1
|
El-Seedi HR, Omara MS, Omar AH, Elakshar MM, Shoukhba YM, Duman H, Karav S, Rashwan AK, El-Seedi AH, Altaleb HA, Gao H, Saeed A, Jefri OA, Guo Z, Khalifa SAM. Updated Review of Metal Nanoparticles Fabricated by Green Chemistry Using Natural Extracts: Biosynthesis, Mechanisms, and Applications. Bioengineering (Basel) 2024; 11:1095. [PMID: 39593755 PMCID: PMC11591867 DOI: 10.3390/bioengineering11111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Metallic nanoparticles have found wide applications due to their unique physical and chemical properties. Green biosynthesis using plants, microbes, and plant/microbial extracts provides an environmentally friendly approach for nanoparticle synthesis. This review discusses the mechanisms and factors governing the biosynthesis of metallic nanoparticles such as silver, gold, and zinc using various plant extracts and microorganisms, including bacteria, fungi, and algae. The phytochemicals and biomolecules responsible for reducing metal ions and stabilizing nanoparticles are discussed. Key process parameters like pH, temperature, and precursor concentration affecting particle size are highlighted. Characterization techniques for confirming the formation and properties of nanoparticles are also mentioned. Applications of biosynthesized nanoparticles in areas such as antibacterial delivery, cancer therapy, biosensors, and environmental remediation are reviewed. Challenges in scaling up production and regulating nanoparticle properties are addressed. Power Point 365 was used for creating graphics. Overall, green biosynthesis is an emerging field with opportunities for developing eco-friendly nanomanufacturing platforms using abundant natural resources. Further work on optimizing conditions, standardizing protocols, and exploring new biosources is needed to realize the full potential of this approach.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32111, Egypt
| | - Mohamed S. Omara
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Abdulrahman H. Omar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Mahmoud M. Elakshar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Yousef M. Shoukhba
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Awg H. El-Seedi
- International IT College of Sweden, Stockholm, Hälsobrunnsgatan 6, Arena Academy, 11361 Stockholm, Sweden;
| | - Hamud A. Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Ohoud A. Jefri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biology, College of Science, Taibah University, Al-Madinah Al Munawarah 42353, Saudi Arabia
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Neurology and Psychiatry Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 11219 Stockholm, Sweden
| |
Collapse
|
2
|
Bouissane L, Bailly C. Withania frutescens (L.) Pauquy, a valuable Mediterranean shrub containing bioactive withanolides. Steroids 2024; 207:109439. [PMID: 38740121 DOI: 10.1016/j.steroids.2024.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The bushy plant Withania frutescens (L.) Pauquy is well distributed in the West-Mediterranean area, notably in the south of Spain, Algeria and Morocco where is it is used traditionally for the treatment of various human diseases, including diabetes. Unlike the two major species W. somnifera and W. coagulans extensively studied, the genomically close species W. frutescens has been much less investigated. Nevertheless, this shrub species displays a comparable phytochemical profile and marked antioxidant and anti-inflammatory properties, at the origin of reported pharmacological effects and its traditional uses. Here we have analyzed the diversity of biological effects reported with leaves and root extracts of W. frutescens. Hydroalcoholic extracts prepared from the aerial parts of the plant have revealed antihyperglycemic and cell-protective activities along with antimicrobial and anticorrosive effects. The extracts contained diverse polyphenolic compounds and a few alkaloids (calystegines) but most of the observed effects have been attributed to the presence of withanolides which are modified C28 ergostane-type steroids. Our analysis focused in part on specific withanolides found in W. frutescens, in particular an unusual 3-O-sulfated withanolide considered as a potential pro-drug of the major active compound withaferin A (WA) and a lead compound for the development of a potential drug candidate. The mechanism of action of this sulfated WA analogue is discussed. Altogether, our unprecedented extensive analysis of W. frutescens highlighted the pharmacological potential of this atypical medicinal plant. By analogy with the major cultivated Withania species, the market potential of little-known plant is underlined.
Collapse
Affiliation(s)
- Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco.
| | - Christian Bailly
- OncoWitan, Scientific Consulting Office, Wasquehal, F-59290 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Rue Du Professeur Laguesse, BP-83, F-59006 Lille, France.
| |
Collapse
|
3
|
Javed MA, Ali B, Sarfraz MH, Ali S, Liaqat E, Afzal MS, Wang Y, Peng L, ur Rehman A, Aftab MN, Alarjani KM, Elshikh MS. Biosynthesis and characterization of silver nanoparticles from Cedrela toona leaf extracts: An exploration into their antibacterial, anticancer, and antioxidant potential. GREEN PROCESSING AND SYNTHESIS 2024; 13. [DOI: 10.1515/gps-2023-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Abstract
This research work aims to synthesize environmentally benign and cost-effective metal nanoparticles. In this current research scenario, the leaf extract of Cedrela toona was used as a reducing agent to biosynthesize silver nanoparticles (AgNPs). The synthesis of AgNPs was confirmed by the color shift of the reaction mixture, i.e., silver nitrate and plant extract, from yellow to dark brown colloidal suspension and was established by UV-visible analysis showing a surface plasmon resonance band at 434 nm. Different experimental factors were optimized for the formation and stability of AgNPs, and the optimum conditions were found to be 1 mM AgNO3 concentration, a 1:9 ratio of extract/precursor, and an incubation temperature of 70°C for 4 h. The Fourier transform infrared spectroscopy spectra indicated the presence of phytochemicals in the leaf extract that played the role of bioreducing agents in forming AgNPs. X-ray diffraction patterns confirmed the presence of AgNPs with a mean size of 25.9 nm. The size distribution and morphology of AgNPs were investigated by scanning electron microscopy, which clearly highlighted spherical nanoparticles with a size distribution of 22–30 nm with a mean average size of 25.5 nm. Moreover, prominent antibacterial activity was found against Enterococcus faecalis (21 ± 0.5 mm), Bacillus subtilis (20 ± 0.9 mm), Pseudomonas aeruginosa (18 ± 0.3 mm), Staphylococcus aureus (16 ± 0.7 mm), Klebsiella pneumoniae (16 ± 0.3 mm), and Escherichia coli (14 ± 0.7 mm). In addition, antioxidant activity was determined by DPPH and ABTS assays. Higher antioxidant activity was reported in AgNPs compared to the plant extract in both DPPH (IC50 = 69.62 µg·ml−1) and ABTS assays (IC50 = 47.90 µg·ml−1). Furthermore, cytotoxic activity was also investigated by the MTT assay against MCF-7 cells, and IC50 was found to be 32.55 ± 0.05 µg·ml−1. The crux of this research is that AgNPs synthesized from the Cedrela toona leaf extract could be employed as antibacterial, antioxidant, and anticancer agents for the treatment of bacterial, free radical-oriented, and cancerous diseases.
Collapse
Affiliation(s)
- Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University , Lahore 54000 , Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University , Islamabad , PK 45320 , Pakistan
| | - Muhammad Hassan Sarfraz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute of Musculoskeletal Sciences, University of Oxford , Oxford, OX3 7LD , United Kingdom
| | - Sikander Ali
- Institute of Industrial Biotechnology, Government College University , Lahore 54000 , Pakistan
| | - Erum Liaqat
- Department of Zoology, Government College University , Lahore 54000 , Pakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Sciences, University of Management and Technology , Lahore 54770 , Pakistan
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Biomass & Bioenergy Research Center, Hubei University of Technology , Wuhan , 430068 , China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Biomass & Bioenergy Research Center, Hubei University of Technology , Wuhan , 430068 , China
| | - Asad ur Rehman
- Institute of Industrial Biotechnology, Government College University , Lahore 54000 , Pakistan
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University , Lahore 54000 , Pakistan
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University , Riyadh 11451 , Saudi Arabia
| |
Collapse
|
4
|
Hassan A, Jalil A, Ilyas SZ, Iqbal MF, Ali Shah SZ, Baqir Y. Green-route synthesis and ab-initio studies of a highly efficient nano photocatalyst:Ce/zinc-oxide nanopetals. Heliyon 2024; 10:e25581. [PMID: 38356607 PMCID: PMC10864955 DOI: 10.1016/j.heliyon.2024.e25581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
In the present work, Zinc-oxide nanostructures and Ce/Zinc-oxide nanopetals were synthesized by a new environmentally friendly green synthesis method using the Withania coagulans plant. Cerium nitrate Ce(NO3)3 and zinc nitrate Zn(NO3)2 were used as precursors. The prepared nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet spectroscopy (UV-vis). Crystal planes (100), (002), (101), (102), (110), (103), (200), (112) and (201) at 2θ 31.75°, 34.35°, 36.2°, 47.55°, 56.6°, 62.75°, 66.3°, 67.9°, and 69.09° respectively confirmed the hexagonal wurtzite crystal structure of Zinc-oxide. Angular shifts for Ce1% doped Zinc-oxide and Ce3% doped Zinc-oxide nanopetal nanostructures were observed in the (100) and (101) planes of the crystal. More specifically, using Scherrer's equation, the crystallite sizes of Zinc-oxide, Ce1% doped Zinc-oxide nanopetals, Ce3% doped Zinc-oxide nanopetals, and Ce5% doped Zinc-oxide nanopetals were 16.48 ± 02 nm, 17.8 ± 2 nm, 18.8 ± 2 nm, and 18.87 ± 2 nm, respectively. The pure Zinc-oxide grain had the appearance of a nanoflower. On the other hand, the nanopetal structure of Ce5% doped Zinc-oxide nanopetals had oval-shaped nanopetal morphology. The absorption peaks were observed at 373, 376.4, 377, and 378 nm for Zinc-oxide, Ce1% doped Zinc-oxide nanopetals, Ce3% doped Zinc-oxide nanopetals, and Ce5% doped Zinc-oxide nanopetals, respectively, which results in a progressive redshift. The gap energies of Zinc-oxide, Ce1% doped Zinc-oxide nanopetals, Ce3% doped Zinc-oxide nanopetals, and Ce5% doped Zinc-oxide nanopetals were 2.796, 2.645, 2.534, and 2.448 eV, respectively. Photodegradation under visible light (>400 nm) indicates the high efficiency of the photocatalyst based on Ce5% doped Zinc-oxide nanopetals. DFT calculations, structural changes, charge analysis, and electronic band structures were carried out to confirm the experiment.
Collapse
Affiliation(s)
- Ather Hassan
- Department of Physics, Allama Iqbal Open University, Islamabad, Pakistan
| | - Abdul Jalil
- Department of Physics, Allama Iqbal Open University, Islamabad, Pakistan
| | - Syed Zafar Ilyas
- Department of Physics, Allama Iqbal Open University, Islamabad, Pakistan
| | - Muhammad Faisal Iqbal
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China
| | | | - Yadullah Baqir
- Department of Agriculture, Allama Iqbal Open University, Islamabad, Pakistan
| |
Collapse
|
5
|
Gopalaiah SB, Jayaseelan K. Analytical Strategies to Investigate Molecular Signaling, Proteomics, Extraction and Quantification of Withanolides - A Comprehensive Review. Crit Rev Anal Chem 2024:1-25. [PMID: 38300174 DOI: 10.1080/10408347.2024.2307887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Withanolides are the class of steroidal molecules getting greater emphasis in recent years. Quality control throughout the manufacturing and storage period is often one of the key problems that have restricted their broad use in India's indigenous and Ayurvedic medical systems for thousands of years. Because of their diverse clinical potential, withanolides have received a great deal of scientific attention. Analytical techniques are being devised for the automated isolation, identification, and estimation of every single protein within the cell as well as in herbal extracts of withanolides, due to which now researchers are interested in determining the effects of metabolism as well as various stimuli on protein expression, which made the study easier. This study discusses the potential use of hyphenated analytical methods that are reliable in understanding the molecular signaling features, proteome evaluation and characterization of withanolides, in addition to examining existing methodological limitations. The choice of analytical techniques for the withanolides analysis, however, relies on the nature of the sample matrix, the aim of the analysis, and the sensitivity of the technique.
Collapse
Affiliation(s)
- Sinchana B Gopalaiah
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Kavitha Jayaseelan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
6
|
Das CA, Kumar VG, Kode J. Green nanotechnology approaches using Mesobacillus jeotgali ADCG SIST 4 strain synthesized gold nanoparticles for anticancer studies. J Drug Deliv Sci Technol 2023; 88:104976. [DOI: 10.1016/j.jddst.2023.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
|
7
|
Legmairi S, Meneceur S, Hasan GG, Eddine LS, Mohammed HA, Alharthi F, Abdullah JAA. Enhanced photocatalytic activity and antiviral evaluation of CuO@Fe 2O 3NC for amoxicillin degradation and SARS-CoV-2 treatment. NANOTECHNOLOGY 2023; 34:445101. [PMID: 37524077 DOI: 10.1088/1361-6528/acebfa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) and CuO NPs decorated with hematite (Fe2O3) nanocomposites (CuO@Fe2O3NC) were biosynthesized by a green method usingPortulaca oleracealeaves extract. The NC were characterized using various techniques, including x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and UV-vis spectroscopy. The results showed that the synthesized CuO and CuO@Fe2O3NC were crystalline with a monoclinic crystal structure and contained functional groups responsible for catalytic activity. The size of the nanocomposites ranged from 39.5 to 45.9 nm, and they exhibited a variety of agglomerated or aggregated shapes. The CuO@Fe2O3NC showed improved photocatalytic activity for the degradation of antibiotics in water and wastewater and promising antiviral activity against SARS-CoV-2, indicating its potential for use in disinfection applications. The study investigated the impact of irradiation time on the photocatalytic degradation of Amoxicillin and found that increasing the irradiation time led to a higher degradation rate. The band gap energy (Eg) for pure CuO NPs was around 2.4 eV and dropped to 1.6 eV with CuO@Fe2O3NC. In summary, the CuO@Fe2O3NC has the potential to be an efficient photocatalyst and promising antiviral agent for environmental remediation. The CuO@Fe2O3nanocomposites have been found to possess a high degree of efficacy in inactivating SARS-CoV-2 infectivity. The results of the study indicate that the nanocomposites exhibit potent anti-viral properties and hold significant potential for use in mitigating the spread of the virus.
Collapse
Affiliation(s)
- Souheila Legmairi
- Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria
| | - Souhaila Meneceur
- Department of Process Engineering, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria
| | - Gamil Gamal Hasan
- Department of Process Engineering, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria
| | - Laouini Salah Eddine
- Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria
| | - Hamdi Ali Mohammed
- Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, 39000 El-Oued, Algeria
| | - Fahad Alharthi
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | | |
Collapse
|
8
|
Algarni A, Fayomi A, Al Garalleh H, Afandi A, Brindhadevi K, Pugazhendhi A. Nanofabrication synthesis and its role in antibacterial, anti-inflammatory, and anticoagulant activities of AgNPs synthesized by Mangifera indica bark extract. ENVIRONMENTAL RESEARCH 2023; 231:115983. [PMID: 37137456 DOI: 10.1016/j.envres.2023.115983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023]
Abstract
The bio-based nanoparticles synthesis and assessment of their potential biomedical applications related research is rapidly emerging. The ability of an aqueous ethanolic bark extract of Mangifera indica to synthesize silver nanoparticles (AgNPs) as well as its antibacterial, anti-inflammatory, and anticancer activities were investigated in this study. Interestingly, the bark extract effectively synthesized the AgNPs, including an absorbance peak at 412 nm and sizes ranging from 56 to 89 nm. The Fourier Transform Infrared spectroscopy (FTIR) analysis confirmed that the presence of most essential functional groups belongs to the most bioactive compounds. Synthesized AgNPs showed fine antibacterial activity against the Urinary Tract Infection (UTI) causing bacterial pathogens such as Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus saprophyticus at 50 μg mL-1 concentrations. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AgNPs against these pathogens were found as 12.5 ± 0.8 & 13 ± 0.6, 13.6 ± 0.5 & 14 ± 0.7, 11.5 ± 0.3 & 11.5 ± 0.4, 13 ± 0.8 & 13 ± 0.7, and 11.8 ± 0.4 & 12 ± 0.8 μg mL-1 respectively. Interestingly, this AgNPs also possesses outstanding anti-inflammatory and anticancer activities as studied against the egg albumin denaturation (85%) inhibition and MCF 7 (Michigan Cancer Foundation-7: breast cancer cells) cell line (cytotoxicity: 80.1%) at 50 μg mL-1 concentration. Similarly at 50 μg mL-1 concentration showed 75% of DPPH radical scavenging potential. These activities were dose dependent, and the findings suggest that the M. indica bark aqueous ethanolic extract synthesized AgNPs can be used as antibacterial, anti-inflammatory, and anticancer agents after in-vivo testing.
Collapse
Affiliation(s)
- Ali Algarni
- Department of Statistics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Aisha Fayomi
- Department of Statistics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Jeddah, 21361, Saudi Arabia
| | - Abdulkareem Afandi
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Jeddah, 21361, Saudi Arabia
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arivalagan Pugazhendhi
- University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, 140103, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
9
|
Rani N, Rawat K, Saini M, Yadav S, Syeda S, Saini K, Shrivastava A. Comparative In Vitro Anticancer Study of Cisplatin Drug with Green Synthesized ZnO Nanoparticles on Cervical Squamous Carcinoma (SiHa) Cell Lines. ACS OMEGA 2023; 8:14509-14519. [PMID: 37125098 PMCID: PMC10134227 DOI: 10.1021/acsomega.2c08302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
In this article, we aimed to develop a unique treatment approach to cure cervical cancer without harming healthy normal cells and overcome the limitations of currently available therapies/treatments. Recently, chemotherapeutics based on metal oxides have gained attention as a promising approach for treating cancer. Herein, ZnO nanoparticles were synthesized with the leaf extract of Azadirachta indica. These green synthesized ZnO nanoparticles were used for a cytotoxic study on the cervical squamous carcinoma cell line SiHa and murine macrophage cell line RAW 264.7. Moreover, a hemolytic assay was performed to check the biocompatibility of ZnO nanoparticles. The biosynthesized ZnO nanoparticles were labeled as L1, L2, L5, and L10 nanoparticles. Various assays like crystal violet, MTT assay, and AO/PI dual staining method were performed to assess the anticancer potential of ZnO. The concentration of ZnO nanoparticles was taken in the range of 100-250 μg/mL in the in vitro anticancer study on SiHa cancer cell lines. The findings of the MTT assay revealed that biosynthesized ZnO nanoparticles exhibited significant cytotoxicity against SiHa cancer cell lines dose-dependently at two incubation times (24 and 48 h). Also, a decrease in cell viability was observed with an increased concentration of ZnO. The IC50 values obtained were 141 μg/mL for L1, 132 μg/mL for L2, 127 μg/mL for L5, and 115 μg/mL for L10 nanoparticles. In addition, cisplatin drug (10 μg/mL) was also used to compare the anticancer activity with the biosynthesized L1, L2, L5, and L10 nanoparticles. The results of the crystal violet assay and AO/PI dual staining method revealed that morphological changes like cell shrinkage, poor cell adhesion, and induction of apoptosis occurred in the SiHa cancer cell lines. Furthermore, the stability of the ZnO nanoparticles at physiological pH has been assessed by recording the UV-visible spectrum at various pH values. Hence, the overall findings suggested that biosynthesized ZnO nanoparticles can be utilized for cervical squamous cancer treatment in addition to the current treatment strategies/techniques.
Collapse
Affiliation(s)
- Nutan Rani
- Department
of Chemistry, Miranda House, University
of Delhi, Patel Chest
Marg, New Delhi 110007, India
| | - Kavita Rawat
- Department
of Zoology, University of Delhi, North Campus, New Delhi 110007, India
| | - Mona Saini
- Department
of Chemistry, Miranda House, University
of Delhi, Patel Chest
Marg, New Delhi 110007, India
| | - Sapna Yadav
- Department
of Chemistry, Miranda House, University
of Delhi, Patel Chest
Marg, New Delhi 110007, India
| | - Saima Syeda
- Department
of Zoology, University of Delhi, North Campus, New Delhi 110007, India
| | - Kalawati Saini
- Department
of Chemistry, Miranda House, University
of Delhi, Patel Chest
Marg, New Delhi 110007, India
| | - Anju Shrivastava
- Department
of Zoology, University of Delhi, North Campus, New Delhi 110007, India
| |
Collapse
|
10
|
Macovei I, Luca SV, Skalicka-Woźniak K, Horhogea CE, Rimbu CM, Sacarescu L, Vochita G, Gherghel D, Ivanescu BL, Panainte AD, Nechita C, Corciova A, Miron A. Silver Nanoparticles Synthesized from Abies alba and Pinus sylvestris Bark Extracts: Characterization, Antioxidant, Cytotoxic, and Antibacterial Effects. Antioxidants (Basel) 2023; 12:antiox12040797. [PMID: 37107172 PMCID: PMC10135277 DOI: 10.3390/antiox12040797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, phytofunctionalized AgNPs have attracted great interest due to their remarkable biological activities. In the present study, AgNPs were synthesized using Abies alba and Pinus sylvestris bark extracts. The chemical profile of these bark extracts was analyzed by LC-HRMS/MS. As a first step, the synthesis parameters (pH, AgNO3 concentration, ratio of bark extract and AgNO3, temperature, and reaction time) were optimized. The synthesized AgNPs were characterized by ATR-FTIR spectroscopy, DLS, SEM, EDX, and TEM. Their antioxidant, cytotoxic, and antibacterial properties were evaluated by the DPPH, ABTS, MTT, and broth microdilution assays, respectively. Abies alba and Pinus sylvestris bark extract-derived AgNPs were well-dispersed, spherical, small (average particle size of 9.92 and 24.49 nm, respectively), stable (zeta potential values of -10.9 and -10.8 mV, respectively), and cytotoxic to A-375 human malignant melanoma cells (IC50 = 2.40 ± 0.21 and 6.02 ± 0.61 μg/mL, respectively). The phytosynthesized AgNPs also showed antioxidant and antibacterial effects.
Collapse
Affiliation(s)
- Irina Macovei
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, D-85354 Freising, Germany
| | | | - Cristina Elena Horhogea
- Department of Public Health, Ion Ionescu de la Brad University of Life Sciences, 700489 Iasi, Romania
| | - Cristina Mihaela Rimbu
- Department of Public Health, Ion Ionescu de la Brad University of Life Sciences, 700489 Iasi, Romania
| | - Liviu Sacarescu
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Gabriela Vochita
- NIRDBS, Institute of Biological Research Iasi, 700107 Iasi, Romania
| | - Daniela Gherghel
- NIRDBS, Institute of Biological Research Iasi, 700107 Iasi, Romania
| | - Bianca Laura Ivanescu
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Diana Panainte
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Constantin Nechita
- Marin Dracea National Institute for Research and Development in Forestry, 725100 Campulung Moldovenesc, Romania
| | - Andreia Corciova
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Anca Miron
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
11
|
Pungle R, Nile SH, Kharat AS. Green synthesis and characterization of Solanum xanthocarpum capped silver nanoparticles and its antimicrobial effect on multidrug-resistant bacterial (MDR) isolates. Chem Biol Drug Des 2023; 101:469-478. [PMID: 34453485 DOI: 10.1111/cbdd.13945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Plant extracts and their bioactive compounds are considered as the promising options for green synthesis of nanoparticles instead expensive and hazardous materials. Here, Solanum xanthocarpum fruit was used for synthesis of silver nanoparticles (AgNP). The synthesized AgNPs were characterized by using chromatographic and spectroscopic analytical methods. AgNPs were confirmed by UV-visible absorbance at 420-470 nm. TEM analysis showed AgNP with 22.45 nm average size. X-ray diffraction studies revealed the crystalline and face central cubic nature of AgNPs. FTIR analysis revealed functional group present over AgNPs. The aminodiphenyl acetic acid, clomipramine, and fonisopril from fruit extracts were found to be major capping agents on AgNPs as a result of analysis by HRLC-MS. All clinical isolates showed resistance for ampicilline, amoxyclav, niladixic acid, and sulphafurazole, suggesting multidrug resistance. The results showed that all isolates were sensitive to AgNPs synthesized fruit extracts. On the contrary, all isolates were resistant to whole S. xanthocarpum fruit extracts alone. The antimicrobial activity of AgNP was explored against multidrug-resistant (MDR) Gram-negative clinical isolates including Escherichia coli, Shigella spp., Aeronomonas spp. and Pseudomonas spp. MIC values ranged between 1.25 mg/ml and 2.5 mg/ml at 8 McFarland's standards. Minimum bactericidal concentration was found to be in between 2.5 mg/ml to 5 mg/ml. Nanoparticles synthesized from fruit extract of S. xanthocarpum containing aminodiphenyl acetic acid, clomipramine, and fonisopril metabolites exhibit promising antimicrobial activity against MDR Gram-negative clinical isolates.
Collapse
Affiliation(s)
- Rohini Pungle
- Department of Biotechnology, Shivchattrapati College, Aurangabad, India.,Department of Biotechnology, Dr. Babasaheb Ambedkar Marathwada University, Sub-Campus Osmanabad, Aurangabad, India
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant and Food Biotechnology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Arun S Kharat
- Department of Biotechnology, Dr. Babasaheb Ambedkar Marathwada University, Sub-Campus Osmanabad, Aurangabad, India.,Laboratory of Applied Microbiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Mihailović V, Srećković N, Nedić ZP, Dimitrijević S, Matić M, Obradović A, Selaković D, Rosić G, Katanić Stanković JS. Green Synthesis of Silver Nanoparticles Using Salvia verticillata and Filipendula ulmaria Extracts: Optimization of Synthesis, Biological Activities, and Catalytic Properties. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020808. [PMID: 36677866 PMCID: PMC9861472 DOI: 10.3390/molecules28020808] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The study's objective was to obtain silver nanoparticles (SVAgNP and FUAgNP) using aqueous extracts of Salvia verticillata and Filipendula ulmaria. The optimal conditions for nanoparticle synthesis were determined and obtained; nanoparticles were then characterized using UV-Vis, Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Dynamic Light Scattering (DLS), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS). SVAgNP and FUAgNP possessed a crystalline structure with 48.42% and 60.41% silver weight, respectively. The highest percentage of nanoparticles in the solution had a diameter between 40 and 70 nm. In DPPH˙ and ABTS˙+ methods, FUAgNP (IC50 15.82 and 59.85 µg/mL, respectively) demonstrated a higher antioxidant capacity than SVAgNP (IC50 73.47 and 79.49 µg/mL, respectively). Obtained nanoparticles also showed pronounced antibacterial activity (MIC ˂ 39.1 µg/mL for most of the tested bacteria), as well as high biocompatibility with the human fibroblast cell line MRC-5 and significant cytotoxicity on some cancer cell lines, especially on the human colon cancer HCT-116 cells (IC50 31.50 and 66.51 µg/mL for SVAgNP and FUAgNP, respectively). The nanoparticles demonstrated high catalytic effectiveness in degrading Congo red dye with NaBH4. The results showed a rapid and low-cost methodology for the synthesis of AgNPs using S. verticillata and F. ulmaria with promising biological potential.
Collapse
Affiliation(s)
- Vladimir Mihailović
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
- Correspondence: (V.M.); (J.S.K.S.)
| | - Nikola Srećković
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Zoran P. Nedić
- Faculty of Physical Chemistry, University of Belgrade, 11159 Belgrade, Serbia
| | | | - Miloš Matić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ana Obradović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragica Selaković
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Gvozden Rosić
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena S. Katanić Stanković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, 34000 Kragujevac, Serbia
- Correspondence: (V.M.); (J.S.K.S.)
| |
Collapse
|
13
|
Ashique S, Upadhyay A, Hussain A, Bag S, Chaterjee D, Rihan M, Mishra N, Bhatt S, Puri V, Sharma A, Prasher P, Singh SK, Chellappan DK, Gupta G, Dua K. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103876] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Yadav N, Singh D, Rawat M, Sangwan N. Novel archetype in cancer therapeutics: exploring prospective of phytonanocarriers. 3 Biotech 2022; 12:324. [PMID: 36276448 PMCID: PMC9569404 DOI: 10.1007/s13205-022-03372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
This paper reports various types of cancer, their incidence, and prevalence all over the globe. Along with the discovery of novel natural drugs for cancer treatment, these present a promising option which are eco-friendly, safe, and provide better acceptability in comparison to synthetic agents that carries multiple side effects. This paper provides an idea about various nanocarriers and phytochemicals, along with how their solubility and bioavailability can be enhanced in nanocarrier system. This report combines the data from various literature available on public domain including PubMed on research articles, reviews, and along with report from various national and international sites. Specialized metabolites (polyphenols, alkaloids, and steroids etc) from medicinal plants are promising alternatives to existing drugs. Studies have suggested that the treatment of cancer using plant products could be an alternative and a safe option. Studies have shown with the several cell lines as well as animal models, that phytomolecules are important in preventing/treating cancer. Phytochemicals often outperform chemical treatments by modulating a diverse array of cellular signaling pathways, promoting cell cycle arrest, apoptosis activation, and metastatic suppression, among others. However, limited water solubility, bioavailability, and cell penetration limit their potential clinical manifestations. The development of plant extract loaded nanostructures, rendering improved specificity and efficacy at lower concentrations could prove effective. Nanocarriers, such as liposomes, nanostructured lipids, polymers, and metal nanoparticles, have been tested for the delivery of plant products with enhanced effects. Recent advances have achieved improvement in the the stability, solubility, bioavailability, circulation time, and target specificity by nanostructure-mediated delivery of phytochemicals. Nanoparticles have been considered and attempted as a novel, targeted, and safe option. Newer approaches such as phyto-nanocarriers with carbohydrates, lignin, and polymers have been considered even more selective and effective modes of drug delivery in biomedical or diagnostic applications.
Collapse
Affiliation(s)
- Nisha Yadav
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Manju Rawat
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Neelam Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031 India
| |
Collapse
|
15
|
Ma Y, Lin W, Ruan Y, Lu H, Fan S, Chen D, Huang Y, Zhang T, Pi J, Xu JF. Advances of Cobalt Nanomaterials as Anti-Infection Agents, Drug Carriers, and Immunomodulators for Potential Infectious Disease Treatment. Pharmaceutics 2022; 14:pharmaceutics14112351. [PMID: 36365168 PMCID: PMC9696703 DOI: 10.3390/pharmaceutics14112351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Infectious diseases remain the most serious public health issue, which requires the development of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted increasing attention worldwide due to its wide application in different areas, including medicine. Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely developed for their attractive biomedical applications. With advantages such as low costs in preparation, hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials have been proven to show promising potential in anticancer and anti-infection treatment. In this review, we summarize the characters of cobalt nanomaterials, followed by the advances in their biological functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.
Collapse
Affiliation(s)
- Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
16
|
Landeros-Páramo L, Saavedra-Molina A, Gómez-Hurtado MA, Rosas G. The effect of AgNPS bio-functionalization on the cytotoxicity of the yeast Saccharomyces cerevisiae. 3 Biotech 2022; 12:196. [PMID: 35928500 PMCID: PMC9343563 DOI: 10.1007/s13205-022-03276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
This work used Sedum praealtum leaf extract to synthesize silver nanoparticles (AgNPs) in a single step. The cytotoxicity of AgNPs was studied with the yeast Saccharomyces cerevisiae W303-1. In addition, the antioxidant activity of the DPPH radical was studied both in the extract of S. praealtum and in the AgNPs. UV-Vis spectroscopy determined the presence of AgNPs by the location of the surface plasmon resonance (SPR) band at 434 nm. TEM and XRD analyzes show AgNPs with fcc structure and hemispherical morphology. Also, AgNPs range in size from 5 to 25 nm and have an average size of 14 nm. 1H NMR, FTIR, and UV-Vis spectroscopy techniques agreed that glycosidic compounds were the main phytochemical components responsible for the reduction and stabilization of AgNPs. In addition, AgNPs presented a maximum of 12% toxicity in yeast attributed to the generation of ROS. Consequently, there was low bioactivity because glycoside compounds cover the biosynthesized AgNPs from S. praealtum. These findings allow applications of AgNPs involving contact with mammals and higher organisms.
Collapse
Affiliation(s)
- L. Landeros-Páramo
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, Edificio U., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - A. Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - Mario A. Gómez-Hurtado
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - G. Rosas
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, Edificio U., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| |
Collapse
|
17
|
Du L, Zhang R, Zhao L, Tang S, Hou Z, Xue P. Comparing the Anticancer Activities of Green-Synthesized Ginsenoside and Transformed Ginsenoside Nanoconjugates (Ag, Au, and Pt). J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Aim: To assess the anticancer activity of nanoparticles synthesized via a green method using American ginseng (AG). Methods: Stem-leaf saponins from AG (SAG) and heat-transformed stem-leaf saponins from AG (TSAG) were used to synthesize different SAG nanoparticles (SAG-NPs)
and TSAG nanoparticles (TSAG-NPs). The NPs were characterized, and their anticancer activity was assessed in vitro. Results: The NPs, which differed in size (16.69 nm∼253.8 nm), were spherical or polyhedral with a low PDI and good stability. The TSAG-NPs inhibited cancer
cells by inhibiting proliferation, promoting cancer cell apoptosis and directly leading cancer cells to necrosis. The small cell lung cancer cell line (SCLC) NCI-H446 was the most sensitive to the TSAG-AgNPs, with an IC50 value of 20.71±2.38 μg/mL, and the TSAG-AgNPs
inhibited invasiveness and reduced the risk of metastasis. Conclusion: TSAG-AgNPs, selected from many SAG-NPs and TSAG-NPs, are sensitive to SCLC and provide a new approach to the currently limited treatment.
Collapse
Affiliation(s)
- Lidong Du
- School of Public Health, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Ruoyu Zhang
- School of Public Health, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Lei Zhao
- School of Public Health, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Shaojian Tang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhaohua Hou
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People’s Republic of China
| | - Peng Xue
- School of Public Health, Weifang Medical University, Weifang, 261053, People’s Republic of China
| |
Collapse
|
18
|
Optimization of Synthesis of Silver Nanoparticles Conjugated with Lepechinia meyenii (Salvia) Using Plackett-Burman Design and Response Surface Methodology—Preliminary Antibacterial Activity. Processes (Basel) 2022. [DOI: 10.3390/pr10091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present investigation, an ethanolic fraction (EF) of Lepechinia meyenii (salvia) was prepared and fractionated by gradient column chromatography, and the main secondary metabolites present in the EF were identified by HPLC-MS. Silver nanoparticles (AgNPs) were synthesized and conjugated with the EF of Lepechinia meyenii (salvia). The AgNPs synthesis was optimized using Plackett-Burman design and response surface methodology (RSM), considering the following independent variables: stirring speed, synthesis pH, synthesis time, synthesis temperature and EF volume. The AgNPs synthesized under the optimized conditions were characterized by UV visible spectroscopy (UV-VIS), Fourier Transform Infrared Spectroscopy (FT-IR), Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). The antibacterial activity of the AgNPs against Staphylococcus aureus (ATCC® 25923) was evaluated. The following flavonoids were identified: rosmarinic acid, diosmin and hesperetin-7-O-rutinoside. The optimized conditions for the synthesis of nanoparticles were pH 9.45, temperature 49.8 °C, volume of ethanolic fraction 152.6 µL and a reaction time of 213.2 min. The obtained AgNPs exhibited an average size of 43.71 nm and a resonance plasmon of 410–420 nm. Using FT-IR spectroscopy, the disappearance of the peaks between 626.50 and 1379.54 cm−1 was evident with the AgNPs, which would indicate the participation of these functional groups in the synthesis and protection of the nanoparticles. A hydrodynamic size of 47.6 nm was obtained by DLS, while a size of 40–60 nm was determined by STEM. The synthesized AgNPs conjugated with the EF showed a higher antibacterial activity than the EF alone. These results demonstrate that the AgNPs synthesized under optimized conditions conjugated with the EF of the Lepechinia meyenii (salvia) presented an increased antibacterial activity.
Collapse
|
19
|
Biofabrication of spherical silver nanoparticles using leaf extract of Plectranthus barbatus Andrews: characterization, free radical scavenging, and optical properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Asghar A, Aamir MN, Sheikh FA, Ahmad N, Elsherif MA, Abbas Bukhari SN. Co-Combination of Pregabalin and Withaniacoagulans-Extract-Loaded Topical Gel Alleviates Allodynia and Hyperalgesia in the Chronic Sciatic Nerve Constriction Injury for Neuropathic Pain in Animal Model. Molecules 2022; 27:4433. [PMID: 35889307 PMCID: PMC9317976 DOI: 10.3390/molecules27144433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
The current study reports the fabrication of co-combination gel using Pregabalin and Withania coagulans fruit extract to validate its effectiveness for neuropathic pain in chronic constriction injury (CCI) rat models. Three topical gels were prepared using Carbopol 934 through a pseudo-ternary phase diagram incorporating the Pregabalin (2.5%), Withania coagulans extract (2%), and co-combination of both Pregabalin (2.5%) and Withania coagulans extract (2%). Gels were characterized. FTIR showed a successful polymeric network of the gel without any interaction. The drug distribution at the molecular level was confirmed by XRD. The AFM images topographically indicated the rough surface of gels with a size range from 0.25 to 330 nm. DSC showed the disappearance of sharp peaks of the drug and extract, showing successful incorporation into the polymeric network of gels. The in vitro drug release of co-combination gel was 73% over 48 h. The mechanism of drug release by combination gel was Higuchi+ fickian with values of n (0.282) and R2 (0.947). An in vivo study for pain assessment via four methods: (i) heat hyperalgesia, (ii) cold allodynia, (iii) mechano-hyperalgesia, and (iv) dynamic mechano-allodynia, confirmed that topical treatment with co-combination gel reduced the pain significantly as indicated by the p value: R1 (p < 0.001), R2 (p < 0.001), R3 (p < 0.015), and R4 (p < 0.0344). The significance order was R2 (****) > R1 (***) > R3 (**) > R4 (*) > R5 (ns).
Collapse
Affiliation(s)
- Anam Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Punjab 38000, Pakistan;
| | - Muhammad Naeem Aamir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Pharmacy, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | | | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia;
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Al Jouf, Saudi Arabia;
| |
Collapse
|
21
|
Green Synthesis of a Novel Silver Nanoparticle Conjugated with Thelypteris glandulosolanosa (Raqui-Raqui): Preliminary Characterization and Anticancer Activity. Processes (Basel) 2022. [DOI: 10.3390/pr10071308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the last decade, the green synthesis of nanoparticles has had a prominent role in scientific research for industrial and biomedical applications. In this current study, silver nitrate (AgNO3) was reduced and stabilized with an aqueous extract of Thelypteris glandulosolanosa (Raqui-raqui), forming silver nanoparticles (AgNPs-RR). UV-vis spectrophotometry, dynamic light scattering (DLS), and scanning transmission electron microscopy (STEM) were utilized to analyze the structures of AgNPs-RR. The results from this analysis showed a characteristic peak at 420 nm and a mean hydrodynamic size equal to 39.16 nm, while the STEM revealed a size distribution of 6.64–51.00 nm with an average diameter of 31.45 nm. Cellular cytotoxicity assays using MCF-7 (ATCC® HTB-22™, mammary gland breast), A549 (ATCC® CCL-185, lung epithelial carcinoma), and L929 (ATCC® CCL-1, subcutaneous connective tissue of Mus musculus) demonstrated over 42.70% of MCF-7, 59.24% of A549, and 8.80% of L929 cells had cell death after 48 h showing that this nanoparticle is more selective to disrupt neoplastic than non-cancerous cells and may be further developed into an effective strategy for breast and lung cancer treatment. These results demonstrate that the nanoparticle surfaces developed are complex, have lower contact angles, and have excellent scratch and wear resistance.
Collapse
|
22
|
Asghar A, Aamir MN, Sheikh FA, Ahmad N, Alotaibi NF, Bukhari SNA. Preparation, Characterization of Pregabalin and Withania coagulans Extract-Loaded Topical Gel and Their Comparative Effect on Burn Injury. Gels 2022; 8:gels8070402. [PMID: 35877487 PMCID: PMC9318109 DOI: 10.3390/gels8070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
The current study depicts the comparative effects of nanogel using Withania coagulans extract, pregabalin alone, and a co-combination gel. The gels prepared were then analyzed for conductivity, viscosity, spread ability, globule size, zeta potential, polydispersity index, and TEM. The globule size of the co-combination gel, determined by zeta sizer, was found to be (329 ± 0.573 nm). FTIR analysis confirms the successful development of gel, without any interaction. Drug distribution at the molecular level was confirmed by XRD. DSC revealed no bigger thermal changes. TEM images revealed spherical molecules with sizes of 200 nm for the co-combination gel. In vivo studies were carried out by infliction of third degree burn wounds on rat skin, and they confirmed that pregabalin and Withania coagulans heals the wound more effectively, with a wound contraction rate of 89.95%, compared to remaining groups. Anti-inflammatory activity (IL-6 and TNF-α), determined by the ELISA technique, shows that the co-combination gel group reduces the maximum inflammation with TNF-α value (132.2 pg/mL), compared to the control (140.22 pg/mL). Similarly, the IL-6 value was found to be (78 pg/mL) for the co-combination gel and (81 pg/mL) in the case of the control. Histopathologically, the co-combination gel heals wounds more quickly, compared to individual gel. These outcomes depict that a co-combination gel using plant extracts and drugs can be successfully used to treat burn injury.
Collapse
Affiliation(s)
- Anam Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Naeem Aamir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Correspondence: or
| | | | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Nasser F. Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| |
Collapse
|
23
|
Cyanobacteria: miniature factories for green synthesis of metallic nanomaterials: a review. Biometals 2022; 35:653-674. [PMID: 35716270 DOI: 10.1007/s10534-022-00405-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Nanotechnology is one of the most promising and advanced disciplines of science that deals with synthesis, characterization and applications of different types of Nanomaterials (NMs) viz. nanospheres, nanoparticles, nanotubes, nanorods, nanowires, nanocomposites, nanoalloys, carbon dots and quantum dots. These nanosized materials exhibit different physicochemical characteristics and act as a whole unit during its transport. The unique characteristics and vast applications of NMs in diverse fields viz. electronics, agriculture, biology and medicine have created huge demand of different type of NMs. Conventionally physical and chemical methods were adopted to manufacture NMs which are expensive and end up with hazardous by-products. Therefore, green synthesis exploiting biological resources viz. algae, bacteria, fungi and plants emerged as a better and promising alternative due to its cost effective and ecofriendly approach and referred as nanobiotechnology. Among various living organisms, cyanobacteria have proved one of the most favourable bioresources for NMs biosynthesis due to their survival in diverse econiches including metal and metalloid contaminated sites and capability to withstand high levels of metals. Biosynthesis of metallic NMs is accomplished through bioreduction of respective metal salts by various capping agents viz. alkaloids, pigments, polysaccharides, steroids, enzymes and peptides present in the biological systems. Advancement in the field of Nanobiotechnology has produced large number of diverse NMs from cyanobacteria which have been used as antimicrobial agents against Gram positive and negative human pathogens, anticancer agents, luminescent nanoprobes for imaging of cells, antifungal agents against plant pathogens, nanocatalyst and semiconductor quantum dots in industries and in bioremediation in toxic pollutant dyes. In the present communication, we have reviewed cyanobacteria mediated biosynthesis of NMs and their applications in various fields.
Collapse
|
24
|
Nguyen NT, Vo TLH. Fabrication of Silver Nanoparticles Using Cordyline fruticosa L. Leave Extract Endowing Silk Fibroin Modified Viscose Fabric with Durable Antibacterial Property. Polymers (Basel) 2022; 14:polym14122409. [PMID: 35745988 PMCID: PMC9230683 DOI: 10.3390/polym14122409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/28/2023] Open
Abstract
The current work presented a green synthetic route for the fabrication of silver nanoparticles obtained from aqueous solutions of silver nitrate using Cordyline fruticosa L. leaf extract (Col) as a reducing and capping agent for the first time. The bio-synthesized silver nanoparticles (AgCol) were investigated using UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA). The obtained data demonstrated that AgCol in spherical shape with an average size of 28.5 nm were highly crystalline and well capped by phytocompounds from the Col extract. Moreover, the bio-synthesized AgCol also exhibited the effective antibacterial activities against six pathogenic bacteria, including Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Salmonella enterica (S. enterica), Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus) and Enterococcus faecalis (E. faecalis). The AgCol were applied as an antibacterial finishing agent for viscose fabric using a pad-dry curing technique. The AgCol-treated viscose fabrics exhibited a good synergistic antimicrobial activity against E. coli and S. aureus bacteria. Furthermore, the silk fibroin regenerated from Bombyx mori cocoon waste was utilized as an ecofriendly binder for the immobilization of AgCol on the viscose fabric. Thus, the antimicrobial efficacy of the AgCol and fibroin modified viscose fabric still reached 99.99% against the tested bacteria, even after 30 washing cycles. The colorimetric property, morphology, elemental composition, and distribution of AgCol on the treated fabrics were investigated using several analysis tools, including colorimetry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic absorption spectroscopy (AAS), Kjeldahl, and FTIR. Because of the excellent antimicrobial efficiency and laundering durability, as well as the green synthesis method, the AgCol and fibroin modified viscose fabric could be utilized as an antibacterial material in sportswear and medical textile applications.
Collapse
Affiliation(s)
- Ngoc-Thang Nguyen
- Department of Textile Material and Chemical Processing, School of Textile-Leather and Fashion, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 11615, Vietnam
- Correspondence: ; Tel.: +84-904309930
| | - Thi-Lan-Huong Vo
- Department of Fibre and Textile Technology, Hanoi Industrial Textile Garment University, Hanoi 12411, Vietnam;
| |
Collapse
|
25
|
Ödemiş Ö, Özdemir S, Gonca S, Ağırtaş MS. Characterization of silver nanoparticles fabricated by green synthesis using Urtica dioica and Lavandula angustifolia and investigation of antimicrobial and antioxidant. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2068584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ömer Ödemiş
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Yenisehir, Mersin, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Yenisehir, Mersin, Turkey
| | - Mehmet Salih Ağırtaş
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
26
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
27
|
Therapeutic potential of biogenic and optimized silver nanoparticles using Rubia cordifolia L. leaf extract. Sci Rep 2022; 12:8831. [PMID: 35614187 PMCID: PMC9133087 DOI: 10.1038/s41598-022-12878-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Rubia cordifolia L. is a widely used traditional medicine in the Indian sub-continent and Eastern Asia. In the present study, the aqueous leaf extract of the R. Cordifolia was used to fabricate silver nanoparticles (RC@AgNPs), following a green synthesis approach. Effect of temperature (60 °C), pH (8), as well the concentration of leaf extract (2 ml) and silver nitrate (2 mM) were optimized for the synthesis of stable RC@AgNPs. The phytofabrication of nanosilver was validated by UV–visible spectral analysis, which displayed a distinctive surface plasmon resonance peak at 432 nm. The effective functional molecules as capping and stabilizing agents, and responsible for the conversion of Ag+ to nanosilver (Ag0) were identified using the FTIR spectra. The spherical RC@AgNPs with an average size of ~ 20.98 nm, crystalline nature, and 61% elemental composition were revealed by TEM, SEM, XRD, and. EDX. Biogenic RC@AgNPs displayed a remarkable anticancer activity against B16F10 (melanoma) and A431 (carcinoma) cell lines with respective IC50 of 36.63 and 54.09 µg/mL, respectively. Besides, RC@AgNPs showed strong antifungal activity against aflatoxigenic Aspergillus flavus, DNA-binding properties, and DPPH and ABTS free radical inhibition. The presented research provides a potential therapeutic agent to be utilized in various biomedical applications.
Collapse
|
28
|
Kokila N, Mahesh B, Roopa K, Daruka Prasad B, Raj K, Manjula S, Mruthunjaya K, Ramu R. Thunbergia mysorensis mediated nano silver oxide for enhanced antibacterial, antioxidant, anticancer potential and in vitro hemolysis evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, Thangavelu S, Muthupandian S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol 2022; 16:115-144. [PMID: 35426251 PMCID: PMC9114445 DOI: 10.1049/nbt2.12078] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
The alarming effect of antibiotic resistance prompted the search for alternative medicine to resolve the microbial resistance conflict. Over the last two decades, scientists have become increasingly interested in metallic nanoparticles to discover their new dimensions. Green nano synthesis is a rapidly expanding field of interest in nanotechnology due to its feasibility, low toxicity, eco‐friendly nature, and long‐term viability. Some plants have long been used in medicine because they contain a variety of bioactive compounds. Silver has long been known for its antibacterial properties. Silver nanoparticles have taken a special place among other metal nanoparticles. Silver nanotechnology has a big impact on medical applications like bio‐coating, novel antimicrobial agents, and drug delivery systems. This review aims to provide a comprehensive understanding of the pharmaceutical qualities of medicinal plants, as well as a convenient guideline for plant‐based silver nanoparticles and their antimicrobial activity.
Collapse
Affiliation(s)
| | - Ranjithkumar Dhandapani
- Medical Microbiology Unit Department of Microbiology Alagappa University Karaikudi Tamilnadu India
- Chimertech Private Limited Chennai Tamilnadu India
| | - Santhoshini Narayanan
- Medical Microbiology Unit Department of Microbiology Alagappa University Karaikudi Tamilnadu India
| | - Velmurugan Palanivel
- Centre for Materials Engineering and Regenerative Medicine Bharath Institute of Higher Education and Research Chennai Tamilnadu India
| | | | | | - Sathiamoorthi Thangavelu
- Medical Microbiology Unit Department of Microbiology Alagappa University Karaikudi Tamilnadu India
| | - Saravanan Muthupandian
- Division of Biomedical Sciences College of Health Sciences School of Medicine Mekelle Ethiopia
- AMR and Nanotherapeutics Laboratory Department of Pharmacology Saveetha Dental College and Hospital Saveetha Institute of Medical and Technical Sciences (SIMATS) Chennai Tamilnadu India
| |
Collapse
|
30
|
Kashyap VK, Peasah-Darkwah G, Dhasmana A, Jaggi M, Yallapu MM, Chauhan SC. Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14030611. [PMID: 35335986 PMCID: PMC8954542 DOI: 10.3390/pharmaceutics14030611] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/05/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy is one of the prime treatment options for cancer. However, the key issues with traditional chemotherapy are recurrence of cancer, development of resistance to chemotherapeutic agents, affordability, late-stage detection, serious health consequences, and inaccessibility. Hence, there is an urgent need to find innovative and cost-effective therapies that can target multiple gene products with minimal adverse reactions. Natural phytochemicals originating from plants constitute a significant proportion of the possible therapeutic agents. In this article, we reviewed the advances and the potential of Withania somnifera (WS) as an anticancer and immunomodulatory molecule. Several preclinical studies have shown the potential of WS to prevent or slow the progression of cancer originating from various organs such as the liver, cervix, breast, brain, colon, skin, lung, and prostate. WS extracts act via various pathways and provide optimum effectiveness against drug resistance in cancer. However, stability, bioavailability, and target specificity are major obstacles in combination therapy and have limited their application. The novel nanotechnology approaches enable solubility, stability, absorption, protection from premature degradation in the body, and increased circulation time and invariably results in a high differential uptake efficiency in the phytochemical’s target cells. The present review primarily emphasizes the insights of WS source, chemistry, and the molecular pathways involved in tumor regression, as well as developments achieved in the delivery of WS for cancer therapy using nanotechnology. This review substantiates WS as a potential immunomodulatory, anticancer, and chemopreventive agent and highlights its potential use in cancer treatment.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Godwin Peasah-Darkwah
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (V.K.K.); (G.P.-D.); (A.D.); (M.J.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (M.M.Y.); (S.C.C.); Tel.: +1-956-296-1734 (M.M.Y.); +1-956-296-5000 (S.C.C.)
| |
Collapse
|
31
|
Bao Y, He J, Song K, Guo J, Zhou X, Liu S. Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Polymers (Basel) 2022; 14:polym14040769. [PMID: 35215680 PMCID: PMC8879376 DOI: 10.3390/polym14040769] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Pathogens, especially drug-resistant pathogens caused by the abuse of antibiotics, have become a major threat to human health and public health safety. The exploitation and application of new antibacterial agents is extremely urgent. As a natural biopolymer, cellulose has recently attracted much attention due to its excellent hydrophilicity, economy, biocompatibility, and biodegradability. In particular, the preparation of cellulose-based hydrogels with excellent structure and properties from cellulose and its derivatives has received increasing attention thanks to the existence of abundant hydrophilic functional groups (such as hydroxyl, carboxy, and aldehyde groups) within cellulose and its derivatives. The cellulose-based hydrogels have broad application prospects in antibacterial-related biomedical fields. The latest advances of preparation and antibacterial application of cellulose-based hydrogels has been reviewed, with a focus on the antibacterial applications of composite hydrogels formed from cellulose and metal nanoparticles; metal oxide nanoparticles; antibiotics; polymers; and plant extracts. In addition, the antibacterial mechanism and antibacterial characteristics of different cellulose-based antibacterial hydrogels were also summarized. Furthermore, the prospects and challenges of cellulose-based antibacterial hydrogels in biomedical applications were also discussed.
Collapse
Affiliation(s)
- Yunhui Bao
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
| | - Jian He
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ke Song
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jie Guo
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Xianwu Zhou
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shima Liu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie 427000, China; (Y.B.); (J.H.); (K.S.); (J.G.); (X.Z.)
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
- Correspondence: ; Tel.: +86-0744-8231386
| |
Collapse
|
32
|
Majeed M, Hakeem KR, Rehman RU. Synergistic effect of plant extract coupled silver nanoparticles in various therapeutic applications- present insights and bottlenecks. CHEMOSPHERE 2022; 288:132527. [PMID: 34637861 DOI: 10.1016/j.chemosphere.2021.132527] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The phytocomponent conjugated silver nanoparticles (AgNPs) have been extensively explored for various therapeutic applications such as antimicrobial, antioxidant, anticancer, anti-inflammatory, antidiabetic and anticoagulant effects. The bio-conjugation of Ag-based nanomaterial with plant extracts reduces their toxicity to biological systems and enhances their therapeutic effectiveness. The diversity of phytochemicals or capping agents provided by the plant extracts and the small size and large surface area of AgNPs permits maximum adsorption of these capping agents onto their surfaces that further promote the therapeutic performance of phytoconjugated AgNPs in various biomedical applications. The mechanistic action involved in antimicrobial and anticancer functions of AgNPs is mainly dependent on the induction of reactive oxygen species (ROS) resulting in cellular apoptosis and necrosis. This review summarizes the recent studies of various plant extract assisted synthesis of AgNPs, potential biomedical applications with the possible mechanism of action and major shortcomings affecting their therapeutic efficacy.
Collapse
Affiliation(s)
- Mahak Majeed
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190005, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190005, India.
| |
Collapse
|
33
|
Green synthesis of silver nanoparticles using fruits extracts of Syzygium cumini and their Bioactivity. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Silver Nanoparticles for Conductive Inks: From Synthesis and Ink Formulation to Their Use in Printing Technologies. METALS 2022. [DOI: 10.3390/met12020234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Currently, silver nanoparticles have attracted large interest in the photonics, electrics, analytical, and antimicrobial/biocidal fields due to their excellent optical, electrical, biological, and antibacterial properties. The versatility in generating different sizes, shapes, and surface morphologies results in a wide range of applications of silver nanoparticles in various industrial and health-related areas. In industrial applications, silver nanoparticles are used to produce conductive inks, which allows the construction of electronic devices on low-cost and flexible substrates by using various printing techniques. In order to achieve successful printed patterns, the necessary formulation and synthesis need to be engineered to fulfil the printing technique requirements. Additional sintering processes are typically further required to remove the added polymers, which are used to produce the desired adherence, viscosity, and reliable performance. This contribution presents a review of the synthesis of silver nanoparticles via different methods (chemical, physical and biological methods) and the application of silver nanoparticles under the electrical field. Formulation of silver inks and formation of conductive patterns by using different printing techniques (inkjet printing, screen printing and aerosol jet printing) are presented. Post-printing treatments are also discussed. A summary concerning outlooks and perspectives is presented at the end of this review.
Collapse
|
35
|
Elangovan D, Rahman HBH, Dhandapani R, Palanivel V, Thangavelu S, Paramasivam R, Muthupandian S. Coating of wallpaper with green synthesized silver nanoparticles from Passiflora foetida fruit and its illustrated antifungal mechanism. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Du L, Yang L, Xu B, Nie L, Lu H, Wu J, Xu H, Lou Y. Melt electrowritten poly(caprolactone) lattices incorporated with silver nanoparticles for directional water transport antibacterial wound dressings. NEW J CHEM 2022. [DOI: 10.1039/d2nj01612e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The composite dressing has excellent antibacterial ability and directional water transport effect, showing potential application in wound care.
Collapse
Affiliation(s)
- Lei Du
- Zhejiang Provincial Research Center of Clothing Engineering Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liu Yang
- Zhejiang Provincial Research Center of Clothing Engineering Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingjie Xu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Longping Nie
- Zhejiang Provincial Research Center of Clothing Engineering Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huali Lu
- Zhejiang Provincial Research Center of Clothing Engineering Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jindan Wu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huaizhong Xu
- Department of Bio-based Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yi Lou
- Department of General Surgery, Hangzhou Children's Hospital, Hangzhou 310014, China
| |
Collapse
|
37
|
Ong WTJ, Nyam KL. Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications. Saudi J Biol Sci 2022; 29:2085-2094. [PMID: 35531241 PMCID: PMC9073040 DOI: 10.1016/j.sjbs.2022.01.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 01/22/2023] Open
Abstract
Silver nanoparticles are well received in the cosmeceutical industry due to their broad spectrum of pharmacology applications. Research on the therapeutic properties exhibited by silver nanoparticles revealed that the antimicrobial and anti-inflammatory properties are the main attraction in the establishment of nanocosmeceutical products whereby their mechanisms of action are reviewed in this paper. In addition, studies on other uses of silver nanoparticles acknowledged that the particles act as antifungal agents in nail polishes and pigments in coloured beauty products such as lipsticks and eye shadows. Despite the extensive use of silver nanoparticles in the cosmetic line, there are still limited resources on the mechanism of actions and the effect of the particles on the bio-functionality of the body. The safety of silver nanoparticles could be comprehended from their skin penetration ability and toxicity to the human body in which it could be justified that both features are mainly influenced by the morphology of the particles and the method of application. This article summarizes exclusively on the synthesis of silver nanoparticles, the biomedical mechanisms and applications as well the limitations with respect to skin penetration ability and toxicity effects which will contribute significantly to the vast research on the association of nanotechnology and cosmetics.
Collapse
Affiliation(s)
| | - Kar Lin Nyam
- Corresponding author at: UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
38
|
Macovei I, Luca SV, Skalicka-Woźniak K, Sacarescu L, Pascariu P, Ghilan A, Doroftei F, Ursu EL, Rimbu CM, Horhogea CE, Lungu C, Vochita G, Panainte AD, Nechita C, Corciova MA, Miron A. Phyto-Functionalized Silver Nanoparticles Derived from Conifer Bark Extracts and Evaluation of Their Antimicrobial and Cytogenotoxic Effects. Molecules 2021; 27:217. [PMID: 35011449 PMCID: PMC8746316 DOI: 10.3390/molecules27010217] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Silver nanoparticles synthesized using plant extracts as reducing and capping agents showed various biological activities. In the present study, colloidal silver nanoparticle solutions were produced from the aqueous extracts of Picea abies and Pinus nigra bark. The phenolic profile of bark extracts was analyzed by liquid chromatography coupled to mass spectrometry. The synthesis of silver nanoparticles was monitored using UV-Vis spectroscopy by measuring the Surface Plasmon Resonance band. Silver nanoparticles were characterized by attenuated total reflection Fourier transform infrared spectroscopy, Raman spectroscopy, dynamic light scattering, scanning electron microscopy, energy dispersive X-ray and transmission electron microscopy analyses. The antimicrobial and cytogenotoxic effects of silver nanoparticles were evaluated by disk diffusion and Allium cepa assays, respectively. Picea abies and Pinus nigra bark extract derived silver nanoparticles were spherical (mean hydrodynamic diameters of 78.48 and 77.66 nm, respectively) and well dispersed, having a narrow particle size distribution (polydispersity index values of 0.334 and 0.224, respectively) and good stability (zeta potential values of -10.8 and -14.6 mV, respectively). Silver nanoparticles showed stronger antibacterial, antifungal, and antimitotic effects than the bark extracts used for their synthesis. Silver nanoparticles obtained in the present study are promising candidates for the development of novel formulations with various therapeutic applications.
Collapse
Affiliation(s)
- Irina Macovei
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.M.); (C.L.); (A.D.P.); (M.A.C.)
| | - Simon Vlad Luca
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.M.); (C.L.); (A.D.P.); (M.A.C.)
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, D-85354 Freising, Germany;
| | | | - Liviu Sacarescu
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (L.S.); (P.P.); (A.G.); (F.D.); (E.-L.U.)
| | - Petronela Pascariu
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (L.S.); (P.P.); (A.G.); (F.D.); (E.-L.U.)
| | - Alina Ghilan
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (L.S.); (P.P.); (A.G.); (F.D.); (E.-L.U.)
| | - Florica Doroftei
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (L.S.); (P.P.); (A.G.); (F.D.); (E.-L.U.)
| | - Elena-Laura Ursu
- Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (L.S.); (P.P.); (A.G.); (F.D.); (E.-L.U.)
| | - Cristina Mihaela Rimbu
- Department of Public Health, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 700489 Iasi, Romania;
| | - Cristina Elena Horhogea
- Department of Public Health, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 700489 Iasi, Romania;
| | - Cristina Lungu
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.M.); (C.L.); (A.D.P.); (M.A.C.)
| | | | - Alina Diana Panainte
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.M.); (C.L.); (A.D.P.); (M.A.C.)
| | - Constantin Nechita
- Marin Dracea National Institute for Research and Development in Forestry, 725100 Campulung Moldovenesc, Romania;
| | - Maria Andreia Corciova
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.M.); (C.L.); (A.D.P.); (M.A.C.)
| | - Anca Miron
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.M.); (C.L.); (A.D.P.); (M.A.C.)
| |
Collapse
|
39
|
Sharifi-Rad J, Quispe C, Ayatollahi SA, Kobarfard F, Staniak M, Stępień A, Czopek K, Sen S, Acharya K, Matthews KR, Sener B, Devkota HP, Kırkın C, Özçelik B, Victoriano M, Martorell M, Rasul Suleria HA, Alshehri MM, Chandran D, Kumar M, Cruz-Martins N, Cho WC. Chemical Composition, Biological Activity, and Health-Promoting Effects of Withania somnifera for Pharma-Food Industry Applications. J FOOD QUALITY 2021; 2021:1-14. [DOI: 10.1155/2021/8985179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
The Withania genus comes from the Solanaceae family and includes around 23 species, spread over some areas of the Mediterranean, Asia, and East Africa. Widely used in traditional medicine for thousands of years, these plants are rich in secondary metabolites, with special emphasis on steroidal lactones, named withanolides which are used as ingredients in numerous formulations for a plethora of diseases, such as asthma, diabetes, arthritis, impotence, amnesia, hypertension, anxiety, stress, cancer, neurodegenerative, and cardiovascular diseases, and many others. Among them, Withania somnifera (L.) Dunal is the most widely addressed species from a pharmacological and agroindustrial point of view. In this sense, this review provides an overview of the folk uses, phytochemical composition, and biological activity, such as antioxidant, antimicrobial, anti-inflammatory, and cytotoxic activity of W. somnifera, although more recently other species have also been increasingly investigated. In addition, their health-promoting effects, i.e., antistress, anxiolytic, adaptogenic, antirheumatoid arthritis, chemoprotective, and cardiorespiratory-enhancing abilities, along with safety and adverse effects are also discussed.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mariola Staniak
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Anna Stępień
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Katarzyna Czopek
- Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, Puławy 24-100, Poland
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Karl R. Matthews
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Bilge Sener
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara 06330, Turkey
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Celale Kırkın
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Beraat Özçelik
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Bioactive Research & Innovation Food Manufacturing Industry Trade Ltd. Co., Maslak, Istanbul 34469, Turkey
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción 4070386, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | | | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, Gandra 4585-116, Portugal
- TOXRUN–Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
40
|
Khan MI, Maqsood M, Saeed RA, Alam A, Sahar A, Kieliszek M, Miecznikowski A, Muzammil HS, Aadil RM. Phytochemistry, Food Application, and Therapeutic Potential of the Medicinal Plant ( Withania coagulans): A Review. Molecules 2021; 26:6881. [PMID: 34833974 PMCID: PMC8622323 DOI: 10.3390/molecules26226881] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/02/2022] Open
Abstract
Herbal plants have been utilized to treat and cure various health-related problems since ancient times. The use of Ayurvedic medicine is very significant because of its least reported side effects and host of advantages. Withania coagulans (Family; Solanaceae), a valuable medicinal plant, has been used to cure abnormal cell growth, wasting disorders, neural as well as physical problems, diabetes mellitus, insomnia, acute and chronic hepatic ailments. This review provides critical insight regarding the phytochemistry, biological activities, and pharmacognostic properties of W. coagulans. It has been known to possess diuretic, anti-inflammatory, anti-bacterial, anti-fungal, cardio-protective, hepato-protective, hypoglycemic, anti-oxidative, and anti-mutagenic properties owing to the existence of withanolides, an active compound present in it. Apart from withanolides, W. coagulans also contains many phytochemicals such as flavonoids, tannins, and β-sterols. Several studies indicate that various parts of W. coagulans and their active constituents have numerous pharmacological and therapeutic properties and thus can be considered as a new drug therapy against multiple diseases.
Collapse
Affiliation(s)
- Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
| | - Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
| | - Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
| | - Amna Alam
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
| | - Amna Sahar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
- Department of Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland;
| | - Antoni Miecznikowski
- Department of Fermentation Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Hafiz Shehzad Muzammil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (M.M.); (R.A.S.); (A.A.); (A.S.); (H.S.M.)
| |
Collapse
|
41
|
Islam R, Sun L, Zhang L. Biomedical Applications of Chinese Herb-Synthesized Silver Nanoparticles by Phytonanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2757. [PMID: 34685197 PMCID: PMC8539779 DOI: 10.3390/nano11102757] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Recent advances in nanotechnology have opened up new avenues for the controlled synthesis of nanoparticles for biomedical and pharmaceutical applications. Chinese herbal medicine is a natural gift to humanity, and it has long been used as an antibacterial and anticancer agent. This study will highlight recent developments in the phytonanotechnological synthesis of Chinese herbal medicines to utilize their bioactive components in biomedical and therapeutic applications. Biologically synthesized silver nanoparticles (AgNPs) have emerged as a promising alternative to chemical and physical approaches for various biomedical applications. The comprehensive rationale of combinational or synergistic effects of Chinese herb-based AgNPs synthesis was investigated with superior physicochemical and biological properties, and their biomedical applications, including antimicrobial and anticancer activity and wound healing properties. AgNPs can damage the cell ultrastructure by triggering apoptosis, which includes the formation of reactive oxygen species (ROS), DNA disintegration, protein inactivation, and the regulation of various signaling pathways. However, the anticancer mechanism of Chinese herbal medicine-based AgNPs is more complicated due to the potential toxicity of AgNPs. Further in-depth studies are required to address Chinese herbs' various bioactive components and AgNPs as a synergistic approach to combat antimicrobial resistance, therapeutic efficiency of drug delivery, and control and prevention of newly emerged diseases.
Collapse
Affiliation(s)
| | - Leming Sun
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (R.I.); (L.Z.)
| | | |
Collapse
|
42
|
Pandey S, Awasthee N, Shekher A, Rai LC, Gupta SC, Dubey SK. Biogenic synthesis and characterization of selenium nanoparticles and their applications with special reference to antibacterial, antioxidant, anticancer and photocatalytic activity. Bioprocess Biosyst Eng 2021; 44:2679-2696. [PMID: 34599397 DOI: 10.1007/s00449-021-02637-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Oxyanions of selenium, selenite (SeO3)2- and selenate (SeO4)2- are toxic to terrestrial and aquatic biota but few microorganisms including cyanobacteria are resistant to high levels of selenite. Cyanobacteria evade selenite toxicity through bioreduction and synthesis of selenium nanoparticles (SeNPs). In this study, extracellular biosynthesis of SeNPs (Se0) using cyanobacterium, Anabaena sp. PCC 7120 on exposure to sodium selenite and characterization was done by using UV-visible spectroscopy, SEM-EDX, TEM and FTIR analyses which confirmed spherical shape with size range of 5-50 nm diameter. These biogenic SeNPs demonstrated significant antibacterial and anti-biofilm activity against bacterial pathogens. Furthermore, these SeNPs showed high antioxidant activity at minimum concentration of 50 µg/mL and significant anti-proliferative activity against HeLa cell line with IC50 value of 5.5 µg/mL. The SeNPs also induced accumulation of cancer cells in the sub-G1 phase which was clearly observed in cellular and nuclear morphology. These biofabricated SeNPs also reduced and decolorized toxic methylene blue dye significantly through photocatalytic degradation. Therefore Anabaena sp. PCC 7120 may be employed as a green bioresource to synthesize SeNPs with potential applications in medicine and environmental bioremediation.
Collapse
Affiliation(s)
- Shraddha Pandey
- G. E. Fogg Laboratory of Algal Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Lal Chand Rai
- G. E. Fogg Laboratory of Algal Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Santosh Kumar Dubey
- G. E. Fogg Laboratory of Algal Biology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
43
|
Lin N, Verma D, Saini N, Arbi R, Munir M, Jovic M, Turak A. Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. NANO TODAY 2021; 40:101267. [PMID: 34404999 PMCID: PMC8361009 DOI: 10.1016/j.nantod.2021.101267] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 08/08/2021] [Indexed: 05/13/2023]
Abstract
Nanoparticles provide new opportunities in merging therapeutics and new materials, with current research efforts just beginning to scratch the surface of their diverse benefits and potential applications. One such application, the use of inorganic nanoparticles in antiseptic coatings to prevent pathogen transmission and infection, has seen promising developments. Notably, the high reactive surface area to volume ratio and unique chemical properties of metal-based nanoparticles enables their potent inactivation of viruses. Nanoparticles exert their virucidal action through mechanisms including inhibition of virus-cell receptor binding, reactive oxygen species oxidation and destructive displacement bonding with key viral structures. The prevention of viral outbreaks is one of the foremost challenges to medical science today, emphasizing the importance of research efforts to develop nanoparticles for preventative antiviral applications. In this review, the use of nanoparticles to inactivate other viruses, such as influenza, HIV-1, or norovirus, among others, will be discussed to extrapolate broad-spectrum antiviral mechanisms that could also inhibit SARS-CoV-2 pathogenesis. This review analyzes the published literature to highlight the current state of knowledge regarding the efficacy of metal-based nanoparticles and other antiviral materials for biomedical, sterile polymer, and surface coating applications.
Collapse
Affiliation(s)
- Neil Lin
- Department of Engineering Physics, McMaster University, Hamilton, Canada
- Faculty of Health Science, McMaster University, Hamilton, Canada
| | - Daksh Verma
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | - Nikhil Saini
- Department of Engineering Physics, McMaster University, Hamilton, Canada
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, Canada
| | - Ramis Arbi
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | - Muhammad Munir
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | | | - Ayse Turak
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| |
Collapse
|
44
|
Selvakesavan RK, Franklin G. Prospective Application of Nanoparticles Green Synthesized Using Medicinal Plant Extracts as Novel Nanomedicines. Nanotechnol Sci Appl 2021; 14:179-195. [PMID: 34588770 PMCID: PMC8476107 DOI: 10.2147/nsa.s333467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
The use of medicinal plants in green synthesis of metal nanoparticles is increasing day by day. A simple search for the keywords "green synthesis" and "nanoparticles" yields more than 33,000 articles in Scopus. As of August 10, 2021, more than 4000 articles have been published in 2021 alone. Besides demonstrating the ease and environmental-friendly route of synthesizing nanomaterials, many studies report the superior pharmacological properties of green synthesized nanoparticles compared to those synthesized by other methods. This is probably due to the fact that bioactive molecules are entrapped on the surface of these nanoparticles. On the other hand, recent studies have confirmed the nano-dimension and biocompatibility of metal ash (Bhasma) preparations, which are commonly macerated with biological products and administered for the treatment of various diseases in Indian medicine since ancient times. This perspective article argues for the prospective medical application of green nanoparticles in the light of Bhasma.
Collapse
Affiliation(s)
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
45
|
Cao H, Qin H, Li Y, Jandt KD. The Action-Networks of Nanosilver: Bridging the Gap between Material and Biology. Adv Healthc Mater 2021; 10:e2100619. [PMID: 34309242 PMCID: PMC11468843 DOI: 10.1002/adhm.202100619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Indexed: 01/06/2023]
Abstract
The emergence of nanosilver (silver in nanoscale shapes and their assemblies) benefits the landscape of modern healthcare; however, this brings about concerns over its safety issues associated with an ultrasmall size and high mobility. By reviewing previous reporting details about the synthesis and characterization of nanosilver and its biological responses, a gap between materials synthesis and their biomedical uses is characterized by the insufficient understanding of the interacting and interplaying nanoscale actions of silver. To improve reporting quality and advance clinical translations, it is suggested that researchers have a comprehensive recognition of the "Indications for use" before designing innovative nanosilver-based materials and an "Action-network" concept addressing the acting range and strength of those nanoscale actions is implemented. Although this discussion is specific to nanosilver, the idea of "Indications for use" centered design and synthesis is generally applicable to other biomedical nanomaterials.
Collapse
Affiliation(s)
- Huiliang Cao
- Lab of Low‐Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
- Shanghai Engineering Research Center of Hierarchical NanomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
- Chair of Materials ScienceOtto Schott Institute of Materials ResearchFriedrich Schiller University JenaJena07743Germany
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yongsheng Li
- Lab of Low‐Dimensional Materials ChemistryKey Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science and TechnologyShanghai200237China
- Shanghai Engineering Research Center of Hierarchical NanomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Klaus D. Jandt
- Chair of Materials ScienceOtto Schott Institute of Materials ResearchFriedrich Schiller University JenaJena07743Germany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJena07743Germany
- Jena School for Microbial Communication (JSMC)Neugasse 23Jena07743Germany
| |
Collapse
|
46
|
Naikoo GA, Mustaqeem M, Hassan IU, Awan T, Arshad F, Salim H, Qurashi A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101304] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Pilaquinga F, Morey J, Fernandez L, Espinoza-Montero P, Moncada-Basualto M, Pozo-Martinez J, Olea-Azar C, Bosch R, Meneses L, Debut A, Piña MDLN. Determination of Antioxidant Activity by Oxygen Radical Absorbance Capacity (ORAC-FL), Cellular Antioxidant Activity (CAA), Electrochemical and Microbiological Analyses of Silver Nanoparticles Using the Aqueous Leaf Extract of Solanum mammosum L. Int J Nanomedicine 2021; 16:5879-5894. [PMID: 34471354 PMCID: PMC8405165 DOI: 10.2147/ijn.s302935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The importance of studying polyphenolic compounds as natural antioxidants has encouraged the search for new methods of analysis that are quick and simple. The synthesis of silver nanoparticles (AgNPs) using plant extracts has been presented as an alternative to determine the total polyphenolic content and its antioxidant activity. METHODS In this study, aqueous leaf extract of Solanum mammosum, a species of plant endemic to South America, was used to produce AgNPs. The technique of oxygen radical absorption capacity using fluorescein (ORAC-FL) was used to measure antioxidant activity. The oxidation of the 2´,7´-dichlorodihydrofluorescein diacetate (DCFH2-DA) as fluorescent probe was used to measure cellular antioxidant activity (CAA). Electrochemical behavior was also examined using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Total polyphenolic content (TPH) was analyzed using the Folin-Ciocalteu method, and the major polyphenolic compound was analyzed by high performance liquid chromatography with diode array detector (HPLC/DAD). Finally, a microbial analysis was conducted using Escherichia coli and Bacillus sp. RESULTS The average size of nanoparticles was 5.2 ± 2.3 nm measured by high-resolution transmission electron microscopy (HR-TEM). The antioxidant activity measured by ORAC-FL in the extract and nanoparticles were 3944 ± 112 and 637.5 ± 14.8 µM ET/g of sample, respectively. Cellular antioxidant activity was 14.7 ± 0.2 for the aqueous extract and 12.5 ± 0.2 for the nanoparticles. The electrochemical index (EI) was 402 μA/V for the extract and 324 μA/V for the nanoparticles. Total polyphenolic content was 826.6 ± 20.9 and 139.7 ± 20.9 mg EGA/100 g of sample. Gallic acid was the main polyphenolic compound present in the leaf extract. Microbiological analysis revealed that although leaf extract was not toxic for Escherichia coli and Bacillus sp., minor toxic activity for AgNPs was detected for both strains. CONCLUSION It is concluded that the aqueous extract of the leaves of S. mammosum contains nontoxic antioxidant compounds capable of producing AgNPs. The methods using AgNPs can be used as a fast analytical tool to monitor the presence of water-soluble polyphenolic compounds from plant origin. Analysis and detection of new antioxidants from plant extracts may be potentially applicable in biomedicine.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Jeroni Morey
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Lenys Fernandez
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | | | - Josue Pozo-Martinez
- Department of Inorganic and Analytical Chemistry, University of Chile, Santiago, Chile
| | - Claudio Olea-Azar
- Department of Inorganic and Analytical Chemistry, University of Chile, Santiago, Chile
| | - Rafael Bosch
- Environmental Microbiology, IMEDEA (CSIC-UIB), and Microbiology, Department of Biology, University of Balearic Islands, Palma de Mallorca, Spain
| | - Lorena Meneses
- School of Chemical Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | | |
Collapse
|
48
|
Green Synthesis of Silver Nanoparticles Using Extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., Physico-Chemical Characterization, Antimicrobial and Antioxidant Activity. Processes (Basel) 2021. [DOI: 10.3390/pr9081304] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The novelty of this study is twofold: AgNPs were obtained and characterized using Artemisia absinthium (A. absinthium), Humulus lupulus (H. lupulus), and Thymus vulgaris (T. vulgaris) plants extracts; moreover, a green and environmentally friendly approach for the synthesis of silver nanoparticles (AgNPs) using aqueous extracts was developed. This paper discusses new approaches about the synthesis of AgNPs. T. vulgaris, H. lupulus, and A. absinthium, which are renewable and common plants, perfect as reducing, stabilizing, and capping agent for green synthesis of silver nanoparticles (AgNPs). The extracts and synthesized AgNPs were characterized by various physico-chemical, phytochemical, morphological scanning electron microscope (SEM/EDS) and transmission electron microscope scanning (TEM), and antibacterial activity. The antioxidant activity of extracts and AgNPs were also assessed by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), 2,2-diphenyl-1-picrylhydrazyl (DPPH•), cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), and trifluoperazine dihydrochloride (TFPH•) scavenging assays. Extracts/AgNPs showed significant antioxidant activity in all cases. A. absinthium/AgNPs, H. lupulus/AgNPs, and T. vulgaris /AgNPs displayed activities against DPPH• (0.14 ± 0.00; 0.11 ± 0.00 and 0.14 ± 0.00 mmol/g), ABTS•+ (0.55 ± 0.05; 0.86 ± 0.05 and 0.55 ± 0.05 mmol/g), respectively. TEM analysis confirmed the average particle size, it estimated t A. absinthium/AgNPs–46 nm, H. lupulus/AgNPs size of synthesized particles was 42 nm and T. vulgaris/AgNPs–48 nm. SEM analysis revealed that T. vulgaris/AgNPs showed in solitary cases as snowflake-like, branched, but in a general spheric shape, H. lupulus/AgNPs were wedge-shaped, and A. absinthium/AgNPs were the spherical shape of the synthesized AgNPs. EDS analysis confirmed the purity of the synthesized AgNPs with a strong signal at 3.2 keV. A. absinthium/AgNPs, H. lupulus/AgNPs, and T. vulgaris/AgNPs exhibited higher antibacterial activity against all tested bacterial strains compared to their respective pure extracts. It is concluded that AgNPs synthesized in extracts have a broad range of biological applications, which can be used as an eco-friendly material without having negative effects on the environment.
Collapse
|
49
|
Kumar S, Basumatary IB, Sudhani HP, Bajpai VK, Chen L, Shukla S, Mukherjee A. Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Green Biosynthesis of Flaxseed Gold Nanoparticles (Au-NPs) as Potent Anti-cancer Agent Against Breast Cancer Cells. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|