1
|
Luo Y, Liu B, Qiu Y, Li L, Yang F, Zhang C, Wang J. Divalent metal ions enhance bone regeneration through modulation of nervous systems and metabolic pathways. Bioact Mater 2025; 47:432-447. [PMID: 40034410 PMCID: PMC11872643 DOI: 10.1016/j.bioactmat.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 03/05/2025] Open
Abstract
The divalent metal cations promote new bone formation through modulation of sensory and sympathetic nervous systems (SNS) activities. In addition, acetylcholine (Ach), as a chief neurotransmitter released by the parasympathetic nervous system (PNS), also affects bone remodeling, so it is of worth to investigate if the divalent cations influence PNS activity. Of note, these cations are key co-enzymes modulating glucose metabolism. Aerobic glycolysis rather than oxidative phosphorylation favors osteogenesis of mesenchymal stem cells (MSCs), so it is of interest to study the effects of these cations on glucose metabolic pathway. Prior to biological function assessment, the tolerance limits of the divalent metal cations (Mg2+, Zn2+, and Ca2+) and their combinations were profiled. In terms of direct effects, these divalent cations potentially enhanced migration and adhesion capability of MSCs through upregulating Tgf-β1 and Integrin-β1 levels. Interestingly, the divalent cations alone did not influence osteogenesis and aerobic glycolysis of undifferentiated MSCs. However, once the osteogenic differentiation of MSCs was initiated by neurotransmitters or osteogenic differentiation medium, the osteogenesis of MSCs could be significantly promoted by the divalent cations, which was accompanied by the improved aerobic glycolysis. In terms of indirect effects, the divalent cations significantly upregulated levels of sensory nerve derived CGRP, PNS produced choline acetyltransferase and type H vessels, while significantly tuned down sympathetic activity in the defect zone in rats, thereby contributing to significantly increased bone formation relative to the control group. Together, the divalent cations favor bone regeneration via modulation of sensory-autonomic nervous systems and promotion of aerobic glycolysis-driven osteogenesis of MSCs after osteogenic initiation by neurotransmitters.
Collapse
Affiliation(s)
- Ying Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Baoyi Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, China
| | - Yashi Qiu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Lichen Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Fan Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
2
|
Ke S, Sun X, Qian J, Zhou Z, Lin M, He B, Shen R, Ye Z. The Experimental Study of Double-Layer Heterogeneous CA Scaffold in Promoting the Surface Shape Recovery and Internal Osteogenesis of Alveolar Bone. Biotechnol J 2025; 20:e202400603. [PMID: 39956934 DOI: 10.1002/biot.202400603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 02/18/2025]
Abstract
In this work, double-layer heterogeneous CA scaffolds were designed for alveolar bone defects. The outer layer featured high hardness and slow degradation, and large pores and rapid degradation characterized the inner layer. The CA scaffold morphology was akin to bone defects, and its direct implantation reduced the operation time. A higher concentration of CA resulted in smaller pores and slower degradation. CA can promote the formation of mineralized nodules and the expression of genes related to mineralization without inducing cytotoxic effects. It also promoted the expression of cellular inflammatory factors, potentially through the TLR4 pathway. In vivo studies confirmed that CA did not promote the aggregation of inflammatory cells or the expression of inflammatory factors. In conclusion, the scaffold's characteristics of high surface hardness and slow degradation were beneficial for surface osteogenesis and maintaining the defect's shape and osteogenic space. Conversely, rapid internal degradation favors the formation of bone tissue.
Collapse
Affiliation(s)
- Songxia Ke
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Xiaohui Sun
- College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Jing Qian
- College of Chemical Engineering, Huaqiao University, Xiamen, China
- Department of Laboratory, Putian Center for Disease Prevention and Control, Putian, China
| | - Ziqing Zhou
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Minhong Lin
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Baoying He
- Department of Oncology, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Renze Shen
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Zhanchao Ye
- School of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Stomatology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Zhao R, Meng X, Pan Z, Li Y, Qian H, Zhu X, Yang X, Zhang X. Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments. Regen Biomater 2024; 12:rbae129. [PMID: 39776858 PMCID: PMC11703556 DOI: 10.1093/rb/rbae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
Nanohydroxyapatite (nHA) is distinguished by its exceptional biocompatibility, bioactivity and biodegradability, qualities attributed to its similarity to the mineral component of human bone. This review discusses the synthesis techniques of nHA, highlighting how these methods shape its physicochemical attributes and, in turn, its utility in biomedical applications. The versatility of nHA is further enhanced by doping with biologically significant ions like magnesium or zinc, which can improve its bioactivity and confer therapeutic properties. Notably, nHA-based composites, incorporating metal, polymeric and bioceramic scaffolds, exhibit enhanced osteoconductivity and osteoinductivity. In orthopedic field, nHA and its composites serve effectively as bone graft substitutes, showing exceptional osteointegration and vascularization capabilities. In dentistry, these materials contribute to enamel remineralization, mitigate tooth sensitivity and are employed in surface modification of dental implants. For cancer therapy, nHA composites offer a promising strategy to inhibit tumor growth while sparing healthy tissues. Furthermore, nHA-based composites are emerging as sophisticated platforms with high surface ratio for the delivery of drugs and bioactive substances, gradually releasing therapeutic agents for progressive treatment benefits. Overall, this review delineates the synthesis, modifications and applications of nHA in various biomedical fields, shed light on the future advancements in biomaterials research.
Collapse
Affiliation(s)
- Rui Zhao
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Xiang Meng
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Zixian Pan
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Yongjia Li
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- School of Medicine, Department of Inspection, Jiangsu University, Zhenjiang 212013, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Nocchetti M, Pietrella D, Antognelli C, Di Michele A, Russo C, Giulivi E, Ambrogi V. Alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites. Int J Pharm 2024; 661:124393. [PMID: 38942183 DOI: 10.1016/j.ijpharm.2024.124393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This paper focuses on the preparation and characterization of antibacterial alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites for tissue engineering. Microparticles were prepared by cross-linking a silver@composite sodium alginate dispersion with CaCl2. This method showed a very good silver efficiency loading and the presence of silver chloride nanoparticles was detected. Silver free microparticles, containing hydroxyapatite functionalized calcium carbonates and neat alginate microparticles were prepared as well. All microparticles were characterized for water absorption and for in vitro bioactivity by immersion in simulated body fluid (SBF). Finally, antimicrobial and antibiofilm activities as well as cytotoxicity were evaluated. Microparticles containing silver@composites exhibited good antimicrobial and antibiofilm activities against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Candida albicans, but exerted a certain cytotoxicity against the tested cell models (fibroblasts and osteoblasts). Microparticles containing hydroxyapatite functionalized calcium carbonates were found to be always less cytotoxic, also in comparison to neat alginate microparticles, proving that the presence of the inorganic matrices exerts a protective effect on microparticle cytotoxicity.
Collapse
Affiliation(s)
- Morena Nocchetti
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06123, Italy
| | - Donatella Pietrella
- Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia 06129, Italy
| | - Cinzia Antognelli
- Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia 06129, Italy
| | | | - Carla Russo
- Dipartimento di Medicina e Chirurgia, University of Perugia, Perugia 06129, Italy
| | - Elisa Giulivi
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06123, Italy
| | - Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06123, Italy.
| |
Collapse
|
5
|
Ribeiro IÍDA, Almeida RDS, da Silva AMGB, Barbosa ADA, Rossi AM, Miguel FB, Rosa FP. Biological evaluation of critical bone defect regeneration using hydroxyapatite/ alginate composite granules. Acta Cir Bras 2024; 39:e392824. [PMID: 39046039 PMCID: PMC11262755 DOI: 10.1590/acb392824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/02/2024] [Indexed: 07/25/2024] Open
Abstract
PURPOSE to evaluate biocompatibility and osteogenic potential of hydroxyapatite/alginate composite after its implantation on rat calvarian critical bone defect. METHODS thirty adults male Wistar rats were randomly distributed into two groups: GHA - critical bone defect filled with hydroxyapatite/alginate composite granules (HA/Alg) and CG - critical bone defect without biomaterial; evaluated at biological points of 15, 45 and 120 days. RESULTS the histomorphometrically analyses for GHA showed osteoid matrix deposition (OM) among the granules and towards the center of the defect in centripetal direction throughout the study, with evident new bone formation at 120 days, resulting in filling 4/5 of the initial bone defect. For CG, this finding was restricted to the edges of the bone margins and formation of connective tissue on the residual area was found in all biological points. Inflammatory response on GHA was chronic granulomatous type, discrete and regressive for all biological points. Throughout the study, the CG presented mononuclear inflammatory infiltrate diffuse and regressive. Histomorphometry analyses showed that OM percentage was evident for GHA group when compared to CG group in all analyzed periods (p > 0.05). CONCLUSIONS the biomaterial evaluated at this study showed to be biocompatible, bioactive, osteoconductive and biodegradable synchronously with bone formation.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre Malta Rossi
- Centro Brasileiro de Pesquisas Físicas – Departamento de Física Aplicada – Rio de Janeiro (RJ), Brazil
| | - Fúlvio Borges Miguel
- Universidade Federal da Bahia – Instituto de Ciências da Saúde – Salvador (BA), Brazil
| | - Fabiana Paim Rosa
- Universidade Federal da Bahia – Instituto de Ciências da Saúde – Salvador (BA), Brazil
| |
Collapse
|
6
|
Costa W, Félix Farias AF, Silva-Filho EC, Osajima JA, Medina-Carrasco S, Del Mar Orta M, Fonseca MG. Polysaccharide Hydroxyapatite (Nano)composites and Their Biomedical Applications: An Overview of Recent Years. ACS OMEGA 2024; 9:30035-30070. [PMID: 39035931 PMCID: PMC11256335 DOI: 10.1021/acsomega.4c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Hydroxyapatite can combine with polysaccharide originating biomaterials with special applications in the biomedical field. In this review, the synthesis of (nano)composites is discussed, focusing on natural polysaccharides such as alginate, chitosan, and pectin. In this way, advances in recent years in the development of preparing materials are revised and discussed. Therefore, an overview of the recent synthesis and applications of polyssacharides@hydroxyapatites is presented. Several studies based on chitosan@hydroxyapatite combined with other inorganic matrices are highlighted, while pectin@hydroxyapatite is present in a smaller number of reports. Biomedical applications as drug carriers, adsorbents, and bone implants are discussed, combining their dependence with the nature of interactions on the molecular scale and the type of polysaccharides used, which is a relevant aspect to be explored.
Collapse
Affiliation(s)
- Wanderson
Barros Costa
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| | - Ana F. Félix Farias
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| | | | - Josy A. Osajima
- Interdisciplinary
Laboratory for Advanced Materials − LIMAV, UFPI, 64049-550, Teresina, Piaui, Brazil
| | - Santiago Medina-Carrasco
- SGI Laboratorio
de Rayos X - Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla
(CITIUS), 41012, Sevilla, Spain
| | - Maria Del Mar Orta
- Departamento
de Química Analítica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García, González 2, 41012 Sevilla, Spain
| | - Maria G. Fonseca
- Fuel and
Materials Laboratory − NPE-LACOM, UFPB, 58051-085, João Pessoa, Paraiba, Brazil
| |
Collapse
|
7
|
Wang J, Zhang L, Wang K. Bioactive ceramic-based materials: beneficial properties and potential applications in dental repair and regeneration. Regen Med 2024; 19:257-278. [PMID: 39118532 PMCID: PMC11321270 DOI: 10.1080/17460751.2024.2343555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 08/10/2024] Open
Abstract
Bioactive ceramics, primarily consisting of bioactive glasses, glass-ceramics, calcium orthophosphate ceramics, calcium silicate ceramics and calcium carbonate ceramics, have received great attention in the past decades given their biocompatible nature and excellent bioactivity in stimulating cell proliferation, differentiation and tissue regeneration. Recent studies have tried to combine bioactive ceramics with bioactive ions, polymers, bioactive proteins and other chemicals to improve their mechanical and biological properties, thus rendering them more valid in tissue engineering scaffolds. This review presents the beneficial properties and potential applications of bioactive ceramic-based materials in dentistry, particularly in the repair and regeneration of dental hard tissue, pulp-dentin complex, periodontal tissue and bone tissue. Moreover, greater insights into the mechanisms of bioactive ceramics and the development of ceramic-based materials are provided.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
8
|
Bauso LV, La Fauci V, Longo C, Calabrese G. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration. BIOLOGY 2024; 13:237. [PMID: 38666849 PMCID: PMC11048357 DOI: 10.3390/biology13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Large bone defects are the leading contributor to disability worldwide, affecting approximately 1.71 billion people. Conventional bone graft treatments show several disadvantages that negatively impact their therapeutic outcomes and limit their clinical practice. Therefore, much effort has been made to devise new and more effective approaches. In this context, bone tissue engineering (BTE), involving the use of biomaterials which are able to mimic the natural architecture of bone, has emerged as a key strategy for the regeneration of large defects. However, although different types of biomaterials for bone regeneration have been developed and investigated, to date, none of them has been able to completely fulfill the requirements of an ideal implantable material. In this context, in recent years, the field of nanotechnology and the application of nanomaterials to regenerative medicine have gained significant attention from researchers. Nanotechnology has revolutionized the BTE field due to the possibility of generating nanoengineered particles that are able to overcome the current limitations in regenerative strategies, including reduced cell proliferation and differentiation, the inadequate mechanical strength of biomaterials, and poor production of extrinsic factors which are necessary for efficient osteogenesis. In this review, we report on the latest in vitro and in vivo studies on the impact of nanotechnology in the field of BTE, focusing on the effects of nanoparticles on the properties of cells and the use of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| | | | | | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| |
Collapse
|
9
|
Angolkar M, Paramshetti S, Gahtani RM, Al Shahrani M, Hani U, Talath S, Osmani RAM, Spandana A, Gangadharappa HV, Gundawar R. Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. Int J Biol Macromol 2024; 265:130643. [PMID: 38467225 DOI: 10.1016/j.ijbiomac.2024.130643] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
In the realm of modern medicine, tissue engineering and regeneration stands as a beacon of hope, offering the promise of restoring form and function to damaged or diseased organs and tissues. Central to this revolutionary field are biological macromolecules-nature's own blueprints for regeneration. The growing interest in bio-derived macromolecules and their composites is driven by their environmentally friendly qualities, renewable nature, minimal carbon footprint, and widespread availability in our ecosystem. Capitalizing on these unique attributes, specific composites can be tailored and enhanced for potential utilization in the realm of tissue engineering (TE). This review predominantly concentrates on the present research trends involving TE scaffolds constructed from polysaccharides, proteins and glycosaminoglycans. It provides an overview of the prerequisites, production methods, and TE applications associated with a range of biological macromolecules. Furthermore, it tackles the challenges and opportunities arising from the adoption of these biomaterials in the field of TE. This review also presents a novel perspective on the development of functional biomaterials with broad applicability across various biomedical applications.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | | | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
10
|
Ferraz MP. An Overview on the Big Players in Bone Tissue Engineering: Biomaterials, Scaffolds and Cells. Int J Mol Sci 2024; 25:3836. [PMID: 38612646 PMCID: PMC11012232 DOI: 10.3390/ijms25073836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Presently, millions worldwide suffer from degenerative and inflammatory bone and joint issues, comprising roughly half of chronic ailments in those over 50, leading to prolonged discomfort and physical limitations. These conditions become more prevalent with age and lifestyle factors, escalating due to the growing elderly populace. Addressing these challenges often entails surgical interventions utilizing implants or bone grafts, though these treatments may entail complications such as pain and tissue death at donor sites for grafts, along with immune rejection. To surmount these challenges, tissue engineering has emerged as a promising avenue for bone injury repair and reconstruction. It involves the use of different biomaterials and the development of three-dimensional porous matrices and scaffolds, alongside osteoprogenitor cells and growth factors to stimulate natural tissue regeneration. This review compiles methodologies that can be used to develop biomaterials that are important in bone tissue replacement and regeneration. Biomaterials for orthopedic implants, several scaffold types and production methods, as well as techniques to assess biomaterials' suitability for human use-both in laboratory settings and within living organisms-are discussed. Even though researchers have had some success, there is still room for improvements in their processing techniques, especially the ones that make scaffolds mechanically stronger without weakening their biological characteristics. Bone tissue engineering is therefore a promising area due to the rise in bone-related injuries.
Collapse
Affiliation(s)
- Maria Pia Ferraz
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
11
|
Ebrahimzadeh MH, Nakhaei M, Gharib A, Mirbagheri MS, Moradi A, Jirofti N. Investigation of background, novelty and recent advance of iron (II,III) oxide- loaded on 3D polymer based scaffolds as regenerative implant for bone tissue engineering: A review. Int J Biol Macromol 2024; 259:128959. [PMID: 38145693 DOI: 10.1016/j.ijbiomac.2023.128959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Bone tissue engineering had crucial role in the bone defects regeneration, particularly when allograft and autograft procedures have limitations. In this regard, different types of scaffolds are used in tissue regeneration as fundamental tools. In recent years, magnetic scaffolds show promising applications in different biomedical applications (in vitro and in vivo). As superparamagnetic materials are widely considered to be among the most attractive biomaterials in tissue engineering, due to long-range stability and superior bioactivity, therefore, magnetic implants shows angiogenesis, osteoconduction, and osteoinduction features when they are combined with biomaterials. Furthermore, these scaffolds can be coupled with a magnetic field to enhance their regenerative potential. In addition, magnetic scaffolds can be composed of various combinations of magnetic biomaterials and polymers using different methods to improve the magnetic, biocompatibility, thermal, and mechanical properties of the scaffolds. This review article aims to explain the use of magnetic biomaterials such as iron (II,III) oxide (Fe2O3 and Fe3O4) in detail. So it will cover the research background of magnetic scaffolds, the novelty of using these magnetic implants in tissue engineering, and provides a future perspective on regenerative implants.
Collapse
Affiliation(s)
- Mohammad Hossein Ebrahimzadeh
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Mehrnoush Nakhaei
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Azar Gharib
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Mahnaz Sadat Mirbagheri
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran
| | - Ali Moradi
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| | - Nafiseh Jirofti
- Orthopedic Research Center, Department of Orthopedic Surgery, Mashhad University of Medical Science, Mashhad, Iran; Bone and Joint Research Laboratory, Ghaem Hospital, Mashhad University of Medical Science, P.O.Box 91388-13944, Mashhad, Iran.
| |
Collapse
|
12
|
Zhao T, Chen L, Yu C, He G, Lin H, Sang H, Chen Z, Hong Y, Sui W, Zhao J. Effect of injectable calcium alginate-amelogenin hydrogel on macrophage polarization and promotion of jawbone osteogenesis. RSC Adv 2024; 14:2016-2026. [PMID: 38196914 PMCID: PMC10774865 DOI: 10.1039/d3ra05046g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Due to persistent inflammation and limited osteogenesis, jawbone defects present a considerable challenge in regenerative medicine. Amelogenin, a major protein constituent of the developing enamel matrix, demonstrates promising capabilities in inducing regeneration of periodontal supporting tissues and exerting immunomodulatory effects. These properties render it a potential therapeutic agent for enhancing jawbone osteogenesis. Nevertheless, its clinical application is hindered by the limitations of monotherapy and its rapid release characteristics, which compromise its efficacy and delivery efficiency. In this context, calcium alginate hydrogel, recognized for its superior physicochemical properties and biocompatibility, emerges as a candidate for developing a synergistic bioengineered drug delivery system. This study describes the synthesis of an injectable calcium amelogenin/calcium alginate hydrogel using calcium alginate loaded with amelogenin. We comprehensively investigated its physical properties, its role in modulating the immunological environment conducive to bone healing, and its osteogenic efficacy in areas of jawbone defects. Our experimental findings indicate that this synthesized composite hydrogel possesses desirable mechanical properties such as injectability, biocompatibility, and biodegradability. Furthermore, it facilitates jawbone formation by regulating the bone-healing microenvironment and directly inducing osteogenesis. This research provides novel insights into the development of bone-tissue regeneration materials, potentially advancing their clinical application.
Collapse
Affiliation(s)
- Tingting Zhao
- Shenzhen Stomatological Hospital, Southern Medical University 1092 Jianshe Road, Luohu District Shenzhen Guangdong 518001 China
| | - Luyuan Chen
- Stomatology Center, Shenzhen Hospital, Southern Medical University 1333 Xinhu Road, Baoan District Shenzhen Guangdong 510086 China
| | - Chengcheng Yu
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University 1333 Xinhu Road, Baoan District Shenzhen Guangdong 510086 China
| | - Gang He
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University 1333 Xinhu Road, Baoan District Shenzhen Guangdong 510086 China
| | - Huajun Lin
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University 1333 Xinhu Road, Baoan District Shenzhen Guangdong 510086 China
| | - Hongxun Sang
- Shenzhen Key Laboratory of Digital Surgical 3D Printing, Department of Orthopaedics, Shenzhen Hospital, Southern Medical University 1333 Xinhu Road, Baoan District Shenzhen Guangdong 510086 China
| | - Zhihui Chen
- Stomatology Center, Shenzhen Hospital, Southern Medical University 1333 Xinhu Road, Baoan District Shenzhen Guangdong 510086 China
| | - Yonglong Hong
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University 1333 Xinhu Road, Baoan District Shenzhen Guangdong 510086 China
| | - Wen Sui
- College of Stomatology, Shenzhen Technology University 3002 Lantian Road, Pingshan District Shenzhen Guangdong 518118 China
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University 1092 Jianshe Road, Luohu District Shenzhen Guangdong 518001 China
| |
Collapse
|
13
|
Wassif RK, Elkheshen SA, Shamma RN, Amer MS, Elhelw R, El-Kayal M. Injectable systems of chitosan in situ forming composite gel incorporating linezolid-loaded biodegradable nanoparticles for long-term treatment of bone infections. Drug Deliv Transl Res 2024; 14:80-102. [PMID: 37542190 PMCID: PMC10746766 DOI: 10.1007/s13346-023-01384-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 08/06/2023]
Abstract
The objective of the current study was to create an efficient, minimally invasive combined system comprising in situ forming hydrogel loaded with both spray-dried polymeric nanoparticles encapsulating linezolid and nanohydroxyapatite for local injection to bones or their close vicinity. The developed system was designed for a dual function namely releasing the drug in a sustained manner for long-term treatment of bone infections and supporting bone proliferation and new tissues generation. To achieve these objectives, two release sustainment systems for linezolid were optimized namely a composite in situ forming chitosan hydrogel and spray-dried PLGA/PLA solid nanoparticles. The composite, in situ forming hydrogel of chitosan was prepared using two different gelling agents namely glycerophosphate (GP) and sodium bicarbonate (NaHCO3) at 3 different concentrations each. The spray-dried linezolid-loaded PLGA/PLA nanoparticles were developed using a water-soluble carrier (PVP K30) and a lipid soluble one (cetyl alcohol) along with 3 types of DL-lactide and/or DL-lactide-co-glycolide copolymer using nano-spray-drying technique. Finally, the optimized spray-dried linezolid nanoparticles were incorporated into the optimized composite hydrogel containing nanohydroxy apatite (nHA). The combined hydrogel/nanoparticle systems displayed reasonable injectability with excellent gelation time at 37 °C. The optimum formulae sustained the release of linezolid for 7-10 days, which reveals its ability to reduce the frequency of injection during the course of treatment of bones infections and increase the patients' compliance. They succeeded to alleviate the bone infections and the associated clinical, biochemical, radiological, and histopathological changes within 2-4 weeks of injection. As to the state of art in this study and to the best of our knowledge, no such complete and systematic study on this type of combined in situ forming hydrogel loaded with spray-dried nanoparticles of linezolid is available yet in literatures.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Elini Street, Cairo, 11562, Egypt.
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Elini Street, Cairo, 11562, Egypt
| | - Mohammed S Amer
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Rehab Elhelw
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha El-Kayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
14
|
Dalavi PA, Prabhu A, M S, Murugan SS, Jayachandran V. Casein-assisted exfoliation of tungsten disulfide nanosheets for biomedical applications. Colloids Surf B Biointerfaces 2023; 232:113595. [PMID: 37913705 DOI: 10.1016/j.colsurfb.2023.113595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023]
Abstract
Our regular life can be more challenging by bone abnormalities. Bone tissue engineering is used for repairing, regenerating, or replacing bone tissue that has been injured or infected. It is effective in overcoming the drawbacks of conventional bone grafting methods like autograft and allograft by enhancing the effectiveness of bone regeneration. Recent discoveries have shown that the exfoliation of transition metal dichalcogenides (TMDs) with protein is in great demand for bone tissue engineering applications. WS2 nanosheets were developed using casein and subsequently characterized with different analytical techniques. Strong absorption peaks were observed in the UV-visible spectra at 520 nm and 630 nm. Alginate and alginate-casein WS2 microspheres were developed. Stereomicroscopic images of the microspheres are spherical in shape and have an average diameter of around 0.8 ± 0.2 mm. The alginate-casein WS2 microspheres show higher content of water absorption and retention properties than only alginate-containing microspheres. The apatite formation in the simulated bodily fluid solution was facilitated more effectively by the alginate-casein-WS2 microspheres. Additionally, alginate-casein-WS2 microspheres have a compressive strength is 58.01 ± 4 MPa. Finally, in vitro cell interaction studies reveals that both the microspheres are biocompatible with the C3H10T1/2 cells, and alginate-casein-WS2-based microspheres promote cell growth more significantly. Alginate-casein-WS2 microspheres promote alkaline phosphatase activity, and mineralization process. Additionally, alginate-casein-WS2-based microspheres exponentially enhance the genes for ALP, BMP-2, OCN, and Collage type-1. The produced alginate-casein-WS2 microspheres could be a suitable synthetic graft for a bone transplant replacement.
Collapse
Affiliation(s)
- Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sajida M
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Venkatesan Jayachandran
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
| |
Collapse
|
15
|
Mariano LC, Grenho L, Fernandes MH, de Sousa Gomes P. Integrative tissue, cellular and molecular responsiveness of an innovative ex vivo model of the Staphylococcus aureus-mediated bone infection. FASEB J 2023; 37:e23166. [PMID: 37650876 DOI: 10.1096/fj.202300287rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Osteomyelitis is a pathological condition of the bone, frequently associated with the presence of infectious agents - namely Staphylococcus aureus - that induce inflammation and tissue destruction. Recent advances in the understanding of its pathophysiology and the identification of innovative therapeutic approaches were gathered from experimental in vitro and in vivo systems. However, cell culture models offer limited representativeness of the cellular functionality and the cell-cell and cell-matrix interactions, further failing to mimic the three-dimensional tissue organization; and animal models allow for limited mechanistic assessment given the complex nature of systemic and paracrine regulatory systems and are endorsed with ethical constraints. Accordingly, this study aims at the establishment and assessment of a new ex vivo bone infection model, upon the organotypic culture of embryonic chicken femurs colonized with S. aureus, highlighting the model responsiveness at the molecular, cellular, and tissue levels. Upon infection with distinct bacterial inoculums, data reported an initial exponential bacterial growth, followed by diminished metabolic activity. At the tissue level, evidence of S. aureus-mediated tissue destruction was attained and demonstrated through distinct methodologies, conjoined with decreased osteoblastic/osteogenic and increased osteoclastic/osteoclastogenic functionalities-representative of the osteomyelitis clinical course. Overall, the establishment and characterization of an innovative bone tissue infection model that is simple, reproducible, easily manipulated, cost-effective, and simulates many features of human osteomyelitis, further allowing the maintenance of the bone tissue's three-dimensional morphology and cellular arrangement, was achieved. Model responsiveness was further demonstrated, showcasing the capability to improve the research pipeline in bone tissue infection-related research.
Collapse
Affiliation(s)
- Lorena Castro Mariano
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Liliana Grenho
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Pedro de Sousa Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Kontogianni GI, Coelho C, Gauthier R, Fiorilli S, Quadros P, Vitale-Brovarone C, Chatzinikolaidou M. Osteogenic Potential of Nano-Hydroxyapatite and Strontium-Substituted Nano-Hydroxyapatite. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1881. [PMID: 37368310 DOI: 10.3390/nano13121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Nanohydroxyapatite (nanoHA) is the major mineral component of bone. It is highly biocompatible, osteoconductive, and forms strong bonds with native bone, making it an excellent material for bone regeneration. However, enhanced mechanical properties and biological activity for nanoHA can be achieved through enrichment with strontium ions. Here, nanoHA and nanoHA with a substitution degree of 50 and 100% of calcium with strontium ions (Sr-nanoHA_50 and Sr-nanoHA_100, respectively) were produced via wet chemical precipitation using calcium, strontium, and phosphorous salts as starting materials. The materials were evaluated for their cytotoxicity and osteogenic potential in direct contact with MC3T3-E1 pre-osteoblastic cells. All three nanoHA-based materials were cytocompatible, featured needle-shaped nanocrystals, and had enhanced osteogenic activity in vitro. The Sr-nanoHA_100 indicated a significant increase in the alkaline phosphatase activity at day 14 compared to the control. All three compositions revealed significantly higher calcium and collagen production up to 21 days in culture compared to the control. Gene expression analysis exhibited, for all three nanoHA compositions, a significant upregulation of osteonectin and osteocalcin on day 14 and of osteopontin on day 7 compared to the control. The highest osteocalcin levels were found for both Sr-substituted compounds on day 14. These results demonstrate the great osteoinductive potential of the produced compounds, which can be exploited to treat bone disease.
Collapse
Affiliation(s)
| | | | - Rémy Gauthier
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
- CNRS, INSA Lyon, Université Claude Bernard Lyon 1, UMR 5510, MATEIS, F-69621 Villeur-banne, France
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
| | | | | | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Foundation for Research and Technology Hellas (FORTH), Institute for Electronic Structure and Laser (IESL), 70013 Heraklion, Greece
| |
Collapse
|
17
|
Ribeiro TP, Flores M, Madureira S, Zanotto F, Monteiro FJ, Laranjeira MS. Magnetic Bone Tissue Engineering: Reviewing the Effects of Magnetic Stimulation on Bone Regeneration and Angiogenesis. Pharmaceutics 2023; 15:1045. [PMID: 37111531 PMCID: PMC10143200 DOI: 10.3390/pharmaceutics15041045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Bone tissue engineering emerged as a solution to treat critical bone defects, aiding in tissue regeneration and implant integration. Mainly, this field is based on the development of scaffolds and coatings that stimulate cells to proliferate and differentiate in order to create a biologically active bone substitute. In terms of materials, several polymeric and ceramic scaffolds have been developed and their properties tailored with the objective to promote bone regeneration. These scaffolds usually provide physical support for cells to adhere, while giving chemical and physical stimuli for cell proliferation and differentiation. Among the different cells that compose the bone tissue, osteoblasts, osteoclasts, stem cells, and endothelial cells are the most relevant in bone remodeling and regeneration, being the most studied in terms of scaffold-cell interactions. Besides the intrinsic properties of bone substitutes, magnetic stimulation has been recently described as an aid in bone regeneration. External magnetic stimulation induced additional physical stimulation in cells, which in combination with different scaffolds, can lead to a faster regeneration. This can be achieved by external magnetic fields alone, or by their combination with magnetic materials such as nanoparticles, biocomposites, and coatings. Thus, this review is designed to summarize the studies on magnetic stimulation for bone regeneration. While providing information regarding the effects of magnetic fields on cells involved in bone tissue, this review discusses the advances made regarding the combination of magnetic fields with magnetic nanoparticles, magnetic scaffolds, and coatings and their subsequent influence on cells to reach optimal bone regeneration. In conclusion, several research works suggest that magnetic fields may play a role in regulating the growth of blood vessels, which are critical for tissue healing and regeneration. While more research is needed to fully understand the relationship between magnetism, bone cells, and angiogenesis, these findings promise to develop new therapies and treatments for various conditions, from bone fractures to osteoporosis.
Collapse
Affiliation(s)
- Tiago P. Ribeiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Miguel Flores
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Sara Madureira
- Escola Superior de Biotecnologia, CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Centro de Investigação Interdisciplinar em Saúde, Instituto de Ciências da Saúde, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Francesca Zanotto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Department of Information Engineering, University of Padua, Via Gradenigo 6/b, 35131 Padova, Italy
| | - Fernando J. Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Marta S. Laranjeira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
18
|
Banihashemian A, Benisi SZ, Hosseinzadeh S, Shojaei S. Biomimetic biphasic scaffolds in osteochondral tissue engineering: Their composition, structure and consequences. Acta Histochem 2023; 125:152023. [PMID: 36940532 DOI: 10.1016/j.acthis.2023.152023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Approaches to the design and construction of biomimetic scaffolds for osteochondral tissue, show increasing advances. Considering the limitations of this tissue in terms of repair and regeneration, there is a need to develop appropriately designed scaffolds. A combination of biodegradable polymers especially natural polymers and bioactive ceramics, shows promise in this field. Due to the complicated architecture of this tissue, biphasic and multiphasic scaffolds containing two or more different layers, could mimic the physiology and function of this tissue with a higher degree of similarity. The purpose of this review article is to discuss the approaches focused on the application of biphasic scaffolds for osteochondral tissue engineering, common methods of combining layers and the ultimate consequences of their use in patients were discussed.
Collapse
Affiliation(s)
- Abdolvahab Banihashemian
- Advanced Medical Sciences and Technologies Department, Faculty of Biomedical Engineering, Central Tehran Branch Islamic Azad University, Tehran, Iran.
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahrokh Shojaei
- Islamic Azad University Central Tehran Branch, Department of Biomedical Engineering, Tehran, Iran
| |
Collapse
|
19
|
Souto-Lopes M, Grenho L, Manrique YA, Dias MM, Fernandes MH, Monteiro FJ, Salgado CL. Full physicochemical and biocompatibility characterization of a supercritical CO 2 sterilized nano-hydroxyapatite/chitosan biodegradable scaffold for periodontal bone regeneration. BIOMATERIALS ADVANCES 2023; 146:213280. [PMID: 36682201 DOI: 10.1016/j.bioadv.2023.213280] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023]
Abstract
Despite bone's innate self-renewal capability, some periodontal pathologic and traumatic defects' size inhibits full spontaneous regeneration. This current research characterized a 3D porous biodegradable nano-hydroxyapatite/chitosan (nHAp/CS, 70/30) scaffold for periodontal bone regeneration, which preparation method includes the final solvent extraction and sterilization through supercritical CO2 (scCO2). Micro-CT analysis revealed the fully interconnected porous microstructure of the nHAp/CS scaffold (total porosity 78 %, medium pore size 200 μm) which is critical for bone regeneration. Scanning electron microscopy (SEM) showed HAp crystals forming on the surface of the nHAp/CS scaffold after 21 days in simulated body fluid, demonstrating its bioactivity in vitro. The presence of nHAp in the scaffolds promoted a significantly lower biodegradation rate compared to a plain CS scaffold in PBS. Dynamic mechanical analysis confirmed their viscoelasticity, but the presence of nHAp significantly enhanced the storage modulus (42.34 ± 6.09 kPa at 10 Hz after 28 days in PBS), showing that it may support bone ingrowth at low-load bearing bone defects. Both scaffold types significantly inhibited the growth, attachment and colony formation abilities of S. aureus and E. coli, enhancing the relevance of chitosan in the grafts' composition for the naturally contaminated oral environment. At SEM and laser scanning confocal microscopy, MG63 cells showed normal morphology and could adhere and proliferate inside the biomaterials' porous structure, especially for the nHAp/CS scaffold, reaching higher proliferative rate at day 14. MG63 cells seeded within nHAp/CS scaffolds presented a higher expression of RUNX2, collagen A1 and Sp7 osteogenic genes compared to the CS samples. The in vivo subcutaneous implantation in mice of both scaffold types showed lower biodegradability with the preservation of the scaffolds porous structure that allowed the ingrowth of connective tissue until 5 weeks. Histology shows an intensive and progressive ingrowth of new vessels and collagen between the 3rd and the 5th week, especially for the nHAp/CS scaffold. So far, the scCO2 method enabled the production of a cost-effective and environment-friendly ready-to-use nHAp/CS scaffold with microstructural, chemical, mechanical and biocompatibility features that make it a suitable bone graft alternative for defect sites in an adverse environment as in periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Mariana Souto-Lopes
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Liliana Grenho
- Faculty of Dental Medicine of the University of Porto, R. Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE - Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Portugal
| | - Yaidelin Alves Manrique
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Madalena Maria Dias
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Helena Fernandes
- Faculty of Dental Medicine of the University of Porto, R. Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE - Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Portugal
| | - Fernando Jorge Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Christiane Laranjo Salgado
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
20
|
Nimbalkar Y, Gharat SA, Tanna V, Nikam VS, Nabar S, Sawarkar SP. Modification and Functionalization of Polymers for Targeting to Bone Cancer and Bone Regeneration. Crit Rev Biomed Eng 2023; 51:21-58. [PMID: 37560878 DOI: 10.1615/critrevbiomedeng.2023043780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Bone is one of the most complex, inaccessible body structures, responsible for calcium storage and haematopoiesis. The second highest cause of death across the world is cancer. Amongst all the types of cancers, bone cancer treatment modalities are limited due to the structural complexity and inaccessibility of bones. The worldwide incidence of bone diseases and bone defects due to cancer, infection, trauma, age-related bone degeneration is increasing. Currently different conventional therapies are available for bone cancer such as chemotherapy, surgery and radiotherapy, but they have several disadvantages associated with them. Nanomedicine is being extensively researched as viable therapeutics to mitigate drug resistance in cancer therapy and promote bone regeneration. Several natural polymers such as chitosan, dextran, alginate, hyaluronic acid, and synthetic polymers like polyglycolic acid, poly(lactic-co-glycolic acid), polycaprolactone are investigated for their application in nanomedicine for bone cancer treatment and bone regeneration. Nanocarriers have shown promising results in preclinical experimental studies. However, they still face a major drawback of inadequate targetability. The paper summarizes the status of research and the progress made so far in modifications and functionalization of natural polymers for improving their site specificity and targeting for effective treatment of bone cancer and enhancing bone regeneration.
Collapse
Affiliation(s)
- Yogesh Nimbalkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Sankalp A Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Vidhi Tanna
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| | - Vandana S Nikam
- Department of Pharmacology, STES's Smt. Kashibai Navale College of Pharmacy, Kondhwa, S.P. Pune University, Pune 411048, India
| | - Swapna Nabar
- Radiation Medicine Centre, Tata Memorial Hospital, Parel, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Vile Parle West, Mumbai 400056 India
| |
Collapse
|
21
|
Yadav N, Kumar U, Roopmani P, Krishnan UM, Sethuraman S, Chauhan MK, Chauhan VS. Ultrashort Peptide-Based Hydrogel for the Healing of Critical Bone Defects in Rabbits. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54111-54126. [PMID: 36401830 DOI: 10.1021/acsami.2c18733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The use of hydrogels as scaffolds for three-dimensional (3D) cell growth is an active area of research in tissue engineering. Herein, we report the self-assembly of an ultrashort peptide, a tetrapeptide, Asp-Leu-IIe-IIe, the shortest peptide sequence from a highly fibrillogenic protein TDP-43, into the hydrogel. The hydrogel was mechanically strong and highly stable, with storage modulus values in MPa ranges. The hydrogel supported the proliferation and successful differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in its matrix as assessed by cell viability, calcium deposition, alkaline phosphatase (ALP) activity, and the expression of osteogenic marker gene studies. To check whether the hydrogel supports 3D growth and regeneration in in vivo conditions, a rabbit critical bone defect model was used. Micro-computed tomography (CT) and X-ray analysis demonstrated the formation of mineralized neobone in the defect areas, with significantly higher bone mineralization and relative bone densities in animals treated with the peptide hydrogel compared to nontreated and matrigel treatment groups. The ultrashort peptide-based hydrogel developed in this work holds great potential for its further development as tissue regeneration and/or engineering scaffolds.
Collapse
Affiliation(s)
- Nitin Yadav
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi110067, India
- Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector-3, Pushpvihar, New Delhi110017, India
| | - Utkarsh Kumar
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi110067, India
| | - Purandhi Roopmani
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur613401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA's Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur613401, India
| | - Meenakshi K Chauhan
- Delhi Institute of Pharmaceutical Sciences and Research, Mehrauli-Badarpur Road, Sector-3, Pushpvihar, New Delhi110017, India
| | - Virander S Chauhan
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi110067, India
| |
Collapse
|
22
|
Bioengineering Approaches to Fight against Orthopedic Biomaterials Related-Infections. Int J Mol Sci 2022; 23:ijms231911658. [PMID: 36232956 PMCID: PMC9569980 DOI: 10.3390/ijms231911658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
One of the most serious complications following the implantation of orthopedic biomaterials is the development of infection. Orthopedic implant-related infections do not only entail clinical problems and patient suffering, but also cause a burden on healthcare care systems. Additionally, the ageing of the world population, in particular in developed countries, has led to an increase in the population above 60 years. This is a significantly vulnerable population segment insofar as biomaterials use is concerned. Implanted materials are highly susceptible to bacterial and fungal colonization and the consequent infection. These microorganisms are often opportunistic, taking advantage of the weakening of the body defenses at the implant surface–tissue interface to attach to tissues or implant surfaces, instigating biofilm formation and subsequent development of infection. The establishment of biofilm leads to tissue destruction, systemic dissemination of the pathogen, and dysfunction of the implant/bone joint, leading to implant failure. Moreover, the contaminated implant can be a reservoir for infection of the surrounding tissue where microorganisms are protected. Therefore, the biofilm increases the pathogenesis of infection since that structure offers protection against host defenses and antimicrobial therapies. Additionally, the rapid emergence of bacterial strains resistant to antibiotics prompted the development of new alternative approaches to prevent and control implant-related infections. Several concepts and approaches have been developed to obtain biomaterials endowed with anti-infective properties. In this review, several anti-infective strategies based on biomaterial engineering are described and discussed in terms of design and fabrication, mechanisms of action, benefits, and drawbacks for preventing and treating orthopaedic biomaterials-related infections.
Collapse
|
23
|
Nanomaterials in cancer: Reviewing the combination of hyperthermia and triggered chemotherapy. J Control Release 2022; 347:89-103. [PMID: 35513211 DOI: 10.1016/j.jconrel.2022.04.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/10/2023]
Abstract
Nanoparticle mediated hyperthermia has been explored as a method to increase cancer treatment efficacy by heating tumours inside-out. With that purpose, nanoparticles have been designed and their properties tailored to respond to external stimuli and convert the supplied energy into heat, therefore inducing damage to tumour cells. Moreover, the combination of hyperthermia with chemotherapy has been described as a more effective strategy due to the synergy between the high temperature and the drug's effects, also associated with a remote controlled and on-demand drug release. In this review, the methods behind nanoparticle mediated hyperthermia, namely material design, external stimuli response and energy conversion will be discussed and critically analysed. We will address the most relevant studies on hyperthermia and temperature triggered drug release for cancer treatment. Finally, the advantages, difficulties and challenges of this therapeutic strategy will be discussed, while giving insight for future developments.
Collapse
|
24
|
Guo F, Yuan C, Huang H, Deng X, Bian Z, Wang D, Dou K, Mei L, Zhou Q. Regulation of T Cell Responses by Nano-Hydroxyapatite to Mediate the Osteogenesis. Front Bioeng Biotechnol 2022; 10:884291. [PMID: 35445004 PMCID: PMC9013933 DOI: 10.3389/fbioe.2022.884291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 12/31/2022] Open
Abstract
Nano-hydroxyapatite (nHA) has been widely applied as a tissue-engineering biomaterial and interacted with osteoblasts/stem cells to repair bone defects. In addition, T cells that coexist with osteoblasts/stem cells in the bone modulate the regulation of osteoimmunology by cytokine formation. However, the effects of nHA on T cells and the following regulatory interplay on osteogenic differentiation have been rarely examined. In this work, the physicochemical properties of needle-like nHA are characterized by field emission scanning electron microscopy, zeta potential, Fourier transform-infrared and X-ray diffraction. It is found that as the concentration of nHA increases, the proliferation of T cells gradually increases, and the proportion of apoptotic T cells decreases. The percentage of CD4+ T cells is higher than that of CD8+ T cells under the regulation of needle-like nHA. Furthermore, the supernatant of T cells co-cultured with nHA significantly inhibits the osteogenic differentiation of MC3T3-E1 by downregulating the formation of alkaline phosphatase and calcium nodule compared with the supernatant of nHA. Thus, our findings provide new insight into the nHA-mediated T cell and osteoblast interactions.
Collapse
Affiliation(s)
- Fangze Guo
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- *Correspondence: Changqing Yuan, ; Qihui Zhou,
| | - Hailin Huang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xuyang Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zirui Bian
- School of Stomatology, Qingdao University, Qingdao, China
| | - Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Keke Dou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Li Mei
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Changqing Yuan, ; Qihui Zhou,
| |
Collapse
|
25
|
Wang H, Hu B, Li H, Feng G, Pan S, Chen Z, Li B, Song J. Biomimetic Mineralized Hydroxyapatite Nanofiber-Incorporated Methacrylated Gelatin Hydrogel with Improved Mechanical and Osteoinductive Performances for Bone Regeneration. Int J Nanomedicine 2022; 17:1511-1529. [PMID: 35388269 PMCID: PMC8978691 DOI: 10.2147/ijn.s354127] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
Purpose Methacrylic anhydride-modified gelatin (GelMA) hydrogels exhibit many beneficial biological features and are widely studied for bone tissue regeneration. However, deficiencies in the mechanical strength, osteogenic factors and mineral ions limit their application in bone defect regeneration. Incorporation of inorganic fillers into GelMA to improve its mechanical properties and bone regenerative ability has been one of the research hotspots. Methods In this work, hydroxyapatite nanofibers (HANFs) were prepared and mineralized in a simulated body fluid to make their components and structure more similar to those of natural bone apatite, and then different amounts of mineralized HANFs (m-HANFs) were incorporated into the GelMA hydrogel to form m-HANFs/GelMA composite hydrogels. The physicochemical properties, biocompatibility and bone regenerative ability of m-HANFs/GelMA were determined in vitro and in vivo. Results The results indicated that m-HANFs with high aspect ratio presented rough and porous surfaces coated with bone-like apatite crystals. The incorporation of biomimetic m-HANFs improved the biocompatibility, mechanical, swelling, degradation and bone regenerative performances of GelMA. However, the improvement in the performance of the composite hydrogel did not continuously increase as the amount of added m-HANFs increased, and the 15m-HANFs/GelMA group exhibited the best swelling and degradation performances and the best bone repair effect in vivo among all the groups. Conclusion The biomimetic m-HANFs/GelMA composite hydrogel can provide a novel option for bone tissue engineering in the future; however, it needs further investigations to optimize the proportions of m-HANFs and GelMA for improving the bone repair effect.
Collapse
Affiliation(s)
- He Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Bo Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Hong Li
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, People’s Republic of China
| | - Ge Feng
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Shengyuan Pan
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Ziqi Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Bo Li
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, People’s Republic of China
- Correspondence: Bo Li, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, People’s Republic of China, Tel +86-23-8886-0026, Fax +86-23-8886-0222, Email
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
- Jinlin Song, College of Stomatology, Chongqing Medical University, 426# Songshibei Road, Yubei District, Chongqing, 401147, People’s Republic of China, Tel +86-23-8886-0026, Fax +86-23-8886-0222, Email
| |
Collapse
|
26
|
Fadilah NIM, Isa ILM, Zaman WSWK, Tabata Y, Fauzi MB. The Effect of Nanoparticle-Incorporated Natural-Based Biomaterials towards Cells on Activated Pathways: A Systematic Review. Polymers (Basel) 2022; 14:476. [PMID: 35160466 PMCID: PMC8838324 DOI: 10.3390/polym14030476] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The advancement of natural-based biomaterials in providing a carrier has revealed a wide range of benefits in the biomedical sciences, particularly in wound healing, tissue engineering and regenerative medicine. Incorporating nanoparticles within polymer composites has been reported to enhance scaffolding performance, cellular interactions and their physico-chemical and biological properties in comparison to analogue composites without nanoparticles. This review summarized the current knowledge of nanoparticles incorporated into natural-based biomaterials with effects on their cellular interactions in wound healing. Although the mechanisms of wound healing and the function of specific cells in wound repair have been partially described, many of the underlying signaling pathways remain unknown. We also reviewed the current understanding and new insights into the wingless/integrated (Wnt)/β-catenin pathway and other signaling pathways of transforming growth factor beta (TGF-β), Notch, and Sonic hedgehog during wound healing. The findings demonstrated that most of the studies reported positive outcomes of biomaterial scaffolds incorporated with nanoparticles on cell attachment, viability, proliferation, and migration. Combining therapies consisting of nanoparticles and biomaterials could be promising for future therapies and better outcomes in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8397, Japan;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
27
|
Iglesias-Mejuto A, García-González CA. 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112525. [PMID: 34857304 DOI: 10.1016/j.msec.2021.112525] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 01/08/2023]
Abstract
3D-printing technology allows the automated and reproducible manufacturing of functional structures for tissue engineering with customized geometries and compositions by depositing materials layer-by-layer with high precision. For these purposes, the production of bioactive gel-based 3D-scaffolds made of biocompatible materials with well-defined internal structure comprising a dual (mesoporous and macroporous) and highly interconnected porosity is essential. In this work, aerogel scaffolds for bone regeneration purposes were obtained by an innovative strategy that combines the 3D-printing of alginate-hydroxyapatite (HA) hydrogels and the supercritical CO2 drying of the gels. BET and SEM analyses were performed to assess the textural parameters of the obtained aerogel scaffolds and the dimensional accuracy to the original computer-aided design (CAD) design was also evaluated. The biological characterization of the aerogel scaffolds was also carried out regarding cell viability, adhesion and migration capacity. The obtained alginate-HA aerogel scaffolds were highly porous, biocompatible, with high fidelity to the CAD-pattern and also allowed the attachment and proliferation of mesenchymal stem cells (MSCs). An enhancement of the fibroblast migration toward the damaged area was observed in the presence of the aerogel formulations tested, which is positive in terms of bone regeneration.
Collapse
Affiliation(s)
- Ana Iglesias-Mejuto
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Carlos A García-González
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Hassanzadeh A, Ashrafihelan J, Salehi R, Rahbarghazi R, Firouzamandi M, Ahmadi M, Khaksar M, Alipour M, Aghazadeh M. Development and biocompatibility of the injectable collagen/nano-hydroxyapatite scaffolds as in situ forming hydrogel for the hard tissue engineering application. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:136-146. [PMID: 33507104 DOI: 10.1080/21691401.2021.1877153] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
Injectable hydrogels attract more attention to hard tissue engineering for the fulfilment of the defects with irregular shapes. Therefore, the researchers investigated the biocompatibility and immune response to the injectable PCL-PEG-PCL-Col/nHA hydrogels in a mouse model. The histological examination was done via H&E. The activation of the immune cells was evaluated by using antibodies against the CD68, CD4, and CD8 markers. The expression of CCL-2, BCL-2, IL-10, and CD31 genes was measured. Moreover, serum levels of the ALT, ALP, AST, and Urea were detected. The results of the chemical analysis showed that the collagen and Nano-hydroxyapatite were successfully integrated into the PCL-PEG-PCL hydrogels. The histological examination revealed a delayed biodegradation rate after the addition of the collagen and Nano-hydroxyapatite. No prominent pro-inflammatory response was found at the site of the injection. There are no significant differences in the levels of the CD68 and CD8/CD4 lymphocyte ratio among groups (p > .05). The expression of the CD31, IL-10 was significantly increased in the PCL-PEG-PCL-Col/nHA hydrogel (p < .05). ALT, ALP, AST, and Urea levels were not altered pre- and post-transplantation of the hydrogels (p > .05). These in vivo results demonstrated that the injectable PCL-PEG-PCL-Col/nHA hydrogels are biocompatible and suitable for further research in hard tissue regeneration.
Collapse
Affiliation(s)
| | - Javad Ashrafihelan
- Faculty of Veterinary Medicine, Department of Pathobiology, University of Tabriz, Tabriz, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khaksar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Gilarska A, Hinz A, Bzowska M, Dyduch G, Kamiński K, Nowakowska M, Lewandowska-Łańcucka J. Addressing the Osteoporosis Problem-Multifunctional Injectable Hybrid Materials for Controlling Local Bone Tissue Remodeling. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49762-49779. [PMID: 34643364 PMCID: PMC8554765 DOI: 10.1021/acsami.1c17472] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 05/08/2023]
Abstract
Novel multifunctional biomimetic injectable hybrid systems were synthesized. The physicochemical as well as biological in vitro and in vivo tests demonstrated that they are promising candidates for bone tissue regeneration. The hybrids are composed of a biopolymeric collagen/chitosan/hyaluronic acid matrix and amine group-functionalized silica particles decorated with apatite to which the alendronate molecules were coordinated. The components of these systems were integrated and stabilized by cross-linking with genipin, a compound of natural origin. They can be precisely injected into the diseased tissue in the form of a viscous sol or a partially cross-linked hydrogel, where they can serve as scaffolds for locally controlled bone tissue regeneration/remodeling by supporting the osteoblast formation/proliferation and maintaining the optimal osteoclast level. These materials lack systemic toxicity. They can be particularly useful for the repair of small osteoporotic bone defects.
Collapse
Affiliation(s)
- Adriana Gilarska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
- Faculty
of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
| | - Alicja Hinz
- Department
of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Monika Bzowska
- Department
of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Grzegorz Dyduch
- Department
of Pathomorphology, Jagiellonian University
Medical College, 30-387 Kraków, Poland
| | - Kamil Kamiński
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Maria Nowakowska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | |
Collapse
|
30
|
Sikkema R, Keohan B, Zhitomirsky I. Alginic Acid Polymer-Hydroxyapatite Composites for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13183070. [PMID: 34577971 PMCID: PMC8471633 DOI: 10.3390/polym13183070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Natural bone is a composite organic-inorganic material, containing hydroxyapatite (HAP) as an inorganic phase. In this review, applications of natural alginic acid (ALGH) polymer for the fabrication of composites containing HAP are described. ALGH is used as a biocompatible structure directing, capping and dispersing agent for the synthesis of HAP. Many advanced techniques for the fabrication of ALGH-HAP composites are attributed to the ability of ALGH to promote biomineralization. Gel-forming and film-forming properties of ALGH are key factors for the development of colloidal manufacturing techniques. Electrochemical fabrication techniques are based on strong ALGH adsorption on HAP, pH-dependent charge and solubility of ALGH. Functional properties of advanced composite ALGH-HAP films and coatings, scaffolds, biocements, gels and beads are described. The composites are loaded with other functional materials, such as antimicrobial agents, drugs, proteins and enzymes. Moreover, the composites provided a platform for their loading with cells for the fabrication of composites with enhanced properties for various biomedical applications. This review summarizes manufacturing strategies, mechanisms and outlines future trends in the development of functional biocomposites.
Collapse
|
31
|
Wu P, Xi X, Li R, Sun G. Engineering Polysaccharides for Tissue Repair and Regeneration. Macromol Biosci 2021; 21:e2100141. [PMID: 34219388 DOI: 10.1002/mabi.202100141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Indexed: 12/22/2022]
Abstract
The success of repair or regeneration depends greatly on the architecture of 3D scaffolds that finely mimic natural extracellular matrix to support cell growth and assembly. Polysaccharides have excellent biocompatibility with intrinsic biological cues and they have been extensively investigated as scaffolds for tissue engineering and regenerative medicine (TERM). The physical and biochemical structures of natural polysaccharides, however, can barely meet all the requirements of tissue-engineered scaffolds. To take advantage of their inherent properties, many innovative approaches including chemical, physical, or joint modifications have been employed to improve their properties. Recent advancement in molecular and material building technology facilitates the fabrication of advanced 3D structures with desirable properties. This review focuses on the latest progress of polysaccharide-based scaffolds for TERM, especially those that construct advanced architectures for tissue regeneration.
Collapse
Affiliation(s)
- Pingli Wu
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xin Xi
- Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Ruochen Li
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Guoming Sun
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.,Affiliated Hospital of Hebei University, College of Clinical Medicine, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| |
Collapse
|
32
|
Gomes PS, Pinheiro B, Colaço B, Fernandes MH. The Osteogenic Assessment of Mineral Trioxide Aggregate-based Endodontic Sealers in an Organotypic Ex Vivo Bone Development Model. J Endod 2021; 47:1461-1466. [PMID: 34126159 DOI: 10.1016/j.joen.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Mineral trioxide aggregate (MTA)-based sealers are endodontic materials with widespread success in distinct clinical applications, potentially embracing direct contact with the bone tissue. Bone response to these materials has been traditionally addressed in vitro. Nonetheless, translational data are limited by the absence of native cell-to-cell and cell-to-matrix interactions that hinder the representativeness of the analysis. Ex vivo organotypic systems, relying on the culture of explanted biological tissues, preserve the cell/tissue composition, reproducing the spatial and organizational in situ complexity. This study was grounded on an innovative research approach, relying on the assessment of an ex vivo organotypic bone tissue culture system to address the osteogenic response to 3 distinct MTA-based sealers. METHODS Embryonic chick femurs were isolated and grown ex vivo for 11 days in the presence of MTA Plus (Avalon Biomed Inc, Bradenton, FL), ProRoot MTA (Dentsply Tulsa Dental, Hohnson City, Germany), Biodentine (Septodont, Saint Maurdes Fosses, France), or AH Plus (Dentsply Sirona, Konstanz, Germany); the latter was used as a control material. Femurs were characterized by histologic, histochemical, and histomorphometric analysis. Gene expression assessment of relevant osteogenic markers was conducted by quantitative polymerase chain reaction. RESULTS All MTA-based sealers presented an enhanced osteogenic performance compared with AH Plus. Histochemical and histomorphometric analyses support the increased activation of the osteogenic program by MTA-based sealers, with enhanced collagenous matrix deposition and tissue mineralization. Gene expression analysis supported the enhanced activation of the osteogenic program. Comparatively, ProRoot MTA induced the highest osteogenic functionality on the characterized femurs. CONCLUSIONS MTA-based sealers enhanced the osteogenic activity within the assayed organotypic bone model, which was found to be a sensitive system for the assessment of osteogenic modulation mediated by endodontic sealers.
Collapse
Affiliation(s)
- Pedro S Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; Associated Laboratory for Green Chemistry/Network of Chemistry and Technology (LAQV/REQUIMTE), University of Porto, Porto, Portugal.
| | - Bruna Pinheiro
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Bruno Colaço
- Department of Zootechnics, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria H Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal; Associated Laboratory for Green Chemistry/Network of Chemistry and Technology (LAQV/REQUIMTE), University of Porto, Porto, Portugal
| |
Collapse
|
33
|
In Vitro Biocompatibility Assessment of Nano-Hydroxyapatite. NANOMATERIALS 2021; 11:nano11051152. [PMID: 33925076 PMCID: PMC8145068 DOI: 10.3390/nano11051152] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 01/17/2023]
Abstract
Hydroxyapatite (HA) is an important component of the bone mineral phase. It has been used in several applications, such as bone regenerative medicine, tooth implants, drug delivery and oral care cosmetics. In the present study, three different batches of a commercial nanohydroxyapatite (nHA) material were physicochemically-characterized and biologically-evaluated by means of cytotoxicity and genotoxicity using appropriate cell lines based on well-established guidelines (ISO10993-5 and OECD 487). The nHAs were characterized for their size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM) and were found to have a rod-like shape with an average length of approximately 20 to 40 nm. The nanoparticles were cytocompatible according to ISO 10993-5, and the in vitro micronucleus assay showed no genotoxicity to cells. Internalization by MC3T3-E1 cells was observed by TEM images, with nHA identified only in the cytoplasm and extracellular space. This result also validates the genotoxicity since nHA was not observed in the nucleus. The internalization of nHA by the cells did not seem to affect normal cell behavior, since the results showed good biocompatibility of these nHA nanoparticles. Therefore, this work is a relevant contribution for the safety assessment of this nHA material.
Collapse
|
34
|
Song T, Zhao F, Wang Y, Li D, Lei N, Li X, Xiao Y, Zhang X. Constructing a biomimetic nanocomposite with the in situ deposition of spherical hydroxyapatite nanoparticles to induce bone regeneration. J Mater Chem B 2021; 9:2469-2482. [PMID: 33646220 DOI: 10.1039/d0tb02648d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the nanostructure of bone, biomimetic nanocomposites comprising natural polymers and inorganic nanoparticles have gained much attention for bone regenerative applications. However, the mechanical and biological performances of nanocomposites are largely limited by the inhomogeneous distribution, uncontrolled size and irregular morphology of inorganic nanoparticles at present. In this work, an innovative in situ precipitation method has been developed to construct a biomimetic nanocomposite which consists of spherical hydroxyapatite (HA) nanoparticles and gelatin (Gel). The homogeneous dispersion of HA nanoparticles in nHA-Gel endowed it with a low swelling ratio, enhanced mechanical properties and slow degradation. Moreover, strontium (Sr) was incorporated into HA nanoparticles to further enhance the bioactivity of nanocomposites. In vitro experiments suggested that nHA-Gel and Sr-nHA-Gel facilitated cell spreading and promoted osteogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) as compared to pure Gel and mHA-Gel conventional composites developed by mechanical mixing. In vivo rat critical-sized calvarial defect repair further confirmed that nHA-Gel and Sr-nHA-Gel possessed relatively effective bone regenerative abilities among the four groups. Collectively, the biomimetic nanocomposites of nHA-Gel and Sr-nHA-Gel have good efficacy in inducing bone regeneration and would be a promising alternative to bone grafts for clinical applications.
Collapse
Affiliation(s)
- Tao Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Fengxin Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dongxiao Li
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610064, Sichuan, China
| | - Ning Lei
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610064, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
35
|
Mayorova OA, Jolly BCN, Verkhovskii RA, Plastun VO, Sindeeva OA, Douglas TEL. pH-Sensitive Dairy-Derived Hydrogels with a Prolonged Drug Release Profile for Cancer Treatment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:749. [PMID: 33562870 PMCID: PMC7915325 DOI: 10.3390/ma14040749] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/02/2023]
Abstract
A novel versatile biocompatible hydrogel of whey protein isolate (WPI) and two types of tannic acid (TAs) was prepared by crosslinking of WPI with TAs in a one-step method at high temperature for 30 min. WPI is one common protein-based preparation which is used for hydrogel formation. The obtained WPI-TA hydrogels were in disc form and retained their integrity after sterilization by autoclaving. Two TA preparations of differing molecular weight and chemical structure were compared, namely a polygalloyl glucose-rich extract-ALSOK 02-and a polygalloyl quinic acid-rich extract-ALSOK 04. Hydrogel formation was observed for WPI solutions containing both preparations. The swelling characteristics of hydrogels were investigated at room temperature at different pH values, namely 5, 7, and 9. The swelling ability of hydrogels was independent of the chemical structure of the added TAs. A trend of decrease of mass increase (MI) in hydrogels was observed with an increase in the TA/WPI ratio compared to the control WPI hydrogel without TA. This dependence (a MI decrease-TA/WPI ratio) was observed for hydrogels with different types of TA both in neutral and acidic conditions (pH 5.7). Under alkaline conditions (pH 9), negative values of swelling were observed for all hydrogels with a high content of TAs and were accompanied by a significant release of TAs from the hydrogel network. Our studies have shown that the release of TA from hydrogels containing ALSOK04 is higher than from hydrogels containing ALSOK 02. Moreover, the addition of TAs, which display a strong anti-cancer effect, increases the cytotoxicity of WPI-TAs hydrogels against the Hep-2 human laryngeal squamous carcinoma (Hep-2 cells) cell line. Thus, WPI-TA hydrogels with prolonged drug release properties and cytotoxicity effect can be used as anti-cancer scaffolds.
Collapse
Affiliation(s)
- Oksana A. Mayorova
- Institute of Nanostructures and Biosystems, Saratov State University, 83 Astrakhanskaya st., 410012 Saratov, Russia; (R.A.V.); (V.O.P.); (O.A.S.)
| | - Ben C. N. Jolly
- Engineering Department, Lancaster University, Gillow Av., Lancaster LA1 4YW, UK;
| | - Roman A. Verkhovskii
- Institute of Nanostructures and Biosystems, Saratov State University, 83 Astrakhanskaya st., 410012 Saratov, Russia; (R.A.V.); (V.O.P.); (O.A.S.)
| | - Valentina O. Plastun
- Institute of Nanostructures and Biosystems, Saratov State University, 83 Astrakhanskaya st., 410012 Saratov, Russia; (R.A.V.); (V.O.P.); (O.A.S.)
| | - Olga A. Sindeeva
- Institute of Nanostructures and Biosystems, Saratov State University, 83 Astrakhanskaya st., 410012 Saratov, Russia; (R.A.V.); (V.O.P.); (O.A.S.)
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, 143026 Moscow, Russia
| | - Timothy E. L. Douglas
- Engineering Department, Lancaster University, Gillow Av., Lancaster LA1 4YW, UK;
- Materials Science Institute (MSI), Lancaster University, Gillow Av., Lancaster LA1 4YW, UK
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Novel therapies for damaged and diseased bone are being developed in a preclinical testing process consisting of in vitro cell experiments followed by in vivo animal studies. The in vitro results are often not representative of the results observed in vivo. This could be caused by the complexity of the natural bone environment that is missing in vitro. Ex vivo bone explant cultures provide a model in which cells are preserved in their native three-dimensional environment. Herein, it is aimed to review the current status of bone explant culture models in relation to their potential in complementing the preclinical evaluation process with specific attention paid to the incorporation of mechanical loading within ex vivo culture systems. RECENT FINDINGS Bone explant cultures are often performed with physiologically less relevant bone, immature bone, and explants derived from rodents, which complicates translatability into clinical practice. Mature bone explants encounter difficulties with maintaining viability, especially in static culture. The integration of mechanical stimuli was able to extend the lifespan of explants and to induce new bone formation. Bone explant cultures provide unique platforms for bone research and mechanical loading was demonstrated to be an important component in achieving osteogenesis ex vivo. However, more research is needed to establish a representative, reliable, and reproducible bone explant culture system that includes both components of bone remodeling, i.e., formation and resorption, in order to bridge the gap between in vitro and in vivo research in preclinical testing.
Collapse
Affiliation(s)
- E E A Cramer
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - S Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
37
|
Alipour M, Firouzi N, Aghazadeh Z, Samiei M, Montazersaheb S, Khoshfetrat AB, Aghazadeh M. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. BMC Biotechnol 2021; 21:6. [PMID: 33430842 PMCID: PMC7802203 DOI: 10.1186/s12896-020-00666-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background Microcapsule is considered as a promising 3D microenvironment for Bone Tissue Engineering (BTE) applications. Microencapsulation of cells in an appropriate scaffold not only protected the cells against excess stress but also promoted cell proliferation and differentiation. Through the current study, we aimed to microcapsulate the human Dental Pulp Stem Cells (hDPSCs) and evaluated the proliferation and osteogenic differentiation of those cells by using MTT assay, qRT-PCR, Alkaline phosphatase, and Alizarine Red S. Results The SEM results revealed that Alg/Gel microcapsules containing nHA showed a rough and more compact surface morphology in comparison with the Alg/Gel microcapsules. Moreover, the microencapsulation by Alg/Gel/nHA could improve cell proliferation and induce osteogenic differentiation. The cells cultured in the Alg/Gel and Alg/Gel/nHA microcapsules showed 1.4-fold and 1.7-fold activity of BMP-2 gene expression more in comparison with the control group after 21 days. The mentioned amounts for the BMP-2 gene were 2.5-fold and 4-fold more expression for the Alg/Gel and Alg/Gel/nHA microcapsules after 28 days. The nHA, addition to hDPSCs-laden Alg/Gel microcapsule, could up-regulate the bone-related gene expressions of osteocalcin, osteonectin, and RUNX-2 during the 21 and 28 days through the culturing period, too. Calcium deposition and ALP activities of the cells were observed in accordance with the proliferation results as well as the gene expression analysis. Conclusion The present study demonstrated that microencapsulation of the hDPSCs inside the Alg/Gel/nHA hydrogel could be a potential approach for regenerative dentistry in the near future. Graphical abstract ![]()
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Firouzi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran.
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Karthigadevi G, Malar CG, Dey N, Sathish Kumar K, Roseline MS, Subalakshmi V. Alginate-based nanocomposite hydrogels. PLANT AND ALGAL HYDROGELS FOR DRUG DELIVERY AND REGENERATIVE MEDICINE 2021:395-421. [DOI: 10.1016/b978-0-12-821649-1.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Han X, Xu H, Che L, Sha D, Huang C, Meng T, Song D. Application of Inorganic Nanocomposite Hydrogels in Bone Tissue Engineering. iScience 2020; 23:101845. [PMID: 33305193 PMCID: PMC7711279 DOI: 10.1016/j.isci.2020.101845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone defects caused by trauma and surgery are common clinical problems encountered by orthopedic surgeons. Thus, a hard-textured, natural-like biomaterial that enables encapsulated cells to obtain the much-needed biophysical stimulation and produce functional bone tissue is needed. Incorporating nanomaterials into cell-laden hydrogels is a straightforward tactic for producing tissue engineering structures that integrate perfectly with the body and for tailoring the material characteristics of hydrogels without hindering nutrient exchange with the surroundings. In this review, recent developments in inorganic nanocomposite hydrogels for bone tissue engineering that are of vital importance but have not yet been comprehensively reviewed are summarized.
Collapse
Affiliation(s)
- Xiaying Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lingbin Che
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| | - Dongyong Sha
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Chaojun Huang
- Department of Orthopedics, Shanghai General Hospital, Nanjing Medical University, Shanghai 200080, China
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| |
Collapse
|
40
|
Pan Y, Zhao Y, Kuang R, Liu H, Sun D, Mao T, Jiang K, Yang X, Watanabe N, Mayo KH, Lin Q, Li J. Injectable hydrogel-loaded nano-hydroxyapatite that improves bone regeneration and alveolar ridge promotion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111158. [DOI: 10.1016/j.msec.2020.111158] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
|
41
|
Grazioli G, Silva AF, Souza JF, David C, Diehl L, Sousa-Neto MD, Cava SS, Fajardo AR, Moraes RR. Synthesis and characterization of poly(vinyl alcohol)/chondroitin sulfate composite hydrogels containing strontium-doped hydroxyapatite as promising biomaterials. J Biomed Mater Res A 2020; 109:1160-1172. [PMID: 32985092 DOI: 10.1002/jbm.a.37108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 01/20/2023]
Abstract
Novel poly(vinyl alcohol)/chondroitin sulfate (PVA/CS) composite hydrogels containing hydroxyapatite (HA) or Sr-doped HA (HASr) particles were synthesized by a freeze/thaw method and characterized aiming towards biomedical applications. HA and HASr were synthesized by a wet-precipitation method and added to the composite hydrogels in fractions up to 15 wt%. Physical-chemical characterizations of particles and hydrogels included scanning electron microscopy, energy-dispersive spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetry, porosity, compressive strength/elastic modulus, swelling degree, and cell viability. Particles were irregular in shape and appeared to have narrow size variation. The thermal behavior of composite hydrogels was altered compared to the control (bare) hydrogel. All hydrogels exhibited high porosity. HA/HASr particles reduced total porosity without reducing pore size. The mechanical strength was improved as the fraction of HA or HASr was increased. HASr particles led to a faster water uptake but did not interfere with the total hydrogel swelling capacity. In cell viability essay, increased cell growth (above 120%) was observed in all groups including the control hydrogel, suggesting a bioactive effect. In conclusion, PVA/CS hydrogels containing HA or HASr particles were successfully synthesized and showed promising morphological, mechanical, and swelling properties, which are particularly required for scaffolding.
Collapse
Affiliation(s)
- Guillermo Grazioli
- Department of Dental Materials, University of the Republic, Montevideo, Uruguay.,Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Adriana F Silva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Jaqueline F Souza
- Laboratory of Technology and Development of Composites and Polymeric Materials - LaCoPol, Federal University of Pelotas, Pelotas, Brazil
| | - Carla David
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Lisiane Diehl
- Advanced Crystal Growth and Photonics - CCAF, Federal University of Pelotas, Pelotas, Brazil
| | - Manoel D Sousa-Neto
- Department of Restorative Dentistry, University of São Paulo, Ribeirão Preto, Brazil
| | - Sergio S Cava
- Advanced Crystal Growth and Photonics - CCAF, Federal University of Pelotas, Pelotas, Brazil
| | - André R Fajardo
- Laboratory of Technology and Development of Composites and Polymeric Materials - LaCoPol, Federal University of Pelotas, Pelotas, Brazil
| | - Rafael R Moraes
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
42
|
Ribeiro TP, Monteiro FJ, Laranjeira MS. PEGylation of iron doped hydroxyapatite nanoparticles for increased applicability as MRI contrast agents and as drug vehicles: A study on thrombogenicity, cytocompatibility and drug loading. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Zhao H, Liu M, Zhang Y, Yin J, Pei R. Nanocomposite hydrogels for tissue engineering applications. NANOSCALE 2020; 12:14976-14995. [PMID: 32644089 DOI: 10.1039/d0nr03785k] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tissue engineering is an important field of regenerative medicine, which combines scaffolds and cell transplantation to develop substitute tissues and/or promote tissue regeneration. Hydrogels, a three-dimensional network with high water content and biocompatibility, have been widely used as scaffolds to mimic the structure and properties of tissues. However, the low mechanical strength and limited functions of traditional hydrogels greatly limited their applications in tissue engineering. Recently, nanocomposite hydrogels, with its advantages of high mechanical property and some unique properties (such as electrical conductivity, antibacterial, antioxidation, magnetic responsiveness), have emerged as the most versatile and innovative technology, which provides a new opportunity as a unique tool for fabricating hydrogels with excellent properties. In this review, we summarize the recent advances in fabricating nanocomposite hydrogels and their applications in tissue engineering. In addition, the future and prospects of nanocomposite hydrogels for tissue engineering are also discussed.
Collapse
Affiliation(s)
- Hongbo Zhao
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China and CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
44
|
Sobczak-Kupiec A, Drabczyk A, Kudłacik-Kramarczyk S, Tyliszczak B. Hydroxyapatite powders prepared using two different methods as modifying agents of PVP/collagen composites designed for biomedical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Agnieszka Sobczak-Kupiec
- Cracow university of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, Krakow, Poland
| | - Anna Drabczyk
- Cracow university of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Cracow university of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, Krakow, Poland
| | - Bozena Tyliszczak
- Cracow university of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, Krakow, Poland
| |
Collapse
|
45
|
D'Elía NL, Rial Silva R, Sartuqui J, Ercoli D, Ruso J, Messina P, Mestres G. Development and characterisation of bilayered periosteum-inspired composite membranes based on sodium alginate-hydroxyapatite nanoparticles. J Colloid Interface Sci 2020; 572:408-420. [PMID: 32272315 DOI: 10.1016/j.jcis.2020.03.086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Membranes for guided bone regeneration should have a mechanical structure and a chemical composition suitable for mimicking biological structures. In this work, we pursue the development of periosteum-inspired bilayered membranes obtained by crosslinking alginate with different amounts of nanohydroxyapatite. EXPERIMENTS Alginate-nanohydroxyapatite interaction was studied by rheology and infrared spectroscopy measurements. The membranes were characterized regarding their tensile strength, degradation and surface morphology. Finally, cell cultures were performed on each side of the membranes. FINDINGS The ionic bonding between alginate polysaccharide networks and nanohydroxyapatite was proven, and had a clear effect in the strength and microstructure of the hydrogels. Distinct surface characteristics were achieved on each side of the membranes, resulting in a highly porous fibrous side and a mineral-rich side with higher roughness and lower porosity. Moreover, the effect of amount of nanohydroxyapatite was reflected in a decrease of the membranes' plasticity and an increment of degradation rate. Finally, it was proved that osteoblast-like cells proliferated and differentiated on the mineral-rich side, specially when a higher amount of nanohydroxyapatite was used, whereas fibroblasts-like cells were able to proliferate on the fibrous side. These periosteum-inspired membranes are promising biomaterials for guided tissue regeneration applications.
Collapse
Affiliation(s)
- Noelia L D'Elía
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR-CONICET, B8000CPB Bahía Blanca, Argentina.
| | - Ramon Rial Silva
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Javier Sartuqui
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR-CONICET, B8000CPB Bahía Blanca, Argentina.
| | - Daniel Ercoli
- Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina.
| | - Juan Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Paula Messina
- Department of Chemistry, Universidad Nacional del Sur, INQUISUR-CONICET, B8000CPB Bahía Blanca, Argentina.
| | - Gemma Mestres
- Materials Science and Engineering, Science for Life Laboratory, Box 534, 751 21 Uppsala University, Uppsala, Sweden.
| |
Collapse
|
46
|
Witzler M, Büchner D, Shoushrah SH, Babczyk P, Baranova J, Witzleben S, Tobiasch E, Schulze M. Polysaccharide-Based Systems for Targeted Stem Cell Differentiation and Bone Regeneration. Biomolecules 2019; 9:E840. [PMID: 31817802 PMCID: PMC6995597 DOI: 10.3390/biom9120840] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Bone tissue engineering is an ever-changing, rapidly evolving, and highly interdisciplinary field of study, where scientists try to mimic natural bone structure as closely as possible in order to facilitate bone healing. New insights from cell biology, specifically from mesenchymal stem cell differentiation and signaling, lead to new approaches in bone regeneration. Novel scaffold and drug release materials based on polysaccharides gain increasing attention due to their wide availability and good biocompatibility to be used as hydrogels and/or hybrid components for drug release and tissue engineering. This article reviews the current state of the art, recent developments, and future perspectives in polysaccharide-based systems used for bone regeneration.
Collapse
Affiliation(s)
- Markus Witzler
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Dominik Büchner
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Sarah Hani Shoushrah
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Patrick Babczyk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Juliana Baranova
- Laboratory of Neurosciences, Department of Biochemistry, Institute of Chemistry–USP, University of São Paulo, Avenida Professor Lineu Prestes 748, Vila Universitaria, São Paulo, SP 05508-000, Brazil;
| | - Steffen Witzleben
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (M.W.); (D.B.); (S.H.S.); (P.B.); (S.W.); (E.T.)
| |
Collapse
|