1
|
Bhatia A, Thakur S, Kohal R, Brar S, Gupta GD, Verma SK. A comprehensive update on phytochemistry and medicinal developments of apocynin. Fitoterapia 2025; 183:106558. [PMID: 40280248 DOI: 10.1016/j.fitote.2025.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The natural phenolic compound apocynin, referred to as acetovanillone, generated significant attention due to its diverse pharmacological properties, especially as an NADPH oxidase inhibitor, and it was applicable orally and effectively even at small doses. During chronic inflammation, various pro-inflammatory-related factors such as nuclear factor kappa β (NF-kβ), nitrotyrosine, poly adenosine diphosphate ribose polymerase (PARP), inducible nitric oxide synthase (iNOS), cluster of differentiation 31 (CD31), intercellular adhesion molecule-1 (ICAM-1), glycoproteins granule membrane protein 140 (GMP140), tumor necrosis factor-alpha (TNFα), p38 mitogen-activated protein kinases (p38 MAPK), membrane cofactor protein (MCP), interleukin-6 (IL-6), all of which could be targeted by apocynin. Research suggests that apocynin significantly benefits conditions like diabetes, cardiovascular diseases, and neurological disorders due to its ability to mitigate inflammation and enhance endothelial function. Further investigations are essential to examine apocynin and its derivatives, mainly its long-term potency. Future research must focus on clinical trials to evaluate its safety, effectiveness, and optimal dosing in various applications. This review provides a recent update on apocynin, covering aspects such as its extraction and isolation, chemical framework, biosynthesis, synthetic derivatives, pharmacological activities, patent landscape, stability and specifications.
Collapse
Affiliation(s)
- Anchal Bhatia
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Shimple Thakur
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Rupali Kohal
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Seema Brar
- Department of Pharmacognosy, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga 142 001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142 001, Punjab, India.
| |
Collapse
|
2
|
Skorupa A, Jakubczyk M, Michalkiewicz S. Electroanalysis of Apocynin Part 2: Investigations on a Boron-Doped Diamond Electrode in Aqueous Buffered Solutions. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2044. [PMID: 40363547 PMCID: PMC12072782 DOI: 10.3390/ma18092044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
In this study, the voltammetric behavior of apocynin on a boron-doped diamond electrode in a phosphate buffer (pH 7.3) has been reported for the first time. The oxidation process is quasi-reversible, diffusion-controlled, and involves one electron and one proton. The product of the electrode reaction is an unstable radical that undergoes successive chemical transformations near the working electrode. The proposed mechanism of this process can be described as EqCi and served as the basis for the development of a new voltammetric method for determining apocynin in natural samples. The analytical signal was the anodic peak on DPV curves at a potential of 0.605 V vs. Ag/AgCl. A linear response was observed in the concentration range of 0.213-27.08 mg L-1. The estimated LOD and LOQ values were 0.071 and 0.213 mg L-1, respectively. The effectiveness of the method was demonstrated both in control determinations and in the analysis of the dietary supplement. This procedure is simple, fast, sensitive, selective, and requires no complicated sample preparation, which is limited only to a simple extraction with ethanol. The low consumption of non-toxic reagents makes it environmentally friendly. To the best of our knowledge, this is the first presentation of a voltammetric procedure to determine this analyte studied in a phosphate buffer solution on a boron-doped diamond electrode. It can also be easily adapted to determine other phenolic compounds with antioxidant properties in various matrices.
Collapse
Affiliation(s)
- Agata Skorupa
- Institute of Chemistry, Jan Kochanowski University, 7 Uniwersytecka St., PL-25406 Kielce, Poland; (M.J.); (S.M.)
| | | | | |
Collapse
|
3
|
Martin LJ, Koh SJ, Price A, Park D, Kim BW. Nuclear Localization of Human SOD1 in Motor Neurons in Mouse Model and Patient Amyotrophic Lateral Sclerosis: Possible Links to Cholinergic Phenotype, NADPH Oxidase, Oxidative Stress, and DNA Damage. Int J Mol Sci 2024; 25:9106. [PMID: 39201793 PMCID: PMC11354607 DOI: 10.3390/ijms25169106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease that causes degeneration of motor neurons (MNs) and paralysis. ALS can be caused by mutations in the gene that encodes copper/zinc superoxide dismutase (SOD1). SOD1 is known mostly as a cytosolic antioxidant protein, but SOD1 is also in the nucleus of non-transgenic (tg) and human SOD1 (hSOD1) tg mouse MNs. SOD1's nuclear presence in different cell types and subnuclear compartmentations are unknown, as are the nuclear functions of SOD1. We examined hSOD1 nuclear localization and DNA damage in tg mice expressing mutated and wildtype variants of hSOD1 (hSOD1-G93A and hSOD1-wildtype). We also studied ALS patient-derived induced pluripotent stem (iPS) cells to determine the nuclear presence of SOD1 in undifferentiated and differentiated MNs. In hSOD1-G93A and hSOD1-wildtype tg mice, choline acetyltransferase (ChAT)-positive MNs had nuclear hSOD1, but while hSOD1-wildtype mouse MNs also had nuclear ChAT, hSOD1-G93A mouse MNs showed symptom-related loss of nuclear ChAT. The interneurons had preserved parvalbumin nuclear positivity in hSOD1-G93A mice. hSOD1-G93A was seen less commonly in spinal cord astrocytes and, notably, oligodendrocytes, but as the disease emerged, the oligodendrocytes had increased mutant hSOD1 nuclear presence. Brain and spinal cord subcellular fractionation identified mutant hSOD1 in soluble nuclear extracts of the brain and spinal cord, but mutant hSOD1 was concentrated in the chromatin nuclear extract only in the spinal cord. Nuclear extracts from mutant hSOD1 tg mouse spinal cords had altered protein nitration, footprinting peroxynitrite presence, and the intact nuclear extracts had strongly increased superoxide production as well as the active NADPH oxidase marker, p47phox. The comet assay showed that MNs from hSOD1-G93A mice progressively (6-14 weeks of age) accumulated DNA single-strand breaks. Ablation of the NCF1 gene, encoding p47phox, and pharmacological inhibition of NADPH oxidase with systemic treatment of apocynin (10 mg/kg, ip) extended the mean lifespan of hSOD1-G93A mice by about 25% and mitigated genomic DNA damage progression. In human postmortem CNS, SOD1 was found in the nucleus of neurons and glia; nuclear SOD1 was increased in degenerating neurons in ALS cases and formed inclusions. Human iPS cells had nuclear SOD1 during directed differentiation to MNs, but mutant SOD1-expressing cells failed to establish wildtype MN nuclear SOD1 levels. We conclude that SOD1 has a prominent nuclear presence in the central nervous system, perhaps adopting aberrant contexts to participate in ALS pathobiology.
Collapse
Affiliation(s)
- Lee J. Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Shannon J. Koh
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
- Texas Health Presbyterian Hospital, Dallas, TX 75231, USA
| | - Antionette Price
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
| | - Dongseok Park
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
| | - Byung Woo Kim
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| |
Collapse
|
4
|
Sridhar A, DeSantiago J, Chen H, Pavel MA, Ly O, Owais A, Barney M, Jousma J, Nukala SB, Abdelhady K, Massad M, Rizkallah LE, Ong SG, Rehman J, Darbar D. Modulation of NOX2 causes obesity-mediated atrial fibrillation. J Clin Invest 2024; 134:e175447. [PMID: 39146015 PMCID: PMC11405042 DOI: 10.1172/jci175447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Obesity is linked to an increased risk of atrial fibrillation (AF) via increased oxidative stress. While NADPH oxidase 2 (NOX2), a major source of oxidative stress and reactive oxygen species (ROS) in the heart, predisposes to AF, the underlying mechanisms remain unclear. Here, we studied NOX2-mediated ROS production in obesity-mediated AF using Nox2-knockout mice and mature human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs). Diet-induced obesity (DIO) mice and hiPSC-aCMs treated with palmitic acid (PA) were infused with a NOX blocker (apocynin) and a NOX2-specific inhibitor, respectively. We showed that NOX2 inhibition normalized atrial action potential duration and abrogated obesity-mediated ion channel remodeling with reduced AF burden. Unbiased transcriptomics analysis revealed that NOX2 mediates atrial remodeling in obesity-mediated AF in DIO mice, PA-treated hiPSC-aCMs, and human atrial tissue from obese individuals by upregulation of paired-like homeodomain transcription factor 2 (PITX2). Furthermore, hiPSC-aCMs treated with hydrogen peroxide, a NOX2 surrogate, displayed increased PITX2 expression, establishing a mechanistic link between increased NOX2-mediated ROS production and modulation of PITX2. Our findings offer insights into possible mechanisms through which obesity triggers AF and support NOX2 inhibition as a potential novel prophylactic or adjunctive therapy for patients with obesity-mediated AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jalees Rehman
- Division of Cardiology
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Dawood Darbar
- Division of Cardiology
- Department of Medicine, Jesse Brown Veterans Administration, Chicago, Illinois, USA
| |
Collapse
|
5
|
Michalkiewicz S, Skorupa A, Jakubczyk M, Bębacz K. Application of a Carbon Fiber Microelectrode as a Sensor for Apocynin Electroanalysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1593. [PMID: 38612107 PMCID: PMC11012570 DOI: 10.3390/ma17071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
In this study, a carbon fiber microelectrode (CF) was applied for the investigation of the electrochemical behavior of the natural antioxidant, apocynin (APO). Given the limited solubility of APO in water, a mixture of anhydrous acetic acid (AcH) with 20%, v/v acetonitrile (AN) and 0.1 mol L-1 sodium acetate (AcNa) was used. The electrochemical properties of APO were examined through linear sweep voltammetry (LSV), differential pulse voltammetry (DPV), and cyclic voltammetry (CV). The anodic oxidation of APO, which is the basis of the method used, proved to be diffusion-controlled and proceeded with a two-electron and one proton exchange. Both radicals and radical cations, arising from the first and second step of electrode reactions, respectively, underwent subsequent chemical transformations to yield more stable final products (EqCiEiCi mechanism). Using optimized DPV conditions, the anodic peak current of APO at a potential of 0.925 V vs. Ag/AgCl showed a good linear response within the concentration range of 2.7 × 10-6-2.6 × 10-4 mol L-1. The detection and quantification limits were determined as 8.9 × 10-7 and 2.7 × 10-6 mol L-1, respectively. The developed DPV method enabled the successful determination of APO in herbal extracts and in dietary supplements. It should be noted that this is the first method to be used for voltammetric determination of APO.
Collapse
Affiliation(s)
- Slawomir Michalkiewicz
- Institute of Chemistry, Jan Kochanowski University, PL-25406 Kielce, Poland; (A.S.); (M.J.)
| | - Agata Skorupa
- Institute of Chemistry, Jan Kochanowski University, PL-25406 Kielce, Poland; (A.S.); (M.J.)
| | - Magdalena Jakubczyk
- Institute of Chemistry, Jan Kochanowski University, PL-25406 Kielce, Poland; (A.S.); (M.J.)
| | | |
Collapse
|
6
|
Pinilla-González V, Montecinos-Barrientos B, Martin-Kommer C, Chichiarelli S, Saso L, Rodrigo R. Exploring antioxidant strategies in the pathogenesis of ALS. Open Life Sci 2024; 19:20220842. [PMID: 38585631 PMCID: PMC10997151 DOI: 10.1515/biol-2022-0842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
The central nervous system is essential for maintaining homeostasis and controlling the body's physiological functions. However, its biochemical characteristics make it highly vulnerable to oxidative damage, which is a common factor in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). ALS is a leading cause of motor neuron disease, characterized by a rapidly progressing and incurable condition. ALS often results in death from respiratory failure within 3-5 years from the onset of the first symptoms, underscoring the urgent need to address this medical challenge. The aim of this study is to present available data supporting the role of oxidative stress in the mechanisms underlying ALS and to discuss potential antioxidant therapies currently in development. These therapies aim to improve the quality of life and life expectancy for patients affected by this devastating disease.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | | | - Clemente Martin-Kommer
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185Rome, Italy
| | - Ramón Rodrigo
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| |
Collapse
|
7
|
Cunha-Oliveira T, Montezinho L, Simões RF, Carvalho M, Ferreiro E, Silva FSG. Mitochondria: A Promising Convergent Target for the Treatment of Amyotrophic Lateral Sclerosis. Cells 2024; 13:248. [PMID: 38334639 PMCID: PMC10854804 DOI: 10.3390/cells13030248] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review covers several key areas related to mitochondria in ALS, including impaired mitochondrial function, mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism, mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport, and apoptosis. This review also highlights preclinical and clinical studies that have investigated various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mitochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine, and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understanding of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS holds promise for the development of novel treatment strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana Montezinho
- Center for Investigation Vasco da Gama (CIVG), Escola Universitária Vasco da Gama, 3020-210 Coimbra, Portugal;
| | - Rui F. Simões
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Marcelo Carvalho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Filomena S. G. Silva
- CNC—Center for Neuroscience and Cell Biology, CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Mitotag Lda, Biocant Park, 3060-197 Cantanhede, Portugal
| |
Collapse
|
8
|
Kusama-Eguchi K, Tokui Y, Minoura A, Yanai Y, Hirose D, Furukawa M, Kosuge Y, Miura M, Ohkoshi E, Makino M, Minagawa K, Matsuzaki K, Ogawa Y, Watanabe K, Ohsaki A. 2(3H)-Dihydrofranolactone metabolites from Pleosporales sp. NUH322 as anti-amyotrophic lateral sclerosis drugs. J Nat Med 2024; 78:146-159. [PMID: 37804412 DOI: 10.1007/s11418-023-01751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motor disease with limited treatment options. A domestic fungal extract library was screened using three assays related to the pathophysiology of ALS with the aim of developing a novel ALS drug. 2(3H)-dihydrofuranolactones 1 and 2, and five known compounds 3-7 were isolated from Pleosporales sp. NUH322 culture media, and their protective activity against the excitotoxicity of β-N-oxalyl-L-α,β-diaminopropionic acid (ODAP), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamatergic agonist, was evaluated under low mitochondrial glutathione levels induced by ethacrynic acid (EA) and low sulfur amino acids using our developed ODAP-EA assay. Additional assays evaluated the recovery from cytotoxicity caused by transfected SOD1-G93A, an ALS-causal gene, and the inhibitory effect against reactive oxygen species (ROS) elevation. The structures of 1 and 2 were elucidated using various spectroscopic methods. We synthesized 1 from D-ribose, and confirmed the absolute structure. Isolated and synthesized 1 displayed higher ODAP-EA activities than the extract and represented its activity. Furthermore, 1 exhibited protective activity against SOD1-G93A-induced toxicity. An ALS mouse model, SOD1-G93A, of both sexes, was treated orally with 1 at pre- and post-symptomatic stages. The latter treatment significantly extended their lifespan (p = 0.03) and delayed motor deterioration (p = 0.001-0.01). Our result suggests that 1 is a promising lead compound for the development of ALS drugs with a new spectrum of action targeting both SOD1-G93A proteopathy and excitotoxicity through its action on the AMPA-type glutamatergic receptor.
Collapse
Affiliation(s)
- Kuniko Kusama-Eguchi
- Department of Chemistry, College of Humanities and Science, Ninon University, Setagaya-Ku, Tokyo, 156-8550, Japan.
- Laboratory of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan.
- Laboratory of Medical Microbiology, School of Pharmacy, Nihon University. Funabashi, Chiba, 274-8555, Japan.
| | - Yuki Tokui
- Department of Chemistry, College of Humanities and Science, Ninon University, Setagaya-Ku, Tokyo, 156-8550, Japan
| | - Ai Minoura
- Laboratory of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Yuta Yanai
- Department of Chemistry, College of Humanities and Science, Ninon University, Setagaya-Ku, Tokyo, 156-8550, Japan
- Laboratory of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Dai Hirose
- Laboratory of Medical Microbiology, School of Pharmacy, Nihon University. Funabashi, Chiba, 274-8555, Japan
| | - Megumi Furukawa
- Laboratory of Pharmacognosy, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Motofumi Miura
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Emika Ohkoshi
- Department of Natural Products Chemistry, Faculty of Pharmaceutical Sciences, Aomori University, Aomori, Aomori, 030-0943, Japan
| | - Mitsuko Makino
- Laboratory of Pharmacognosy, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Kimino Minagawa
- Laboratory of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Keiichi Matsuzaki
- Laboratory of Pharmacognosy, School of Pharmacy, Nihon University, Funabashi, Chiba, 274-8555, Japan
| | - Yoshio Ogawa
- Laboratory of Medical Microbiology, School of Pharmacy, Nihon University. Funabashi, Chiba, 274-8555, Japan
| | - Kazuko Watanabe
- Laboratory of Medical Microbiology, School of Pharmacy, Nihon University. Funabashi, Chiba, 274-8555, Japan
| | - Ayumi Ohsaki
- Department of Chemistry, College of Humanities and Science, Ninon University, Setagaya-Ku, Tokyo, 156-8550, Japan.
| |
Collapse
|
9
|
Zilberter Y, Tabuena DR, Zilberter M. NOX-induced oxidative stress is a primary trigger of major neurodegenerative disorders. Prog Neurobiol 2023; 231:102539. [PMID: 37838279 PMCID: PMC11758986 DOI: 10.1016/j.pneurobio.2023.102539] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Neurodegenerative diseases (NDDs) causing cognitive impairment and dementia are difficult to treat due to the lack of understanding of primary initiating factors. Meanwhile, major sporadic NDDs share many risk factors and exhibit similar pathologies in their early stages, indicating the existence of common initiation pathways. Glucose hypometabolism associated with oxidative stress is one such primary, early and shared pathology, and a likely major cause of detrimental disease-associated cascades; targeting this common pathology may therefore be an effective preventative strategy for most sporadic NDDs. However, its exact cause and trigger remain unclear. Recent research suggests that early oxidative stress caused by NADPH oxidase (NOX) activation is a shared initiating mechanism among major sporadic NDDs and could prove to be the long-sought ubiquitous NDD trigger. We focus on two major NDDs - Alzheimer's disease (AD) and Parkinson's disease (PD), as well as on acquired epilepsy which is an increasingly recognized comorbidity in NDDs. We also discuss available data suggesting the relevance of the proposed mechanisms to other NDDs. We delve into the commonalities among these NDDs in neuroinflammation and NOX involvement to identify potential therapeutic targets and gain a deeper understanding of the underlying causes of NDDs.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Dennis R Tabuena
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
| |
Collapse
|
10
|
Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants (Basel) 2023; 12:antiox12020517. [PMID: 36830075 PMCID: PMC9952099 DOI: 10.3390/antiox12020517] [Citation(s) in RCA: 210] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Neurodegenerative disorders constitute a substantial proportion of neurological diseases with significant public health importance. The pathophysiology of neurodegenerative diseases is characterized by a complex interplay of various general and disease-specific factors that lead to the end point of neuronal degeneration and loss, and the eventual clinical manifestations. Oxidative stress is the result of an imbalance between pro-oxidant species and antioxidant systems, characterized by an elevation in the levels of reactive oxygen and reactive nitrogen species, and a reduction in the levels of endogenous antioxidants. Recent studies have increasingly highlighted oxidative stress and associated mitochondrial dysfunction to be important players in the pathophysiologic processes involved in neurodegenerative conditions. In this article, we review the current knowledge of the general effects of oxidative stress on the central nervous system, the different specific routes by which oxidative stress influences the pathophysiologic processes involved in Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis and Huntington's disease, and how oxidative stress may be therapeutically reversed/mitigated in order to stall the pathological progression of these neurodegenerative disorders to bring about clinical benefits.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 5116, PMB, Nigeria
| | - Michelle B. Gerke-Duncan
- Education Innovation, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
11
|
Fang J, Sheng R, Qin ZH. NADPH Oxidases in the Central Nervous System: Regional and Cellular Localization and the Possible Link to Brain Diseases. Antioxid Redox Signal 2021; 35:951-973. [PMID: 34293949 DOI: 10.1089/ars.2021.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Significance: The significant role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) in signal transduction is mediated by the production of reactive oxygen species (ROS), especially in the central nervous system (CNS). The pathogenesis of some neurologic and psychiatric diseases is regulated by ROS, acting as a second messenger or pathogen. Recent Advances: In the CNS, the involvement of Nox-derived ROS has been implicated in the regulation of multiple signals, including cell survival/apoptosis, neuroinflammation, migration, differentiation, proliferation, and synaptic plasticity, as well as the integrity of the blood/brain barrier. In these processes, the intracellular signals mediated by the members of the Nox family vary among different tissues. The present review illuminates the regions and cellular, subcellular localization of Nox isoforms in the brain, the signal transduction, and the role of NOX enzymes in pathophysiology, respectively. Critical Issues: Different signal transduction cascades are coupled to ROS derived from various Nox homologues with varying degrees. Therefore, a critical issue worth noting is the varied role of the homologues of NOX enzymes in different signaling pathways and also they mediate different phenotypes in the diverse pathophysiological condition. This substantiates the effectiveness of selective Nox inhibitors in the CNS. Future Directions: Further investigation to elucidate the role of various homologues of NOX enzymes in acute and chronic brain diseases and signaling mechanisms, and the development of more specific NOX inhibitors for the treatment of CNS disease are urgently needed. Antioxid. Redox Signal. 35, 951-973.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Abstract
Apocynin is a naturally occurring acetophenone, found in the roots of Apocynum cannabinum and Picrorhiza kurroa. Various chemical and pharmaceutical modifications have been carried out to enhance the absorption and duration of action of apocynin, like, formulation of chitosan-based apocynin-loaded solid lipid nanoparticles, chitosan-oligosaccharide based nanoparticles, and biodegradable polyanhydride nanoparticles. Apocynin has been subjected to a wide range of experimental screening and has proved to be useful for amelioration of a variety of disorders, like diabetic complications, neurodegeneration, cardiovascular disorders, lung cancer, hepatocellular cancer, pancreatic cancer, and pheochromocytoma. Apocynin has been primarily reported as an NADPH oxidase (NOX) inhibitor and prevents translocation of its p47phox subunit to the plasma membrane, observed in neurodegeneration and hypertension. However, recent studies highlight its off-target effects that it is able to function as a scavenger of non-radical oxidant species, which is relevant for its activity against NOX 4 mediated production of hydrogen peroxide. Additionally, apocynin has shown inhibition of eNOS-dependent superoxide production in diabetic cardiomyopathy, reduction of NLRP3 activation and TGFβ/Smad signaling in diabetic nephropathy, diminished VEGF expression and decreased retinal NF-κB activation in diabetic retinopathy, inhibition of P38/MAPK/Caspase3 pathway in pheochromocytoma, inhibition of AKT-GSK3β and ERK1/2 pathways in pancreatic cancer, and decreased FAK/PI3K/Akt signaling in hepatocellular cancer. This review aims to discuss the pharmacokinetics and mechanisms of the pharmacological actions of apocynin.
Collapse
Affiliation(s)
- Shreya R Savla
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ankit P Laddha
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
13
|
Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5021694. [PMID: 33274002 PMCID: PMC7683149 DOI: 10.1155/2020/5021694] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease or Charcot disease, is a fatal neurodegenerative disease that affects motor neurons (MNs) and leads to death within 2–5 years of diagnosis, without any effective therapy available. Although the pathological mechanisms leading to ALS are still unknown, a wealth of evidence indicates that an excessive reactive oxygen species (ROS) production associated with an inefficient antioxidant defense represents an important pathological feature in ALS. Substantial evidence indicates that oxidative stress (OS) is implicated in the loss of MNs and in mitochondrial dysfunction, contributing decisively to neurodegeneration in ALS. Although the modulation of OS represents a promising approach to protect MNs from degeneration, the fact that several antioxidants with beneficial effects in animal models failed to show any therapeutic benefit in patients raises several questions that should be analyzed. Using specific queries for literature search on PubMed, we review here the role of OS-related mechanisms in ALS, including the involvement of altered mitochondrial function with repercussions in neurodegeneration. We also describe antioxidant compounds that have been mostly tested in preclinical and clinical trials of ALS, also describing their respective mechanisms of action. While the description of OS mechanism in the different mutations identified in ALS has as principal objective to clarify the contribution of OS in ALS, the description of positive and negative outcomes for each antioxidant is aimed at paving the way for novel opportunities for intervention. In conclusion, although antioxidant strategies represent a very promising approach to slow the progression of the disease, it is of utmost need to invest on the characterization of OS profiles representative of each subtype of patient, in order to develop personalized therapies, allowing to understand the characteristics of antioxidants that have beneficial effects on different subtypes of patients.
Collapse
|
14
|
Cognitive enhancing effect of diapocynin in D-galactose-ovariectomy-induced Alzheimer's-like disease in rats: Role of ERK, GSK-3β, and JNK signaling. Toxicol Appl Pharmacol 2020; 398:115028. [DOI: 10.1016/j.taap.2020.115028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
|
15
|
Joseph E, Villalobos-Acosta DMÁ, Torres-Ramos MA, Farfán-García ED, Gómez-López M, Miliar-García Á, Fragoso-Vázquez MJ, García-Marín ID, Correa-Basurto J, Rosales-Hernández MC. Neuroprotective Effects of Apocynin and Galantamine During the Chronic Administration of Scopolamine in an Alzheimer's Disease Model. J Mol Neurosci 2019; 70:180-193. [PMID: 31768942 DOI: 10.1007/s12031-019-01426-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is one of the most complicated neurodegenerative diseases, and several hypotheses have been associated with its development and progression, such as those involving glucose hypometabolism, the cholinergic system, calcium imbalance, inflammation, oxidative imbalance, microtubule instability, and the amyloid cascade, several of which are related to oxidative stress (free radical generation), which contributes to neuronal death. Therefore, several efforts have been made to establish a sporadic AD model that takes into account these hypotheses. One model that replicates the increase in amyloid beta (Aβ) and oxidative stress in vivo is the scopolamine model. In the present work, the chronic administration (6 weeks) of scopolamine was used to analyze the neuroprotective effects of apocynin and galantamine. The results showed that scopolamine induced cognitive impairment, which was evaluated 24 h after the final dose was administered. In addition, after scopolamine administration, the Aβ and superoxide anion levels were increased, and NADPH oxidase 2 (NOX2), nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa B (NFkB) genes were overexpressed. These effects were not observed when either apocynin or galantamine was administered during the last 3 weeks of scopolamine treatment, and although the results from both molecules were related to lower Aβ production and, consequently, lower superoxide anion production, they were likely realized through different pathways. That is, both apocynin and galantamine diminished NADPH oxidase expression, but their effects on transcription factor expression differed. Moreover, experiments in silico showed that galantamine did not interact with the active site of beta secretase, whereas diapocynin, an apocynin metabolite, interacted with the beta-site APP-cleaving enzyme (BACE1) at the catalytic site.
Collapse
Affiliation(s)
- Eliezer Joseph
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, México
| | - Daniel Miguel Ángel Villalobos-Acosta
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, México
| | - Mónica Adriana Torres-Ramos
- Unidad Periférica de Neurociencias, Facultad de Medicina UNAM, Instituto Nacional de Neurología y Neurocirugía, MVS-SSA, Insurgentes sur 3877, La Fama, Tlalpan, 14269, México City, México
| | - Eunice Dalet Farfán-García
- Departamento de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Modesto Gómez-López
- Laboratorio de biología molecular, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Ángel Miliar-García
- Laboratorio de biología molecular, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, México
| | - Manuel Jonathan Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, México City, México
| | - Iohanan Daniel García-Marín
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, México
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, México City, México
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340, México City, México.
| |
Collapse
|
16
|
Barua S, Kim JY, Yenari MA, Lee JE. The role of NOX inhibitors in neurodegenerative diseases. IBRO Rep 2019; 7:59-69. [PMID: 31463415 PMCID: PMC6709343 DOI: 10.1016/j.ibror.2019.07.1721] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is a key player in both chronic and acute brain disease due to the higher metabolic demand of the brain. Among the producers of free radicals, NADPH-oxidase (NOX) is a major contributor to oxidative stress in neurological disorders. In the brain, the superoxide produced by NOX is mainly found in leukocytes. However, recent studies have reported that it can be found in several other cell types. NOX has been reported to regulate neuronal signaling, memory processing, and central cardiovascular homeostasis. However, overproduction of NOX can contribute to neurotoxicity, CNS degeneration, and cardiovascular disorders. Regarding the above functions, NOX has been shown to play a crucial role in chronic CNS diseases like Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), and in acute CNS disorders such as stroke, spinal cord injury, traumatic brain injury (TBI), and related cerebrovascular diseases. NOX is a multi-subunit complex consisting of two membrane-associated and four cytosolic subunits. Thus, in recent years, inhibition of NOX activity has drawn a great deal of attention from researchers in the field of treating chronic and acute CNS disorders and preventing secondary complications. Mounting evidence has shown that NOX inhibition is neuroprotective and that inhibiting NOX in circulating immune cells can improve neurological disease conditions. This review summarizes recent studies on the therapeutic effects and pharmacological strategies regarding NOX inhibitors in chronic and acute brain diseases and focuses on the hurdles that should be overcome before their clinical implementation.
Collapse
Affiliation(s)
- Sumit Barua
- Department of Anatomy, College of Medicine, Yonsei University, Republic of Korea
| | - Jong Youl Kim
- Department of Anatomy, College of Medicine, Yonsei University, Republic of Korea
| | - Midori A Yenari
- Department of Neurology, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, 4150 Clement Street, MS 127, San Francisco, CA, 94121, United States
| | - Jong Eun Lee
- Department of Anatomy, College of Medicine, Yonsei University, Republic of Korea.,Brain Korea 21, PLUS Project for Medical Science, College of Medicine, Yonsei University, Republic of Korea.,Brain Research Institute, College of Medicine, Yonsei University, Republic of Korea
| |
Collapse
|
17
|
Lv H, Zhu C, Wu R, Ni H, Lian J, Xu Y, Xia Y, Shi G, Li Z, Caldwell RB, Caldwell RW, Yao L, Chen Y. Chronic mild stress induced anxiety-like behaviors can Be attenuated by inhibition of NOX2-derived oxidative stress. J Psychiatr Res 2019; 114:55-66. [PMID: 31039481 DOI: 10.1016/j.jpsychires.2019.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Chronic stress-induced anxiety disorder is a highly-prevalent, modern social disease in which oxidative stress plays an important role. It is necessary to determine the underlying mechanisms governing this disorder to establish an effective treatment target for anxiety disorders. In this study, we examined the behavioral changes in mice subjected to chronic mild stress (CMS). We found that CMS exposure leads to anxiety-like phenotypes and increased levels of oxidative stress in the ventral hippocampus of mice. Furthermore, CMS increased the excitatory synaptic transmission of pyramidal cells in the ventral CA1 (vCA1). Administration of 4-hydroxy-3-methoxy-acetophenone (apocynin), an inhibitor of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, clearly ameliorated the changes induced by CMS exposure. In addition, our results of behavioral tests and analyses of reactive oxygen species (ROS) using NOX2-deficient mice indicate that CMS-induced enhanced oxidative stress level is primarily caused by the increased expression of NOX2. NOX2-derived oxidative stress can serve as a target for anxiety therapy led by chronic stress.
Collapse
Affiliation(s)
- Hang Lv
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chuan'an Zhu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ruolin Wu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hui Ni
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiating Lian
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yunlong Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yucen Xia
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Guoqi Shi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhixing Li
- Department of Soft Tissue Traumatology, Fourth Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Ruth B Caldwell
- Vascular Biology Centre, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Robert William Caldwell
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Lin Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
D'Ambrosi N, Cozzolino M, Carrì MT. Neuroinflammation in Amyotrophic Lateral Sclerosis: Role of Redox (dys)Regulation. Antioxid Redox Signal 2018; 29:15-36. [PMID: 28895473 DOI: 10.1089/ars.2017.7271] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Amyotrophic lateral sclerosis (ALS) is due to degeneration of upper and lower motor neurons in the anterior horn of the spinal cord and in the motor cortex. Mechanisms leading to motor neuron death are complex and currently the disease is untreatable. Recent Advances: Work in genetic models of ALS indicates that an imbalance in the cross talk that physiologically exists between motor neurons and the surrounding cells is eventually detrimental to motor neurons. In particular, the cascade of events collectively known as neuroinflammation and mainly characterized by a reactive phenotype of astrocytes and microglia, moderate infiltration of peripheral immune cells, and elevated levels of inflammatory mediators has been consistently observed in motor regions of the central nervous system (CNS) in sporadic and familial ALS, constituting a hallmark of the disease. Resident glial cells and infiltrated immune cells are considered among the major producers of reactive species of oxygen and nitrogen in pathological conditions of the CNS, including motor neuron diseases. CRITICAL ISSUES The timing and exact role of oxidative stress-mediated neuroinflammation and damage to motor neurons in ALS are still not fully elucidated. FUTURE DIRECTIONS It is clear that a major challenge in the next future will be to envisage effective strategies to modulate the neuroinflammatory response in the symptomatic stage of disease, to prevent progression of neurodegeneration through the propagation of oxidative damage. Antioxid. Redox Signal. 29, 15-36.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- 1 Department of Biology, University of Rome Tor Vergata , Rome, Italy
| | - Mauro Cozzolino
- 2 Institute of Translational Pharmacology , CNR, Rome, Italy
| | - Maria Teresa Carrì
- 1 Department of Biology, University of Rome Tor Vergata , Rome, Italy .,3 Fondazione Santa Lucia , IRCCS, Rome, Italy
| |
Collapse
|
19
|
Okamura T, Okada M, Kikuchi T, Wakizaka H, Zhang MR. Kinetics and metabolism of apocynin in the mouse brain assessed with positron-emission tomography. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 38:84-89. [PMID: 29425658 DOI: 10.1016/j.phymed.2017.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/01/2017] [Accepted: 05/21/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Apocynin is a constituent of the medicinal herb Picrorhiza kurroa. It is an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase. This compound shows potential anti-inflammatory and antioxidant effects and has been tested as a neuroprotectant in many animal models of brain disease. In such studies, understanding the brain kinetics of apocynin would be important for interpreting its in vivo efficacy; however, little has been reported on the kinetics of apocynin in the brain. PURPOSE The purpose of this study is to investigate the kinetics and metabolism of apocynin in the brain of mice. STUDY DESIGN The kinetics and metabolism of apocynin were examined using [11C]apocynin and positron-emission tomography (PET). METHODS In vivo PET scanning was performed in mice for 20min after intraperitoneal administration of an apocynin solution containing [11C]apocynin. Metabolites in the brain were analyzed using high-performance liquid chromatography. The doses of apocynin used ranged from <1.5 µg/kg (tracer dose) to 100mg/kg. RESULTS Brain radioactivity during the period of 0 to 20min after administration was negligible at the tracer dose and extremely low at the dose of 10mg/kg. Moderate radioactivity was observed in the brain a few minutes after administration at the doses of 25 and 50mg/kg and rapidly decreased thereafter. At a dose of 100mg/kg, [11C]apocynin resulted in a high uptake of radioactivity followed by a gradual washout. In contrast to the brain, a clear dose-dependent increase in radioactivity was not observed in the blood. The fraction of the unchanged form in the brain decreased with time, and the degree of the reduction depended on apocynin doses: apocynin was rapidly metabolized in the brain at lower doses, whereas it was slowly decomposed at higher doses. On the basis of these data, the maximum apocynin concentrations in the brain were calculated to be 10 µM (10mg/kg), 49 µM (25mg/kg), 150 µM (50mg/kg), and 380 µM (100mg/kg). A metabolite observed in the brain was found to be apocynin glucuronide but not diapocynin, an active metabolite. CONCLUSION These results would be useful for an evaluation of the potential efficacy of apocynin as a neuroprotective agent.
Collapse
Affiliation(s)
- Toshimitsu Okamura
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Maki Okada
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Tatsuya Kikuchi
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Hidekatsu Wakizaka
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
20
|
Apocynin Prevents Abnormal Megakaryopoiesis and Platelet Activation Induced by Chronic Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9258937. [PMID: 29317986 PMCID: PMC5727790 DOI: 10.1155/2017/9258937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/24/2017] [Indexed: 12/14/2022]
Abstract
Environmental chronic stress (ECS) has been identified as a trigger of acute coronary syndromes (ACS). Changes in redox balance, enhanced reactive oxygen species (ROS) production, and platelet hyperreactivity were detected in both ECS and ACS. However, the mechanisms by which ECS predisposes to thrombosis are not fully understood. Here, we investigated the impact of ECS on platelet activation and megakaryopoiesis in mice and the effect of Apocynin in this experimental setting. ECS induced by 4 days of forced swimming stress (FSS) treatment predisposed to arterial thrombosis and increased oxidative stress (e.g., plasma malondialdehyde levels). Interestingly, Apocynin treatment prevented these alterations. In addition, FSS induced abnormal megakaryopoiesis increasing the number and the maturation state of bone marrow megakaryocytes (MKs) and affecting circulating platelets. In particular, a higher number of large and reticulated platelets with marked functional activation were detected after FSS. Apocynin decreased the total MK number and prevented their ability to generate ROS without affecting the percentage of CD42d+ cells, and it reduced the platelet hyperactivation in stressed mice. In conclusion, Apocynin restores the physiological megakaryopoiesis and platelet behavior, preventing the detrimental effect of chronic stress on thrombosis, suggesting its potential use in the occurrence of thrombosis associated with ECS.
Collapse
|
21
|
Sorce S, Stocker R, Seredenina T, Holmdahl R, Aguzzi A, Chio A, Depaulis A, Heitz F, Olofsson P, Olsson T, Duveau V, Sanoudou D, Skosgater S, Vlahou A, Wasquel D, Krause KH, Jaquet V. NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: What is the evidence? Free Radic Biol Med 2017; 112:387-396. [PMID: 28811143 DOI: 10.1016/j.freeradbiomed.2017.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 11/25/2022]
Abstract
Neurodegenerative disease are frequently characterized by microglia activation and/or leukocyte infiltration in the parenchyma of the central nervous system and at the molecular level by increased oxidative modifications of proteins, lipids and nucleic acids. NADPH oxidases (NOX) emerged as a novel promising class of pharmacological targets for the treatment of neurodegeneration due to their role in oxidant generation and presumably in regulating microglia activation. The unique function of NOX is the generation of superoxide anion (O2•-) and hydrogen peroxide (H2O2). However in the context of neuroinflammation, they present paradoxical features since O2•-/H2O2 generated by NOX and/or secondary reactive oxygen species (ROS) derived from O2•-/H2O2 can either lead to neuronal oxidative damage or resolution of inflammation. The role of NOX enzymes has been investigated in many models of neurodegenerative diseases by using either genetic or pharmacological approaches. In the present review we provide a critical assessment of recent findings related to the role of NOX in the CNS as well as how the field has advanced over the last 5 years. In particular, we focus on the data derived from the work of a consortium (Neurinox) funded by the European Commission's Programme 7 (FP7). We discuss the evidence gathered from animal models and human samples linking NOX expression/activity with neuroinflammation in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Creutzfeldt-Jakob disease as well as autoimmune demyelinating diseases like multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). We address the possibility to use measurement of the activity of the NOX2 isoform in blood samples as biomarker of disease severity and treatment efficacy in neurodegenerative disease. Finally we clarify key controversial aspects in the field of NOX, such as NOX cellular expression in the brain, measurement of NOX activity, impact of genetic deletion of NOX in animal models of neurodegeneration and specificity of NOX inhibitors.
Collapse
Affiliation(s)
- Silvia Sorce
- Neuropathology Institute, University of Zürich, Switzerland
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, and School of Medical Sciences, University of New South Wales, Australia
| | - Tamara Seredenina
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Rikard Holmdahl
- Section for Medical Inflammation research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | - Adriano Aguzzi
- Neuropathology Institute, University of Zürich, Switzerland
| | - Adriano Chio
- Department of Neuroscience, University of Torino, Italy
| | - Antoine Depaulis
- Grenoble Institut des Neurosciences, Inserm U1216 and Univ, Grenoble Alpes, F-38000 Grenoble, France
| | | | - Peter Olofsson
- Redoxis AB, Medicon Village, Lund, Sweden; Pronoxis AB, Medicon Village, Lund, Sweden
| | - Tomas Olsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | | | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sara Skosgater
- Arttic, 58A rue du Dessous des Berges, F-75013 Paris, France
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
22
|
McBean GJ, López MG, Wallner FK. Redox-based therapeutics in neurodegenerative disease. Br J Pharmacol 2017; 174:1750-1770. [PMID: 27477685 PMCID: PMC5446580 DOI: 10.1111/bph.13551] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 06/02/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022] Open
Abstract
This review describes recent developments in the search for effective therapeutic agents that target redox homeostasis in neurodegenerative disease. The disruption to thiol redox homeostasis in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis is discussed, together with the experimental strategies that are aimed at preventing, or at least minimizing, oxidative damage in these diseases. Particular attention is given to the potential of increasing antioxidant capacity by targeting the Nrf2 pathway, the development of inhibitors of NADPH oxidases that are likely candidates for clinical use, together with strategies to reduce nitrosative stress and mitochondrial dysfunction. We describe the shortcomings of compounds that hinder their progression to the clinic and evaluate likely avenues for future research. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- G J McBean
- School of Biomolecular and Biomedical Science, Conway InstituteUniversity College DublinDublinIreland
| | - M G López
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of MedicineUniversidad Autónoma de MadridMadridSpain
| | - F K Wallner
- Redoxis ABSweden and University of SkövdeSkövdeSweden
| |
Collapse
|
23
|
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12:7. [PMID: 28095923 PMCID: PMC5240251 DOI: 10.1186/s13024-017-0150-7] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a common denominator in the pathology of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, as well as in ischemic and traumatic brain injury. The brain is highly vulnerable to oxidative damage due to its high metabolic demand. However, therapies attempting to scavenge free radicals have shown little success. By shifting the focus to inhibit the generation of damaging free radicals, recent studies have identified NADPH oxidase as a major contributor to disease pathology. NADPH oxidase has the primary function to generate free radicals. In particular, there is growing evidence that the isoforms NOX1, NOX2, and NOX4 can be upregulated by a variety of neurodegenerative factors. The majority of recent studies have shown that genetic and pharmacological inhibition of NADPH oxidase enzymes are neuroprotective and able to reduce detrimental aspects of pathology following ischemic and traumatic brain injury, as well as in chronic neurodegenerative disorders. This review aims to summarize evidence supporting the role of NADPH oxidase in the pathology of these neurological disorders, explores pharmacological strategies of targeting this major oxidative stress pathway, and outlines obstacles that need to be overcome for successful translation of these therapies to the clinic.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Medical Drive, San Antonio, TX, 78229, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA.
| |
Collapse
|
24
|
de Oliveira JK, Ronik DFV, Ascari J, Mainardes RM, Khalil NM. A stability-indicating high performance liquid chromatography method to determine apocynin in nanoparticles. J Pharm Anal 2016; 7:129-133. [PMID: 29404028 PMCID: PMC5686858 DOI: 10.1016/j.jpha.2016.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/01/2016] [Accepted: 08/02/2016] [Indexed: 12/27/2022] Open
Abstract
In this study, we developed and validated a fast, specific, sensitive, precise and stability-indicating high performance liquid chromatography (HPLC) method to determine the drug apocynin in bovine serum albumin (BSA) nanoparticles. Chromatographic analyses were performed on an RP C18 column and using a photodiode array detector at a wavelength of 276 nm. Mobile phase consisted of a mixture of acetonitrile and 1% acetic acid (60:40, v/v), and it was eluted isocratically at a flow rate of 0.8 mL/min. The retention time of apocynin chromatographic peak was 1.65 min. The method was linear, precise, accurate and specific in the range of 5–100 μg/mL. The intra- and inter-day precisions presented relative standard deviation (RSD) values lower than 2%. The method was robust regarding changes in mobile phase proportion, but not for flow rate. Limits of detection and quantitation were 78 ng/mL and 238 ng/mL, respectively. Apocynin was exposed to acid and alkali hydrolysis, oxidation and visible light. The drug suffered mild degradation under acid and oxidation conditions and great degradation under alkali conditions. Light exposure did not degrade the drug. The method was successfully applied to determine the encapsulation efficiency of apocynin in BSA nanoparticles.
Collapse
Affiliation(s)
- Juliana Kovalczuk de Oliveira
- Department of Pharmacy, Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste, Rua Simeão Camargo Varela de Sá, 85040-080 Guarapuava, Brazil
| | - Débora Fernanda Veres Ronik
- Department of Pharmacy, Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste, Rua Simeão Camargo Varela de Sá, 85040-080 Guarapuava, Brazil
| | - Jociani Ascari
- Department of Biological Sciences, Universidade Tecnológica Federal do Paraná, Rua Cerejeiras S/N, 85892-000 Santa Helena, PR, Brazil
| | - Rubiana Mara Mainardes
- Department of Pharmacy, Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste, Rua Simeão Camargo Varela de Sá, 85040-080 Guarapuava, Brazil
| | - Najeh Maissar Khalil
- Department of Pharmacy, Laboratory of Pharmaceutical Nanotechnology, Universidade Estadual do Centro-Oeste, Rua Simeão Camargo Varela de Sá, 85040-080 Guarapuava, Brazil
| |
Collapse
|
25
|
Seredenina T, Nayernia Z, Sorce S, Maghzal GJ, Filippova A, Ling SC, Basset O, Plastre O, Daali Y, Rushing EJ, Giordana MT, Cleveland DW, Aguzzi A, Stocker R, Krause KH, Jaquet V. Evaluation of NADPH oxidases as drug targets in a mouse model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 2016; 97:95-108. [PMID: 27212019 DOI: 10.1016/j.freeradbiomed.2016.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/29/2016] [Accepted: 05/17/2016] [Indexed: 11/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by progressive loss of motor neurons, gliosis, neuroinflammation and oxidative stress. The aim of this study was to evaluate the involvement of NADPH oxidases (NOX) in the oxidative damage and progression of ALS neuropathology. We examined the pattern of NOX expression in spinal cords of patients and mouse models of ALS and analyzed the impact of genetic deletion of the NOX1 and 2 isoforms as well as pharmacological NOX inhibition in the SOD1(G93A) ALS mouse model. A substantial (10-60 times) increase of NOX2 expression was detected in three etiologically different ALS mouse models while up-regulation of some other NOX isoforms was model-specific. In human spinal cord samples, high NOX2 expression was detected in microglia. In contrast to previous publications, survival of SOD1(G93A) mice was not modified upon breeding with constitutive NOX1 and NOX2 deficient mice. As genetic deficiency of a single NOX isoform is not necessarily predictive of a pharmacological intervention, we treated SOD1(G93A) mice with broad-spectrum NOX inhibitors perphenazine and thioridazine. Both compounds reached in vivo CNS concentrations compatible with NOX inhibition and thioridazine significantly decreased superoxide levels in the spinal cord of SOD1(G93A) mice in vivo. Yet, neither perphenazine nor thioridazine prolonged survival. Thioridazine, but not perphenazine, dampened the increase of microglia markers in SOD1(G93A) mice. Thioridazine induced an immediate and temporary enhancement of motor performance (rotarod) but its precise mode of action needs further investigation. Additional studies using specific NOX inhibitors will provide further evidence on the relevance of NOX as drug targets for ALS and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Tamara Seredenina
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Zeynab Nayernia
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Ghassan J Maghzal
- Victor Chang Cardiac Research Institute, Vascular Biology Division, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Aleksandra Filippova
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Shuo-Chien Ling
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Physiology, National University of Singapore, Singapore
| | - Olivier Basset
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Olivier Plastre
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospital, Geneva, Switzerland
| | - Elisabeth J Rushing
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Maria T Giordana
- Department of Neuroscience, Medical School of the University of Turin, Italy
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Vascular Biology Division, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland; Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Medical School, University of Geneva, Switzerland.
| |
Collapse
|
26
|
Ghosh A, Langley MR, Harischandra DS, Neal ML, Jin H, Anantharam V, Joseph J, Brenza T, Narasimhan B, Kanthasamy A, Kalyanaraman B, Kanthasamy AG. Mitoapocynin Treatment Protects Against Neuroinflammation and Dopaminergic Neurodegeneration in a Preclinical Animal Model of Parkinson's Disease. J Neuroimmune Pharmacol 2016; 11:259-78. [PMID: 26838361 PMCID: PMC4995106 DOI: 10.1007/s11481-016-9650-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Mitochondrial dysfunction, oxidative stress and neuroinflammation have been implicated as key mediators contributing to the progressive degeneration of dopaminergic neurons in Parkinson's disease (PD). Currently, we lack a pharmacological agent that can intervene in all key pathological mechanisms, which would offer better neuroprotective efficacy than a compound that targets a single degenerative mechanism. Herein, we investigated whether mito-apocynin (Mito-Apo), a newly-synthesized and orally available derivative of apocynin that targets mitochondria, protects against oxidative damage, glial-mediated inflammation and nigrostriatal neurodegeneration in cellular and animal models of PD. Mito-Apo treatment in primary mesencephalic cultures significantly attenuated the 1-methyl-4-phenylpyridinium (MPP(+))-induced loss of tyrosine hydroxylase (TH)-positive neuronal cells and neurites. Mito-Apo also diminished MPP(+)-induced increases in glial cell activation and inducible nitric oxide synthase (iNOS) expression. Additionally, Mito-Apo decreased nitrotyrosine (3-NT) and 4-hydroxynonenol (4-HNE) levels in primary mesencephalic cultures. Importantly, we assessed the neuroprotective property of Mito-Apo in the MPTP mouse model of PD, wherein it restored the behavioral performance of MPTP-treated mice. Immunohistological analysis of nigral dopaminergic neurons and monoamine measurement further confirmed the neuroprotective effect of Mito-Apo against MPTP-induced nigrostriatal dopaminergic neuronal loss. Mito-Apo showed excellent brain bioavailability and also markedly attenuated MPTP-induced oxidative markers in the substantia nigra (SN). Furthermore, oral administration of Mito-Apo significantly suppressed MPTP-induced glial cell activation, upregulation of proinflammatory cytokines, iNOS and gp91phox in IBA1-positive cells of SN. Collectively, these results demonstrate that the novel mitochondria-targeted compound Mito-Apo exhibits profound neuroprotective effects in cellular and pre-clinical animal models of PD by attenuating oxidative damage and neuroinflammatory processes.
Collapse
Affiliation(s)
- Anamitra Ghosh
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Monica R Langley
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Dilshan S Harischandra
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew L Neal
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Joy Joseph
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Timothy Brenza
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | | | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
27
|
Affiliation(s)
- Fumito Endo
- Department of Neuroscience and Pathobiology; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology; Research Institute of Environmental Medicine; Nagoya University; Nagoya Japan
| |
Collapse
|
28
|
Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SOD(G93A) mice co-expressing the Copper-Chaperone-for-SOD. Neurobiol Dis 2016; 89:1-9. [PMID: 26826269 DOI: 10.1016/j.nbd.2016.01.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/30/2015] [Accepted: 01/23/2016] [Indexed: 11/24/2022] Open
Abstract
Over-expression of mutant copper, zinc superoxide dismutase (SOD) in mice induces ALS and has become the most widely used model of neurodegeneration. However, no pharmaceutical agent in 20 years has extended lifespan by more than a few weeks. The Copper-Chaperone-for-SOD (CCS) protein completes the maturation of SOD by inserting copper, but paradoxically human CCS causes mice co-expressing mutant SOD to die within two weeks of birth. Hypothesizing that co-expression of CCS created copper deficiency in spinal cord, we treated these pups with the PET-imaging agent CuATSM, which is known to deliver copper into the CNS within minutes. CuATSM prevented the early mortality of CCSxSOD mice, while markedly increasing Cu, Zn SOD protein in their ventral spinal cord. Remarkably, continued treatment with CuATSM extended the survival of these mice by an average of 18 months. When CuATSM treatment was stopped, these mice developed ALS-related symptoms and died within 3 months. Restoring CuATSM treatment could rescue these mice after they became symptomatic, providing a means to start and stop disease progression. All ALS patients also express human CCS, raising the hope that familial SOD ALS patients could respond to CuATSM treatment similarly to the CCSxSOD mice.
Collapse
|
29
|
Neuroinflammation in motor neuron disease. NAGOYA JOURNAL OF MEDICAL SCIENCE 2015; 77:537-49. [PMID: 26663933 PMCID: PMC4664586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increasing evidence suggests that the pathogenesis of neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) is not restricted to the neurons but attributed to the abnormal interactions of neurons and surrounding glial and lymphoid cells. These findings led to the concept of non-cell autonomous neurodegeneration. Neuroinflammation, which is mediated by activated glial cells and infiltrated lymphocytes and accompanied by the subsequent production of proinflammatory cytokines and neurotoxic or neuroprotective molecules, is characteristic to the pathology in ALS and is a key component for non-cell autonomous neurodegeneration. This review covers the involvement of microglia and astrocytes in the ALS mouse models and human ALS, and it also covers the deregulated pathways in motor neurons, which are involved in initiating the disease. Based on the cell-type specific pathomechanisms of motor neuron disease, targeting of neuroinflammation could lead to future therapeutic strategies for ALS and could be potentially applied to other neurodegenerative diseases.
Collapse
|
30
|
Diebold BA, Smith SM, Li Y, Lambeth JD. NOX2 As a Target for Drug Development: Indications, Possible Complications, and Progress. Antioxid Redox Signal 2015; 23:375-405. [PMID: 24512192 PMCID: PMC4545678 DOI: 10.1089/ars.2014.5862] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/08/2014] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE NOX2 is important for host defense, and yet is implicated in a large number of diseases in which inflammation plays a role in pathogenesis. These include acute and chronic lung inflammatory diseases, stroke, traumatic brain injury, and neurodegenerative diseases, including Alzheimer's and Parkinson's Diseases. RECENT ADVANCES Recent drug development programs have targeted several NOX isoforms that are implicated in a variety of diseases. The focus has been primarily on NOX4 and NOX1 rather than on NOX2, due, in part, to concerns about possible immunosuppressive side effects. Nevertheless, NOX2 clearly contributes to the pathogenesis of many inflammatory diseases, and its inhibition is predicted to provide a novel therapeutic approach. CRITICAL ISSUES Possible side effects that might arise from targeting NOX2 are discussed, including the possibility that such inhibition will contribute to increased infections and/or autoimmune disorders. The state of the field with regard to existing NOX2 inhibitors and targeted development of novel inhibitors is also summarized. FUTURE DIRECTIONS NOX2 inhibitors show particular promise for the treatment of inflammatory diseases, both acute and chronic. Theoretical side effects include pro-inflammatory and autoimmune complications and should be considered in any therapeutic program, but in our opinion, available data do not indicate that they are sufficiently likely to eliminate NOX2 as a drug target, particularly when weighed against the seriousness of many NOX2-related indications. Model studies demonstrating efficacy with minimal side effects are needed to encourage future development of NOX2 inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Becky A. Diebold
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M.E. Smith
- Department of Biology and Physics, Kennesaw State University, Kennesaw, Georgia
| | - Yang Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - J. David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
31
|
Contribution of reactive oxygen species to cerebral amyloid angiopathy, vasomotor dysfunction, and microhemorrhage in aged Tg2576 mice. Proc Natl Acad Sci U S A 2015; 112:E881-90. [PMID: 25675483 DOI: 10.1073/pnas.1414930112] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by deposition of amyloid β peptide (Aβ) within walls of cerebral arteries and is an important cause of intracerebral hemorrhage, ischemic stroke, and cognitive dysfunction in elderly patients with and without Alzheimer's Disease (AD). NADPH oxidase-derived oxidative stress plays a key role in soluble Aβ-induced vessel dysfunction, but the mechanisms by which insoluble Aβ in the form of CAA causes cerebrovascular (CV) dysfunction are not clear. Here, we demonstrate evidence that reactive oxygen species (ROS) and, in particular, NADPH oxidase-derived ROS are a key mediator of CAA-induced CV deficits. First, the NADPH oxidase inhibitor, apocynin, and the nonspecific ROS scavenger, tempol, are shown to reduce oxidative stress and improve CV reactivity in aged Tg2576 mice. Second, the observed improvement in CV function is attributed both to a reduction in CAA formation and a decrease in CAA-induced vasomotor impairment. Third, anti-ROS therapy attenuates CAA-related microhemorrhage. A potential mechanism by which ROS contribute to CAA pathogenesis is also identified because apocynin substantially reduces expression levels of ApoE-a factor known to promote CAA formation. In total, these data indicate that ROS are a key contributor to CAA formation, CAA-induced vessel dysfunction, and CAA-related microhemorrhage. Thus, ROS and, in particular, NADPH oxidase-derived ROS are a promising therapeutic target for patients with CAA and AD.
Collapse
|
32
|
Apolloni S, Fabbrizio P, Parisi C, Amadio S, Volonté C. Clemastine Confers Neuroprotection and Induces an Anti-Inflammatory Phenotype in SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2014; 53:518-531. [PMID: 25482048 DOI: 10.1007/s12035-014-9019-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Abstract
Mutations in the Cu(2+)/Zn(2+) superoxide dismutase 1 (SOD1) gene underlie 14-23 % of familial and 1-7 % of sporadic cases of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease characterized by a specific loss of motor neurons in the brain and spinal cord. Neuroinflammation and oxidative stress are emerging as key players in the pathogenesis of ALS, thus justifying the interest in glial cells and particularly microglia, in addition to motor neurons, as novel therapeutic approaches against ALS. Recently, histamine was proven to participate in the pathogenesis of neuroinflammatory and neurodegenerative diseases, and particularly, microglia was shown to be sensitive to the histamine challenge mainly through histamine H1 receptors. Clemastine is a first-generation and CNS-penetrant H1 receptor antagonist considered as a safe antihistamine compound that was shown to possess immune suppressive properties. In order to investigate if clemastine might find promising application in the treatment of ALS, in this work, we tested its action in the SOD1(G93A) mouse model which is extensively used in ALS preclinical studies. We demonstrated that chronic clemastine administration in SOD1(G93A) mice reduces microgliosis, modulates microglia-related inflammatory genes, and enhances motor neuron survival. Moreover, in vitro, clemastine is able to modify several activation parameters of SOD1(G93A) microglia, and particularly CD68 and arginase-1 expression, as well as phospho-ERK1/2 and NADPH oxidase 2 levels. Being clemastine a drug already employed in clinical practice, our results strongly encourage its further exploitation as a candidate for preclinical trials and a new modulator of neuroinflammation in ALS.
Collapse
Affiliation(s)
- Savina Apolloni
- Cellular Biology and Neurobiology Institute, CNR, Via del Fosso di Fiorano, 65, 00143, Rome, Italy.,Division Experimental Neuroscience, Santa Lucia Foundation, IRCCS,, Via del Fosso di Fiorano, 65, Rome, 00143, Italy
| | - Paola Fabbrizio
- Division Experimental Neuroscience, Santa Lucia Foundation, IRCCS,, Via del Fosso di Fiorano, 65, Rome, 00143, Italy
| | - Chiara Parisi
- Cellular Biology and Neurobiology Institute, CNR, Via del Fosso di Fiorano, 65, 00143, Rome, Italy
| | - Susanna Amadio
- Division Experimental Neuroscience, Santa Lucia Foundation, IRCCS,, Via del Fosso di Fiorano, 65, Rome, 00143, Italy
| | - Cinzia Volonté
- Cellular Biology and Neurobiology Institute, CNR, Via del Fosso di Fiorano, 65, 00143, Rome, Italy. .,Division Experimental Neuroscience, Santa Lucia Foundation, IRCCS,, Via del Fosso di Fiorano, 65, Rome, 00143, Italy.
| |
Collapse
|
33
|
D'Ambrosi N, Rossi S, Gerbino V, Cozzolino M. Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2014; 8:279. [PMID: 25249940 PMCID: PMC4157560 DOI: 10.3389/fncel.2014.00279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
Rac1 is a major player of the Rho family of small GTPases that controls multiple cell signaling pathways, such as the organization of cytoskeleton (including adhesion and motility), cell proliferation, apoptosis and activation of immune cells. In the nervous system, in particular, Rac1 GTPase plays a key regulatory function of both actin and microtubule cytoskeletal dynamics and thus it is central to axonal growth and stability, as well as dendrite and spine structural plasticity. Rac1 is also a crucial regulator of NADPH-dependent membrane oxidase (NOX), a prominent source of reactive oxygen species (ROS), thus having a central role in the inflammatory response and neurotoxicity mediated by microglia cells in the nervous system. As such, alterations in Rac1 activity might well be involved in the processes that give rise to Amyotrophic Lateral Sclerosis (ALS), a complex syndrome where cytoskeletal disturbances in motor neurons and redox alterations in the inflammatory compartment play pivotal and synergic roles in the final disease outcomes. Here we will discuss the genetic and mechanistic evidence indicating the relevance of Rac1 dysregulation in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Nadia D'Ambrosi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Simona Rossi
- National Research Council, Institute of Translational Pharmacology Rome, Italy ; Fondazione Santa Lucia IRCCS Rome, Italy
| | - Valeria Gerbino
- Fondazione Santa Lucia IRCCS Rome, Italy ; Department of Biology, Università di Roma Tor Vergata Rome, Italy
| | - Mauro Cozzolino
- National Research Council, Institute of Translational Pharmacology Rome, Italy
| |
Collapse
|
34
|
Feillet-Coudray C, Fouret G, Ebabe Elle R, Rieusset J, Bonafos B, Chabi B, Crouzier D, Zarkovic K, Zarkovic N, Ramos J, Badia E, Murphy MP, Cristol JP, Coudray C. The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol. Free Radic Res 2014; 48:1232-46. [DOI: 10.3109/10715762.2014.945079] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Apocynin, a low molecular oral treatment for neurodegenerative disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:298020. [PMID: 25140304 PMCID: PMC4129132 DOI: 10.1155/2014/298020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/26/2023]
Abstract
Accumulating evidence suggests that inflammatory mediators secreted by activated resident or infiltrated innate immune cells have a significant impact on the pathogenesis of neurodegenerative diseases. This may imply that patients affected by a neurodegenerative disease may benefit from treatment with selective inhibitors of innate immune activity. Here we review the therapeutic potential of apocynin, an essentially nontoxic phenolic compound isolated from the medicinal plant Jatropha multifida. Apocynin is a selective inhibitor of the phagocyte NADPH oxidase Nox2 that can be applied orally and is remarkably effective at low dose.
Collapse
|
36
|
Apolloni S, Amadio S, Parisi C, Matteucci A, Potenza RL, Armida M, Popoli P, D'Ambrosi N, Volonté C. Spinal cord pathology is ameliorated by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic lateral sclerosis. Dis Model Mech 2014; 7:1101-9. [PMID: 25038061 PMCID: PMC4142730 DOI: 10.1242/dmm.017038] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years there has been an increasing awareness of the role of P2X7, a receptor for extracellular ATP, in modulating physiopathological mechanisms in the central nervous system. In particular, P2X7 has been shown to be implicated in neuropsychiatry, chronic pain, neurodegeneration and neuroinflammation. Remarkably, P2X7 has also been shown to be a ‘gene modifier’ in amyotrophic lateral sclerosis (ALS): the receptor is upregulated in spinal cord microglia in human and rat at advanced stages of the disease; in vitro, activation of P2X7 exacerbates pro-inflammatory responses in microglia that have an ALS phenotype, as well as toxicity towards neuronal cells. Despite this detrimental in vitro role of P2X7, in SOD1-G93A mice lacking P2X7, the clinical onset of ALS was significantly accelerated and disease progression worsened, thus indicating that the receptor might have some beneficial effects, at least at certain stages of disease. In order to clarify this dual action of P2X7 in ALS pathogenesis, in the present work we used the antagonist Brilliant Blue G (BBG), a blood-brain barrier permeable and safe drug that has already been proven to reduce neuroinflammation in traumatic brain injury, cerebral ischemia-reperfusion, neuropathic pain and experimental autoimmune encephalitis. We tested BBG in the SOD1-G93A ALS mouse model at asymptomatic, pre-symptomatic and late pre-symptomatic phases of disease. BBG at late pre-onset significantly enhanced motor neuron survival and reduced microgliosis in lumbar spinal cord, modulating inflammatory markers such as NF-κB, NADPH oxidase 2, interleukin-1β, interleukin-10 and brain-derived neurotrophic factor. This was accompanied by delayed onset and improved general conditions and motor performance, in both male and female mice, although survival appeared unaffected. Our results prove the twofold role of P2X7 in the course of ALS and establish that P2X7 modulation might represent a promising therapeutic strategy by interfering with the neuroinflammatory component of the disease.
Collapse
Affiliation(s)
- Savina Apolloni
- Cellular Biology and Neurobiology Institute, CNR, Via del Fosso di Fiorano, 65, 00143 Rome, Italy Santa Lucia Foundation, IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Susanna Amadio
- Santa Lucia Foundation, IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Chiara Parisi
- Cellular Biology and Neurobiology Institute, CNR, Via del Fosso di Fiorano, 65, 00143 Rome, Italy
| | - Alessandra Matteucci
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Rosa L Potenza
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Monica Armida
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Patrizia Popoli
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Nadia D'Ambrosi
- Cellular Biology and Neurobiology Institute, CNR, Via del Fosso di Fiorano, 65, 00143 Rome, Italy
| | - Cinzia Volonté
- Cellular Biology and Neurobiology Institute, CNR, Via del Fosso di Fiorano, 65, 00143 Rome, Italy Santa Lucia Foundation, IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| |
Collapse
|
37
|
Abstract
SIGNIFICANCE There is increasing evidence that the generation of reactive oxygen species (ROS) in the central nervous system (CNS) involves the NOX family of nicotinamide adenine dinucleotide phosphate oxidases. Controlled ROS generation appears necessary for optimal functioning of the CNS through fine-tuning of redox-sensitive signaling pathways, while overshooting ROS generation will lead to oxidative stress and CNS disease. RECENT ADVANCES NOX enzymes are not only restricted to microglia (i.e. brain phagocytes) but also expressed in neurons, astrocytes, and the neurovascular system. NOX enzymes are involved in CNS development, neural stem cell biology, and the function of mature neurons. While NOX2 appears to be a major source of pathological oxidative stress in the CNS, other NOX isoforms might also be of importance, for example, NOX4 in stroke. Globally speaking, there is now convincing evidence for a role of NOX enzymes in various neurodegenerative diseases, cerebrovascular diseases, and psychosis-related disorders. CRITICAL ISSUES The relative importance of specific ROS sources (e.g., NOX enzymes vs. mitochondria; NOX2 vs. NOX4) in different pathological processes needs further investigation. The absence of specific inhibitors limits the possibility to investigate specific therapeutic strategies. The uncritical use of non-specific inhibitors (e.g., apocynin, diphenylene iodonium) and poorly validated antibodies may lead to misleading conclusions. FUTURE DIRECTIONS Physiological and pathophysiological studies with cell-type-specific knock-out mice will be necessary to delineate the precise functions of NOX enzymes and their implications in pathomechanisms. The development of CNS-permeant, specific NOX inhibitors will be necessary to advance toward therapeutic applications.
Collapse
Affiliation(s)
- Zeynab Nayernia
- 1 Department of Pathology and Immunology, Geneva Medical Faculty, Geneva University Hospitals, Centre Médical Universitaire , Geneva, Switzerland
| | | | | |
Collapse
|
38
|
Foust KD, Salazar DL, Likhite S, Ferraiuolo L, Ditsworth D, Ilieva H, Meyer K, Schmelzer L, Braun L, Cleveland DW, Kaspar BK. Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS. Mol Ther 2013; 21:2148-59. [PMID: 24008656 PMCID: PMC3863799 DOI: 10.1038/mt.2013.211] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/25/2013] [Indexed: 12/14/2022] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (ALS) resulting in progressive motor neuron death through one or more acquired toxicities. Involvement of wild-type SOD1 has been linked to sporadic ALS, as misfolded SOD1 has been reported in affected tissues of sporadic patients and toxicity of astrocytes derived from sporadic ALS patients to motor neurons has been reported to be reduced by lowering the synthesis of SOD1. We now report slowed disease onset and progression in two mouse models following therapeutic delivery using a single peripheral injection of an adeno-associated virus serotype 9 (AAV9) encoding an shRNA to reduce the synthesis of ALS-causing human SOD1 mutants. Delivery to young mice that develop aggressive, fatal paralysis extended survival by delaying both disease onset and slowing progression. In a later-onset model, AAV9 delivery after onset markedly slowed disease progression and significantly extended survival. Moreover, AAV9 delivered intrathecally to nonhuman primates is demonstrated to yield robust SOD1 suppression in motor neurons and glia throughout the spinal cord and therefore, setting the stage for AAV9-mediated therapy in human clinical trials.
Collapse
Affiliation(s)
- Kevin D Foust
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Desirée L Salazar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Ludwig Institute for Cancer Research, La Jolla, California, USA
- Present address: Department of Biology, San Diego State University, San Diego, California, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Laura Ferraiuolo
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Dara Ditsworth
- Ludwig Institute for Cancer Research, La Jolla, California, USA
| | | | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Leah Schmelzer
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lyndsey Braun
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
- Ludwig Institute for Cancer Research, La Jolla, California, USA
| | - Brian K Kaspar
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Molecular, Cellular & Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
39
|
NADPH oxidase and the degeneration of dopaminergic neurons in parkinsonian mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:157857. [PMID: 24379900 PMCID: PMC3863573 DOI: 10.1155/2013/157857] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/08/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022]
Abstract
Several lines of investigation have implicated oxidative stress in Parkinson's disease (PD) pathogenesis, but the mechanisms involved are still unclear. In this study, we characterized the involvement of NADPH oxidase (Nox), a multisubunit enzyme that catalyzes the reduction of oxygen, in the 6-hydroxydopamine- (6-OHDA-) induced PD mice model and compared for the first time the effects of this neurotoxin in mice lacking gp91phox−/−, the catalytic subunit of Nox2, and pharmacological inhibition of Nox with apocynin. Six-OHDA induced increased protein expression of p47phox, a Nox subunit, in striatum. gp91phox−/− mice appear to be completely protected from dopaminergic cell loss, whereas the apocynin treatment conferred only a limited neuroprotection. Wt mice treated with apocynin and gp91phox−/− mice both exhibited ameliorated apomorphine-induced rotational behavior. The microglial activation observed within the striatum and the substantia nigra pars compacta (SNpc) of 6-OHDA-injected Wt mice was prevented by apocynin treatment and was not detected in gp91phox−/− mice. Apocynin was not able to attenuate astrocyte activation in SN. The results support a role for Nox2 in the 6-OHDA-induced degeneration of dopaminergic neurons and glial cell activation in the nigrostriatal pathway and reveal that no comparable 6-OHDA effects were observed between apocynin-treated and gp91phox−/− mice groups.
Collapse
|
40
|
McGoldrick P, Joyce PI, Fisher EMC, Greensmith L. Rodent models of amyotrophic lateral sclerosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1421-36. [PMID: 23524377 DOI: 10.1016/j.bbadis.2013.03.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by the degeneration of upper and lower motor neurons. Recent advances in our understanding of some of the genetic causes of ALS, such as mutations in SOD1, TARDBP, FUS and VCP have led to the generation of rodent models of the disease, as a strategy to help our understanding of the pathophysiology of ALS and to assist in the development of therapeutic strategies. This review provides detailed descriptions of TDP-43, FUS and VCP models of ALS, and summarises potential therapeutics which have been recently trialled in rodent models of the disease. This article is part of a Special Issue entitled: Animal Models of Disease.
Collapse
Affiliation(s)
- Philip McGoldrick
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK.
| | | | | | | |
Collapse
|
41
|
Dranka BP, Gifford A, Ghosh A, Zielonka J, Joseph J, Kanthasamy AG, Kalyanaraman B. Diapocynin prevents early Parkinson's disease symptoms in the leucine-rich repeat kinase 2 (LRRK2R¹⁴⁴¹G) transgenic mouse. Neurosci Lett 2013; 549:57-62. [PMID: 23721786 DOI: 10.1016/j.neulet.2013.05.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/07/2013] [Accepted: 05/15/2013] [Indexed: 01/19/2023]
Abstract
The most prominent mechanism proposed for death of dopaminergic neurons in Parkinson's disease (PD) is elevated generation of reactive oxygen/nitrogen species (ROS/RNS). Recent studies suggest that ROS produced during PD pathogenesis may contribute to cytotoxicity in cell culture models of PD. We hypothesized that inhibition of ROS production would prevent PD symptoms in the LRRK2(R1441G) transgenic (tg) mouse model of PD. These mice overexpress a mutant form of leucine-rich repeat kinase 2 (LRRK2) and are reported to develop PD-like symptoms at approximately 10 months of age. Despite similar expression of the transgene, our colony did not recapitulate the same type of motor dysfunction originally reported. However, tests of motor coordination (pole test, Rotor-Rod) revealed a significant defect in LRRK2(R1441G) mice by 16 months of age. LRRK2(R1441G) tg mice, or wild type littermates, were given diapocynin (200mg/kg, a proposed NADPH oxidase inhibitor) three times per week by oral gavage starting at 12 weeks of age. Decreased performance on the pole test and Rotor-Rod in the LRRK2(R1441G) mice was prevented with diapocynin treatment. No loss in open field movement or rearing was found. As expected, tyrosine hydroxylase staining was similar in both the substantia nigra and striatum in all treatment groups. Together these data demonstrate that diapocynin is a viable agent for protection of neurobehavioral function.
Collapse
Affiliation(s)
- Brian P Dranka
- Department of Biophysics, and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Clement AM. Two in one against motor neuron degeneration: tackling oxidative stress and inflammation with a sulfasalazine derivative. J Neurochem 2012; 122:869-71. [PMID: 22730915 DOI: 10.1111/j.1471-4159.2012.07843.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Ghosh A, Kanthasamy A, Joseph J, Anantharam V, Srivastava P, Dranka BP, Kalyanaraman B, Kanthasamy AG. Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson's disease. J Neuroinflammation 2012; 9:241. [PMID: 23092448 PMCID: PMC3488558 DOI: 10.1186/1742-2094-9-241] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/06/2012] [Indexed: 12/02/2022] Open
Abstract
Background Parkinson’s disease (PD) is a devastating neurodegenerative disorder characterized by progressive motor debilitation, which affects several million people worldwide. Recent evidence suggests that glial cell activation and its inflammatory response may contribute to the progressive degeneration of dopaminergic neurons in PD. Currently, there are no neuroprotective agents available that can effectively slow the disease progression. Herein, we evaluated the anti-inflammatory and antioxidant efficacy of diapocynin, an oxidative metabolite of the naturally occurring agent apocynin, in a pre-clinical 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Methods Both pre-treatment and post-treatment of diapocynin were tested in the MPTP mouse model of PD. Diapocynin was administered via oral gavage to MPTP-treated mice. Following the treatment, behavioral, neurochemical and immunohistological studies were performed. Neuroinflammatory markers, such as ionized calcium binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), gp91phox and inducible nitric oxide synthase (iNOS), were measured in the nigrostriatal system. Nigral tyrosine hydroxylase (TH)-positive neurons as well as oxidative markers 3-nitrotyrosine (3-NT), 4-hydroxynonenal (4-HNE) and striatal dopamine levels were quantified for assessment of the neuroprotective efficacy of diapocynin. Results Oral administration of diapocynin significantly attenuated MPTP-induced microglial and astroglial cell activation in the substantia nigra (SN). MPTP-induced expression of gp91phox and iNOS activation in the glial cells of SN was also completely blocked by diapocynin. Notably, diapocynin markedly inhibited MPTP-induced oxidative markers including 3-NT and 4-HNE levels in the SN. Treatment with diapocynin also significantly improved locomotor activity, restored dopamine and its metabolites, and protected dopaminergic neurons and their nerve terminals in this pre-clinical model of PD. Importantly, diapocynin administered 3 days after initiation of the disease restored the neurochemical deficits. Diapocynin also halted the disease progression in a chronic mouse model of PD. Conclusions Collectively, these results demonstrate that diapocynin exhibits profound neuroprotective effects in a pre-clinical animal model of PD by attenuating oxidative damage and neuroinflammatory responses. These findings may have important translational implications for treating PD patients.
Collapse
Affiliation(s)
- Anamitra Ghosh
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sorce S, Krause KH, Jaquet V. Targeting NOX enzymes in the central nervous system: therapeutic opportunities. Cell Mol Life Sci 2012; 69:2387-407. [PMID: 22643836 PMCID: PMC11114708 DOI: 10.1007/s00018-012-1014-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022]
Abstract
Among the pathogenic mechanisms underlying central nervous system (CNS) diseases, oxidative stress is almost invariably described. For this reason, numerous attempts have been made to decrease reactive oxygen species (ROS) with the administration of antioxidants as potential therapies for CNS disorders. However, such treatments have always failed in clinical trials. Targeting specific sources of reactive oxygen species in the CNS (e.g. NOX enzymes) represents an alternative promising option. Indeed, NOX enzymes are major generators of ROS, which regulate progression of CNS disorders as diverse as amyotrophic lateral sclerosis, schizophrenia, Alzheimer disease, Parkinson disease, and stroke. On the other hand, in autoimmune demyelinating diseases, ROS generated by NOX enzymes are protective, presumably by dampening the specific immune response. In this review, we discuss the possibility of developing therapeutics targeting NADPH oxidase (NOX) enzymes for the treatment of different CNS pathologies. Specific compounds able to modulate the activation of NOX enzymes, and the consequent production of ROS, could fill the need for disease-modifying drugs for many incurable CNS pathologies.
Collapse
Affiliation(s)
- Silvia Sorce
- Department of Pathology and Immunology, Geneva Medical Faculty, Geneva University Hospitals Centre Medical Universitaire 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals Centre Medical Universitaire 1, Geneva 4, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Geneva Medical Faculty, Geneva University Hospitals Centre Medical Universitaire 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals Centre Medical Universitaire 1, Geneva 4, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Geneva Medical Faculty, Geneva University Hospitals Centre Medical Universitaire 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals Centre Medical Universitaire 1, Geneva 4, Switzerland
| |
Collapse
|