1
|
Zou Z, Zhong L. Anaplastic thyroid cancer: Genetic roles, targeted therapy, and immunotherapy. Genes Dis 2025; 12:101403. [PMID: 40271195 PMCID: PMC12018003 DOI: 10.1016/j.gendis.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 04/25/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) stands as the most formidable form of thyroid malignancy, presenting a persistent challenge in clinical management. Recent years have witnessed a gradual unveiling of the intricate genetic underpinnings governing ATC through next-generation sequencing. The emergence of this genetic landscape has paved the way for the exploration of targeted therapies and immunotherapies in clinical trials. Despite these strides, the precise mechanisms governing ATC pathogenesis and the identification of efficacious treatments demand further investigation. Our comprehensive review stems from an extensive literature search focusing on the genetic implications, notably the pivotal MAPK and PI3K-AKT-mTOR signaling pathways, along with targeted therapies and immunotherapies in ATC. Moreover, we screen and summarize the advances and challenges in the current diagnostic approaches for ATC, including the invasive tissue sampling represented by fine needle aspiration and core needle biopsy, immunohistochemistry, and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. We also investigate enormous studies on the prognosis of ATC and outline independent prognostic factors for future clinical assessment and therapy for ATC. By synthesizing this literature, we aim to encapsulate the evolving landscape of ATC oncology, potentially shedding light on novel pathogenic mechanisms and avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zhao Zou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Linhong Zhong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Kimura T, Kruhlak M, Zhao L, Hwang E, Fozzatti L, Cheng SY. Combinatory actions of cytokines induce M2-like macrophages in anaplastic thyroid cancer. Am J Cancer Res 2024; 14:5812-5825. [PMID: 39803637 PMCID: PMC11711523 DOI: 10.62347/quwq3794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) is a lethal endocrine malignancy. It has been shown that tumor-associated macrophages (TAMs) contribute to the aggressiveness of ATC. However, stimulatory factors that could facilitate the induction and infiltration of TAMs in the ATC tumor microenvironment (TME) are not fully elucidated. In this study, we used a human leukemia monocytic cell line (THP-1) to study the differentiation of THP-1 into M2-like macrophages (M2) by conditioned media (CM) derived from each of the three human ATC cells: 8505C, THJ-11T (11T), and THJ-16T (16T). The capacity of CM to induce M2 was in the order of 16T>8505C>11T cells as determined by the expression of M2 markers (CD163, CD204, and CCL13). Cytokine arrays and ELISA assays revealed five commonly enriched cytokines (IL-6, IL-8, MCP-1, TIMP-1, and TGF-β1) in the CM derived from each of the three ATC cells. These cytokines, individually, had weak activity, but together, they mimicked full CM activity in the induction of M2. Further, they collaboratively activated STAT3, ERK, and PI3K-AKT signaling to facilitate the induction of M2 as found in CM. Importantly, we found that the CM-induced M2 could secrete soluble growth factors to promote ATC cell proliferation as evidenced by the increased Ki-67, cMYC, and cyclin D1 protein levels. Our studies identified the major stimulatory cytokines which acted collaboratively to induce M2 in the TME. Importantly, the present studies indicate that when using inhibitors to target TAMs, combination therapies would be required for effective treatment of ATC.
Collapse
Affiliation(s)
- Takahito Kimura
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Michael Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Li Zhao
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Eunmi Hwang
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba 5000, Argentina
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| |
Collapse
|
3
|
Zhu X, Cheng SY. Thyroid Hormone Receptors as Tumor Suppressors in Cancer. Endocrinology 2024; 165:bqae115. [PMID: 39226152 PMCID: PMC11406550 DOI: 10.1210/endocr/bqae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
Accumulated research has revealed the multifaceted roles of thyroid hormone receptors (TRs) as potent tumor suppressors across various cancer types. This review explores the intricate mechanisms underlying TR-mediated tumor suppression, drawing insights from preclinical mouse models and cancer biology. This review examines the tumor-suppressive functions of TRs, particularly TRβ, in various cancers using preclinical models, revealing their ability to inhibit tumor initiation, progression, and metastasis. Molecular mechanisms underlying TR-mediated tumor suppression are discussed, including interactions with oncogenic signaling pathways like PI3K-AKT, JAK-STAT, and transforming growth factor β. Additionally, this paper examines TRs' effect on cancer stem cell activity and differentiation, showcasing their modulation of key cellular processes associated with tumor progression and therapeutic resistance. Insights from preclinical studies underscore the therapeutic potential of targeting TRs to impede cancer stemness and promote cancer cell differentiation, paving the way for precision medicine in cancer treatment and emphasizing the potential of TR-targeted therapies as promising approaches for treating cancers and improving patient outcomes.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Zhu HN, Song DL, Zhang SN, Zheng ZJ, Chen XY, Jin X. Progress in long non-coding RNAs as prognostic factors of papillary thyroid carcinoma. Pathol Res Pract 2024; 256:155230. [PMID: 38461693 DOI: 10.1016/j.prp.2024.155230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Papillary thyroid carcinoma (PTC) is generally recognized as a slow-growing tumor. However, a small subset of patients may still experience relapse or metastasis shortly after therapy, leading to a poor prognosis and raising concerns about excessive medical treatment. One major challenge lies in the inadequacy of effective biomarkers for accurate risk stratification. Long non-coding RNAs (lncRNAs), which are closely related to malignant characteristics and poor prognosis, play a significant role in the genesis and development of PTC through various pathways. The objective of this review is to provide a comprehensive summary of the biological functions of lncRNAs in PTC, identify prognosis-relevant lncRNAs, and explore their potential mechanisms in drug resistance to BRAF kinase inhibitors, tumor dedifferentiation, and lymph node metastasis. By doing so, this review aims to offer valuable references for both basic research and the prediction of PTC prognosis.
Collapse
Affiliation(s)
- Hao-Nan Zhu
- Department of Clinical Medicine, Medical College, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Dong-Liang Song
- Department of Clinical Medicine, Medical College, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Si-Nan Zhang
- Department of Clinical Medicine, Medical College, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Zhao-Jie Zheng
- Department of Clinical Medicine, Medical College, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xing-Yu Chen
- Department of Clinical Medicine, Medical College, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Xin Jin
- Department of Clinical Medicine, Medical College, Shaoxing University, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
5
|
Li P, Wang W, Zhou R, Ding Y, Li X. The m 5 C methyltransferase NSUN2 promotes codon-dependent oncogenic translation by stabilising tRNA in anaplastic thyroid cancer. Clin Transl Med 2023; 13:e1466. [PMID: 37983928 PMCID: PMC10659772 DOI: 10.1002/ctm2.1466] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Translation dysregulation plays a crucial role in tumourigenesis and cancer progression. Oncogenic translation relies on the stability and availability of tRNAs for protein synthesis, making them potential targets for cancer therapy. METHODS This study performed immunohistochemistry analysis to assess NSUN2 levels in thyroid cancer. Furthermore, to elucidate the impact of NSUN2 on anaplastic thyroid cancer (ATC) malignancy, phenotypic assays were conducted. Drug inhibition and time-dependent plots were employed to analyse drug resistance. Liquid chromatography-mass spectrometry and bisulphite sequencing were used to investigate the m5 C methylation of tRNA at both global and single-base levels. Puromycin intake and high-frequency codon reporter assays verified the protein translation level. By combining mRNA and ribosome profiling, a series of downstream proteins and codon usage bias were identified. The acquired data were further validated by tRNA sequencing. RESULTS This study observed that the tRNA m5 C methyltransferase NSUN2 was up-regulated in ATC and is associated with dedifferentiation. Furthermore, NSUN2 knockdown repressed ATC formation, proliferation, invasion and migration both in vivo and in vitro. Moreover, NSUN2 repression enhanced the sensitivity of ATC to genotoxic drugs. Mechanically, NSUN2 catalyses tRNA structure-related m5 C modification, stabilising tRNA that maintains homeostasis and rapidly transports amino acids, particularly leucine. This stable tRNA has a substantially increased efficiency necessary to support a pro-cancer translation program including c-Myc, BCL2, RAB31, JUNB and TRAF2. Additionally, the NSUN2-mediated variations in m5C levels and different tRNA Leu iso-decoder families, partially contribute to a codon-dependent translation bias. Surprisingly, targeting NSUN2 disrupted the c-Myc to NSUN2 cycle in ATC. CONCLUSIONS This research revealed that a pro-tumour m5C methyltransferase, dynamic tRNA stability regulation and downstream oncogenes, c-Myc, elicits a codon-dependent oncogenic translation network that enhances ATC growth and formation. Furthermore, it provides new opportunities for targeting translation reprogramming in cancer cells.
Collapse
Affiliation(s)
- Peng Li
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
- Department of Hepatobiliary SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Wenlong Wang
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - Ruixin Zhou
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ying Ding
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinying Li
- Department of General SurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| |
Collapse
|
6
|
Gillis NE, Cozzens LM, Wilson ER, Smith NM, Tomczak JA, Bolf EL, Carr FE. TRβ Agonism Induces Tumor Suppression and Enhances Drug Efficacy in Anaplastic Thyroid Cancer in Female Mice. Endocrinology 2023; 164:bqad135. [PMID: 37702560 PMCID: PMC10506733 DOI: 10.1210/endocr/bqad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Thyroid hormone receptor beta (TRβ) is a recognized tumor suppressor in numerous solid cancers. The molecular signaling of TRβ has been elucidated in several cancer types through re-expression models. Remarkably, the potential impact of selective activation of endogenous TRβ on tumor progression remains largely unexplored. We used cell-based and in vivo assays to evaluate the effects of the TRβ agonist sobetirome (GC-1) on a particularly aggressive and dedifferentiated cancer, anaplastic thyroid cancer (ATC). Here we report that GC-1 reduced the tumorigenic phenotype, decreased cancer stem-like cell populations, and induced redifferentiation of the ATC cell lines with different mutational backgrounds. Of note, this selective activation of TRβ amplified the effects of therapeutic agents in blunting the aggressive cell phenotype and stem cell growth. In xenograft assays, GC-1 alone inhibited tumor growth and was as effective as the kinase inhibitor, sorafenib. These results indicate that selective activation of TRβ not only induces a tumor suppression program de novo but enhances the effectiveness of anticancer agents, revealing potential novel combination therapies for ATC and other aggressive solid tumors.
Collapse
Affiliation(s)
- Noelle E Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Lauren M Cozzens
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Emily R Wilson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Noah M Smith
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
7
|
Preclinical Models of Neuroendocrine Neoplasia. Cancers (Basel) 2022; 14:cancers14225646. [PMID: 36428741 PMCID: PMC9688518 DOI: 10.3390/cancers14225646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.
Collapse
|
8
|
Huang SS, Tsai CH, Kuo CY, Li YS, Cheng SP. ACLY inhibitors induce apoptosis and potentiate cytotoxic effects of sorafenib in thyroid cancer cells. Endocrine 2022; 78:85-94. [PMID: 35761130 DOI: 10.1007/s12020-022-03124-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE ATP-citrate lyase (ACLY) is a critical enzyme at the intersection of glucose and lipid metabolism. ACLY is often upregulated or activated in cancer cells to accelerate lipid synthesis and promote tumor progression. In this study, we aimed to explore the possibility of utilizing ACLY inhibition as a new strategy in the treatment of thyroid cancer. METHODS Bioinformatics analysis of the public datasets was performed. Thyroid cancer cells were treated with two different ACLY inhibitors, SB-204990 and NDI-091143. RESULTS Bioinformatics analysis revealed that ACLY expression was increased in anaplastic thyroid cancer. In thyroid cancer cell lines FTC-133 and 8505C, ACLY inhibitors suppressed monolayer cell growth and clonogenic ability in a dose-dependent and time-dependent manner. Flow cytometry analysis showed that ACLY inhibitors increased the proportion of sub-G1 cells in the cell cycle and the number of annexin V-positive cells. Immunoblotting confirmed caspase-3 activation and PARP1 cleavage following treatment with ACLY inhibitors. Compromised cell viability could be partially rescued by co-treatment with the pan-caspase inhibitor Z-VAD-FMK. Additionally, we showed that ACLY inhibitors impeded three-dimensional growth and cell invasion in thyroid cancer cells. Isobolograms and combination index analysis indicated that ACLY inhibitors synergistically potentiated the cytotoxicity rendered by sorafenib. CONCLUSIONS Targeting ACLY holds the potential for being a novel therapeutic strategy for thyroid cancer.
Collapse
Affiliation(s)
- Shou-Sen Huang
- Department of Surgery, Taitung MacKay Memorial Hospital, Taitung, Taiwan
| | - Chung-Hsin Tsai
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Chi-Yu Kuo
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Ying-Syuan Li
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Ju SH, Lee SE, Kang YE, Shong M. Development of Metabolic Synthetic Lethality and Its Implications for Thyroid Cancer. Endocrinol Metab (Seoul) 2022; 37:53-61. [PMID: 35255601 PMCID: PMC8901971 DOI: 10.3803/enm.2022.1402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer therapies targeting genetic alterations are a topic of great interest in the field of thyroid cancer, which frequently harbors mutations in the RAS, RAF, and RET genes. Unfortunately, U.S. Food and Drug Administration-approved BRAF inhibitors have relatively low therapeutic efficacy against BRAF-mutant thyroid cancer; in addition, the cancer often acquires drug resistance, which prevents effective treatment. Recent advances in genomics and transcriptomics are leading to a more complete picture of the range of mutations, both driver and messenger, present in thyroid cancer. Furthermore, our understanding of cancer suggests that oncogenic mutations drive tumorigenesis and induce rewiring of cancer cell metabolism, which promotes survival of mutated cells. Synthetic lethality (SL) is a method of neutralizing mutated genes that were previously considered untargetable by traditional genotype-targeted treatments. Because these metabolic events are specific to cancer cells, we have the opportunity to develop new therapies that target tumor cells specifically without affecting healthy tissue. Here, we describe developments in metabolism-based cancer therapy, focusing on the concept of metabolic SL in thyroid cancer. Finally, we discuss the essential implications of metabolic reprogramming and its role in the future direction of SL for thyroid cancer.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Seong Eun Lee
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| | - Minho Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon,
Korea
| |
Collapse
|
10
|
Lee WK, Cheng SY. Targeting transcriptional regulators for treatment of anaplastic thyroid cancer. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7. [PMID: 34761120 PMCID: PMC8577520 DOI: 10.20517/2394-4722.2021.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dysregulation of genes perpetuates cancer progression. During carcinogenesis, cancer cells acquire dependency of aberrant transcriptional programs (known as “transcription addiction”) to meet the high demands for uncontrolled proliferation. The needs for particular transcription programs for cancer growth could be cancer-type-selective. The dependencies of certain transcription regulators could be exploited for therapeutic benefits. Anaplastic thyroid cancer (ATC) is an extremely aggressive human cancer for which new treatment modalities are urgently needed. Its resistance to conventional treatments and the lack of therapeutic options for improving survival might have been attributed to extensive genetic heterogeneity due to subsequent evolving genetic alterations and clonal selections during carcinogenesis. Despite this genetic complexity, mounting evidence has revealed a characteristic transcriptional addiction of ATC cells resulting in evolving diverse oncogenic signaling for cancer cell survival. The transcriptional addiction has presented a huge challenge for effective targeting as shown by the failure of previous targeted therapies. However, an emerging notion is that many different oncogenic signaling pathways activated by multiple upstream driver mutations might ultimately converge on the transcriptional responses, which would provide an opportunity to target transcriptional regulators for treatment of ATC. Here, we review the current understanding of how genetic alterations in cancer distorted the transcription program, leading to acquisition of transcriptional addiction. We also highlight recent findings from studies aiming to exploit the opportunity for targeting transcription regulators as potential therapeutics for ATC.
Collapse
Affiliation(s)
- Woo Kyung Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Poorly Differentiated and Anaplastic Thyroid Cancer: Insights into Genomics, Microenvironment and New Drugs. Cancers (Basel) 2021; 13:cancers13133200. [PMID: 34206867 PMCID: PMC8267688 DOI: 10.3390/cancers13133200] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In the last decades, many researchers produced promising data concerning genetics and tumor microenvironment of poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC). They are trying to tear the veil covering these orphan cancers, suggesting new therapeutic weapons as single or combined therapies. Abstract PDTC and ATC present median overall survival of 6 years and 6 months, respectively. In spite of their rarity, patients with PDTC and ATC represent a significant clinical problem, because of their poor survival and the substantial inefficacy of classical therapies. We reviewed the newest findings about genetic features of PDTC and ATC, from mutations occurring in DNA to alterations in RNA. Therefore, we describe their tumor microenvironments (both immune and not-immune) and the interactions between tumor and neighboring cells. Finally, we recapitulate how this upcoming evidence are changing the treatment of PDTC and ATC.
Collapse
|
12
|
Bolf EL, Gillis NE, Davidson CD, Rodriguez PD, Cozzens L, Tomczak JA, Frietze S, Carr FE. Thyroid Hormone Receptor Beta Induces a Tumor-Suppressive Program in Anaplastic Thyroid Cancer. Mol Cancer Res 2020; 18:1443-1452. [PMID: 32554601 PMCID: PMC7541631 DOI: 10.1158/1541-7786.mcr-20-0282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
The thyroid hormone receptor beta (TRβ), a key regulator of cellular growth and differentiation, is frequently dysregulated in cancers. Diminished expression of TRβ is noted in thyroid, breast, and other solid tumors and is correlated with more aggressive disease. Restoration of TRβ levels decreased tumor growth supporting the concept that TRβ could function as a tumor suppressor. Yet, the TRβ tumor suppression transcriptome is not well delineated and the impact of TRβ is unknown in aggressive anaplastic thyroid cancer (ATC). Here, we establish that restoration of TRβ expression in the human ATC cell line SW1736 (SW-TRβ) reduces the aggressive phenotype, decreases cancer stem cell populations and induces cell death in a T3-dependent manner. Transcriptomic analysis of SW-TRβ cells via RNA sequencing revealed distinctive expression patterns induced by ligand-bound TRβ and revealed novel molecular signaling pathways. Of note, liganded TRβ repressed multiple nodes in the PI3K/AKT pathway, induced expression of thyroid differentiation markers, and promoted proapoptotic pathways. Our results further revealed the JAK1-STAT1 pathway as a novel, T3-mediated, antitumorigenic pathway that can be activated in additional ATC lines. These findings elucidate a TRβ-driven tumor suppression transcriptomic signature, highlight unexplored therapeutic options for ATC, and support TRβ activation as a promising therapeutic option in cancers. IMPLICATIONS: TRβ-T3 induced a less aggressive phenotype and tumor suppression program in anaplastic thyroid cancer cells revealing new potential therapeutic targets.
Collapse
Affiliation(s)
- Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
- University of Vermont Cancer Center, Burlington, Vermont
| | - Noelle E Gillis
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
- University of Vermont Cancer Center, Burlington, Vermont
| | - Cole D Davidson
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
- University of Vermont Cancer Center, Burlington, Vermont
| | - Princess D Rodriguez
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Lauren Cozzens
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
| | - Seth Frietze
- University of Vermont Cancer Center, Burlington, Vermont
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont.
- University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
13
|
Lin B, Lu B, Hsieh IY, Liang Z, Sun Z, Yi Y, Lv W, Zhao W, Li J. Synergy of GSK-J4 With Doxorubicin in KRAS-Mutant Anaplastic Thyroid Cancer. Front Pharmacol 2020; 11:632. [PMID: 32477122 PMCID: PMC7239034 DOI: 10.3389/fphar.2020.00632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Anaplastic thyroid cancer is the most aggressive thyroid cancer and has a poor prognosis. At present, there is no effective treatment for it. Methods Here, we used different concentrations of GSK-J4 or a combination of GSK-J4 and doxorubicin to treat human Cal-62, 8505C, and 8305C anaplastic thyroid cancer (ATC) cell lines. The in vitro experiments were performed using cell viability assays, cell cycle assays, annexin-V/PI binding assays, Transwell migration assays, and wound-healing assays. Tumor xenograft models were used to observe effects in vivo. Results The half maximal inhibitory concentration (IC50) of GSK-J4 in Cal-62 cells was 1.502 μM, and as the dose of GSK-J4 increased, more ATC cells were blocked in the G2-M and S stage. The combination of GSK-J4 and doxorubicin significantly increased the inhibitory effect on proliferation, especially in KRAS-mutant ATC cells in vivo (inhibition rate 38.0%) and in vitro (suppresses rate Fa value 0.624, CI value 0.673). The invasion and migration abilities of the KRAS-mutant cell line were inhibited at a low concentration (p < 0.05). Conclusions The combination of GSK-J4 with doxorubicin in KRAS-mutant ATC achieved tumor-suppressive effects at a low dose. The synergy of the combination of GSK-J4 and doxorubicin may make it an effective chemotherapy regimen for KRAS-mutant ATC.
Collapse
Affiliation(s)
- Bo Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Lu
- Institute of Urology of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen, China
| | - I-Yun Hsieh
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Liang
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zicheng Sun
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yi
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Ma M, Lin B, Wang M, Liang X, Su L, Okose O, Lv W, Li J. Immunotherapy in anaplastic thyroid cancer. Am J Transl Res 2020; 12:974-988. [PMID: 32269728 PMCID: PMC7137046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
Anaplastic thyroid cancer (ATC) is one of the worst human malignancies, with an associated median survival of only 5 months. It is resistant to conventional thyroid cancer therapies, including radioiodine and thyroid-stimulating hormone suppression. Cancer immunotherapy has emerged over the past few decades as a transformative approach to treating a wide variety of cancers. However, immunotherapy for ATC is still in the experimental stage. This review will cover several strategies of immunotherapy and discuss the possible application of these strategies in the treatment of ATC (such as targeted therapy for tumor-associated macrophages, cancer vaccines, adoptive immunotherapy, monoclonal antibodies and immune checkpoint blockade) with the hope of improving the prognosis of ATC in the future.
Collapse
Affiliation(s)
- Maoguang Ma
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Bo Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Mingdian Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer CenterGuangzhou, China
| | - Xiaoli Liang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Lei Su
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Okenwa Okose
- Texas A & M College of MedicineCollege Station, TX 77843, USA
- Division of Thyroid and Parathyroid Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical SchoolBoston, MA, USA
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
- Division of Thyroid and Parathyroid Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
15
|
Nikitski AV, Rominski SL, Condello V, Kaya C, Wankhede M, Panebianco F, Yang H, Altschuler DL, Nikiforov YE. Mouse Model of Thyroid Cancer Progression and Dedifferentiation Driven by STRN-ALK Expression and Loss of p53: Evidence for the Existence of Two Types of Poorly Differentiated Carcinoma. Thyroid 2019; 29:1425-1437. [PMID: 31298630 PMCID: PMC6797076 DOI: 10.1089/thy.2019.0284] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Thyroid tumor progression from well-differentiated cancer to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC) involves step-wise dedifferentiation associated with loss of iodine avidity and poor outcomes. ALK fusions, typically STRN-ALK, are found with higher incidence in human PDTC compared with well-differentiated cancer and, as previously shown, can drive the development of murine PDTC. The aim of this study was to evaluate thyroid cancer initiation and progression in mice with concomitant expression of STRN-ALK and inactivation of the tumor suppressor p53 (Trp53) in thyroid follicular cells. Methods: Transgenic mice with thyroid-specific expression of STRN-ALK and biallelic p53 loss were generated and aged on a regular diet or with methimazole and sodium perchlorate goitrogen treatment. Development and progression of thyroid tumors were monitored by using ultrasound imaging, followed by detailed histological and immunohistochemical evaluation. Gene expression analysis was performed on selected tumor samples by using RNA-Seq and quantitative RT-PCR. Results: In mice treated with goitrogen, the first thyroid cancers appeared at 6 months of age, reaching 86% penetrance by the age of 12 months, while a similar rate (71%) of tumor occurrence in mice on regular diet was observed by 18 months of age. Histological examination revealed well-differentiated papillary thyroid carcinomas (PTC) (n = 26), PDTC (n = 21), and ATC (n = 8) that frequently coexisted in the same thyroid gland. The tumors were frequently lethal and associated with the development of lung metastasis in 24% of cases. Histological and immunohistochemical characteristics of these cancers recapitulated tumors seen in humans. Detailed analysis of PDTC revealed two tumor types with distinct cell morphology and immunohistochemical characteristics, designated as PDTC type 1 (PDTC1) and type 2 (PDTC2). Gene expression analysis showed that PDTC1 tumors retained higher expression of thyroid differentiation genes including Tg and Slc5a5 (Nis) as compared with PDTC2 tumors. Conclusions: In this study, we generated a new mouse model of multistep thyroid cancer dedifferentiation with evidence of progression from PTC to PDTC and ATC. Further, PDTC in these mice showed two distinct histologic appearances correlated with levels of expression of thyroid differentiation and iodine metabolism genes, suggesting a possibility of existence of two PDTC types with different functional characteristics and potential implication for therapeutic approaches to these tumors.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase/genetics
- Animals
- Antithyroid Agents/toxicity
- Calmodulin-Binding Proteins/genetics
- Cell Dedifferentiation/genetics
- Cell Differentiation/genetics
- Disease Models, Animal
- Disease Progression
- Membrane Proteins/genetics
- Methimazole/toxicity
- Mice
- Mice, Knockout
- Mice, Transgenic
- Nerve Tissue Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Perchlorates/toxicity
- RNA-Seq
- Sodium Compounds/toxicity
- Symporters/genetics
- Thyroglobulin/genetics
- Thyroid Cancer, Papillary/chemically induced
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Thyroid Carcinoma, Anaplastic/chemically induced
- Thyroid Carcinoma, Anaplastic/genetics
- Thyroid Carcinoma, Anaplastic/pathology
- Thyroid Neoplasms/chemically induced
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Transcriptome
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
| | - Susan L. Rominski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincenzo Condello
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cihan Kaya
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mamta Wankhede
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Hong Yang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel L. Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuri E. Nikiforov
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Address correspondence to: Yuri E. Nikiforov, MD, PhD, Department of Pathology, University of Pittsburgh, CLB Room 8031, 3477 Euler Way, Pittsburgh, PA 15213
| |
Collapse
|
16
|
Zhu X, Park S, Lee WK, Cheng SY. Potentiated anti-tumor effects of BETi by MEKi in anaplastic thyroid cancer. Endocr Relat Cancer 2019; 26:739-750. [PMID: 31272080 PMCID: PMC6938575 DOI: 10.1530/erc-19-0107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
Anaplastic thyroid cancer (ATC) is an aggressive malignancy with limited treatment options. We explored novel treatment modalities by targeting epigenetic modifications using inhibitors of BET (e.g. BRD4) activity. We evaluated the efficacy in the treatment of ATC of a novel BET inhibitor, PLX51107 (PLX), currently in clinical trials for other solid tumors and hematologic malignancies, alone or combined with a MEK inhibitor, PD0325901(PD). To elucidate the effects of these inhibitors on growth of ATC, we treated ATC cells derived from patient tumors (THJ-11T and THJ-16T cells) and mouse xenograft tumors with inhibitors. We found PLX and PD inhibitors singly inhibited proliferation of both human ATC cells lines, but together exhibited stronger inhibition of proliferation. In mouse xenografts, the combination treatment almost totally blocked growth in xenograft tumors derived from both ATC cells. PD effectively attenuated MEK-ERK signaling, which was further enhanced by PLX in the combined treatment in cultured cells and tumors. Importantly, the combination of PLX and PD acted synergistically to suppress MYC transcription to increase p27 in decreasing tumor cell proliferation. PLX and PD cooperated to upregulate pro-apoptotic proteins to promote apoptosis. These two inhibitors converged to reduce the binding of BRD4 to the MYC promoter to suppress the MYC expression. These findings indicate that combined treatment of BET and MEK-ERK inhibitors was more effective to treat ATC than single targeted treatment. Synergistic suppression of MYC transcription via collaborative actions on chromatin modifications suggested that targeting epigenetic modifications could provide novel treatment opportunities for ATC.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sunmi Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Woo Kyung Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Correspondence should be addressed to Dr. Sheue-yann Cheng, Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Dr, Room 5128, Bethesda, MD 20892-4264, Tel: 240-760-7828; Fax: 240-541-4498,
| |
Collapse
|
17
|
Park S, Zhu J, Altan-Bonnet G, Cheng SY. Monocyte recruitment and activated inflammation are associated with thyroid carcinogenesis in a mouse model. Am J Cancer Res 2019; 9:1439-1453. [PMID: 31392080 PMCID: PMC6682719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignancy. Although an association between inflammation and thyroid cancer has long been recognized, a cause-effect relationship at the molecular level has yet to be elucidated. We explored how inflammation could contribute to thyroid carcinogenesis in ThrbPV/PVPten+/- mice. The ThrbPV/PVPten+/- mouse expresses a dominantly negative thyroid hormone receptor β (denoted as PV) and a deletion of one single allele of the Pten gene. This mutant mouse exhibits aggressive follicular thyroid cancer similarly as in patients. We found significantly increased infiltration of inflammatory monocytes in thyroid tumors of ThrbPV/PVPten+/- mice, while no apparent changes in monocyte homeostasis in the bone marrow and blood of tumor-bearing mice. Using global gene expression profiling, we found altered expression of inflammation mediators in that the expression of Ptgs1, Sphk1, OPN, Chil1, Tnfrsf18, IL6, and Ccl12 genes was significantly increased and expression of Kit, Ly96, Ephx2, CD163, IL15, and Ccr2 was significantly decreased. Subsequent validation of the gene expression by mRNA analysis prompted us to further delineate the inflammatory role of osteopontin (OPN) in thyroid carcinogenesis because of its critical role in monocyte/macrophage functions and proinflammatory responses. We found that the protein abundance of OPN and its receptor, integrin β1, was highly increased and, concurrently, the downstream effectors AKT and NF-κB were significantly elevated to drive thyroid tumor progression of ThrbPV/PVPten+/- mice. These results demonstrated that increased inflammation driven by elevated expression of immune-related genes and cytokines promoted thyroid cancer progression. Importantly, we uncovered OPN as a novel regulator in inflammatory response during thyroid carcinogenesis. These preclinical findings suggested that OPN can be a potential target for thyroid cancer therapy via modulation of inflammatory signaling.
Collapse
Affiliation(s)
- Sunmi Park
- Laboratory of Molecular Biology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteBethesda, Maryland 20892-4264, USA
| | - Jack Zhu
- Cancer Genetics Branch, Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteBethesda, Maryland 20892-4264, USA
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteBethesda, Maryland 20892-4264, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteBethesda, Maryland 20892-4264, USA
| |
Collapse
|
18
|
Valvo V, Nucera C. Coding Molecular Determinants of Thyroid Cancer Development and Progression. Endocrinol Metab Clin North Am 2019; 48:37-59. [PMID: 30717910 PMCID: PMC6366338 DOI: 10.1016/j.ecl.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy. Its incidence and mortality rates have increased for patients with advanced-stage papillary thyroid cancer. The characterization of the molecular pathways essential in thyroid cancer initiation and progression has made huge progress, underlining the role of intracellular signaling to promote clonal evolution, dedifferentiation, metastasis, and drug resistance. The discovery of genetic alterations that include mutations (BRAF, hTERT), translocations, deletions (eg, 9p), and copy-number gain (eg, 1q) has provided new biological insights with clinical applications. Understanding how molecular pathways interplay is one of the key strategies to develop new therapeutic treatments and improve prognosis.
Collapse
Affiliation(s)
- Veronica Valvo
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | - Carmelo Nucera
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
Nikitski AV, Rominski SL, Wankhede M, Kelly LM, Panebianco F, Barila G, Altschuler DL, Nikiforov YE. Mouse Model of Poorly Differentiated Thyroid Carcinoma Driven by STRN-ALK Fusion. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2653-2661. [PMID: 30125543 PMCID: PMC6222272 DOI: 10.1016/j.ajpath.2018.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022]
Abstract
Chromosomal rearrangements of the ALK gene, which lead to constitutive activation of ALK tyrosine kinase, are found in various cancers. In thyroid cancers, ALK fusions, most commonly the STRN-ALK fusion, are detected in papillary thyroid cancer and with higher frequency in poorly differentiated and anaplastic thyroid cancers. Our aim was to establish a mouse model of thyroid-specific expression of STRN-ALK and to test whether this fusion drives the development of thyroid cancer with a propensity for dedifferentiation. Transgenic Tg-STRN-ALK mice with thyroglobulin-controlled expression of STRN-ALK were generated and aged with or without goitrogen treatment. Thyroids from these mice were subjected to histologic and immunohistochemical analysis. Transgenic mice with thyroid-specific expression of STRN-ALK developed poorly differentiated thyroid tumors by the age of 12 months in 22% of mice without goitrogen treatment and in 36% of mice with goitrogen treatment. Histologically and immunohistochemically, the tumors resembled poorly differentiated thyroid cancers in humans, demonstrating a solid growth pattern with sheets of round or spindle-shaped cells, decreased expression of thyroglobulin, and a tendency to lose E-cadherin. In this study, we report a novel mouse model of poorly differentiated thyroid cancer driven by the STRN-ALK oncogene with phenotypic features closely recapitulating human tumor, and with a more pronounced phenotype after additional thyroid-stimulating hormone stimulation.
Collapse
Affiliation(s)
| | - Susan L Rominski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mamta Wankhede
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lindsey M Kelly
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Guillermo Barila
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
20
|
Gahete MD, Jimenez-Vacas JM, Alors-Perez E, Herrero-Aguayo V, Fuentes-Fayos AC, Pedraza-Arevalo S, Castaño JP, Luque RM. Mouse models in endocrine tumors. J Endocrinol 2018; 240:JOE-18-0571.R1. [PMID: 30475226 DOI: 10.1530/joe-18-0571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Endocrine and neuroendocrine tumors comprise a highly heterogeneous group of neoplasms that can arise from (neuro)endocrine cells, either from endocrine glands or from the widespread diffuse neuroendocrine system, and, consequently, are widely distributed throughout the body. Due to their diversity, heterogeneity and limited incidence, studying in detail the molecular and genetic alterations that underlie their development and progression is still a highly elusive task. This, in turn, hinders the discovery of novel therapeutic options for these tumors. To circumvent these limitations, numerous mouse models of endocrine and neuroendocrine tumors have been developed, characterized and used in pre-clinical, co-clinical (implemented in mouse models and patients simultaneously) and post-clinical studies, for they represent powerful and necessary tools in basic and translational tumor biology research. Indeed, different in vivo mouse models, including cell line-based xenografts (CDXs), patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs), have been used to delineate the development, progression and behavior of human tumors. Results gained with these in vivo models have facilitated the clinical application in patients of diverse breakthrough discoveries made in this field. Herein, we review the generation, characterization and translatability of the most prominent mouse models of endocrine and neuroendocrine tumors reported to date, as well as the most relevant clinical implications obtained for each endocrine and neuroendocrine tumor type.
Collapse
Affiliation(s)
- Manuel D Gahete
- M Gahete, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, 14011, Spain
| | - Juan M Jimenez-Vacas
- J Jimenez-Vacas, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Emilia Alors-Perez
- E Alors-Perez, Department of Cell Biology, Physiology and Inmunology, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC) / University of Cordoba, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- V Herrero-Aguayo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- A Fuentes-Fayos, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- S Pedraza-Arevalo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- J Castaño, Dpt. of Cell Biology-University of Córdoba, IMIBIC-Maimonides Biomedical Research Institute of Cordoba, Cordoba, E-14004, Spain
| | - Raul M Luque
- R Luque, Dept of Cell Biology, Phisiology and Inmunology, Section of Cell Biology, University of Cordoba, Cordoba, Spain, Cordoba, 14014, Spain
| |
Collapse
|
21
|
Zhu X, Holmsen E, Park S, Willingham MC, Qi J, Cheng SY. Synergistic effects of BET and MEK inhibitors promote regression of anaplastic thyroid tumors. Oncotarget 2018; 9:35408-35421. [PMID: 30459933 PMCID: PMC6226043 DOI: 10.18632/oncotarget.26253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/06/2018] [Indexed: 11/25/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is an aggressive malignancy with limited options for treatment. Targeting epigenetic modifications via interfering with the interaction between the bromodomain and extra-terminal domain (BET) proteins and acetylated histones by using BET inhibitors (e.g., JQ1) has shown some efficacy in thyroid cancer. To improve the efficacy, an inhibitor of MEK, trametinib, was tested together with JQ1 as a combined treatment via cell-based approaches and xenograft studies. We examined the effects of combined treatment of JQ1 and trametinib on the proliferation of human ATC cell lines (THJ-11T and THJ-16) in vitro. We further evaluated the effects of the combined treatment on tumor development in vivo using mouse xenograft models. We elucidated the underlying molecular pathways affected by double treatment. We showed that the combined treatment totally blocked proliferation, while either JQ1 or trametinib alone only had partial effects. Combined treatment suppressed MYC expression more than single treatment, resulting in decreased expression of pro-survival regulators and increased pro-apoptotic regulators to collaboratively induce apoptosis. In xenograft studies, single treatment only partially inhibited tumor growth, but the combined treatment inhbited tumor growth by >90%. The reduction of tumor growth was mediated by synergistic suppression of MYC, to affect apoptotic regulators to markedly promote tumor apoptosis. Combined treatment of BET and MEK-ERK inhibitors was more effective to treat ATC than single targeted treatment. Synergistic suppression of MYC transcription via collaborative actions on chromatin modifications suggested that targeting epigenetic modifications could provide novel treatment opportunities for ATC.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erik Holmsen
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sunmi Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark C Willingham
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Qi
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Park S, Willingham MC, Qi J, Cheng SY. Metformin and JQ1 synergistically inhibit obesity-activated thyroid cancer. Endocr Relat Cancer 2018; 25:865-877. [PMID: 29914872 PMCID: PMC6059993 DOI: 10.1530/erc-18-0071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
Compelling epidemiological evidence shows a strong positive correlation of obesity with thyroid cancer. In vivo studies have provided molecular evidence that high-fat-diet-induced obesity promotes thyroid cancer progression by aberrantly activating leptin-JAK2-STAT3 signaling in a mouse model of thyroid cancer (ThrbPV/PVPten+/- mice). The ThrbPV/PVPten+/- mouse expresses a dominantly negative thyroid hormone receptor β (denoted as PV) and a deletion of one single allele of the Pten gene. The ThrbPV/PVPten+/- mouse spontaneously develops follicular thyroid cancer, which allows its use as a preclinical mouse model to test potential therapeutics. We recently showed that inhibition of STAT3 activity by a specific inhibitor markedly delays thyroid cancer progression in high-fat-diet-induced obese ThrbPV/PVPten+/- mice (HFD-ThrbPV/PVPten+/- mice). Further, metformin, a widely used antidiabetic drug, blocks invasion and metastasis, but not thyroid tumor growth in HFD-ThrbPV/PVPten+/- mice. To improve efficacy in reducing thyroid tumor growth, we treated HFD-ThrbPV/PVPten+/- with JQ1, a potent inhibitor of the activity of bromodomain and extraterminal domain (BET) and with metformin. We found that the combined treatment synergistically suppressed thyroid tumor growth by attenuating STAT3 and ERK signaling, resulting in decreased anti-apoptotic key regulators such as Mcl-1, Bcl-2 and survivin and increased pro-apoptotic regulators such as Bim, BAD and cleave caspase 3. Furthermore, combined treatment of JQ1 and metformin reduced cMyc protein levels to suppress vascular invasion, anaplasia and lung metastasis. These findings indicate that combined treatment is more effective than metformin alone and suggest a novel treatment modality for obesity-activated thyroid cancer.
Collapse
Affiliation(s)
- Sunmi Park
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mark C Willingham
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jun Qi
- Dana Farber Cancer InstituteHarvard Medical School, Boston, Massachusetts, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Coelho RG, Fortunato RS, Carvalho DP. Metabolic Reprogramming in Thyroid Carcinoma. Front Oncol 2018; 8:82. [PMID: 29629339 PMCID: PMC5876306 DOI: 10.3389/fonc.2018.00082] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Among all the adaptations of cancer cells, their ability to change metabolism from the oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on tumor metabolism show that improved glycolysis and glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid neoplasms are common endocrine tumors that are more prevalent in women and elderly individuals. The incidence of thyroid cancer has increased in the Past decades, and recent findings describing the metabolic profiles of thyroid tumors have emerged. Currently, several drugs are in development or clinical trials that target the altered metabolic pathways of tumors are undergoing. We present a review of the metabolic reprogramming in cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis and the possible identification of promising metabolic targets in thyroid cancer.
Collapse
Affiliation(s)
- Raquel Guimaraes Coelho
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S. Fortunato
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise P. Carvalho
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Long-term vemurafenib treatment drives inhibitor resistance through a spontaneous KRAS G12D mutation in a BRAF V600E papillary thyroid carcinoma model. Oncotarget 2017; 7:30907-23. [PMID: 27127178 PMCID: PMC5058727 DOI: 10.18632/oncotarget.9023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/31/2016] [Indexed: 01/04/2023] Open
Abstract
The BRAF V600E mutation is commonly observed in papillary thyroid cancer (PTC) and predominantly activates the MAPK pathway. Presence of BRAF V600E predicts increasing risk of recurrence and higher mortality rate, and treatment options for such patients are limited. Vemurafenib, a BRAF V600E inhibitor, is initially effective, but cells inevitably develop alternative mechanisms of pathway activation. Mechanisms of primary resistance have been described in short-term cultures of PTC cells; however, mechanisms of acquired resistance have not. In the present study, we investigated possible adaptive mechanisms of BRAF V600E inhibitor resistance in KTC1 thyroid cancer cells following long-term vemurafenib exposure. We found that a subpopulation of KTC1 cells acquired resistance to vemurafenib following 5 months of treatment with the inhibitor. Resistance coincided with the spontaneous acquisition of a KRAS G12D activating mutation. Increases in activated AKT, ERK1/2, and EGFR were observed in these cells. In addition, the resistant cells were less sensitive to combinations of vemurafenib and MEK1 inhibitor or AKT inhibitor. These results support the KRAS G12D mutation as a genetic mechanism of spontaneously acquired secondary BRAF inhibitor resistance in BRAF V600E thyroid cancer cells.
Collapse
|
25
|
Metformin blocks progression of obesity-activated thyroid cancer in a mouse model. Oncotarget 2017; 7:34832-44. [PMID: 27145454 PMCID: PMC5085193 DOI: 10.18632/oncotarget.8989] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/16/2016] [Indexed: 12/22/2022] Open
Abstract
Compelling epidemiologic evidence indicates that obesity is associated with a high risk of human malignancies, including thyroid cancer. We previously demonstrated that a high fat diet (HFD) effectively induces the obese phenotype in a mouse model of aggressive follicular thyroid cancer (ThrbPV/PVPten+/−mice). We showed that HFD promotes cancer progression through aberrant activation of the leptin-JAK2-STAT3 signaling pathway. HFD-promoted thyroid cancer progression allowed us to test other molecular targets for therapeutic opportunity for obesity-induced thyroid cancer. Metformin is a widely used drug to treat patients with type II diabetes. It has been shown to reduce incidences of neoplastic diseases and cancer mortality in type II diabetes patients. The present study aimed to test whether metformin could be a therapeutic for obesity-activated thyroid cancer. ThrbPV/PVPten+/−mice were fed HFD together with metformin or vehicle-only, as controls, for 20 weeks. While HFD-ThrbPV/PVPten+/−mice had shorter survival than LFD-treated mice, metformin had no effects on the survival of HFD-ThrbPV/PVPten+/−mice. Remarkably, metformin markedly decreased occurrence of capsular invasion and completely blocked vascular invasion and anaplasia in HFD-ThrbPV/PVPten+/−mice without affecting thyroid tumor growth. The impeded cancer progression was due to the inhibitory effect of metformin on STAT3-ERK-vimentin and fibronectin-integrin signaling to decrease tumor cell invasion and de-differentiation. The present studies provide additional molecular evidence to support the link between obesity and thyroid cancer risk. Importantly, our findings suggest that metformin could be used as an adjuvant in combination with antiproliferative modalities to improve the outcome of patients with obesity-activated thyroid cancer.
Collapse
|
26
|
Ciavardelli D, Bellomo M, Consalvo A, Crescimanno C, Vella V. Metabolic Alterations of Thyroid Cancer as Potential Therapeutic Targets. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2545031. [PMID: 29234677 PMCID: PMC5694990 DOI: 10.1155/2017/2545031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/15/2017] [Indexed: 12/16/2022]
Abstract
Thyroid cancer (TC) is the most frequent endocrine tumor with a growing incidence worldwide. Besides the improvement of diagnosis, TC increasing incidence is probably due to environmental factors and lifestyle modifications. The actual diagnostic criteria for TC classification are based on fine needle biopsy (FNAB) and histological examination following thyroidectomy. Since in some cases it is not possible to make a proper diagnosis, classical approach needs to be supported by additional biomarkers. Recently, new emphasis has been given to the altered cellular metabolism of proliferating cancer cells which require high amount of glucose for energy production and macromolecules biosynthesis. Also TC displays alteration of energy metabolism orchestrated by oncogenes activation and tumor suppressors inactivation leading to abnormal proliferation. Furthermore, TC shows significant metabolic heterogeneity within the tumor microenvironment and metabolic coupling between cancer and stromal cells. In this review we focus on the current knowledge of metabolic alterations of TC and speculate that targeting TC metabolism may improve current therapeutic protocols for poorly differentiated TC. Future studies will further deepen the actual understandings of the metabolic phenotype of TC cells and will give the chance to provide novel prognostic biomarkers and therapeutic targets in tumors with a more aggressive behavior.
Collapse
Affiliation(s)
- Domenico Ciavardelli
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-Met), Chieti, Italy
| | - Maria Bellomo
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
| | - Ada Consalvo
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-Met), Chieti, Italy
| | | | - Veronica Vella
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, Catania, Italy
| |
Collapse
|
27
|
Chi J, Zheng X, Gao M, Zhao J, Li D, Li J, Dong L, Ruan X. Integrated microRNA-mRNA analyses of distinct expression profiles in follicular thyroid tumors. Oncol Lett 2017; 14:7153-7160. [PMID: 29344146 PMCID: PMC5754833 DOI: 10.3892/ol.2017.7146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are small non-coding RNAs identified in plants, animals and certain viruses; they function in RNA silencing and post-transcriptional regulation of gene expression. miRNAs also serve an important role in the pathogenesis, diagnosis and treatment of tumors. However, few studies have investigated the role of miRNAs in thyroid tumors. In the present study, the expression of miRNA and mRNA was compared between follicular thyroid carcinoma (FTC) and follicular thyroid adenoma (FA) samples, and then miRNA-mRNA regulatory network analysis was performed. Microarray datasets (GSE29315 and GSE62054) were downloaded from the Gene Expression Omnibus, and profiling data were processed with R software. Differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) were determined, and Gene Ontology enrichment analysis was subsequently performed for DEGs using the Database for Annotation, Visualization and Integrated Discovery. The target genes of the DEMs were identified with miRWalk, miRecords and TarMir databases. Network analysis of the DEMs and DEMs-targeted DEGs was performed using Cytoscape software. In GSE62054, 23 downregulated and 9 upregulated miRNAs were identified. In GSE29315, 42 downregulated and 44 upregulated mRNAs were identified. A total of 36 miRNA-gene pairs were also identified. Network analysis indicated a co-regulatory association between miR-296-5p, miR-10a, miR-139-5p, miR-452, miR-493, miR-7, miR-137, miR-144, miR-145 and corresponding targeted mRNAs, including TNF receptor superfamily member 11b, benzodiazepine receptor (peripheral) -associated protein 1, and transforming growth factor β receptor 2. These results suggest that miRNA-mRNAs networks serve an important role in the pathogenesis, diagnosis and treatment of FTC and FA.
Collapse
Affiliation(s)
- Jiadong Chi
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China.,Department of Graduate College, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Ming Gao
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Jingzhu Zhao
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Dapeng Li
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Jiansen Li
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Li Dong
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumors, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
28
|
Sakr HI, Chute DJ, Nasr C, Sturgis CD. cMYC expression in thyroid follicular cell-derived carcinomas: a role in thyroid tumorigenesis. Diagn Pathol 2017; 12:71. [PMID: 28974238 PMCID: PMC5627435 DOI: 10.1186/s13000-017-0661-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/25/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND cMYC regulates approximately 15% of human genes and is involved in up to 20% of all human cancers. Reports discussing cMYC protein expression in thyroid carcinomas are limited, with controversies pertaining to cMYC expression patterns noted in the literature. The aims of the current study were to clarify patterns and intensities of cMYC expression in follicular cell-derived thyroid carcinomas across a spectrum of cancer morphologies and disease aggressivities, to correlate cMYC with BRAFV600E expression, and to evaluate the potential role of cMYC in progression of well-differentiated thyroid carcinomas into less well-differentiated carcinomas. METHODS Immunohistochemical studies using specific monoclonal antibodies for cMYC and BRAFV600E were performed on tissue microarrays built from follicular cell-derived thyroid carcinomas (25 papillary, 24 follicular, 24 oncocytic variant of follicular, and 21 undifferentiated). In addition, cMYC IHC testing was also performed on whole tissue tumor sections from a subset of patients. Nodular hyperplasia cases were used as non-neoplastic controls. Appropriate positive and negative controls were included. RESULTS cMYC was expressed almost exclusively in a nuclear fashion in both thyroid carcinomas and nodular hyperplasias. cMYC expression was weakly positive in both nodular hyperplasias and well-differentiated carcinomas. The majority of undifferentiated carcinomas (UDCs) showed strong nuclear cMYC positivity. PTC cases that were positive for cMYC (6/25) harbored the BRAF V600E mutation. A correlation was confirmed between cMYC intensity and tumor size in UDCs. UDC cases that developed out of well-differentiated thyroid carcinomas showed frank overexpression of cMYC in the undifferentiated tumor components. CONCLUSIONS Our study suggests that nuclear overexpression of cMYC correlates with tumorigenesis / dedifferentiation in follicular cell derived thyroid carcinomas, a concept that has not been shown before on whole tissue sections.
Collapse
Affiliation(s)
- Hany I Sakr
- Cleveland Clinic, Department of Pathology and Laboratory Medicine, 9500 Euclid Avenue, L25, Cleveland, OH, 44195, USA
| | - Deborah J Chute
- Cleveland Clinic, Department of Pathology and Laboratory Medicine, 9500 Euclid Avenue, L25, Cleveland, OH, 44195, USA
| | - Christian Nasr
- Cleveland Clinic, Department of Endocrinology, Diabetes and Metabolism, Cleveland, USA
| | - Charles D Sturgis
- Cleveland Clinic, Department of Pathology and Laboratory Medicine, 9500 Euclid Avenue, L25, Cleveland, OH, 44195, USA.
| |
Collapse
|
29
|
Zhu X, Cheng SY. Epigenetic Modifications: Novel Therapeutic Approach for Thyroid Cancer. Endocrinol Metab (Seoul) 2017; 32:326-331. [PMID: 28956361 PMCID: PMC5620028 DOI: 10.3803/enm.2017.32.3.326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
The incidence of thyroid cancer is growing the fastest among all cancers in the United States, especially in women. The number of patients with thyroid neoplasm is part of an even larger number of patients who often need to undergo an operation to exclude a cancer diagnosis. While differentiated thyroid cancer (papillary thyroid cancer and follicular thyroid cancer) accounts for most cases of thyroid cancer and has a relatively good prognosis, effective treatments for patients with de-differentiated and anaplastic thyroid cancer are still gravely needed. Despite progress in the identification of genetic changes in thyroid cancer, the impact of aberrant epigenetic alterations on thyroid cancer remains to be fully elucidated. Understanding of the roles of epigenetic changes in thyroid cancer could open new opportunities for the identification of innovative molecular targets for novel treatment modalities, especially for anaplastic thyroid cancer for which treatment is very limited. This article briefly reviews the studies that exemplify the potential for and promise of using epigenetic regulators in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheue Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Enomoto K, Zhu X, Park S, Zhao L, Zhu YJ, Willingham MC, Qi J, Copland JA, Meltzer P, Cheng SY. Targeting MYC as a Therapeutic Intervention for Anaplastic Thyroid Cancer. J Clin Endocrinol Metab 2017; 102:2268-2280. [PMID: 28368473 PMCID: PMC5505205 DOI: 10.1210/jc.2016-3771] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/21/2017] [Indexed: 12/17/2022]
Abstract
CONTEXT Recent studies showed that transcription of the MYC gene is driven by the interaction of bromodomain and extraterminal domain (BET) proteins with acetylated histones on chromatin. JQ1, a potent inhibitor that effectively disrupts the interaction of BET proteins with acetylated histones, preferentially suppresses transcription of the MYC gene. We recently reported that JQ1 decreased thyroid tumor growth and improved survival in a mouse model of anaplastic thyroid cancer (ATC) by targeting MYC transcription. The role of MYC in human ATC and whether JQ1 can effectively target MYC as a treatment modality have not been elucidated. OBJECTIVE To understand the underlying molecular mechanisms of JQ1, we evaluated its efficacy in human ATC cell lines and xenograft models. DESIGN We determined the effects of JQ1 on proliferation and invasion in cell lines and xenograft tumors. We identified key regulators critical for JQ1-affected proliferation and invasion of tumor cells. RESULTS JQ1 markedly inhibited proliferation of four ATC cell lines by suppression of MYC and elevation of p21and p27 to decrease phosphorylated Rb and delay cell cycle progression from the G0/G1 phase to the S phase. JQ1 blocked cell invasion by attenuating epithelial-mesenchymal transition signals. These cell-based studies were further confirmed in xenograft studies in which the size and rate of tumor growth were inhibited by JQ1 via inhibition of p21-cyclin/cyclin-dependent kinase-Rb-E2F signaling. CONCLUSIONS These results suggest targeting of the MYC protein could be a potential treatment modality for human ATC for which effective treatment options are limited.
Collapse
Affiliation(s)
- Keisuke Enomoto
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Sunmi Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuelin J. Zhu
- Laboratory of Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Mark C. Willingham
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jun Qi
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224
| | - Paul Meltzer
- Laboratory of Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
31
|
ALOX5 exhibits anti-tumor and drug-sensitizing effects in MLL-rearranged leukemia. Sci Rep 2017; 7:1853. [PMID: 28500307 PMCID: PMC5431828 DOI: 10.1038/s41598-017-01913-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/30/2017] [Indexed: 12/30/2022] Open
Abstract
MLL-rearranged acute myeloid leukemia (AML) remains a fatal disease with a high rate of relapse and therapeutic failure due to chemotherapy resistance. In analysis of our Affymetrix microarray profiling and chromatin immunoprecipitation (ChIP) assays, we found that ALOX5 is especially down-regulated in MLL-rearranged AML, via transcription repression mediated by Polycomb repressive complex 2 (PRC2). Colony forming/replating and bone marrow transplantation (BMT) assays showed that Alox5 exhibited a moderate anti-tumor effect both in vitro and in vivo. Strikingly, leukemic cells with Alox5 overexpression showed a significantly higher sensitivity to the standard chemotherapeutic agents, i.e., doxorubicin (DOX) and cytarabine (Ara-C). The drug-sensitizing role of Alox5 was further confirmed in human and murine MLL-rearranged AML cell models in vitro, as well as in the in vivo MLL-rearranged AML BMT model coupled with treatment of “5 + 3” (i.e. DOX plus Ara-C) regimen. Stat and K-Ras signaling pathways were negatively correlated with Alox5 overexpression in MLL-AF9-leukemic blast cells; inhibition of the above signaling pathways mimicked the drug-sensitizing effect of ALOX5 in AML cells. Collectively, our work shows that ALOX5 plays a moderate anti-tumor role and functions as a drug sensitizer, with a therapeutic potential, in MLL-rearranged AML.
Collapse
|
32
|
Chu BF, Qin YY, Zhang SL, Quan ZW, Zhang MD, Bi JW. Downregulation of Notch-regulated Ankyrin Repeat Protein Exerts Antitumor Activities against Growth of Thyroid Cancer. Chin Med J (Engl) 2017; 129:1544-52. [PMID: 27364790 PMCID: PMC4931260 DOI: 10.4103/0366-6999.184465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Notch-regulated ankyrin repeat protein (NRARP) is recently found to promote proliferation of breast cancer cells. The role of NRARP in carcinogenesis deserves extensive investigations. This study attempted to investigate the expression of NRARP in thyroid cancer tissues and assess the influence of NRARP on cell proliferation, apoptosis, cell cycle, and invasion in thyroid cancer. METHODS Thirty-four cases with thyroid cancer were collected from the Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine between 2011 and 2012. Immunohistochemistry was used to detect the level of NRARP in cancer tissues. Lentivirus carrying NRARP-shRNA (Lenti-NRARP-shRNA) was applied to down-regulate NRARP expression. Cell viability was tested after treatment with Lenti-NRARP-shRNA using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis and cell cycle distribution were determined by flow cytometry. Cell invasion was tested using Transwell invasion assay. In addition, expressions of several cell cycle-associated and apoptosis-associated proteins were examined using Western blotting after transfection. Student's t-test, one-way analysis of variance (ANOVA), or Kaplan-Meier were used to analyze the differences between two group or three groups. RESULTS NRARP was highly expressed in thyroid cancer tissues. Lenti-NRARP-shRNA showed significantly inhibitory activities against cell growth at a multiplicity of infection of 10 or higher (P < 0.05). Lenti-NRARP-shRNA-induced G1 arrest (BHT101: 72.57% ± 5.32%; 8305C: 75.45% ± 5.26%) by promoting p21 expression, induced apoptosis by promoting bax expression and suppressing bcl-2 expression, and inhibited cell invasion by suppressing matrix metalloproteinase-9 expression. CONCLUSION Downregulation of NRARP expression exerts significant antitumor activities against cell growth and invasion of thyroid cancer, that suggests a potential role of NRARP in thyroid cancer targeted therapy.
Collapse
Affiliation(s)
- Bing-Feng Chu
- Graduate School, Shanghai Second Military Medical University, Shanghai 200433; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yi-Yu Qin
- Clinical College, Yancheng Institute of Health Sciences, Yancheng, Jiangsu 224000, China
| | - Sheng-Lai Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhi-Wei Quan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ming-Di Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Wei Bi
- Department of First General Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
33
|
Park JW, Zhao L, Willingham MC, Cheng SY. Inhibition of STAT3 signaling blocks obesity-induced mammary hyperplasia in a mouse model. Am J Cancer Res 2017; 7:727-739. [PMID: 28401024 PMCID: PMC5385655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/18/2016] [Indexed: 06/07/2023] Open
Abstract
Compelling epidemiologic evidence indicates that obesity is a risk factor for human cancers, including breast. However, molecular mechanisms by which obesity could contribute to the development of breast cancer remain unclear. To understand the impact of obesity on breast cancer development, we used a mutant mouse that expresses a mutated thyroid hormone receptor β (denoted as PV) with haplodeficiency of the Pten gene (ThrbPV/PVPten+/- mice). We previously showed that adult nulliparous female ThrbPV/PVPten+/- mice developed extensive mammary hyperplasia and breast tumors. In this study, we induced obesity in ThrbPV/PVPten+/- mice by feeding them a high fat diet (HFD). We found HFD exacerbated the extent of mammary hyperplasia in ThrbPV/PVPten+/- mice. HFD elevated serum leptin levels but had no effect on the levels of serum thyroid stimulating hormone, thyroid hormones, and estrogens. Molecular analysis showed that the obesity-induced hyperplasia was mediated by the leptin/leptin receptor-JAK1-STAT3 pathway to increase key cell cycle regulators to stimulate mammary epithelial cell proliferation. Activated STAT3 signaling led to altered expression in the key regulators of epithelial-mesenchymal-transition (EMT) to augment invasiveness and migration of mammary proliferating epithelial cells. Moreover, treatment of HFD-ThrbPV/PVPten+/- mice with a STAT3 inhibitor, S3I-201, markedly reversed the obesity-induced mammary hyperplasia and reduced EMT signals to lessen cell invasiveness and migration. Our studies not only elucidated how obesity could contribute to mammary hyperplasia at the molecular level, but also, importantly, demonstrated that inhibition of the STAT3 activity could be a novel treatment strategy for obesity-induced breast cancer progression.
Collapse
Affiliation(s)
- Jeong Won Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD 20892-6264, USA
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD 20892-6264, USA
| | - Mark C Willingham
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD 20892-6264, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD 20892-6264, USA
| |
Collapse
|
34
|
Zhu X, Enomoto K, Zhao L, Zhu YJ, Willingham MC, Meltzer P, Qi J, Cheng SY. Bromodomain and Extraterminal Protein Inhibitor JQ1 Suppresses Thyroid Tumor Growth in a Mouse Model. Clin Cancer Res 2017; 23:430-440. [PMID: 27440272 PMCID: PMC5241246 DOI: 10.1158/1078-0432.ccr-16-0914] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE New therapeutic approaches are needed for patients with thyroid cancer refractory to radioiodine treatment. An inhibitor of bromodomain and extraterminal domain (BET) proteins, JQ1, shows potent antitumor effects in hematological cancers and solid tumors. To evaluate whether JQ1 is effective against thyroid cancer, we examined antitumor efficacy of JQ1 using the ThrbPV/PVKrasG12D mouse, a model of anaplastic thyroid cancer. EXPERIMENTAL DESIGN We treated ThrbPV/PVKrasG12D mice with vehicle or JQ1 at a dose of 50 mg/kg body weight/day starting at the age of 8 weeks for a 10-week period and monitored thyroid tumor progression. RESULTS JQ1 markedly inhibited thyroid tumor growth and prolonged survival of these mice. Global differential gene expression analysis showed that JQ1 suppressed the cMyc (hereafter referred to as Myc) transcription program by inhibiting mRNA expression of Myc, ccnd1, and other related genes. JQ1-suppressed Myc expression was accompanied by chromatin remodeling as evidenced by increased expression of histones and hexamethylene bis-acetamide inducible 1, a suppressor of RNA polymerase II transcription elongation. Analyses showed that JQ1 decreased MYC abundance in thyroid tumors and attenuated the cyclin D1-CDK4-Rb-E2F3 signaling to decrease tumor growth. Further analysis indicated that JQ1 inhibited the recruitment of BDR4 to the promoter complex of the Myc and Ccnd1 genes in rat thyroid follicular PCCL3 cells, resulting in decreased MYC expression at the mRNA and protein levels to inhibit tumor cell proliferation. CONCLUSIONS These preclinical findings suggest that BET inhibitors may be an effective agent to reduce thyroid tumor burden for the treatment of refractory thyroid cancer. Clin Cancer Res; 23(2); 430-40. ©2016 AACR.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keisuke Enomoto
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Li Zhao
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yuelin J Zhu
- Laboratory Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mark C Willingham
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Paul Meltzer
- Laboratory Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jun Qi
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
35
|
Zhu X, Kim DW, Zhao L, Willingham MC, Cheng SY. SAHA-induced loss of tumor suppressor Pten gene promotes thyroid carcinogenesis in a mouse model. Endocr Relat Cancer 2016; 23:521-33. [PMID: 27267120 PMCID: PMC4959547 DOI: 10.1530/erc-16-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/06/2016] [Indexed: 11/08/2022]
Abstract
Thyroid cancer is on the rise. Novel approaches are needed to improve the outcome of patients with recurrent and advanced metastatic thyroid cancers. FDA approval of suberoylanilide hydroxamic acid (SAHA; vorinostat), an inhibitor of histone deacetylase, for the treatment of hematological malignancies led to the clinical trials of vorinostat for advanced thyroid cancer. However, patients were resistant to vorinostat treatment. To understand the molecular basis of resistance, we tested the efficacy of SAHA in two mouse models of metastatic follicular thyroid cancer: Thrb(PV/PV) and Thrb(PV/PV)Pten(+/-) mice. In both, thyroid cancer is driven by overactivation of PI3K-AKT signaling. However, the latter exhibit more aggressive cancer progression due to haplodeficiency of the tumor suppressor, the Pten gene. SAHA had no effects on thyroid cancer progression in Thrb(PV/PV) mice, indicative of resistance to SAHA. Unexpectedly, thyroid cancer progressed in SAHA-treated Thrb(PV/PV)Pten(+/-) mice with accelerated occurrence of vascular invasion, anaplastic foci, and lung metastasis. Molecular analyses showed further activated PI3K-AKT in thyroid tumors of SAHA-treated Thrb(PV/PV)Pten(+/-) mice, resulting in the activated effectors, p-Rb, CDK6, p21(Cip1), p-cSrc, ezrin, and matrix metalloproteinases, to increase proliferation and invasion of tumor cells. Single-molecule DNA analysis indicated that the wild-type allele of the Pten gene was progressively lost, whereas carcinogenesis progressed in SAHA-treated Thrb(PV/PV)Pten(+/-) mice. Thus, this study has uncovered a novel mechanism by which SAHA-induced loss of the tumor suppressor Pten gene to promote thyroid cancer progression. Effectors downstream of the Pten loss-induced signaling may be potential targets to overcome resistance of thyroid cancer to SAHA.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dong Wook Kim
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Li Zhao
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark C Willingham
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Kirschner LS, Qamri Z, Kari S, Ashtekar A. Mouse models of thyroid cancer: A 2015 update. Mol Cell Endocrinol 2016; 421:18-27. [PMID: 26123589 PMCID: PMC4691568 DOI: 10.1016/j.mce.2015.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/28/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023]
Abstract
Thyroid cancer is the most common endocrine neoplasm, and its rate is rising at an alarming pace. Thus, there is a compelling need to develop in vivo models which will not only enable the confirmation of the oncogenic potential of driver genes, but also point the way towards the development of new therapeutics. Over the past 20 years, techniques for the generation of mouse models of human diseases have progressed substantially, accompanied by parallel advances in the genetics and genomics of human tumors. This convergence has enabled the development of mouse lines carrying mutations in the genes that cause thyroid cancers of all subtypes, including differentiated papillary and follicular thyroid cancers, poorly differentiated/anaplastic cancers, and medullary thyroid cancers. In this review, we will discuss the state of the art of mouse modeling of thyroid cancer, with the eventual goal of providing insight into tumor biology and treatment.
Collapse
Affiliation(s)
- Lawrence S Kirschner
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, USA.
| | - Zahida Qamri
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, USA
| | - Suresh Kari
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, USA
| | - Amruta Ashtekar
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
37
|
Park JW, Han CR, Zhao L, Willingham MC, Cheng SY. Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model. Endocr Relat Cancer 2016; 23:53-63. [PMID: 26552408 PMCID: PMC4671368 DOI: 10.1530/erc-15-0417] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Compelling epidemiologic studies indicate that obesity is a risk factor for many human cancers, including thyroid cancer. In recent decades, the incidence of thyroid cancer has dramatically increased along with a marked rise in obesity prevalence. We previously demonstrated that a high fat diet (HFD) effectively induced the obese phenotype in a mouse model of thyroid cancer (Thrb(PV/PV)Pten(+/-) mice). Moreover, HFD activates the STAT3 signal pathway to promote more aggressive tumor phenotypes. The aim of the present study was to evaluate the effect of S3I-201, a specific inhibitor of STAT3 activity, on HFD-induced aggressive cancer progression in the mouse model of thyroid cancer. WT and Thrb(PV/PV)Pten(+/-) mice were treated with HFD together with S3I-201 or vehicle-only as controls. We assessed the effects of S3I-201 on HFD-induced thyroid cancer progression, the leptin-JAK2-STAT3 signaling pathway, and key regulators of epithelial-mesenchymal transition (EMT). S3I-201 effectively inhibited HFD-induced aberrant activation of STAT3 and its downstream targets to markedly inhibit thyroid tumor growth and to prolong survival. Decreased protein levels of cyclins D1 and B1, cyclin dependent kinase 4 (CDK4), CDK6, and phosphorylated retinoblastoma protein led to the inhibition of tumor cell proliferation in S3I-201-treated Thrb(PV/PV)Pten(+/-) mice. Reduced occurrence of vascular invasion and blocking of anaplasia and lung metastasis in thyroid tumors of S3I-201-treated Thrb(PV/PV)Pten(+/-) mice were mediated via decreased expression of vimentin and matrix metalloproteinases, two key effectors of EMT. The present findings suggest that inhibition of the STAT3 activity would be a novel treatment strategy for obesity-induced thyroid cancer.
Collapse
Affiliation(s)
- Jeong Won Park
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 5128, Bethesda, Maryland 20892-6264, USA
| | - Cho Rong Han
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 5128, Bethesda, Maryland 20892-6264, USA
| | - Li Zhao
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 5128, Bethesda, Maryland 20892-6264, USA
| | - Mark C Willingham
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 5128, Bethesda, Maryland 20892-6264, USA
| | - Sheue-yann Cheng
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Room 5128, Bethesda, Maryland 20892-6264, USA
| |
Collapse
|
38
|
Lidral AC, Liu H, Bullard SA, Bonde G, Machida J, Visel A, Uribe LMM, Li X, Amendt B, Cornell RA. A single nucleotide polymorphism associated with isolated cleft lip and palate, thyroid cancer and hypothyroidism alters the activity of an oral epithelium and thyroid enhancer near FOXE1. Hum Mol Genet 2015; 24:3895-907. [PMID: 25652407 PMCID: PMC4476440 DOI: 10.1093/hmg/ddv047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/02/2015] [Indexed: 12/11/2022] Open
Abstract
Three common diseases, isolated cleft lip and cleft palate (CLP), hypothyroidism and thyroid cancer all map to the FOXE1 locus, but causative variants have yet to be identified. In patients with CLP, the frequency of coding mutations in FOXE1 fails to account for the risk attributable to this locus, suggesting that the common risk alleles reside in nearby regulatory elements. Using a combination of zebrafish and mouse transgenesis, we screened 15 conserved non-coding sequences for enhancer activity, identifying three that regulate expression in a tissue specific pattern consistent with endogenous foxe1 expression. These three, located -82.4, -67.7 and +22.6 kb from the FOXE1 start codon, are all active in the oral epithelium or branchial arches. The -67.7 and +22.6 kb elements are also active in the developing heart, and the -67.7 kb element uniquely directs expression in the developing thyroid. Within the -67.7 kb element is the SNP rs7850258 that is associated with all three diseases. Quantitative reporter assays in oral epithelial and thyroid cell lines show that the rs7850258 allele (G) associated with CLP and hypothyroidism has significantly greater enhancer activity than the allele associated with thyroid cancer (A). Moreover, consistent with predicted transcription factor binding differences, the -67.7 kb element containing rs7850258 allele G is significantly more responsive to both MYC and ARNT than allele A. By demonstrating that this common non-coding variant alters FOXE1 expression, we have identified at least in part the functional basis for the genetic risk of these seemingly disparate disorders.
Collapse
Affiliation(s)
| | - Huan Liu
- Dows Research Institute, State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | | | - Greg Bonde
- Department of Anatomy, University of Iowa, Iowa City, IA, USA
| | - Junichiro Machida
- Department of Oral and Maxillofacial Surgery, Toyota Memorial Hospital, Toyota City, Aichi, Japan
| | - Axel Visel
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA and Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Xiao Li
- Department of Anatomy, University of Iowa, Iowa City, IA, USA
| | - Brad Amendt
- Department of Anatomy, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
39
|
Cheng SY. My journey to unravel complex actions of thyroid hormone: was it fate or destiny? Endocr Relat Cancer 2015; 22:P1-P10. [PMID: 25662575 DOI: 10.1530/erc-15-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sheue-yann Cheng
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5128, Bethesda, Maryland 20892-4264, USA
| |
Collapse
|
40
|
Champa D, Di Cristofano A. Modeling anaplastic thyroid carcinoma in the mouse. Discov Oncol 2014; 6:37-44. [PMID: 25420535 DOI: 10.1007/s12672-014-0208-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023] Open
Abstract
Anaplastic thyroid carcinoma is the least common form of thyroid cancer; however, it accounts for the majority of deaths associated with this family of malignancies. A number of genetically engineered immunocompetent mouse models recapitulating the genetic and histological features of anaplastic thyroid cancer have been very recently generated and represent an invaluable tool to dissect the mechanisms involved in the progression from indolent, well-differentiated tumors to aggressive, undifferentiated carcinomas and to identify novel therapeutic targets. In this review, we focus on the relevant characteristics associated with these models and on what we have learned in terms of anaplastic thyroid cancer biology, genetics, and response to targeted therapy.
Collapse
Affiliation(s)
- Devora Champa
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Room 302, Bronx, NY, 10461, USA
| | | |
Collapse
|
41
|
Zhu X, Zhu YJ, Kim DW, Meltzer P, Cheng SY. Activation of integrin-ERBB2 signaling in undifferentiated thyroid cancer. Am J Cancer Res 2014; 4:776-788. [PMID: 25520867 PMCID: PMC4266711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023] Open
Abstract
Undifferentiated thyroid carcinoma is one of the most aggressive human cancers. Although genetic changes underlying this aggressive cancer remain to be elucidated, RAS mutations have been frequently identified in it. Mice harboring a mutant thyroid hormone receptor Thrb(PV) (Thrb(PV/PV) ) spontaneously develop differentiated follicular thyroid carcinoma similar to human thyroid cancer. We recently demonstrated that targeting a RAS mutation (Kras(G12D) ) to the thyroid of Thrb(PV/PV) mice (Thrb(PV/PV) Kras(G12D) mice) promotes initiation and progression of undifferentiated thyroid cancer. To uncover genes destined to drive the aggressive cancer phenotype, we used cDNA microarrays to compare the gene expression profiles of thyroid cells of Kras(G12D) mice and thyroid tumor lesions of Thrb(PV/PV) and Thrb(PV/PV) Kras(G12D) mice. Analyses of microarray data identified 14 upstream regulators that were significantly altered in thyroid tumors of Thrb(PV/PV) and Thrb(PV/PV) Kras(G12D) mice. Most of these genes with altered expression function as key regulators in growth factor-induced signaling. Further analysis identified gene expression profiles of markedly elevated integrin levels, acting as upstream activators to stimulate ERBB2-mediated downstream signaling in thyroid tumors of Thrb(PV/PV) Kras(G12D) mice. The present studies uncovered integrin-activated ERBB2 signaling as one of the mechanisms in synergy between TRβPV and KRASG12D signaling to promote aggressive tumor growth in undifferentiated thyroid cancer.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892
| | - Yuelin J Zhu
- Laboratory Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892
| | - Dong Wook Kim
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892
| | - Paul Meltzer
- Laboratory Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892
| |
Collapse
|