1
|
Fang Y, Tan C, Zheng Z, Yang J, Tang J, Guo R, Silli EK, Chen Z, Chen J, Ge R, Liu Y, Wen X, Liang J, Zhu Y, Jin Y, Li Q, Wang Y. The function of microRNA related to cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Biochem Pharmacol 2025; 236:116849. [PMID: 40056941 DOI: 10.1016/j.bcp.2025.116849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignant tumor characterized by a poor prognosis. A prominent feature of PDAC is the rich and dense stroma present in the tumor microenvironment (TME), which significantly hinders drug penetration. Cancer-associated fibroblasts (CAFs), activated fibroblasts originating from various cell sources, including pancreatic stellate cells (PSCs) and mesenchymal stem cells (MSCs), play a critical role in PDAC progression and TME formation. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules that are frequently involved in tumorigenesis and progression, exhibiting either oncolytic or oncogenic activity. Increasing evidence suggests that aberrant expression of miRNAs can mediate interactions between cancer cells and CAFs, thereby providing novel therapeutic targets for PDAC treatment. In this review, we will focus on the potential roles of miRNAs that target CAFs or CAFs-derived exosomes in PDAC progression, highlighting the feasibility of therapeutic strategies aimed at restoring aberrantly expressed miRNAs associated with CAFs, offering new pathways for the clinical management of PDAC.
Collapse
Affiliation(s)
- Yaohui Fang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Chunlu Tan
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenjiang Zheng
- Department of Pancreatic Surgery and General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianchen Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jiali Tang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruizhe Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Epiphane K Silli
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zhe Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jia Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ruyu Ge
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yuquan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiuqi Wen
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Jingdan Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yunfei Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yutong Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Qian Li
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
2
|
Tang S, Zhang Y, Wang P, Tang Q, Liu Y, Lu F, Han M, Zhou M, Hu Q, Feng M, Liang D. NKG2D-CAR-targeted iPSC-derived MSCs efficiently target solid tumors expressing NKG2D ligand. iScience 2025; 28:112343. [PMID: 40276759 PMCID: PMC12020857 DOI: 10.1016/j.isci.2025.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Mesenchymal stem cells (MSCs) hold potential in cancer therapy; however, insufficient tumor homing ability and heterogeneity limit their therapeutic benefits. Obviously, the homogeneous induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) with enhanced ability of tumor targeting could be the solution. In this study, a CAR containing the NKG2D extracellular domain was targeted at the B2M locus of iPSCs to generate NKG2D-CAR-iPSCs, which were subsequently differentiated into NKG2D-CAR-iMSCs. In vitro, NKG2D-CAR significantly enhanced migration and adhesion of iMSCs to a variety of solid tumor cells expressing NKG2D ligands. RNA sequencing (RNA-seq) revealed significant upregulation of genes related to cell adhesion, migration, and binding in NKG2D-CAR-iMSCs. In A549 xenograft model, NKG2D-CAR-iMSCs demonstrated a 57% improvement in tumor-homing ability compared with iMSCs. In conclusion, our findings demonstrate enhanced targeting specificity of NKG2D-CAR-iMSCs to tumor cells expressing NKG2D ligands in vitro and in vivo, facilitating future investigation of iMSCs as an off-the-shelf living carrier for targeted delivery of anti-tumor agents.
Collapse
Affiliation(s)
- Shuqing Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yusang Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Peiyun Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Qiyu Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yating Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Fan Lu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Mengting Han
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Qian Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Mai Feng
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410078, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
3
|
Gu X, Li T, Yin X, Zhai P, Jiang D, Sun D, Yan H, Wang B. Exosomes Derived from Metformin-Pretreated BMSCs Accelerate Diabetic Wound Repair by Promoting Angiogenesis Via the LINC-PINT/miR-139-3p/FOXC2 Axis. Stem Cell Rev Rep 2025; 21:1096-1112. [PMID: 40111729 DOI: 10.1007/s12015-025-10860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Chronic trauma is a prevalent and significant complication of diabetes. Mesenchymal stem cell(MSC)-derived exosomes (Exos) have been reported to accelerate the healing of chronic diabetic wounds. MSCs pretreated with chemical or biological factors were reported to enhance the biological activity of MSC-derived exosomes. Hence, this study investigated the role of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) pretreated with metformin (MET) on diabetic wound healing. The results showed that MET-Exos promoted endothelial cell migration, tube formation, and angiogenesis, leading to accelerated wound healing in diabetic mice. Mechanistically, MET-Exos upregulated LINC-PINT, which, through competitive binding to miR-139-3p, activated FOXC2, a key regulator of angiogenesis. These data reveal that MET-Exos might promote revascularization and wound healing through the LINC-PINT/miR-139-3p/FOXC2 axis, showing its potential as a therapeutic modality for diabetic wounds.
Collapse
Affiliation(s)
- Xiaobao Gu
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Teng Li
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyang Yin
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengbo Zhai
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Deyu Jiang
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Sun
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongxu Yan
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Wang
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Lee JC, Kang SW, Sim EJ, Bae JS, Koo SM, Byoun MS, Kwon S, Hong S, Kim Y, Youn Y, Jung K, Kim J, Jeong HH, Kim J, Hwang JH. Novel mRNA biomarker-based liquid biopsy for the detection of resectable pancreatic cancer. BMC Cancer 2025; 25:762. [PMID: 40269781 PMCID: PMC12016232 DOI: 10.1186/s12885-025-14124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and most often diagnosed at an advanced stage. Identification of markers for the early diagnosis of PDAC is crucial. In this study, we aimed to identify novel mRNA biomarkers for diagnosing PDAC, focusing on early-stage tumorigenesis and associated immunological changes. METHODS Blood samples and clinical information from 1,963 individuals were obtained from a single tertiary hospital between 2015 and 2021. Candidate mRNA biomarkers were identified through literature review, and their expression levels in buffy coat samples were measured using reverse-transcription quantitative polymerase chain reaction. Machine learning-based feature selection confirmed the final biomarker panel, which was tested using an independent dataset for diagnostic performance. RESULTS In total, 1,504 individuals (417 patients with PDAC and 1,087 non-disease controls) were eligible for the study. Among the 55 candidate biomarkers identified, 15 mRNAs (CCL5, CCR5, CLEC7A, CXCL8, CXCR2, CXCR4, FOXP3, IFNA1, IFNL1, PTGES, PTGES2, PTGS2, SLC27A2, TNF, and VEGFA) were selected based on their diagnostic performance in distinguishing PDAC from control groups. The final model, HELP-15 (Human Early Liquid biopsy for PDAC), identified all PDAC stages (area under the curve [AUC] = 0.956) in the test set. For resectable pancreatic cancer (RPC), the AUC was 0.968, compared to 0.910 for carbohydrate antigen 19 - 9 (CA19-9). The combined model of the panel and CA19-9 achieved an AUC of 0.985 in patients with RPC. For all PDAC stages in patients with normal CA19-9 levels, the AUC of the panel was 0.967, whereas CA19-9 alone or in combination with the panel had AUCs of 0.658 and 0.885, respectively. CONCLUSION Compared to CA19-9, the mRNA biomarker panel, HELP-15, improved diagnostic performance in patients with RPC, particularly in those with normal CA19-9 levels.
Collapse
Affiliation(s)
- Jong-Chan Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Won Kang
- Research Center, HuVet bio Inc, Seoul, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Jin Sim
- Research Center, HuVet bio Inc, Seoul, Korea
| | - Jin-Sik Bae
- Research Center, HuVet bio Inc, Seoul, Korea
| | | | | | - Serin Kwon
- Department of Life Science, Dongguk University, Seoul, Korea
| | - Seoi Hong
- Department of Computer and Artificial Intelligence, Dongguk University, Seoul, Korea
| | - Yunji Kim
- Department of Computer and Artificial Intelligence, Dongguk University, Seoul, Korea
| | - Yuna Youn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwangrok Jung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jaihwan Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | - Jihie Kim
- Department of Computer and Artificial Intelligence, Dongguk University, Seoul, Korea.
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Kaçaroğlu D, Yaylacı S, Ulaşlı AM. Dual facets of MSC-derived small EVs: regulatory insights into antitumor mechanisms in pancreatic ductal adenocarcinoma. Med Oncol 2025; 42:158. [PMID: 40208413 PMCID: PMC11985665 DOI: 10.1007/s12032-025-02713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense, fibrotic, immunosuppressive, and desmoplastic extracellular matrix. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have emerged as a novel therapeutic strategy. Nonetheless, the potential dual effects of MSC-EVs on tumor cells warrant careful consideration. This study aimed to evaluate the mechanistic effects of MSC-EVs on PDAC. Wharton's Jelly (WJ) MSC-derived small EVs were isolated using ultracentrifugation method and analyzed through nanoparticle tracking analysis (NTA) and flow cytometry. EVs were added to Panc-1 cells at concentrations of 4000-10,000 EVs per cell, and a preliminary MTT assay was performed. In subsequent experiments, EVs were added to Panc-1 cells at concentrations of only 4000, 8000 and 12,000 EVs per cell. After 24 h, apoptosis and cell cycle analyses were performed. The expression of epithelial-mesenchymal transition (EMT)-related and immune-related genes was analyzed. Cell cycle analysis showed higher G1 phase percentage in the control group (31%) compared to MSC EV-treated groups (35-36%). Apoptosis analysis revealed similar viable and necrotic cell percentages among the control (80% viable) and treated groups (approximately 78-79% viable). The CD44, VIM, MMP9, TIMP1, and ZEB1 genes were downregulated in treated groups compared to the control. Although CLDN1 and CDH1 genes were upregulated at the lowest EV concentration, they were downregulated at higher EV concentrations. Immune gene analysis showed downregulation of pro-inflammatory cytokines (IL-6, TNF-α, IFN-γ, IL-1α, IL-1β) and upregulation of the anti-inflammatory cytokine IL-10 in treated groups. This study revealed the dual role of WJ-MSC small EVs in PDAC. While they suppressed cell proliferation and modulated EMT markers, indicating their antitumor potential, they also exhibited an immunosuppressive profile. These findings highlight both the promise and challenges of using WJ-MSC small EVs as therapeutic agents, necessitating further studies to optimize their application and balance their effects.
Collapse
Affiliation(s)
- Demet Kaçaroğlu
- Faculty of Medicine, Department of Medical Biology, Lokman Hekim University, Söğütözü, 2179. Sk. No:6, 06530, Çankaya, Ankara, Turkey.
| | - Seher Yaylacı
- Faculty of Medicine, Department of Medical Biology, Lokman Hekim University, Söğütözü, 2179. Sk. No:6, 06530, Çankaya, Ankara, Turkey
| | - Alper Murat Ulaşlı
- Stem Cell Institute, Interdisciplinary Stem Cell and Regenerative Medicine Department, Ankara University, Cevizlidere, Ceyhun Atuf Kansu Cd. No:169, 06520, Çankaya, Ankara, Turkey
| |
Collapse
|
6
|
Rahimian S, Mirkazemi K, Kamalinejad A, Doroudian M. Exosome-based advances in pancreatic cancer: The potential of mesenchymal stem cells. Crit Rev Oncol Hematol 2025; 207:104594. [PMID: 39732301 DOI: 10.1016/j.critrevonc.2024.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024] Open
Abstract
Pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), is one of the most challenging clinical conditions due to its late-stage diagnosis and poor survival rates. Mesenchymal stem cells (MSCs), used for targeted therapies, are being explored as a promising treatment because of their tumor-homing properties and potential contributions to the pancreatic cancer microenvironment. Understanding these interactions is crucial for developing effective treatments. In this study, we investigated how MSCs exhibit tropism towards tumors, influence the microenvironment through paracrine effects, and serve as potential drug delivery vehicles. We also examined their role in progression and therapeutic resistance in pancreatic cancer therapy. The cytotoxic effects of certain compounds on tumor cells, the use of genetically modified MSCs as drug carriers, and the potential of exosomal biomarkers like miRNAs and riRNAs for diagnosis and monitoring of pancreatic cancer were analyzed. Overall, MSC-based therapies, coupled with insights into tumor-stromal interactions, offer new avenues for improving outcomes in pancreatic cancer treatment. Additionally, the use of MSC-based therapies in clinical trials is discussed. While MSCs show promising potential for pancreatic cancer monitoring, diagnosis, and treatment, results so far have been limited.
Collapse
Affiliation(s)
- Sana Rahimian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Kimia Mirkazemi
- Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Armita Kamalinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
7
|
Zhang H, Cao X, Gui R, Li Y, Zhao X, Mei J, Zhou B, Wang M. Mesenchymal Stem/Stromal cells in solid tumor Microenvironment: Orchestrating NK cell remodeling and therapeutic insights. Int Immunopharmacol 2024; 142:113181. [PMID: 39305890 DOI: 10.1016/j.intimp.2024.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs), originating from normal tissues, possess the capacity to home to tumor sites and differentiate into tumor-associated MSCs (TA-MSCs), which are instrumental in shaping an immunosuppressive milieu within tumors. Natural killer (NK) cells, integral to the innate immune system, are endowed with the ability to eradicate target cells autonomously, serving as an immediate defense against neoplastic growths. Nonetheless, within the tumor microenvironment (TME), NK cells often exhibit a decline in both their numerical presence and functionality. TA-MSCs have been shown to exert profound inhibitory effects on the functions of tumor-infiltrating immune cells, notably NK cells. Understanding the mechanisms by which TA-MSCs contribute to NK cell dysfunction is critical for the advancement of immune surveillance and the enhancement of tumoricidal responses. This review summarizes existing literature on NK cell modulation by TA-MSCs within the TME and proposes innovative strategies to augment antitumor immunity.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, 226321, China
| | - Rulin Gui
- Laboratory Animal Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Yuanyuan Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xinlan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, 222000, China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
8
|
Antoon R, Overdevest N, Saleh AH, Keating A. Mesenchymal stromal cells as cancer promoters. Oncogene 2024; 43:3545-3555. [PMID: 39414984 PMCID: PMC11602730 DOI: 10.1038/s41388-024-03183-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
Mesenchymal stromal cells (MSCs) are important cellular constituents of tumor stroma that play an active role in tumor development. Complex interactions between MSCs and cancer promote tumor progression by creating a favorable milieu for tumor cell proliferation, angiogenesis, motility, invasion, and metastasis. The cellular heterogeneity, source of origin, diversity in isolation methods, culture techniques and model systems of MSCs, together with the different tumor subtypes, add to the complexity of MSC-tumor interactions. In this review, we discuss the mechanisms of MSC-mediated tumor promotion and evaluate cell-stromal interactions between cancer cells, MSCs, cells of the tumor microenvironment (TME), and the extracellular matrix (ECM). A more thorough understanding of tumor-MSC interactions is likely to lead to better cancer management.
Collapse
Affiliation(s)
| | | | - Amr H Saleh
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Armand Keating
- Krembil Research Institute, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
- University Health Network, Toronto, ON, Canada.
| |
Collapse
|
9
|
Marrero-Rodriguez D, Cortes-Morales VA, Cano-Zaragoza A, Martinez-Mendoza F, Kerbel-Suton J, Vela-Patiño S, Chavez-Santoscoy A, Hinojosa-Alvarez S, Hernandez-Perez J, Gomez-Apo E, Fajardo-Orduña GR, Taniguchi-Ponciano K, Montesinos JJ, Mercado M. Mesenchymal Stem Cells Induce an Immunosuppressive Microenvironment in Pituitary Tumors. J Clin Endocrinol Metab 2024; 109:2943-2955. [PMID: 38589986 DOI: 10.1210/clinem/dgae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
CONTEXT The tumor microenvironment (TME) includes diverse cellular components such as mesenchymal stem cells (MSCs) and immune cells, among others. MSC have been isolated from different tumors and they favor tumor cell growth; however, their role in pituitary tumors (PTs) remains unknown. OBJECTIVE Herein we report the presence of MSCs in 2 adrenocorticotropin (ACTH)-secreting PTs causing Cushing disease (MCU), 2 nonfunctioning adenomas of gonadotrope differentiation (MNF), and 2 nontumoral pituitary glands (MS). METHODS We have analyzed the transcriptomic profiles by RNA sequencing and compared MSCs in terms of their immunosuppressive effects against lymphoid T-cell and macrophage populations by means of cocultures and flow cytometry. RESULTS Our transcriptomic analysis revealed molecular differences between MSCs derived from nontumoral pituitaries and MSCs derived from PTs. Two distinct subpopulations of MSC emerged: one displaying immunosuppressive properties and the other with increased proproliferative capabilities, regardless of their origin. MSCs derived from ACTH- and nonfunctioning PTs, but not those derived from nontumoral glands, significantly inhibited the proliferation of activated T cells, favored the generation of regulatory T cells, and promoted M2 macrophage polarization. Such immunosuppressive effects were correlated with an upregulation of programmed death ligand 1 and intracellular expression of macrophage colony-stimulating factor (M-CSF) and interleukin-10. Importantly, MSC derived from ACTH-PTs showed a higher immunosuppressive potential than MSC isolated from nonfunctioning tumors. CONCLUSION This study demonstrates the presence of at least 2 MSC subpopulations in the pituitary gland and suggests that immunosuppressive effects of MSCs may have important implications in PT growth.
Collapse
Affiliation(s)
- Daniel Marrero-Rodriguez
- Unidad de Investigación Médica en Enfermedades Endócrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Victor A Cortes-Morales
- Unidad de Investigación Médica en Enfermedades Endócrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
- Laboratorio de Celulas Mesenquimales Troncales, Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Amayrani Cano-Zaragoza
- Unidad de Investigación Médica en Enfermedades Endócrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Florencia Martinez-Mendoza
- Unidad de Investigación Médica en Enfermedades Endócrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Jacobo Kerbel-Suton
- Unidad de Investigación Médica en Enfermedades Endócrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Sandra Vela-Patiño
- Unidad de Investigación Médica en Enfermedades Endócrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Alejandra Chavez-Santoscoy
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Silvia Hinojosa-Alvarez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Jesus Hernandez-Perez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| | - Erick Gomez-Apo
- Área de Neuropatología, Servicio de Anatomía Patológica, Hospital General de México Dr. Eduardo Liceaga, Mexico City, 06720, Mexico
| | - Guadalupe R Fajardo-Orduña
- Laboratorio de Celulas Mesenquimales Troncales, Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Keiko Taniguchi-Ponciano
- Unidad de Investigación Médica en Enfermedades Endócrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Juan Jose Montesinos
- Laboratorio de Celulas Mesenquimales Troncales, Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Moises Mercado
- Unidad de Investigación Médica en Enfermedades Endócrinas, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| |
Collapse
|
10
|
Seo BG, Lee IW, Kim HJ, Lee YJ, Kim O, Lee JH, Lee JH, Hwangbo C. Angiogenic properties and intercellular communication of differentiated porcine endothelial cells in vascular therapy. Sci Rep 2024; 14:22844. [PMID: 39354086 PMCID: PMC11445381 DOI: 10.1038/s41598-024-73584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Endothelial cell dysfunction can lead to various vascular diseases. Blood flow disorder is a common symptom of vascular diseases. Regenerative angiogenesis, which involves transplanting vascular cells or stem cells into the body to shape new vasculature, can be a good therapeutic strategy. However, there are several limitations to using autologous cells from the patients themselves. We sought to investigate the new vascular cells that can play a role in the formation of angiogenesis in vivo using stem cells from alternative animals suitable for cellular therapy. Porcine is an optimal animal model for xenotransplantation owing to its physiological similarity to humans. We used differentiated porcine endothelial cells (pECs) as a therapeutic strategy to restore vessel function. Differentiated pECs formed vessel-like structures in mice, distinguishing them from stem cells. MMPs activity and migration assays indicated that differentiated pECs possessed angiogenic potential. Tube formation and 3D spheroid sprouting assays further confirmed the angiogenic phenotype of the differentiated pECs. Immunofluorescence and immunoprecipitation analyses revealed claudin-mediated tight junctions and connexin 43-mediated gap junctions between human ECs and differentiated pECs. Additionally, the movement of small RNA from human ECs to differentiated pECs was observed under co-culture conditions. Our findings demonstrated the in vivo viability and angiogenetic potential of differentiated pECs and highlighted the potential for intercellular communication between human and porcine ECs. These results suggest that transplanted cells in vascular regeneration completed after cell therapy have the potential to achieve intercellular communication within the body.
Collapse
Affiliation(s)
- Bo-Gyeong Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - In-Won Lee
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yeon-Ji Lee
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Okhwa Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture and Life Science, College of Agriculture & Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Jeong-Hyung Lee
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
11
|
Shah S, Ghosh D, Otsuka T, Laurencin CT. Classes of Stem Cells: From Biology to Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:309-322. [PMID: 39387056 PMCID: PMC11463971 DOI: 10.1007/s40883-023-00317-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2024]
Abstract
Purpose The majority of adult tissues are limited in self-repair and regeneration due to their poor intrinsic regenerative capacity. It is widely recognized that stem cells are present in almost all adult tissues, but the natural regeneration in adult mammals is not sufficient to recover function after injury or disease. Historically, 3 classes of stem cells have been defined: embryonic stem cells (ESCs), adult mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). Here, we have defined a fourth fully engineered class: the synthetic artificial stem cell (SASC). This review aims to discuss the applications of these stem cell classes in musculoskeletal regenerative engineering. Method We screened articles in PubMed and bibliographic search using a combination of keywords. Relevant and high-cited articles were chosen for inclusion in this narrative review. Results In this review, we discuss the different classes of stem cells that are biologically derived (ESCs and MSCs) or semi-engineered/engineered (iPSCs, SASC). We also discuss the applications of these stem cell classes in musculoskeletal regenerative engineering. We further summarize the advantages and disadvantages of using each of the classes and how they impact the clinical translation of these therapies. Conclusion Each class of stem cells has advantages and disadvantages in preclinical and clinical settings. We also propose the engineered SASC class as a potentially disease-modifying therapy that harnesses the paracrine action of biologically derived stem cells to mimic regenerative potential. Lay Summary The majority of adult tissues are limited in self-repair and regeneration, even though stem cells are present in almost all adult tissues. Historically, 3 classes of stem cells have been defined: embryonic stem cells (ESCs), adult mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). Here, we have defined a fourth, fully engineered class: the synthetic artificial stem cell (SASC). In this review, we discuss the applications of each of these stem cell classes in musculoskeletal regenerative engineering. We further summarize the advantages and disadvantages of using each of these classes and how they impact the clinical translation of these therapies.
Collapse
Affiliation(s)
- Shiv Shah
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
| | - Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
12
|
Zhang Y, Wang C, Li JJ. Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression. Exp Hematol Oncol 2024; 13:64. [PMID: 38951845 PMCID: PMC11218091 DOI: 10.1186/s40164-024-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Charles Wang
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA.
- NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
13
|
Hetta HF, Elsaghir A, Sijercic VC, Akhtar MS, Gad SA, Moses A, Zeleke MS, Alanazi FE, Ahmed AK, Ramadan YN. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review. Health Sci Rep 2024; 7:e2036. [PMID: 38650719 PMCID: PMC11033295 DOI: 10.1002/hsr2.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Diabetes has evolved into a worldwide public health issue. One of the most serious complications of diabetes is diabetic foot ulcer (DFU), which frequently creates a significant financial strain on patients and lowers their quality of life. Up until now, there has been no curative therapy for DFU, only symptomatic relief or an interruption in the disease's progression. Recent studies have focused attention on mesenchymal stem cells (MSCs), which provide innovative and potential treatment candidates for several illnesses as they can differentiate into various cell types. They are mostly extracted from the placenta, adipose tissue, umbilical cord (UC), and bone marrow (BM). Regardless of their origin, they show comparable features and small deviations. Our goal is to investigate MSCs' therapeutic effects, application obstacles, and patient benefit strategies for DFU therapy. Methodology A comprehensive search was conducted using specific keywords relating to DFU, MSCs, and connected topics in the databases of Medline, Scopus, Web of Science, and PubMed. The main focus of the selection criteria was on English-language literature that explored the relationship between DFU, MSCs, and related factors. Results and Discussion Numerous studies are being conducted and have demonstrated that MSCs can induce re-epithelialization and angiogenesis, decrease inflammation, contribute to immunological modulation, and subsequently promote DFU healing, making them a promising approach to treating DFU. This review article provides a general snapshot of DFU (including clinical presentation, risk factors and etiopathogenesis, and conventional treatment) and discusses the clinical progress of MSCs in the management of DFU, taking into consideration the side effects and challenges during the application of MSCs and how to overcome these challenges to achieve maximum benefits. Conclusion The incorporation of MSCs in the management of DFU highlights their potential as a feasible therapeutic strategy. Establishing a comprehensive understanding of the complex relationship between DFU pathophysiology, MSC therapies, and related obstacles is essential for optimizing therapy outcomes and maximizing patient benefits.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative MedicineFaculty of Pharmacy, University of TabukTabukSaudi Arabia
- Department of Medical Microbiology and ImmunologyFaculty of Medicine, Assiut UniversityAssiutEgypt
| | - Alaa Elsaghir
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | | | | | - Sayed A. Gad
- Faculty of Medicine, Assiut UniversityAssiutEgypt
| | | | - Mahlet S. Zeleke
- Menelik II Medical and Health Science College, Kotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and ToxicologyFaculty of Pharmacy, University of TabukTabukSaudi Arabia
| | | | - Yasmin N. Ramadan
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| |
Collapse
|
14
|
Yang K, Yi T. Tumor cell stemness in gastrointestinal cancer: regulation and targeted therapy. Front Mol Biosci 2024; 10:1297611. [PMID: 38455361 PMCID: PMC10918437 DOI: 10.3389/fmolb.2023.1297611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
The cancer stem cells are a rare group of self-renewable cancer cells capable of the initiation, progression, metastasis and recurrence of tumors, and also a key contributor to the therapeutic resistance. Thus, understanding the molecular mechanism of tumor stemness regulation, especially in the gastrointestinal (GI) cancers, is of great importance for targeting CSC and designing novel therapeutic strategies. This review aims to elucidate current advancements in the understanding of CSC regulation, including CSC biomarkers, signaling pathways, and non-coding RNAs. We will also provide a comprehensive view on how the tumor microenvironment (TME) display an overall tumor-promoting effect, including the recruitment and impact of cancer-associated fibroblasts (CAFs), the establishment of an immunosuppressive milieu, and the induction of angiogenesis and hypoxia. Lastly, this review consolidates mainstream novel therapeutic interventions targeting CSC stemness regulation.
Collapse
Affiliation(s)
- Kangqi Yang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tuo Yi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Zhang H, Xu W, Zhu H, Chen X, Tsai HI. Overcoming the limitations of immunotherapy in pancreatic ductal adenocarcinoma: Combining radiotherapy and metabolic targeting therapy. J Cancer 2024; 15:2003-2023. [PMID: 38434964 PMCID: PMC10905401 DOI: 10.7150/jca.92502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 03/05/2024] Open
Abstract
As a novel anticancer therapy, immunotherapy has demonstrated robust efficacy against a few solid tumors but poor efficacy against pancreatic ductal adenocarcinoma (PDAC). This poor outcome is primarily attributable to the intrinsic cancer cell resistance and T-cell exhaustion, which is also the reason for the failure of conventional therapy. The present review summarizes the current PDAC immunotherapy avenues and the underlying resistance mechanisms. Then, the review discusses synergistic combination therapies, such as radiotherapy (RT) and metabolic targeting. Research suggests that RT boosts the antigen of PDAC, which facilitates the anti-tumor immune cell infiltration and exerts function. Metabolic reprogramming contributes to restoring the exhausted T cell function. The current review will help in tailoring combination regimens to enhance the efficacy of immunotherapy. In addition, it will help provide new approaches to address the limitations of the immunosuppressive tumor microenvironment (TME) by examining the relationship among immunotherapy, RT, and metabolism targeting therapy in PDAC.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Wenjin Xu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuelian Chen
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Miceli V. Use of priming strategies to advance the clinical application of mesenchymal stromal/stem cell-based therapy. World J Stem Cells 2024; 16:7-18. [PMID: 38292438 PMCID: PMC10824041 DOI: 10.4252/wjsc.v16.i1.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential. MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs. These cells are characterized by easy accessibility, few ethical concerns, and adaptability to in vitro cultures, making them a valuable resource for cell therapy in several clinical conditions. Over the years, it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors, including cytokines, growth factors, and exosomes (EXOs), which modulate the tissue microenvironment and facilitate repair and regeneration processes. Consequently, MSC-derived products, such as conditioned media and EXOs, are now being extensively evaluated for their potential medical applications, offering advantages over the long-term use of whole MSCs. However, the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods. To address these concerns and to enhance MSC therapeutic potential, researchers have explored many priming strategies, including exposure to inflammatory molecules, hypoxic conditions, and three-dimensional culture techniques. These approaches have optimized MSC secretion of functional factors, empowering them with enhanced immunomodulatory, angiogenic, and regenerative properties tailored to specific medical conditions. In fact, various priming strategies show promise in the treatment of numerous diseases, from immune-related disorders to acute injuries and cancer. Currently, in order to exploit the full therapeutic potential of MSC therapy, the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders. In other words, to unlock the complete potential of MSCs in regenerative medicine, it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.
Collapse
Affiliation(s)
- Vitale Miceli
- Department of Research, Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione, Palermo 90127, Italy.
| |
Collapse
|
17
|
Kaçaroğlu D, Yaylacı S, Gurbuz N. Anti-tumorigenic effects of naive and TLR4-primed adipose-derived mesenchymal stem cells on pancreatic ductal adenocarcinoma cells. Cancer Med 2024; 13:e6964. [PMID: 38379331 PMCID: PMC10831913 DOI: 10.1002/cam4.6964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND One of the main reasons for the unsuccessful treatment of pancreatic cancer is the intense desmoplastic pancreatic microenvironment. In the literature, the effects of mesenchymal stem cells (MSCs) and their inflammatory phenotypes on cancer cells have been a subject of controversy. Therefore, it is crucial to elucidate the underlying mechanisms of this interaction, especially in the context of pancreatic cancer. We aimed to investigate the effects of naive, TLR4-activated, and TLR4-inhibited phenotypes of adipose-derived MSCs (ADMSC) on pancreatic ductal cell line (Panc-1). METHODS AND MATERIALS Adipose-derived MSCs were induced into a proinflammatory phenotype using a 0.5 μg/mL dose of TLR4 agonist, while an anti-inflammatory phenotype was generated in ADMSCs using a 25 μg/mL dose of TLR4 antagonist. We observed that the proliferation of Panc-1 cells was inhibited when naive ADMSCs:Panc-1(10:1) and proinflammatory ADMSCs:Panc-1(10:1) were directly cocultured. RESULTS In indirect coculture, both naive and proinflammatory ADMSCs exhibited a significant 10-fold increase in their inhibitory effect on the proliferation and colony forming capacity of Panc-1 cells, with the added benefit of inducing apoptosis. In our study, both naive and proinflammatory ADMSCs were found to regulate the expression of genes associated with metastasis (MMP2, KDR, MMP9, TIMP1, IGF2R, and COL1A1) and EMT (CDH1, VIM, ZEB1, and CLDN1) in Panc-1 cells. Remarkably, both naive and proinflammatory ADMSCs demonstrated antitumor effects on Panc-1 cells. However, it was observed that anti-inflammatory ADMSCs showed tumor-promoting effects instead. Furthermore, we observed a reciprocal influence between ADMSCs and Panc-1 cells on each other's proinflammatory cytokine expressions, suggesting a dynamic interplay within the tumor microenvironment. CONCLUSIONS These findings underscore the significance of both the naive state and different inflammatory phenotypes of MSCs in the microenvironment and represent a pivotal step toward the development of novel therapeutic approaches for pancreatic cancer. Understanding the intricate interactions between MSCs and cancer cells may open new avenues for targeted interventions in cancer therapy.
Collapse
Affiliation(s)
- Demet Kaçaroğlu
- Department of Medical Biology, Faculty of MedicineSuleyman Demirel UniversityIspartaTurkey
- Department of Medical Biology, Faculty of MedicineLokman Hekim UniversityAnkaraTurkey
| | - Seher Yaylacı
- Department of Medical Biology, Faculty of MedicineLokman Hekim UniversityAnkaraTurkey
| | - Nilgun Gurbuz
- Department of Medical Biology, Faculty of MedicineSuleyman Demirel UniversityIspartaTurkey
| |
Collapse
|
18
|
Cortés-Morales VA, Chávez-Sánchez L, Rocha-Zavaleta L, Espíndola-Garibay S, Monroy-García A, Castro-Manrreza ME, Fajardo-Orduña GR, Apresa-García T, Gutiérrez-de la Barrera M, Mayani H, Montesinos JJ. Mesenchymal Stem/Stromal Cells Derived from Cervical Cancer Promote M2 Macrophage Polarization. Cells 2023; 12:cells12071047. [PMID: 37048119 PMCID: PMC10093665 DOI: 10.3390/cells12071047] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Macrophages with the M2 phenotype promote tumor development through the immunosuppression of antitumor immunity. We previously demonstrated the presence of mesenchymal stem/stromal cells (MSCs) in cervical cancer (CeCa-MSCs), suggesting an immune protective capacity in tumors, but to date, their effect in modulating macrophage polarization remains unknown. In this study, we compared the capacities of MSCs from normal cervix (NCx) and CeCa to promote M2 macrophage polarization in a coculture system. Our results demonstrated that CeCa-MSCs, in contrast to NCx-MSCs, significantly decreased M1 macrophage cell surface marker expression (HLA-DR, CD80, CD86) and increased M2 macrophage expression (CD14, CD163, CD206, Arg1) in cytokine-induced CD14+ monocytes toward M1- or M2-polarized macrophages. Interestingly, compared with NCx-MSCs, in M2 macrophages generated from CeCa-MSC cocultures, we observed an increase in the percentage of phagocytic cells, in the intracellular production of IL-10 and IDO, the capacity to decrease T cell proliferation and for the generation of CD4+CD25+FoxP3+ Tregs. Importantly, this capacity to promote M2 macrophage polarization was correlated with the intracellular expression of macrophage colony-stimulating factor (M-CSF) and upregulation of IL-10 in CeCa-MSCs. Furthermore, the presence of M2 macrophages was correlated with the increased production of IL-10 and IL-1RA anti-inflammatory molecules. Our in vitro results indicate that CeCa-MSCs, in contrast to NCx-MSCs, display an increased M2-macrophage polarization potential and suggest a role of CeCa-MSCs in antitumor immunity.
Collapse
|
19
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Ma Z, Hua J, Liu J, Zhang B, Wang W, Yu X, Xu J. Mesenchymal Stromal Cell-Based Targeted Therapy Pancreatic Cancer: Progress and Challenges. Int J Mol Sci 2023; 24:3559. [PMID: 36834969 PMCID: PMC9966548 DOI: 10.3390/ijms24043559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Pancreatic cancer is an aggressive malignancy with high mortality rates and poor prognoses. Despite rapid progress in the diagnosis and treatment of pancreatic cancer, the efficacy of current therapeutic strategies remains limited. Hence, better alternative therapeutic options for treating pancreatic cancer need to be urgently explored. Mesenchymal stromal cells (MSCs) have recently received much attention as a potential therapy for pancreatic cancer owing to their tumor-homing properties. However, the specific antitumor effect of MSCs is still controversial. To this end, we aimed to focus on the potential anti-cancer treatment prospects of the MSC-based approach and summarize current challenges in the clinical application of MSCs to treat pancreatic cancer.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Mishra AK, Banday S, Bharadwaj R, Ali A, Rashid R, Kulshreshtha A, Malonia SK. Macrophages as a Potential Immunotherapeutic Target in Solid Cancers. Vaccines (Basel) 2022; 11:55. [PMID: 36679900 PMCID: PMC9863216 DOI: 10.3390/vaccines11010055] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The revolution in cancer immunotherapy over the last few decades has resulted in a paradigm shift in the clinical care of cancer. Most of the cancer immunotherapeutic regimens approved so far have relied on modulating the adaptive immune system. In recent years, strategies and approaches targeting the components of innate immunity have become widely recognized for their efficacy in targeting solid cancers. Macrophages are effector cells of the innate immune system, which can play a crucial role in the generation of anti-tumor immunity through their ability to phagocytose cancer cells and present tumor antigens to the cells of adaptive immunity. However, the macrophages that are recruited to the tumor microenvironment predominantly play pro-tumorigenic roles. Several strategies targeting pro-tumorigenic functions and harnessing the anti-tumorigenic properties of macrophages have shown promising results in preclinical studies, and a few of them have also advanced to clinical trials. In this review, we present a comprehensive overview of the pathobiology of TAMs and their role in the progression of solid malignancies. We discuss various mechanisms through which TAMs promote tumor progression, such as inflammation, genomic instability, tumor growth, cancer stem cell formation, angiogenesis, EMT and metastasis, tissue remodeling, and immunosuppression, etc. In addition, we also discuss potential therapeutic strategies for targeting TAMs and explore how macrophages can be used as a tool for next-generation immunotherapy for the treatment of solid malignancies.
Collapse
Affiliation(s)
- Alok K. Mishra
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ravi Bharadwaj
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Amjad Ali
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Romana Rashid
- Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ankur Kulshreshtha
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K. Malonia
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
22
|
Zhang T, Ren Y, Yang P, Wang J, Zhou H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Cell Death Dis 2022; 13:897. [PMID: 36284087 PMCID: PMC9596464 DOI: 10.1038/s41419-022-05351-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a prominent extracellular matrix (ECM) deposition and poor prognosis. High levels of ECM proteins derived from tumour cells reduce the efficacy of conventional cancer treatment paradigms and contribute to tumour progression and metastasis. As abundant tumour-promoting cells in the ECM, cancer-associated fibroblasts (CAFs) are promising targets for novel anti-tumour interventions. Nonetheless, related clinical trials are hampered by the lack of specific markers and elusive differences between CAF subtypes. Here, we review the origins and functional diversity of CAFs and show how they create a tumour-promoting milieu, focusing on the crosstalk between CAFs, tumour cells, and immune cells in the tumour microenvironment. Furthermore, relevant clinical advances and potential therapeutic strategies relating to CAFs are discussed.
Collapse
Affiliation(s)
- Tianyi Zhang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yanxian Ren
- grid.412643.60000 0004 1757 2902Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Pengfei Yang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jufang Wang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Heng Zhou
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
23
|
Deng D, Patel R, Chiang CY, Hou P. Role of the Tumor Microenvironment in Regulating Pancreatic Cancer Therapy Resistance. Cells 2022; 11:2952. [PMID: 36230914 PMCID: PMC9563251 DOI: 10.3390/cells11192952] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic cancer has a notoriously poor prognosis, exhibits persistent drug resistance, and lacks a cure. Unique features of the pancreatic tumor microenvironment exacerbate tumorigenesis, metastasis, and therapy resistance. Recent studies emphasize the importance of exploiting cells in the tumor microenvironment to thwart cancers. In this review, we summarize the hallmarks of the multifaceted pancreatic tumor microenvironment, notably pancreatic stellate cells, tumor-associated fibroblasts, macrophages, and neutrophils, in the regulation of chemo-, radio-, immuno-, and targeted therapy resistance in pancreatic cancer. The molecular insight will facilitate the development of novel therapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Daiyong Deng
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Riya Patel
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Cheng-Yao Chiang
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Pingping Hou
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
24
|
Chu X, Yang Y, Tian X. Crosstalk between Pancreatic Cancer Cells and Cancer-Associated Fibroblasts in the Tumor Microenvironment Mediated by Exosomal MicroRNAs. Int J Mol Sci 2022; 23:ijms23179512. [PMID: 36076911 PMCID: PMC9455258 DOI: 10.3390/ijms23179512] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant digestive tumors, characterized by a low rate of early diagnosis, strong invasiveness, and early metastasis. The abundant stromal cells, dense extracellular matrix, and lack of blood supply in PDAC limit the penetration of chemotherapeutic drugs, resulting in poor efficacy of the current treatment regimens. Cancer-associated fibroblasts (CAFs) are the major stromal cells in the tumor microenvironment. Tumor cells can secrete exosomes to promote the generation of activated CAFs, meanwhile exosomes secreted by CAFs help promote tumor progression. The aberrant expression of miRNAs in exosomes is involved in the interaction between tumor cells and CAFs, which provides the possibility for the application of exosomal miRNAs in the diagnosis and treatment of PDAC. The current article reviews the mechanism of exosomal miRNAs in the crosstalk between PDAC cells and CAFs in the tumor microenvironment, in order to improve the understanding of TME regulation and provide evidence for designing diagnostic and therapeutic targets against exosome miRNA in human PDAC.
Collapse
|
25
|
Glabman RA, Choyke PL, Sato N. Cancer-Associated Fibroblasts: Tumorigenicity and Targeting for Cancer Therapy. Cancers (Basel) 2022; 14:cancers14163906. [PMID: 36010899 PMCID: PMC9405783 DOI: 10.3390/cancers14163906] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) are found in the tumor microenvironment and exhibit several protumorigenic functions. Preclinical studies suggest that CAFs can be reduced, eliminated, or reprogrammed; however, clinical translation has not yet occurred. A better understanding of these cells and their functions will undoubtedly improve cancer treatments. In this review, we summarize current research, highlight major challenges, and discuss future opportunities for improving our knowledge of CAF biology and targeting. Abstract Cancer-associated fibroblasts (CAFs) are a heterogenous group of activated fibroblasts and a major component of the tumor stroma. CAFs may be derived from fibroblasts, epithelial cells, endothelial cells, cancer stem cells, adipocytes, pericytes, or stellate cells. These complex origins may underlie their functional diversity, which includes pro-tumorigenic roles in extracellular matrix remodeling, the suppression of anti-tumor immunity, and resistance to cancer therapy. Several methods for targeting CAFs to inhibit tumor progression and enhance anti-tumor immunity have recently been reported. While preclinical studies have shown promise, to date they have been unsuccessful in human clinical trials against melanoma, breast cancer, pancreas cancer, and colorectal cancers. This review summarizes recent and major advances in CAF-targeting therapies, including DNA-based vaccines, anti-CAF CAR-T cells, and modifying and reprogramming CAF functions. The challenges in developing effective anti-CAF treatment are highlighted, which include CAF heterogeneity and plasticity, the lack of specific target markers for CAFs, the limitations in animal models recapitulating the human cancer microenvironment, and the undesirable off-target and systemic side effects. Overcoming these challenges and expanding our understanding of the basic biology of CAFs is necessary for making progress towards safe and effective therapeutic strategies against cancers in human patients.
Collapse
Affiliation(s)
- Raisa A. Glabman
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence: ; Tel.: +1-240-858-3079
| |
Collapse
|
26
|
Rai V, Moellmer R, Agrawal DK. Stem Cells and Angiogenesis: Implications and Limitations in Enhancing Chronic Diabetic Foot Ulcer Healing. Cells 2022; 11:2287. [PMID: 35892584 PMCID: PMC9330772 DOI: 10.3390/cells11152287] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Nonhealing diabetic foot ulcers (DFUs) are a continuing clinical issue despite the improved treatment with wound debridement, off-loading the ulcer, medication, wound dressings, and preventing infection by keeping the ulcer clean. Wound healing is associated with granulation tissue formation and angiogenesis favoring the wound to enter the resolution phase of healing followed by healing. However, chronic inflammation and reduced angiogenesis in a hyperglycemic environment impair the normal healing cascade and result in chronically non-healing diabetic foot ulcers. Promoting angiogenesis is associated with enhanced wound healing and using vascular endothelial growth factors has been proven beneficial to promote neo-angiogenesis. However, still, nonhealing DFUs persist with increased risks of amputation. Regenerative medicine is an evolving branch applicable in wound healing with the use of stem cells to promote angiogenesis. Various studies have reported promising results, but the associated limitations need in-depth research. This article focuses on summarizing and critically reviewing the published literature since 2021 on the use of stem cells to promote angiogenesis and enhance wound healing in chronic non-healing DFUs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Rebecca Moellmer
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
27
|
Antoon R, Wang XH, Saleh AH, Warrington J, Hedley DW, Keating A. Pancreatic cancer growth promoted by bone marrow mesenchymal stromal cell-derived IL-6 is reversed predominantly by IL-6 blockade. Cytotherapy 2022; 24:699-710. [PMID: 35473998 DOI: 10.1016/j.jcyt.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Pancreatic cancer is a highly lethal cancer characterized by local invasiveness, early metastasis, recurrence and high resistance to current therapies. Extensive stroma or desmoplasia is a key histological feature of the disease, and interactions between cancer and stromal cells are critical for pancreatic cancer development and progression. Mesenchymal stromal cells [MSCs] exhibit preferential tropism to primary and metastatic tumor sites and may either suppress or support tumor growth. Although MSCs represent a potential source of pancreatic cancer stroma, their contribution to pancreatic tumor growth remains poorly known. Here, we show that bone marrow MSCs significantly contribute to pancreatic cancer growth in vitro and in vivo. Furthermore, MSCs create a pro-carcinogenic microenvironment through the release of key factors mediating growth and angiogenesis, including interleukin (IL)-6, IL-8, vascular endothelial growth factor and activation of STAT3 signaling in tumor cells. IL-6 released by MSCs was largely responsible for the pro-tumorigenic effects of MSCs. Knockdown of IL-6 expression in MSCs by small interfering RNA (siRNA) abolished the MSC growth-promoting effect in vitro, reducing tumor cell proliferation and clonogenic potential. In addition, in a heterotopic nude mouse model of human pancreatic tumor xenografts, blockade of IL-6 with the anti-IL-6 receptor antibody, tocilizumab, or of its downstream effector STAT3 with the small molecule STAT3 inhibitor S3I-201, abrogated MSC-mediated tumor promotion and delayed tumor formation significantly. Our data demonstrate that MSCs promote pancreatic cancer growth, with IL-6 produced by MSCs playing a pivotal role.
Collapse
Affiliation(s)
- Roula Antoon
- Krembil Research Institute, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | - Amr H Saleh
- Krembil Research Institute, Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - David W Hedley
- Princess Margaret Cancer Centre, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Armand Keating
- Krembil Research Institute, Toronto, ON, Canada; Princess Margaret Cancer Centre, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
Frisbie L, Buckanovich RJ, Coffman L. Carcinoma Associated Mesenchymal Stem/Stromal Cells - Architects of the Pro-tumorigenic tumor microenvironment. Stem Cells 2022; 40:705-715. [PMID: 35583414 PMCID: PMC9406606 DOI: 10.1093/stmcls/sxac036] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Abstract
The interaction between tumor cells and non-malignant hosts cells within the tumor microenvironment (TME) is critical to the pathophysiology of cancer. These non-malignant host cells, consisting of a variety of stromal, immune and endothelial cells, engage in a complex bidirectional crosstalk with the malignant tumor cells. Mesenchymal stem/stromal cells (MSCs) are one of these host cells, and they play a critical role in directing the formation and function of the entire TME. These MSCs are epigenetically reprogrammed by cancer cells to assume a strongly pro-tumorigenic phenotype and are referred to as carcinoma-associated mesenchymal stem/stromal cells (CA-MSCs). Studies over the last decade demonstrate that CA-MSCs not only directly interact with cancer cells to promote tumor growth and metastasis, but also orchestrate the formation of the TME. CA-MSCs can differentiate into virtually all stromal sub-lineages present in the TME, including pro-tumorigenic cancer associated fibroblasts (CAF), myofibroblasts, and adipocytes. CA-MSCs and the CAFs they produce, secrete much of the extracellular matrix in the TME. Furthermore, CA-MSC secreted factors promote angiogenesis, and recruit immunosuppressive myeloid cells effectively driving tumor immune exclusion. Thus CA-MSCs impact nearly every aspect of the TME. Despite their influence on cancer biology, as CA-MSCs represent a heterogenous population without a single definitive marker, significant confusion remains regarding the origin and proper identification CA-MSCs. This review will focus on the impact of CA-MSCs on cancer progression and metastasis and the ongoing work on CA-MSC identification, nomenclature and mechanism of action.
Collapse
Affiliation(s)
- Len Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, PA
| | - Ronald J Buckanovich
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
29
|
Han L, Seward C, Leone G, Ostrowski MC. Origin, activation and heterogeneity of fibroblasts associated with pancreas and breast cancers. Adv Cancer Res 2022; 154:169-201. [PMID: 35459469 DOI: 10.1016/bs.acr.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pancreas and breast cancers both contain abundant stromal components within the tumor tissues. A prominent cell type within the stroma is cancer-associated fibroblasts (CAFs). CAFs play critical and complex roles establishing the tumor microenvironment to either promote or prevent tumor progression. Recently, complex genetic models and single cell-based techniques have provided emerging insights on the precise functions and cellular heterogeneity of CAFs. The transformation of normal fibroblasts into CAFs is a key event during tumor initiation and progression. Such coordination between tumor cells and fibroblasts plays an important role in cancer development. Reprograming fibroblasts is currently being explored for therapeutic benefits. In this review, we will discuss recent literature shedding light on the tissues of origin, activation mechanisms, and heterogeneity of CAFs comparing pancreas and breast cancers.
Collapse
Affiliation(s)
- Lu Han
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| | - Cara Seward
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Gustavo Leone
- Department of Biochemistry, Medical College of Wisconsin Cancer Center, Medical college of Wisconsin, Milwaukee, WI, United States
| | - Michael C Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
30
|
Xiang Z, Hua M, Hao Z, Biao H, Zhu C, Zhai G, Wu J. The Roles of Mesenchymal Stem Cells in Gastrointestinal Cancers. Front Immunol 2022; 13:844001. [PMID: 35281017 PMCID: PMC8907448 DOI: 10.3389/fimmu.2022.844001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) were reported to have strong immunomodulatory ability, and inhibit the proliferation of T cells and their immune response through cell-to-cell interactions and the generation of cytokines. With high differentiation potential and self-renewal ability, MSCs are considered to function in alleviating inflammatory responses, promoting tissue regeneration and inhibiting tissue fibrosis formation. As the most common malignancies, gastrointestinal (GI) cancers have high incidence and mortality. The accurate diagnosis, exact prognosis and treatment of GI cancers have always been a hot topic. Therefore, the potential applications of MSCs in terms of GI cancers are receiving more and more attention. Recently, there is increasing evidence that MSCs may serve as a key point in the growth, metastasis, inhibition, treatment and prognosis of GI cancers. In this review, we summarized the roles of MSCs in GI cancers, mainly focusing on esophageal cancer (EC), gastric cancer (GC), liver cancer (LC), colorectal cancer (CRC) and pancreatic cancer. Besides, we proposed MSCs as potential targets and treatment strategies for the effective treatment of GI cancers, which may provide better guidance for the clinical treatment of GI cancers.
Collapse
Affiliation(s)
- Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Menglu Hua
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou Hao
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huang Biao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chaojie Zhu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
31
|
Yu Q, Qiao GH, Wang M, Yu L, Sun Y, Shi H, Ma TL. Stem Cell-Based Therapy for Diabetic Foot Ulcers. Front Cell Dev Biol 2022; 10:812262. [PMID: 35178389 PMCID: PMC8844366 DOI: 10.3389/fcell.2022.812262] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic foot ulcer has become a worldwide clinical medical challenge as traditional treatments are not effective enough to reduce the amputation rate. Therefore, it is of great social significance to deeply study the pathogenesis and biological characteristics of the diabetic foot, explore new treatment strategies and promote their application. Stem cell-based therapy holds tremendous promise in the field of regenerative medicine, and its mechanisms include promoting angiogenesis, ameliorating neuroischemia and inflammation, and promoting collagen deposition. Studying the specific molecular mechanisms of stem cell therapy for diabetic foot has an important role and practical clinical significance in maximizing the repair properties of stem cells. In addition, effective application modalities are also crucial in order to improve the survival and viability of stem cells at the wound site. In this paper, we reviewed the specific molecular mechanisms of stem cell therapy for diabetic foot and the extended applications of stem cells in recent years, with the aim of contributing to the development of stem cell-based therapy in the repair of diabetic foot ulcers.
Collapse
Affiliation(s)
- Qian Yu
- Department of Hepatology, Songjiang Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Guo-Hong Qiao
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Min Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Hui Shi
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tie-Liang Ma
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| |
Collapse
|
32
|
Zhang X, Li N, Zhu Y, Wen W. The role of mesenchymal stem cells in the occurrence, development, and therapy of hepatocellular carcinoma. Cancer Med 2022; 11:931-943. [PMID: 34981659 PMCID: PMC8855904 DOI: 10.1002/cam4.4521] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignant tumor, with high recurrence and mortality rates. Mesenchymal stem cells (MSCs) are multipotent cells that can be recruited into the tumor microenvironment (TME). What is known, TME plays a vital part in tumor progression. In recent years, accumulating studies have found that MSCs have a dual role of promotion and inhibition in the occurrence and development of HCC. In this review, we analyzed the role of MSCs in TME and summarized the relationship between MSCs and liver cancer stem cells, the molecular signaling pathway mechanisms of MSCs promoting and inhibiting HCC, and the latest research progress of MSCs in the treatment of HCC.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Na Li
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Zhu
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Wei Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
33
|
Harrell CR, Volarevic A, Djonov VG, Jovicic N, Volarevic V. Mesenchymal Stem Cell: A Friend or Foe in Anti-Tumor Immunity. Int J Mol Sci 2021; 22:ijms222212429. [PMID: 34830312 PMCID: PMC8622564 DOI: 10.3390/ijms222212429] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewable, multipotent stem cells that regulate the phenotype and function of all immune cells that participate in anti-tumor immunity. MSCs modulate the antigen-presenting properties of dendritic cells, affect chemokine and cytokine production in macrophages and CD4+ T helper cells, alter the cytotoxicity of CD8+ T lymphocytes and natural killer cells and regulate the generation and expansion of myeloid-derived suppressor cells and T regulatory cells. As plastic cells, MSCs adopt their phenotype and function according to the cytokine profile of neighboring tumor-infiltrated immune cells. Depending on the tumor microenvironment to which they are exposed, MSCs may obtain pro- and anti-tumorigenic phenotypes and may enhance or suppress tumor growth. Due to their tumor-homing properties, MSCs and their exosomes may be used as vehicles for delivering anti-tumorigenic agents in tumor cells, attenuating their viability and invasive characteristics. Since many factors affect the phenotype and function of MSCs in the tumor microenvironment, a better understanding of signaling pathways that regulate the cross-talk between MSCs, immune cells and tumor cells will pave the way for the clinical use of MSCs in cancer immunotherapy. In this review article, we summarize current knowledge on the molecular and cellular mechanisms that are responsible for the MSC-dependent modulation of the anti-tumor immune response and we discuss different insights regarding therapeutic potential of MSCs in the therapy of malignant diseases.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Ana Volarevic
- Department of Cognitive Psychology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia;
| | - Valentin G. Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia;
| | - Vladislav Volarevic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozar Markovic Street, 34000 Kragujevac, Serbia
- Correspondence: ; Tel./Fax: +381-34306800
| |
Collapse
|
34
|
Cascio S, Chandler C, Zhang L, Sinno S, Gao B, Onkar S, Bruno TC, Vignali DAA, Mahdi H, Osmanbeyoglu HU, Vlad AM, Coffman LG, Buckanovich RJ. Cancer-associated MSC drive tumor immune exclusion and resistance to immunotherapy, which can be overcome by Hedgehog inhibition. SCIENCE ADVANCES 2021; 7:eabi5790. [PMID: 34767446 PMCID: PMC8589308 DOI: 10.1126/sciadv.abi5790] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/23/2021] [Indexed: 05/10/2023]
Abstract
We investigated the impact of cancer-associated mesenchymal stem cells (CA-MSCs) on ovarian tumor immunity. In patient samples, CA-MSC presence inversely correlates with the presence of intratumoral CD8+ T cells. Using an immune “hot” mouse ovarian cancer model, we found that CA-MSCs drive CD8+ T cell tumor immune exclusion and reduce response to anti–PD-L1 immune checkpoint inhibitor (ICI) via secretion of numerous chemokines (Ccl2, Cx3cl1, and Tgf-β1), which recruit immune-suppressive CD14+Ly6C+Cx3cr1+ monocytic cells and polarize macrophages to an immune suppressive Ccr2hiF4/80+Cx3cr1+CD206+ phenotype. Both monocytes and macrophages express high levels of transforming growth factor β–induced (Tgfbi) protein, which suppresses NK cell activity. Hedgehog inhibitor (HHi) therapy reversed CA-MSC effects, reducing myeloid cell presence and expression of Tgfbi, increasing intratumoral NK cell numbers, and restoring response to ICI therapy. Thus, CA-MSCs regulate antitumor immunity, and CA-MSC hedgehog signaling is an important target for cancer immunotherapy.
Collapse
Affiliation(s)
- Sandra Cascio
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chelsea Chandler
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Linan Zhang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Sarah Sinno
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bingsi Gao
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sayali Onkar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Tullia C. Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Haider Mahdi
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hatice U. Osmanbeyoglu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15213 USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anda M. Vlad
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lan G. Coffman
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Ronald J. Buckanovich
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| |
Collapse
|
35
|
Truong LH, Pauklin S. Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers (Basel) 2021; 13:5028. [PMID: 34638513 PMCID: PMC8507722 DOI: 10.3390/cancers13195028] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human solid tumors, despite great efforts in improving therapeutics over the past few decades. In PDAC, the distinct characteristic of the tumor microenvironment (TME) is the main barrier for developing effective treatments. PDAC TME is characterized by a dense stroma, cancer-associated fibroblasts, and immune cells populations that crosstalk to the subpopulations of neoplastic cells that include cancer stem cells (CSCs). The heterogeneity in TME is also exhibited in the diversity and dynamics of acellular components, including the Extracellular matrix (ECM), cytokines, growth factors, and secreted ligands to signaling pathways. These contribute to drug resistance, metastasis, and relapse in PDAC. However, clinical trials targeting TME components have often reported unexpected results and still have not benefited patients. The failures in those trials and various efforts to understand the PDAC biology demonstrate the highly heterogeneous and multi-faceted TME compositions and the complexity of their interplay within TME. Hence, further functional and mechanistic insight is needed. In this review, we will present a current understanding of PDAC biology with a focus on the heterogeneity in TME and crosstalk among its components. We also discuss clinical challenges and the arising therapeutic opportunities in PDAC research.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
36
|
Group Young Researchers in Inflammatory Carcinogenesis, Wandmacher AM, Mehdorn AS, Sebens S. The Heterogeneity of the Tumor Microenvironment as Essential Determinant of Development, Progression and Therapy Response of Pancreatic Cancer. Cancers (Basel) 2021; 13:4932. [PMID: 34638420 PMCID: PMC8508450 DOI: 10.3390/cancers13194932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at advanced stages and most anti-cancer therapies have failed to substantially improve prognosis of PDAC patients. As a result, PDAC is still one of the deadliest tumors. Tumor heterogeneity, manifesting at multiple levels, provides a conclusive explanation for divergent survival times and therapy responses of PDAC patients. Besides tumor cell heterogeneity, PDAC is characterized by a pronounced inflammatory stroma comprising various non-neoplastic cells such as myofibroblasts, endothelial cells and different leukocyte populations which enrich in the tumor microenvironment (TME) during pancreatic tumorigenesis. Thus, the stromal compartment also displays a high temporal and spatial heterogeneity accounting for diverse effects on the development, progression and therapy responses of PDAC. Adding to this heterogeneity and the impact of the TME, the microbiome of PDAC patients is considerably altered. Understanding this multi-level heterogeneity and considering it for the development of novel therapeutic concepts might finally improve the dismal situation of PDAC patients. Here, we outline the current knowledge on PDAC cell heterogeneity focusing on different stromal cell populations and outline their impact on PDAC progression and therapy resistance. Based on this information, we propose some novel concepts for treatment of PDAC patients.
Collapse
Affiliation(s)
| | - Anna Maxi Wandmacher
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany;
| | - Anne-Sophie Mehdorn
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany;
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30 Entrance 1, 24105 Kiel, Germany
| |
Collapse
|
37
|
Di Somma S, Napolitano F, Portella G, Malfitano AM. Cross Talk of Macrophages with Tumor Microenvironment Cells and Modulation of Macrophages in Cancer by Virotherapy. Biomedicines 2021; 9:biomedicines9101309. [PMID: 34680425 PMCID: PMC8533595 DOI: 10.3390/biomedicines9101309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular compartments constituting the tumor microenvironment including immune cells, fibroblasts, endothelial cells, and mesenchymal stromal/stem cells communicate with malignant cells to orchestrate a series of signals that contribute to the evolution of the tumor microenvironment. In this study, we will focus on the interplay in tumor microenvironment between macrophages and mesenchymal stem cells and macrophages and fibroblasts. In particular, cell–cell interaction and mediators secreted by these cells will be examined to explain pro/anti-tumor phenotypes induced in macrophages. Nonetheless, in the context of virotherapy, the response of macrophages as a consequence of treatment with oncolytic viruses will be analyzed regarding their polarization status and their pro/anti-tumor response.
Collapse
|
38
|
Li W, Yang J, Zheng P, Li H, Zhao S. The Origins and Generation of Cancer-Associated Mesenchymal Stromal Cells: An Innovative Therapeutic Target for Solid Tumors. Front Oncol 2021; 11:723707. [PMID: 34513701 PMCID: PMC8427299 DOI: 10.3389/fonc.2021.723707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer-associated mesenchymal stromal cells (CA-MSCs) have been isolated from various types of tumors and are characterized by their vigorous pro-tumorigenic functions. However, very little is known about the origins and generating process of CA-MSCs, which may facilitate the identification of biomarkers for diagnosis or innovative targets for anti-cancer therapy to restrain the tumor growth, spread and chemotherapy resistance. Current evidences have indicated that both distally recruited and local resident MSCs are the primary origins of CA-MSCs. In a tissue type-dependent mode, tumor cells together with the TME components prompt the malignant transition of tumor “naïve” MSCs into CA-MSCs in a direct cell-to-cell contact, paracrine or exosome-mediated manner. In this review, we discuss the transition of phenotypes and functions of naïve MSCs into CA-MSCs influenced by tumor cells or non-tumor cells in the TME. The key areas remaining poorly understood are also highlighted and concluded herein.
Collapse
Affiliation(s)
- Wei Li
- Center of Research Laboratory, Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Jin Yang
- Center of Research Laboratory, Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Ping Zheng
- Center of Research Laboratory, Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Haining Li
- Department of Clinical Laboratory Diagnostics, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Shaolin Zhao
- Center of Research Laboratory, Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
39
|
Gibbs DL, Aguilar B, Thorsson V, Ratushny AV, Shmulevich I. Patient-Specific Cell Communication Networks Associate With Disease Progression in Cancer. Front Genet 2021; 12:667382. [PMID: 34512714 PMCID: PMC8429851 DOI: 10.3389/fgene.2021.667382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
The maintenance and function of tissues in health and disease depends on cell-cell communication. This work shows how high-level features, representing cell-cell communication, can be defined and used to associate certain signaling "axes" with clinical outcomes. We generated a scaffold of cell-cell interactions and defined a probabilistic method for creating per-patient weighted graphs based on gene expression and cell deconvolution results. With this method, we generated over 9,000 graphs for The Cancer Genome Atlas (TCGA) patient samples, each representing likely channels of intercellular communication in the tumor microenvironment (TME). It was shown that cell-cell edges were strongly associated with disease severity and progression, in terms of survival time and tumor stage. Within individual tumor types, there are predominant cell types, and the collection of associated edges were found to be predictive of clinical phenotypes. Additionally, genes associated with differentially weighted edges were enriched in Gene Ontology terms associated with tissue structure and immune response. Code, data, and notebooks are provided to enable the application of this method to any expression dataset (https://github.com/IlyaLab/Pan-Cancer-Cell-Cell-Comm-Net).
Collapse
Affiliation(s)
- David L. Gibbs
- Institute for Systems Biology, Seattle, WA, United States
| | - Boris Aguilar
- Institute for Systems Biology, Seattle, WA, United States
| | | | | | | |
Collapse
|
40
|
TGF-β Signaling: From Tissue Fibrosis to Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22147575. [PMID: 34299192 PMCID: PMC8303588 DOI: 10.3390/ijms22147575] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling triggers diverse biological actions in inflammatory diseases. In tissue fibrosis, it acts as a key pathogenic regulator for promoting immunoregulation via controlling the activation, proliferation, and apoptosis of immunocytes. In cancer, it plays a critical role in tumor microenvironment (TME) for accelerating invasion, metastasis, angiogenesis, and immunosuppression. Increasing evidence suggest a pleiotropic nature of TGF-β signaling as a critical pathway for generating fibrotic TME, which contains numerous cancer-associated fibroblasts (CAFs), extracellular matrix proteins, and remodeling enzymes. Its pathogenic roles and working mechanisms in tumorigenesis are still largely unclear. Importantly, recent studies successfully demonstrated the clinical implications of fibrotic TME in cancer. This review systematically summarized the latest updates and discoveries of TGF-β signaling in the fibrotic TME.
Collapse
|
41
|
Liu H, Shi Y, Qian F. Opportunities and delusions regarding drug delivery targeting pancreatic cancer-associated fibroblasts. Adv Drug Deliv Rev 2021; 172:37-51. [PMID: 33705881 DOI: 10.1016/j.addr.2021.02.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
A dense desmoplastic stroma formed by abundant extracellular matrix and stromal cells, including cancer-associated fibroblasts (CAFs) and immune cells, is a feature of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal cancer types. As the dominant cellular component of the PDAC stroma, CAFs orchestrate intensive and biologically diverse crosstalk with pancreatic cancer cells and immune cells and contribute to a unique PDAC tumor microenvironment promoting cancer proliferation, metastasis, and resistance against both chemo- and immunotherapies. Therefore, CAFs and CAF-related mechanisms have emerged as promising targets for PDAC therapy. However, several clinical setbacks and accumulating knowledge of the PDAC stroma have revealed the heterogeneity and multifaceted biological roles of CAFs, and concerns regarding "what to deliver" and "how to deliver" have arisen when designing CAF-targeted drug delivery systems to specifically inhibit tumor-supporting CAFs without impairing tumor-restricting CAFs. In this review, we will discuss the complexity of CAFs in the PDAC stroma as well as the potential opportunities and common misconceptions regarding drug delivery efforts targeting PDAC CAFs.
Collapse
Affiliation(s)
- Huiqin Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
42
|
Novák Š, Kolář M, Szabó A, Vernerová Z, Lacina L, Strnad H, Šáchová J, Hradilová M, Havránek J, Španko M, Čoma M, Urban L, Kaňuchová M, Melegová N, Gürlich R, Dvořák J, Smetana K, Gál P, Szabo P. Desmoplastic Crosstalk in Pancreatic Ductal Adenocarcinoma Is Reflected by Different Responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 Cell Lines to Cancer-associated/Normal Fibroblasts. Cancer Genomics Proteomics 2021; 18:221-243. [PMID: 33893076 DOI: 10.21873/cgp.20254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND/AIM Pancreatic ductal adenocarcinoma (PDAC) still represents one of the most aggressive cancers. Understanding of the epithelial-mesenchymal crosstalk as a crucial part of the tumor microenvironment should pave the way for therapies to improve patient survival rates. Well-established cell lines present a useful and reproducible model to study PDAC biology. However, the tumor-stromal interactions between cancer cells and cancer-associated fibroblasts (CAFs) are still poorly understood. MATERIALS AND METHODS We studied interactions between four PDAC cell lines (Panc-1, CAPAN-2, MIAPaCa-2, and PaTu-8902) and conditioned media derived from primary cultures of normal fibroblasts/PDAC-derived CAFs (PANFs). RESULTS When the tested PDAC cell lines were stimulated by PANF-derived conditioned media, the most aggressive behavior was acquired by the Panc-1 cell line (increased number and size of colonies, remaining expression of vimentin and keratin 8 as well as increase of epithelial-to-mesenchymal polarization markers), whereas PaTu-8902 cells were rather inhibited. Of note, administration of the conditioned media to MIAPaCa-2 cells resulted in an inverse effect on the size and number of colonies, whereas CAPAN-2 cells were rather stimulated. To explain the heterogeneous pattern of the observed PDAC crosstalk at the in vitro level, we further compared the phenotype of primary cultures of cells derived from ascitic fluid with that of the tested PDAC cell lines, analyzed tumor samples of PDAC patients, and performed gene expression profiling of PANFs. Immuno-cyto/histo-chemical analysis found specific phenotype differences within the group of examined patients and tested PDAC cell lines, whereas the genomic approach in PANFs found the key molecules (IL6, IL8, MFGE8 and periostin) that may contribute to the cancer aggressive behavior. CONCLUSION The desmoplastic patient-specific regulation of cancer cells by CAFs (also demonstrated by the heterogeneous response of PDAC cell lines to fibroblasts) precludes simple targeting and development of an effective treatment strategy and rather requires establishment of an individualized tumor-specific treatment protocol.
Collapse
Affiliation(s)
- Štepán Novák
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Otorhinolaryngology, Head and Neck Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Arpád Szabó
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic
| | - Zdena Vernerová
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Šáchová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miluše Hradilová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Havránek
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal Španko
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Stomatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Matúš Čoma
- Department of Pharmacology, Pavol Jozef Šafárik University, Košice, Slovak Republic.,Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Lukáš Urban
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic.,Laboratory of Cell Interactions, Center of Clinical and Preclinical Research MediPark, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Miriam Kaňuchová
- Laboratory of Cell Interactions, Center of Clinical and Preclinical Research MediPark, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Nikola Melegová
- Laboratory of Cell Interactions, Center of Clinical and Preclinical Research MediPark, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Robert Gürlich
- Department of Surgery, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic
| | - Josef Dvořák
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Peter Gál
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic; .,Laboratory of Cell Interactions, Center of Clinical and Preclinical Research MediPark, Pavol Jozef Šafárik University, Košice, Slovak Republic.,Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic
| | - Pavol Szabo
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic; .,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| |
Collapse
|
43
|
Steele NG, Biffi G, Kemp SB, Zhang Y, Drouillard D, Syu L, Hao Y, Oni TE, Brosnan E, Elyada E, Doshi A, Hansma C, Espinoza C, Abbas A, The S, Irizarry-Negron V, Halbrook CJ, Franks NE, Hoffman MT, Brown K, Carpenter ES, Nwosu ZC, Johnson C, Lima F, Anderson MA, Park Y, Crawford HC, Lyssiotis CA, Frankel TL, Rao A, Bednar F, Dlugosz AA, Preall JB, Tuveson DA, Allen BL, Pasca di Magliano M. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res 2021; 27:2023-2037. [PMID: 33495315 PMCID: PMC8026631 DOI: 10.1158/1078-0432.ccr-20-3715] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by an extensive fibroinflammatory stroma, which includes abundant cancer-associated fibroblast (CAF) populations. PDAC CAFs are heterogeneous, but the nature of this heterogeneity is incompletely understood. The Hedgehog pathway functions in PDAC in a paracrine manner, with ligands secreted by cancer cells signaling to stromal cells in the microenvironment. Previous reports investigating the role of Hedgehog signaling in PDAC have been contradictory, with Hedgehog signaling alternately proposed to promote or restrict tumor growth. In light of the newly discovered CAF heterogeneity, we investigated how Hedgehog pathway inhibition reprograms the PDAC microenvironment. EXPERIMENTAL DESIGN We used a combination of pharmacologic inhibition, gain- and loss-of-function genetic experiments, cytometry by time-of-flight, and single-cell RNA sequencing to study the roles of Hedgehog signaling in PDAC. RESULTS We found that Hedgehog signaling is uniquely activated in fibroblasts and differentially elevated in myofibroblastic CAFs (myCAF) compared with inflammatory CAFs (iCAF). Sonic Hedgehog overexpression promotes tumor growth, while Hedgehog pathway inhibition with the smoothened antagonist, LDE225, impairs tumor growth. Furthermore, Hedgehog pathway inhibition reduces myCAF numbers and increases iCAF numbers, which correlates with a decrease in cytotoxic T cells and an expansion in regulatory T cells, consistent with increased immunosuppression. CONCLUSIONS Hedgehog pathway inhibition alters fibroblast composition and immune infiltration in the pancreatic cancer microenvironment.
Collapse
Affiliation(s)
- Nina G Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Samantha B Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - LiJyun Syu
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, New York
| | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Erin Brosnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Ela Elyada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Abhishek Doshi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Christa Hansma
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Carlos Espinoza
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ahmed Abbas
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Stephanie The
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | | | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Nicole E Franks
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Eileen S Carpenter
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Fatima Lima
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Michelle A Anderson
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Howard C Crawford
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Costas A Lyssiotis
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Michigan Institute of Data Science (MIDAS), University of Michigan, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
44
|
Ollauri-Ibáñez C, Ayuso-Íñigo B, Pericacho M. Hot and Cold Tumors: Is Endoglin (CD105) a Potential Target for Vessel Normalization? Cancers (Basel) 2021; 13:1552. [PMID: 33800564 PMCID: PMC8038031 DOI: 10.3390/cancers13071552] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tumors are complex masses formed by malignant but also by normal cells. The interaction between these cells via cytokines, chemokines, growth factors, and enzymes that remodel the extracellular matrix (ECM) constitutes the tumor microenvironment (TME). This TME can be determinant in the prognosis and the response to some treatments such as immunotherapy. Depending on their TME, two types of tumors can be defined: hot tumors, characterized by an immunosupportive TME and a good response to immunotherapy; and cold tumors, which respond poorly to this therapy and are characterized by an immunosuppressive TME. A therapeutic strategy that has been shown to be useful for the conversion of cold tumors into hot tumors is vascular normalization. In this review we propose that endoglin (CD105) may be a useful target of this strategy since it is involved in the three main processes involved in the generation of the TME: angiogenesis, inflammation, and cancer-associated fibroblast (CAF) accumulation. Moreover, the analysis of endoglin expression in tumors, which is already used in the clinic to study the microvascular density and that is associated with worse prognosis, could be used to predict a patient's response to immunotherapy.
Collapse
Affiliation(s)
| | | | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Group of Physiopathology of the Vascular Endothelium (ENDOVAS), Biomedical Research Institute of Salamanca (IBSAL), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (C.O.-I.); (B.A.-Í.)
| |
Collapse
|
45
|
Biffi G, Tuveson DA. Diversity and Biology of Cancer-Associated Fibroblasts. Physiol Rev 2021; 101:147-176. [PMID: 32466724 PMCID: PMC7864232 DOI: 10.1152/physrev.00048.2019] [Citation(s) in RCA: 733] [Impact Index Per Article: 183.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
Efforts to develop anti-cancer therapies have largely focused on targeting the epithelial compartment, despite the presence of non-neoplastic stromal components that substantially contribute to the progression of the tumor. Indeed, cancer cell survival, growth, migration, and even dormancy are influenced by the surrounding tumor microenvironment (TME). Within the TME, cancer-associated fibroblasts (CAFs) have been shown to play several roles in the development of a tumor. They secrete growth factors, inflammatory ligands, and extracellular matrix proteins that promote cancer cell proliferation, therapy resistance, and immune exclusion. However, recent work indicates that CAFs may also restrain tumor progression in some circumstances. In this review, we summarize the body of work on CAFs, with a particular focus on the most recent discoveries about fibroblast heterogeneity, plasticity, and functions. We also highlight the commonalities of fibroblasts present across different cancer types, and in normal and inflammatory states. Finally, we present the latest advances regarding therapeutic strategies targeting CAFs that are undergoing preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Loe AKH, Rao-Bhatia A, Kim JE, Kim TH. Mesenchymal Niches for Digestive Organ Development, Homeostasis, and Disease. Trends Cell Biol 2020; 31:152-165. [PMID: 33349527 DOI: 10.1016/j.tcb.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal-epithelial crosstalk plays a crucial role in organ development and stem cell function. However, the identity of the mesenchymal cells involved in this exchange was unclear. Recent significant advances in single-cell transcriptomics have defined the heterogeneity of these mesenchymal niches. By combining multiomic profiling, animal models, and organoid culture, new studies have not only demonstrated the roles of diverse mesenchymal cell populations but also defined the mechanisms underlying their regulation of niche signals. Focusing on several digestive organs, we describe how similar and diverse mesenchymal cell populations promote organ development and maintain proper stem cell activity, and how the heterogeneity of mesenchymal niches is altered in digestive diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abilasha Rao-Bhatia
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ji-Eun Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae-Hee Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
47
|
Zhang J, Yuan Z, Zhong W, Wei Y. Stem Cell as Vehicles of Antibody in Treatment of Lymphoma: a Novel and Potential Targeted Therapy. Stem Cell Rev Rep 2020; 17:829-841. [PMID: 33205352 DOI: 10.1007/s12015-020-10080-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
Lymphoma is a heterogeneous malignancy and its incidence is increasing in the past decades all over the world. Although more than half of lymphoma patients achieve complete or partial remission from the standard first-line ABVD or R-CHOP based therapy, patients who fail to respond to these regimens will give rise to relapsed or refractory (R/R) lymphoma and may lead to a worse prognosis. Developing novel agents is important for R/R lymphoma. Based on the homing ability and being genetically modified easily, stem cells are usually used as vehicles in cell-based anti-tumor therapy, which can not only retain their own biological characteristics, but also make anti-tumor agents secrete constantly in tumor environment, to eventually kill the tumor cells more effectively. In this review, we will briefly introduce the properties of antibody therapy carried by stem cells, especially the hopes and hurdles of stem cell-mediated antibody secretion in the treatment of lymphoma.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weijie Zhong
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China.
| |
Collapse
|
48
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
49
|
Hilmi M, Nicolle R, Bousquet C, Neuzillet C. Cancer-Associated Fibroblasts: Accomplices in the Tumor Immune Evasion. Cancers (Basel) 2020; 12:cancers12102969. [PMID: 33066357 PMCID: PMC7602282 DOI: 10.3390/cancers12102969] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary A growing number of studies suggest that cancer-associated fibroblasts (CAFs) modulate both myeloid and lymphoid cells through secretion of molecules (i.e., chemical function) and production of the extracellular matrix (ECM), i.e., physical function. Even though targeting functions CAFs is a relevant strategy, published clinical trials solely aimed at targeting the stroma showed disappointing results, despite being based on solid preclinical evidence. Our review dissects the interactions between CAFs and immune cells and explains how a deeper understanding of CAF subpopulations is the cornerstone to propose relevant therapies that will ultimately improve survival of patients with cancer. Abstract Cancer-associated fibroblasts (CAFs) are prominent cells within the tumor microenvironment, by communicating with other cells within the tumor and by secreting the extracellular matrix components. The discovery of the immunogenic role of CAFs has made their study particularly attractive due to the potential applications in the field of cancer immunotherapy. Indeed, CAFs are highly involved in tumor immune evasion by physically impeding the immune system and interacting with both myeloid and lymphoid cells. However, CAFs do not represent a single cell entity but are divided into several subtypes with different functions that may be antagonistic. Considering that CAFs are orchestrators of the tumor microenvironment and modulate immune cells, targeting their functions may be a promising strategy. In this review, we provide an overview of (i) the mechanisms involved in immune regulation by CAFs and (ii) the therapeutic applications of CAFs modulation to improve the antitumor immune response and the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Marc Hilmi
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, 92210 Saint-Cloud, France;
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
- Correspondence: ; Tel.: +33-06-8547-3027
| | - Rémy Nicolle
- Programme Cartes d’Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France;
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, 31000 Toulouse, France;
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, 92210 Saint-Cloud, France;
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
- Institut Curie, Cell Migration and Invasion, UMR144, PSL Research University, 26, rue d’Ulm, F-75005 Paris, France
| |
Collapse
|
50
|
Hessmann E, Buchholz SM, Demir IE, Singh SK, Gress TM, Ellenrieder V, Neesse A. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev 2020; 100:1707-1751. [DOI: 10.1152/physrev.00042.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) belongs to the most lethal solid tumors in humans. A histological hallmark feature of PDAC is the pronounced tumor microenvironment (TME) that dynamically evolves during tumor progression. The TME consists of different non-neoplastic cells such as cancer-associated fibroblasts, immune cells, endothelial cells, and neurons. Furthermore, abundant extracellular matrix components such as collagen and hyaluronic acid as well as matricellular proteins create a highly dynamic and hypovascular TME with multiple biochemical and physical interactions among the various cellular and acellular components that promote tumor progression and therapeutic resistance. In recent years, intensive research efforts have resulted in a significantly improved understanding of the biology and pathophysiology of the TME in PDAC, and novel stroma-targeted approaches are emerging that may help to improve the devastating prognosis of PDAC patients. However, none of anti-stromal therapies has been approved in patients so far, and there is still a large discrepancy between multiple successful preclinical results and subsequent failure in clinical trials. Furthermore, recent findings suggest that parts of the TME may also possess tumor-restraining properties rendering tailored therapies even more challenging.
Collapse
Affiliation(s)
- Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Soeren M. Buchholz
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Ihsan Ekin Demir
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Shiv K. Singh
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Thomas M. Gress
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology, and Endocrinology, University Medical Centre Goettingen, Georg August University, Goettingen, Germany; Department of Surgery, Klinikum rechts der Isar, Technische Universität München, School of Medicine Munich, Munich, Germany; Sonderforschungsbereich/Collaborative Research Centre 1321 Modeling and Targeting Pancreatic Cancer, Munich, Germany; Deutsches Konsortium für Translationale Krebsforschung (DKTK) Munich Site, Munich, Germany; and
| |
Collapse
|