of cells and tissue matrix. Injury to the interface can contribute to the development of arthritic joint disease. Attempts to repair osteochondral damage through clinical trials have generated mixed outcomes. Tissue engineering offers the potential of integrated scaffold design with multiregional architecture to assist in tissue regeneration, such as the bone-cartilage interface. Challenges remain in joining distinct materials in a single scaffold mass while maintaining integrity and avoiding delamination. The aim of the current work is to examine the possibility of joining two closely related acrylamide derivatives such as, poly n-isopropyl acrylamide (pNIPAM) and poly n‑tert‑butyl acrylamide (pNTBAM). The target is to produce a single scaffold unit with distinct architectural regions in the favour of regenerating the osteochondral interface. Longitudinal phosphate glass fibres (PGFs) with the formula 50P2O5.30CaO.20Na2O were incorporated to provide additional bioactivity by degradation to release ions such as calcium and phosphate which are considered valuable to assist the mineralization process. Polymers were prepared via atom transfer radical polymerization (ATRP) and solutions cast to ensure the integration of polymers chains. Scaffold was characterized using scanning electron microscope (SEM) and Fourier transform infra-red (FTIR) techniques. The PGF mass degradation pattern was inspected using micro computed tomography (µCT). Biological assessment of primary human osteoblasts (hOBs) and primary human chondrocytes (hCHs) upon scaffolds was performed using alizarin red and colorimetric calcium assay for mineralization assessment; alcian blue staining and dimethyl-methylene blue (DMMB) assay for glycosaminoglycans (GAGs); immunostaining and enzyme-linked immunosorbent assay (ELISA) to detect functional proteins expression by cells such as collagen I, II, and annexin A2. FTIR analysis revealed an intact unit with gradual transformation from pNIPAM to pNTBAM. SEM images showed three distinct architectural regions with mean pore diameter of 54.5 µm (pNIPAM), 16.5 µm (pNTBAM) and 118 µm at the mixed interface. Osteogenic and mineralization potential by cells was observed upon the entire scaffold's regions. Chondrogenic activity was relevant on the pNTBAM side of the scaffold only with minimal evidence in the pNIPAM region. PGFs increased mineralization potential of both hOBs and hCHs, evidenced by elevated collagens I, X, and annexin A2 with reduction of collagen II in PGFs scaffolds. In conclusion, pNIPAM and pNTBAM integration created a multiregional scaffold with distinct architectural regions. Differential chondrogenic, osteogenic, and mineralized cell performance, in addition to the impact of PGF, suggests a potential role for phosphate glass-incorporated, acrylamide-derivative scaffolds in osteochondral interface regeneration.
Collapse
Affiliation(s)
- Zaid M. Younus
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ifty Ahmed
- Faculty of Engineering, Advanced Materials Research Group, University of Nottingham, Nottingham, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- Vice principals’ office, King's College, University of Aberdeen, Aberdeen, AB24 3FX, UK
| |
Collapse
|
38
|
Ren Z, Xin C, Liang K, Wang H, Wang D, Xu L, Hu Y, Li J, Chu J, Wu D. Femtosecond laser writing of ant-inspired reconfigurable microbot collectives. Nat Commun 2024; 15:7253. [PMID: 39179567 PMCID: PMC11343760 DOI: 10.1038/s41467-024-51567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Microbot collectives can cooperate to accomplish complex tasks that are difficult for a single individual. However, various force-induced microbot collectives maintained by weak magnetic, light, and electric fields still face challenges such as unstable connections, the need for a continuous external stimuli source, and imprecise individual control. Here, we construct magnetic and light-driven ant microbot collectives capable of reconfiguring multiple assembled architectures with robustness. This methodology utilizes a flexible two-photon polymerization strategy to fabricate microbots consisting of magnetic photoresist, hydrogel, and metal nanoparticles. Under the cooperation of magnetic and light fields, the microbots can reversibly and selectively assemble (e.g., 90° assembly and 180° assembly) into various morphologies. Moreover, we demonstrate the ability of assembled microbots to cross a one-body-length gap and their adaptive capability to move through a constriction and transport microcargo. Our strategy will broaden the abilities of clustered microbots, including gap traversal, micro-object manipulation, and drug delivery.
Collapse
Affiliation(s)
- Zhongguo Ren
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Xin
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China.
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| | - Kaiwen Liang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Heming Wang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Dawei Wang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Liqun Xu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Yanlei Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Jiawen Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Jiaru Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Dong Wu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
39
|
Kim J, D A G, Debnath P, Saha P. Smart Multi-Responsive Biomaterials and Their Applications for 4D Bioprinting. Biomimetics (Basel) 2024; 9:484. [PMID: 39194463 DOI: 10.3390/biomimetics9080484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
The emergence of 4D printing has become a pivotal tool to produce complex structures in biomedical applications such as tissue engineering and regenerative medicine. This chapter provides a concise overview of the current state of the field and its immense potential to better understand the involved technologies to build sophisticated 4D-printed structures. These structures have the capability to sense and respond to a diverse range of stimuli, which include changes in temperature, humidity, or electricity/magnetics. First, we describe 4D printing technologies, which include extrusion-based inkjet printing, and light-based and droplet-based methods including selective laser sintering (SLS). Several types of biomaterials for 4D printing, which can undergo structural changes in various external stimuli over time were also presented. These structures hold the promise of revolutionizing fields that require adaptable and intelligent materials. Moreover, biomedical applications of 4D-printed smart structures were highlighted, spanning a wide spectrum of intended applications from drug delivery to regenerative medicine. Finally, we address a number of challenges associated with current technologies, touching upon ethical and regulatory aspects of the technologies, along with the need for standardized protocols in both in vitro as well as in vivo testing of 4D-printed structures, which are crucial steps toward eventual clinical realization.
Collapse
Affiliation(s)
- Jinku Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Gouripriya D A
- Center for Interdisciplinary Science (CIS), JIS Institute of Advanced Studies and Research (JISIASR), JIS University, Kolkata 700091, India
| | - Poonam Debnath
- Center for Interdisciplinary Science (CIS), JIS Institute of Advanced Studies and Research (JISIASR), JIS University, Kolkata 700091, India
| | - Prosenjit Saha
- Center for Interdisciplinary Science (CIS), JIS Institute of Advanced Studies and Research (JISIASR), JIS University, Kolkata 700091, India
| |
Collapse
|
40
|
Chen Q, Kalpoe T, Jovanova J. Design of mechanically intelligent structures: Review of modelling stimuli-responsive materials for adaptive structures. Heliyon 2024; 10:e34026. [PMID: 39113988 PMCID: PMC11304024 DOI: 10.1016/j.heliyon.2024.e34026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Smart materials are upcoming in many industries due to their unique properties and wide range of applicability. These materials have the potential to transform traditional engineering practices by enabling the development of more efficient, adaptive, and responsive systems. However, smart materials are characterized by nonlinear behaviour and complex constitutive models, posing challenges in modelling and simulation. Therefore, understanding their mechanical properties is crucial for model-based design. This review aims for advancements in numerically implementing various smart materials, especially focusing on their nonlinear deformation behaviours. Different mechanisms and functionalities, classification, constitutive models and applications of smart materials were analyzed. In addition, different numerical approaches for modelling across scales were investigated. This review also explored the strategies and implementations for mechanically intelligent structures using smart materials. In conclusion, the potential model-based design methodology for the multiple smart material-based structures is proposed, which provides guidance for the future development of mechanically intelligent structures in industrial applications.
Collapse
Affiliation(s)
- Qianyi Chen
- Department of Maritime and Transport Technology, Faculty of Mechanical Engineering, Delft University of Technology, Delft, 2628CD, the Netherlands
| | - Tarish Kalpoe
- Department of Maritime and Transport Technology, Faculty of Mechanical Engineering, Delft University of Technology, Delft, 2628CD, the Netherlands
| | - Jovana Jovanova
- Department of Maritime and Transport Technology, Faculty of Mechanical Engineering, Delft University of Technology, Delft, 2628CD, the Netherlands
| |
Collapse
|
41
|
Park C, Kim J, Kang J, Lee B, Lee H, Park C, Yoon J, Song C, Kim H, Yeo WH, Cho SJ. Coatable strain sensors for nonplanar surfaces. NANOSCALE 2024; 16:14143-14154. [PMID: 39011622 DOI: 10.1039/d4nr01324g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Rapidly fabricating flexible and stretchable sensors on nonplanar surfaces is crucial for wearable device applications. We employed a novel fabrication method, incorporating molds and gels into electroless plating, to enable direct printing of sensors on a wide array of surfaces, from those with up to 100 μm profile heights to hydrogels with a Young's modulus of 100 kPa. This coatable strain (CS) sensor offers several potential advantages. Firstly, it is designed to circumvent the typical limitations of limited flexibility, plastic deformation, and low repeatability found in viscoelastic polymers by being directly coated onto the surface without requiring a substrate. Secondly, it potentially increases the effective contact area and signal-to-noise ratio by eliminating voids between the sensor and the surface. Finally, the CS sensor can obtain any desired patterning at room temperature in a matter of minutes, significantly reducing energy and time consumption. In this study, we demonstrated the versatility of the CS sensor by applying it to a range of substrates, showcasing its adaptability to diverse materials, surface roughness levels, and Young's modulus values. Our primary focus was on plant growth monitoring, a challenging application that showcased the sensor's efficacy on surfaces like needles, hairy leaves, and fruits. These applications, traditionally difficult for conventional polymer-based sensors, serve to illustrate the CS sensor's potential in a range of complex environmental contexts. The successful deployment of the CS sensor in these settings suggests its broader applicability in various scientific and technological fields, potentially contributing to significant developments in the area of wearable devices and beyond.
Collapse
Affiliation(s)
- Chan Park
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Jungmin Kim
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Jeongbeam Kang
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Byeongjun Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Haran Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Cheoljeong Park
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Jongwon Yoon
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Chiwon Song
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering and Wearable Intelligent Systems and Healthcare Center, Georgia Institute of Technology, GA, 30332, Atlanta, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering and Wearable Intelligent Systems and Healthcare Center, Georgia Institute of Technology, GA, 30332, Atlanta, USA
| | - Seong J Cho
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| |
Collapse
|
42
|
Ma Y, Lu Y, Yue Y, He S, Jiang S, Mei C, Xu X, Wu Q, Xiao H, Han J. Nanocellulose-mediated bilayer hydrogel actuators with thermo-responsive, shape memory and self-sensing performances. Carbohydr Polym 2024; 335:122067. [PMID: 38616090 DOI: 10.1016/j.carbpol.2024.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Inspired by creatures, abundant stimulus-responsive hydrogel actuators with diverse functionalities have been manufactured for applications in soft robotics. However, constructing a shape memory and self-sensing bilayer hydrogel actuator with high mechanical strength and strong interfacial bonding still remains a challenge. Herein, a novel bilayer hydrogel with a stimulus-responsive TEMPO-oxidized cellulose nanofibers/poly(N-isopropylacrylamide) (TOCN/PNIPAM) layer and a non-responsive TOCN/polyacrylamide (TOCN/PAM) layer is proposed as a thermosensitive actuator. TOCNs as a nano-reinforced phase provide a high mechanical strength and endow the hydrogel actuator with a strong interfacial bonding. Due to the incorporation of TOCNs, the TOCN/PNIPAM hydrogel exhibits a high compressive strength (~89.2 kPa), elongation at break (~170.7 %) and tensile strength (~24.0 kPa). The prepared PNIPAM/TOCN/PAM hydrogel actuator performs the roles of an encapsulation, jack, temperature-controlled fluid valve and temperature-control manipulator. The incorporation of Fe3+ further endows the bilayer hydrogel actuator with a synergistic performance of shape memory and temperature-driven, which can be used as a temperature-responsive switch to detect ambient temperature. The PNIPAM/TOCN/PAM-Fe3+ conductive hydrogel can be assembled into a flexible sensor and generate sensing signals when driven by temperature changes to achieve real-time feedback. This research may lead to new insights into the design and manufacturing of intelligent flexible soft robots.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ya Lu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiying Yue
- College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changtong Mei
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, NB E3B 5A3, Canada
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
43
|
Sun Q, Tao S, Bovone G, Han G, Deshmukh D, Tibbitt MW, Ren Q, Bertsch P, Siqueira G, Fischer P. Versatile Mechanically Tunable Hydrogels for Therapeutic Delivery Applications. Adv Healthc Mater 2024; 13:e2304287. [PMID: 38488218 DOI: 10.1002/adhm.202304287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 04/02/2024]
Abstract
Hydrogels provide a versatile platform for biomedical material fabrication that can be structurally and mechanically fine-tuned to various tissues and applications. Applications of hydrogels in biomedicine range from highly dynamic injectable hydrogels that can flow through syringe needles and maintain or recover their structure after extrusion to solid-like wound-healing patches that need to be stretchable while providing a selective physical barrier. In this study, a toolbox is designed using thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) polymeric matrices and nanocelluloses as reinforcing agent to obtain biocompatible hydrogels with altering mechanical properties, from a liquid injectable to a solid-like elastic hydrogel. The liquid hydrogels possess low viscosity and shear-thinning properties at 25 °C, which allows facile injection at room temperature, while they become viscoelastic gels at body temperature. In contrast, the covalently cross-linked solid-like hydrogels exhibit enhanced viscoelasticity. The liquid hydrogels are biocompatible and are able to delay the in vitro release and maintain the bioactivity of model drugs. The antimicrobial agent loaded solid-like hydrogels are effective against typical wound-associated pathogens. This work presents a simple method of tuning hydrogel mechanical strength to easily adapt to applications in different soft tissues and broaden the potential of renewable bio-nanoparticles in hybrid biomaterials with controlled drug release capabilities.
Collapse
Affiliation(s)
- Qiyao Sun
- Department of Health Science and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Siyuan Tao
- Laboratory for Biointerfaces, Empa, St. Gallen, 9014, Switzerland
| | - Giovanni Bovone
- Macromolecular Engineering Laboratory, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
| | - Garam Han
- Department of Health Science and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Dhananjay Deshmukh
- Macromolecular Engineering Laboratory, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
- Institute for Mechanical Systems, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, D-MAVT, ETH Zurich, Zurich, 8092, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, St. Gallen, 9014, Switzerland
| | - Pascal Bertsch
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Gilberto Siqueira
- Cellulose & Wood Materials Laboratory, EMPA, Dübendorf, 8600, Switzerland
| | - Peter Fischer
- Department of Health Science and Technology, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
44
|
Patel R, Patel D. Injectable Hydrogels in Cardiovascular Tissue Engineering. Polymers (Basel) 2024; 16:1878. [PMID: 39000733 PMCID: PMC11244148 DOI: 10.3390/polym16131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Heart problems are quite prevalent worldwide. Cardiomyocytes and stem cells are two examples of the cells and supporting matrix that are used in the integrated process of cardiac tissue regeneration. The objective is to create innovative materials that can effectively replace or repair damaged cardiac muscle. One of the most effective and appealing 3D/4D scaffolds for creating an appropriate milieu for damaged tissue growth and healing is hydrogel. In order to successfully regenerate heart tissue, bioactive and biocompatible hydrogels are required to preserve cells in the infarcted region and to bid support for the restoration of myocardial wall stress, cell survival and function. Heart tissue engineering uses a variety of hydrogels, such as natural or synthetic polymeric hydrogels. This article provides a quick overview of the various hydrogel types employed in cardiac tissue engineering. Their benefits and drawbacks are discussed. Hydrogel-based techniques for heart regeneration are also addressed, along with their clinical application and future in cardiac tissue engineering.
Collapse
Affiliation(s)
- Raj Patel
- Banas Medical College and Research Institute, Palanpur 385001, India;
| | - Dhruvi Patel
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
45
|
Hanyková L, Šťastná J, Krakovský I. Responsive Acrylamide-Based Hydrogels: Advances in Interpenetrating Polymer Structures. Gels 2024; 10:414. [PMID: 39057438 PMCID: PMC11276577 DOI: 10.3390/gels10070414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels, composed of hydrophilic homopolymer or copolymer networks, have structures similar to natural living tissues, making them ideal for applications in drug delivery, tissue engineering, and biosensors. Since Wichterle and Lim first synthesized hydrogels in 1960, extensive research has led to various types with unique features. Responsive hydrogels, which undergo reversible structural changes when exposed to stimuli like temperature, pH, or specific molecules, are particularly promising. Temperature-sensitive hydrogels, which mimic biological processes, are the most studied, with poly(N-isopropylacrylamide) (PNIPAm) being prominent due to its lower critical solution temperature of around 32 °C. Additionally, pH-responsive hydrogels, composed of polyelectrolytes, change their structure in response to pH variations. Despite their potential, conventional hydrogels often lack mechanical strength. The double-network (DN) hydrogel approach, introduced by Gong in 2003, significantly enhanced mechanical properties, leading to innovations like shape-deformable DN hydrogels, organic/inorganic composites, and flexible display devices. These advancements highlight the potential of hydrogels in diverse fields requiring precise and adaptable material performance. In this review, we focus on advancements in the field of responsive acrylamide-based hydrogels with IPN structures, emphasizing the recent research on DN hydrogels.
Collapse
Affiliation(s)
- Lenka Hanyková
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic; (J.Š.); (I.K.)
| | | | | |
Collapse
|
46
|
Zhang L, Xing S, Yin H, Weisbecker H, Tran HT, Guo Z, Han T, Wang Y, Liu Y, Wu Y, Xie W, Huang C, Luo W, Demaesschalck M, McKinney C, Hankley S, Huang A, Brusseau B, Messenger J, Zou Y, Bai W. Skin-inspired, sensory robots for electronic implants. Nat Commun 2024; 15:4777. [PMID: 38839748 PMCID: PMC11153219 DOI: 10.1038/s41467-024-48903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Drawing inspiration from cohesive integration of skeletal muscles and sensory skins in vertebrate animals, we present a design strategy of soft robots, primarily consisting of an electronic skin (e-skin) and an artificial muscle. These robots integrate multifunctional sensing and on-demand actuation into a biocompatible platform using an in-situ solution-based method. They feature biomimetic designs that enable adaptive motions and stress-free contact with tissues, supported by a battery-free wireless module for untethered operation. Demonstrations range from a robotic cuff for detecting blood pressure, to a robotic gripper for tracking bladder volume, an ingestible robot for pH sensing and on-site drug delivery, and a robotic patch for quantifying cardiac function and delivering electrotherapy, highlighting the application versatilities and potentials of the bio-inspired soft robots. Our designs establish a universal strategy with a broad range of sensing and responsive materials, to form integrated soft robots for medical technology and beyond.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Sicheng Xing
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Haifeng Yin
- MCAllister Heart Institute Core, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hannah Weisbecker
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Hiep Thanh Tran
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Ziheng Guo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Tianhong Han
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Yizhang Wu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wanrong Xie
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Chuqi Huang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wei Luo
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | | | - Collin McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Samuel Hankley
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Amber Huang
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Brynn Brusseau
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Jett Messenger
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yici Zou
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
47
|
El-Nablaway M, Rashed F, Taher ES, Atia GA, Foda T, Mohammed NA, Abdeen A, Abdo M, Hînda I, Imbrea AM, Taymour N, Ibrahim AM, Atwa AM, Ibrahim SF, Ramadan MM, Dinu S. Bioactive injectable mucoadhesive thermosensitive natural polymeric hydrogels for oral bone and periodontal regeneration. Front Bioeng Biotechnol 2024; 12:1384326. [PMID: 38863491 PMCID: PMC11166210 DOI: 10.3389/fbioe.2024.1384326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Periodontitis is an inflammation-related condition, caused by an infectious microbiome and host defense that causes damage to periodontium. The natural processes of the mouth, like saliva production and eating, significantly diminish therapeutic medication residency in the region of periodontal disease. Furthermore, the complexity and diversity of pathological mechanisms make successful periodontitis treatment challenging. As a result, developing enhanced local drug delivery technologies and logical therapy procedures provides the foundation for effective periodontitis treatment. Being biocompatible, biodegradable, and easily administered to the periodontal tissues, hydrogels have sparked substantial an intense curiosity in the discipline of periodontal therapy. The primary objective of hydrogel research has changed in recent years to intelligent thermosensitive hydrogels, that involve local adjustable sol-gel transformations and regulate medication release in reaction to temperature, we present a thorough introduction to the creation and efficient construction of new intelligent thermosensitive hydrogels for periodontal regeneration. We also address cutting-edge smart hydrogel treatment options based on periodontitis pathophysiology. Furthermore, the problems and prospective study objectives are reviewed, with a focus on establishing effective hydrogel delivery methods and prospective clinical applications.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, United States
| | - Nourelhuda A. Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Al Karak, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Ioana Hînda
- Department of Biology, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ana-Maria Imbrea
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Timișoara, Romania
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Port Said, Egypt
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Samah F. Ibrahim
- Department of Internal Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
48
|
Li Q, Wang D, Xiao C, Wang H, Dong S. Advances in Hydrogels for Periodontitis Treatment. ACS Biomater Sci Eng 2024; 10:2742-2761. [PMID: 38639082 DOI: 10.1021/acsbiomaterials.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Periodontitis is a common condition characterized by a bacterial infection and the disruption of the body's immune-inflammatory response, which causes damage to the teeth and supporting tissues and eventually results in tooth loss. Current therapy involves the systemic and local administration of antibiotics. However, the existing treatments cannot exert effective, sustained release and maintain an effective therapeutic concentration of the drug at the lesion site. Hydrogels are used to treat periodontitis due to their low cytotoxicity, exceptional water retention capability, and controlled drug release profile. Hydrogels can imitate the extracellular matrix of periodontal cells while offering suitable sites to load antibiotics. This article reviews the utilization of hydrogels for periodontitis therapy based on the pathogenesis and clinical manifestations of the disease. Additionally, the latest therapeutic strategies for smart hydrogels and the main techniques for hydrogel preparation have been discussed. The information will aid in designing and preparing future hydrogels for periodontitis treatment.
Collapse
Affiliation(s)
- Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
49
|
Ji D, Liu J, Zhao J, Li M, Rho Y, Shin H, Han TH, Bae J. Sustainable 3D printing by reversible salting-out effects with aqueous salt solutions. Nat Commun 2024; 15:3925. [PMID: 38724512 PMCID: PMC11082145 DOI: 10.1038/s41467-024-48121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C. It enables the spontaneous and instant formation of physical crosslinks within PNIPAM chains at room temperature, thus allowing the PNIPAM solution to solidify upon contact with a salt solution. The PNIPAM solutions are extrudable through needles and can immediately solidify by salt ions, preserving printed structures, without rheological modifiers, chemical crosslinkers, and additional post-processing steps/equipment. The reversible physical crosslinking and de-crosslinking of the polymer through the salting-out effect demonstrate the recyclability of the polymeric ink. This printing approach extends to various PNIPAM-based composite solutions incorporating functional materials or other polymers, which offers great potential for developing water-soluble disposable electronic circuits, carriers for delivering small materials, and smart actuators.
Collapse
Affiliation(s)
- Donghwan Ji
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Liu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayu Zhao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Minghao Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yumi Rho
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hwansoo Shin
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jinhye Bae
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
50
|
Gan X, Wang X, Huang Y, Li G, Kang H. Applications of Hydrogels in Osteoarthritis Treatment. Biomedicines 2024; 12:923. [PMID: 38672277 PMCID: PMC11048369 DOI: 10.3390/biomedicines12040923] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review critically evaluates advancements in multifunctional hydrogels, particularly focusing on their applications in osteoarthritis (OA) therapy. As research evolves from traditional natural materials, there is a significant shift towards synthetic and composite hydrogels, known for their superior mechanical properties and enhanced biodegradability. This review spotlights novel applications such as injectable hydrogels, microneedle technology, and responsive hydrogels, which have revolutionized OA treatment through targeted and efficient therapeutic delivery. Moreover, it discusses innovative hydrogel materials, including protein-based and superlubricating hydrogels, for their potential to reduce joint friction and inflammation. The integration of bioactive compounds within hydrogels to augment therapeutic efficacy is also examined. Furthermore, the review anticipates continued technological advancements and a deeper understanding of hydrogel-based OA therapies. It emphasizes the potential of hydrogels to provide tailored, minimally invasive treatments, thus highlighting their critical role in advancing the dynamic field of biomaterial science for OA management.
Collapse
Affiliation(s)
- Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yiwan Huang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China;
| | - Guanghao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|