1
|
Yang HC, Fu CF, Qiao LJ, Long GH, Yang LF, Yao B. Relationship between Helicobacter pylori infection and programmed death-ligand 1 in gastric cancer: A meta-analysis. World J Clin Oncol 2025; 16:102397. [PMID: 40290698 PMCID: PMC12019281 DOI: 10.5306/wjco.v16.i4.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies worldwide, and Helicobacter pylori (HP) infection is a well-established risk factor for its development. Programmed death-ligand 1 (PD-L1) expression is a crucial biomarker for predicting the efficacy of immune checkpoint inhibitors in cancer treatment. While HP infection and PD-L1 expression in GC may be linked, the relationship between them remains unclear, in part because there have been conflicting results reported from various studies. AIM To perform a meta-analysis to assess the relationship between HP and PD-L1 expression in patients with GC. METHODS A systematic literature review was conducted using PubMed, Embase, Cochrane Library, and Web of Science databases. Observational studies that examined the association between HP infection and PD-L1 expression in patients with GC were included. Odds ratios and 95% confidence intervals were calculated to estimate the association. Heterogeneity was assessed using Cochrane's Q test and I² statistic. A random-effects model was used due to significant heterogeneity across studies. RESULTS Fourteen studies involving a total of 3069 patients with GC were included. The pooled analysis showed a significant association between HP infection and increased PD-L1 expression in GC tissues (odd ratio = 1.69, 95% confidence interval: 1.24-2.29, P < 0.001, I 2 = 59%). Sensitivity analyses confirmed the robustness of these findings. Subgroup analyses did not show significant variation based on geographic region, sample size, or method of PD-L1 assessment. Publication bias was minimal, as shown by funnel plots and Egger's regression test. CONCLUSION HP infection is associated with increased PD-L1 expression in GC, suggesting that HP status may influence the response to programmed cell death protein 1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Hong-Chang Yang
- Department of Gastroenterology, Longgang Central Hospital of Shenzhen, Shenzhen 518100, Guangdong Province, China
| | - Cheng-Feng Fu
- Department of Oncology, Tongren People’s Hospital, Tongren 554300, Guizhou Province, China
| | - Li-Jun Qiao
- Department of Basic Medical Sciences, Guizhou Health Vocational College, Tongren 554300, Guizhou Province, China
| | - Gen-He Long
- Department of School of Medicine, Guizhou Vocational and Technical College, Tongren 554300, Guizhou Province, China
| | - Li-Fen Yang
- Department of Oncology, Tongren People’s Hospital, Tongren 554300, Guizhou Province, China
| | - Biao Yao
- Department of Oncology, Tongren People’s Hospital, Tongren 554300, Guizhou Province, China
| |
Collapse
|
2
|
Hu Q, Shi Y, Wang H, Bing L, Xu Z. Post-translational modifications of immune checkpoints: unlocking new potentials in cancer immunotherapy. Exp Hematol Oncol 2025; 14:37. [PMID: 40087690 PMCID: PMC11907956 DOI: 10.1186/s40164-025-00627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Immunotherapy targeting immune checkpoints has gained traction across various cancer types in clinical settings due to its notable advantages. Despite this, the overall response rates among patients remain modest, alongside issues of drug resistance and adverse effects. Hence, there is a pressing need to enhance immune checkpoint blockade (ICB) therapies. Post-translational modifications (PTMs) are crucial for protein functionality. Recent research emphasizes their pivotal role in immune checkpoint regulation, directly impacting the expression and function of these key proteins. This review delves into the influence of significant PTMs-ubiquitination, phosphorylation, and glycosylation-on immune checkpoint signaling. By targeting these modifications, novel immunotherapeutic strategies have emerged, paving the way for advancements in optimizing immune checkpoint blockade therapies in the future.
Collapse
Affiliation(s)
- Qiongjie Hu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Huang Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liuwen Bing
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China.
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China.
| |
Collapse
|
3
|
Huang R, Nakamura B, Senguttuvan R, Li YJ, Martincuks A, Bakkar R, Song M, Ann DK, Rodriguez-Rodriguez L, Yu H. A Critical Role of Intracellular PD-L1 in Promoting Ovarian Cancer Progression. Cells 2025; 14:314. [PMID: 39996786 PMCID: PMC11853747 DOI: 10.3390/cells14040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Disrupting the interaction between tumor-cell surface PD-L1 and T cell membrane PD-1 can elicit durable clinical responses. However, only about 10% of ovarian cancer patients respond to PD-1/PD-L1 blockade. Here, we show that PD-L1 expression in ovarian cancer-patient tumors is predominantly intracellular. Notably, PARP inhibitor treatment highly increased intracellular PD-L1 accumulation in both ovarian cancer-patient tumor samples and cell lines. We investigated whether intracellular PD-L1 might play a critical role in ovarian cancer progression. Mutating the PD-L1 acetylation site in PEO1 and ID8Brca1-/- ovarian cancer cells significantly decreased PD-L1 levels and impaired colony formation, which was accompanied by cell cycle G2/M arrest and apoptosis induction. PEO1 and ID8Brca1-/- tumors with PD-L1 acetylation site mutation also exhibited significantly reduced growth in mice. Furthermore, targeting intracellular PD-L1 with a cell-penetrating antibody effectively decreased ovarian tumor-cell intracellular PD-L1 level and induced tumor-cell growth arrest and apoptosis, as well as enhanced DNA damage and STING activation, both in vitro and in vivo. In conclusion, we have shown the critical role of intracellular PD-L1 in ovarian cancer progression.
Collapse
Affiliation(s)
- Rui Huang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (R.H.); (Y.-J.L.); (A.M.)
| | - Brad Nakamura
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (B.N.); (R.S.); (M.S.)
| | - Rosemary Senguttuvan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (B.N.); (R.S.); (M.S.)
| | - Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (R.H.); (Y.-J.L.); (A.M.)
| | - Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (R.H.); (Y.-J.L.); (A.M.)
| | - Rania Bakkar
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Mihae Song
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (B.N.); (R.S.); (M.S.)
| | - David K. Ann
- Department of Diabetes Complication and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Lorna Rodriguez-Rodriguez
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA; (B.N.); (R.S.); (M.S.)
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (R.H.); (Y.-J.L.); (A.M.)
| |
Collapse
|
4
|
Chen X, Li S, Cao L, Chen S, Lin Q, Zhong S. A novel ubiquitination-related gene signature for overall survival prediction in patients with liver hepatocellular carcinoma. Discov Oncol 2025; 16:71. [PMID: 39836336 PMCID: PMC11751366 DOI: 10.1007/s12672-025-01768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a highly heterogeneous disease, necessitating the discovery of novel biomarkers to enhance individualized treatment approaches. Recent research has shown the significant involvement of ubiquitin-related genes (UbRGs) in the progression of LIHC. However, the prognostic value of UbRGs in LIHC has not been investigated. In this study, the mRNA expression profiles and clinical data were obtained from public databases of LIHC patients. The least absolute shrinkage and selection operator Cox regression model was employed to construct a multigene signature in the TCGA cohort. Our results showed that a twelve UbRGs signature was developed to categorize patients into two risk groups, with significant differences in expression between LIHC and normal tissues. Patients in the high-risk group exhibited significantly reduced overall survival (OS) and progression-free survival compared to those in the low-risk group. The risk score was identified as an independent predictor for OS in multivariate Cox regression analyses. Receiver operating characteristic curve analysis confirmed the predictive capacity of the signature. Functional analysis revealed enrichment of immune-related pathways and differences in immune status between the two risk groups. The risk score was correlated with 35 transcription factors and 26 eRNA enhancers, and positively associated with tumor mutation burden. Patients in the high-risk group demonstrated decreased sensitivity to targeted and chemotherapeutic drugs than those in the low-risk group. In conclusion, our study identified a twelve UbRGs signature that may serve as a prognostic predictor for LIHC patients and and provide valuable insights for cancer treatment.
Collapse
Affiliation(s)
- Xiuyun Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - SenLin Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Lixue Cao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shaoxian Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qiuxiong Lin
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shilong Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Wu X, Zhu Z, Zhang J, Tian M, Zhao P. Progress in understanding the regulatory mechanisms of immune checkpoint proteins PD-1 and PD-L1 expression. Clin Transl Oncol 2025:10.1007/s12094-024-03835-4. [PMID: 39776397 DOI: 10.1007/s12094-024-03835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Programmed Death Protein-1 (PD-1) is a cell surface receptor that serves as a checkpoint for T cells, playing a pivotal role in regulating T-cell apoptosis. The binding of PD-1 to its ligand, Programmed Death Ligand 1 (PD-L1), inhibits anti-tumor immunity by suppressing T-cell activation signals. Indeed, the PD-1/PD-L1 pathway governs the induction and maintenance of immune tolerance within the tumor microenvironment. Consequently, the regulation of PD-1/PD-L1 immune checkpoint expression is of paramount importance. This review summarizes the mechanisms governing PD1/PD-L1 expression at various stages, including transcription, post-transcription (mRNA processing), and post-translation (protein modifications), as well as immunotherapy targeting PD1/PD-L1, aiming to further explore novel strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Xuanxuan Wu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Zengjun Zhu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Jian Zhang
- Center of Translational Medicine, Zibo Central Hospital, Shandong Second Medical University, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China
| | - Maojin Tian
- Department of Critical Care Medicine, Zibo Central Hospital, Shandong Second Medical University, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China.
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital, Shandong Second Medical University, 54 Gongqingtuan Xi Road, Zibo, 255036, Shandong, China.
| |
Collapse
|
6
|
Hernández‐Prat A, Rodriguez‐Vida A, Cardona L, Qin M, Arpí‐Llucià O, Soria‐Jiménez L, Menendez S, Quimis FG, Galindo M, Arriola E, Salido M, Juanpere‐Rodero N, Rojo F, Muntasell A, Albanell J, Rovira A, Bellmunt J. Enhancing immunotherapy through PD-L1 upregulation: the promising combination of anti-PD-L1 plus mTOR inhibitors. Mol Oncol 2025; 19:151-172. [PMID: 39258533 PMCID: PMC11705730 DOI: 10.1002/1878-0261.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 09/12/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) pathway have transformed urothelial cancer (UC) therapy. The correlation between PD-L1 expression and ICI effectiveness is uncertain, leaving the role of PD-L1 as a predictive marker for ICI efficacy unclear. Among several ways to enhance the efficacy of ICI, trials are exploring combining ICIs with serine/threonine-protein kinase mTOR (mTOR) inhibitors in different tumor types. The potential interaction between mTOR inhibitors and PD-L1 expression in UC has not been well characterized. In our study, we investigated how phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway inhibitors (TAK-228, everolimus and TAK-117) affect PD-L1 expression and function in preclinical bladder cancer cell models. TAK-228 increased cell surface levels of glycosylated PD-L1 in all but one of the seven cell lines, regardless of baseline levels. TAK-228 promoted the secretion of epidermal growth factor (EGF) and interferon-β (IFNβ), both linked to PD-L1 protein induction. Blocking EGF and IFNβ receptors reversed the TAK-228-induced PD-L1 increase. Additionally, TAK-228 enhanced IFN-γ-induced PD-L1 expression and intracellular HLA-I levels in some cells. TAK-228-treated bladder cancer cells exhibited resistance to the cytotoxic effects of peripheral blood mononuclear cells (PBMCs) and cluster of differentiation 8 (CD8)+ T cells. The addition of an anti-PD-L1 antibody diminished this resistance in T24 cells. Increased expression of PD-L1 under TAK-228 exposure was confirmed in patient-derived explants (PDEs) treated ex vivo. These preclinical findings suggest that mTOR inhibition with TAK-228 can increase PD-L1 levels, potentially impacting the specific immune response against UC cells. This highlights the rationale for exploring the combination of mTOR inhibitors with ICIs in patients with advanced UC.
Collapse
Affiliation(s)
- Anna Hernández‐Prat
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | | | - Laura Cardona
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Mengjuan Qin
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Oriol Arpí‐Llucià
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Luis Soria‐Jiménez
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Sílvia Menendez
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Pathology DepartmentHospital del Mar‐CIBERONCBarcelonaSpain
| | | | - Miguel Galindo
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | - Edurne Arriola
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Medical Oncology DepartmentHospital del Mar‐CIBERONCBarcelonaSpain
| | - Marta Salido
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
| | | | - Federico Rojo
- Pathology DepartmentIIS Fundación Jimenez Diaz‐CIBERONCMadridSpain
| | - Aura Muntasell
- Immunity and Infection GroupIMIM (Hospital del Mar Research Institute)‐CIBERONCBarcelonaSpain
- Universitat Autònoma de BarcelonaSpain
| | - Joan Albanell
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Medical Oncology DepartmentHospital del Mar‐CIBERONCBarcelonaSpain
| | - Ana Rovira
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Medical Oncology DepartmentHospital del Mar‐CIBERONCBarcelonaSpain
| | - Joaquim Bellmunt
- Cancer Research ProgrameIMIM (Hospital del Mar Research Institute)BarcelonaSpain
- Dana Farber Medical InstituteHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
7
|
Hu X, Ouyang W, Chen H, Liu Z, Lai Z, Yao H. Claudin-9 (CLDN9) promotes gastric cancer progression by enhancing the glycolysis pathway and facilitating PD-L1 lactylation to suppress CD8+ T cell anti-tumor immunity. CANCER PATHOGENESIS AND THERAPY 2024. [DOI: 10.1016/j.cpt.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2024]
|
8
|
Duan Z, Shi R, Gao B, Cai J. N-linked glycosylation of PD-L1/PD-1: an emerging target for cancer diagnosis and treatment. J Transl Med 2024; 22:705. [PMID: 39080767 PMCID: PMC11290144 DOI: 10.1186/s12967-024-05502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
During tumorigenesis and progression, the immune checkpoint programmed death-1 (PD-1) and its ligand programmed death ligand-1 (PD-L1) play critical roles in suppressing T cell-mediated anticancer immune responses, leading to T-cell exhaustion and subsequent tumor evasion. Therefore, anti-PD-L1/PD-1 therapy has been an attractive strategy for treating cancer over the past decade. However, the overall efficacy of this approach remains suboptimal, revealing an urgent need for novel insights. Interestingly, increasing evidence indicates that both PD-L1 on tumor cells and PD-1 on tumor-specific T cells undergo extensive N-linked glycosylation, which is essential for the stability and interaction of these proteins, and this modification promotes tumor evasion. In various preclinical models, targeting the N-linked glycosylation of PD-L1/PD-1 was shown to significantly increase the efficacy of PD-L1/PD-1 blockade therapy. Furthermore, deglycosylation of PD-L1 strengthens the signal intensity in PD-L1 immunohistochemistry (IHC) assays, improving the diagnostic and therapeutic relevance of this protein. In this review, we provide an overview of the regulatory mechanisms underlying the N-linked glycosylation of PD-L1/PD-1 as well as the crucial role of N-linked glycosylation in PD-L1/PD-1-mediated immune evasion. In addition, we highlight the promising implications of targeting the N-linked glycosylation of PD-L1/PD-1 in the clinical diagnosis and treatment of cancer. Our review identifies knowledge gaps and sheds new light on the cancer research field.
Collapse
Affiliation(s)
- Zhiyun Duan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, P.R. China
| | - Runhan Shi
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, P.R. China
- Department of Ophthalmology and Vision Science, Shanghai Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, P.R. China
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, P.R. China.
- Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, P.R. China.
| |
Collapse
|
9
|
Sagrero-Fabela N, Chávez-Mireles R, Salazar-Camarena DC, Palafox-Sánchez CA. Exploring the Role of PD-1 in the Autoimmune Response: Insights into Its Implication in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:7726. [PMID: 39062968 PMCID: PMC11277507 DOI: 10.3390/ijms25147726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite advances in understanding systemic lupus erythematosus (SLE), many challenges remain in unraveling the precise mechanisms behind the disease's development and progression. Recent evidence has questioned the role of programmed cell death protein 1 (PD-1) in suppressing autoreactive CD4+ T cells during autoimmune responses. Research has investigated the potential impacts of PD-1 on various CD4+ T-cell subpopulations, including T follicular helper (Tfh) cells, circulating Tfh (cTfh) cells, and T peripheral helper (Tph) cells, all of which exhibit substantial PD-1 expression and are closely related to several autoimmune disorders, including SLE. This review highlights the complex role of PD-1 in autoimmunity and emphasizes the imperative for further research to elucidate its functions during autoreactive T-cell responses. Additionally, we address the potential of PD-1 and its ligands as possible therapeutic targets in SLE.
Collapse
Affiliation(s)
- Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ramón Chávez-Mireles
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
10
|
Ye G, Sun X, Li J, Mai Y, Gao R, Zhang J. Secondary metabolites of mulberry leaves exert anti-lung cancer activity through regulating the PD-L1/PD-1 signaling pathway. J Pharm Anal 2024; 14:100926. [PMID: 38974523 PMCID: PMC11226898 DOI: 10.1016/j.jpha.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 07/09/2024] Open
Abstract
Lung cancer ranks the top of malignancies that cause cancer-related deaths worldwide. The leaves of Morus alba L are traditional Chinese medicine widely applied in respiratory diseases. Our previous work has demonstrated the anti-lung cancer effect of secondary metabolites of mulberry leaf, but their mechanism of action has still not fully elucidated. We synthesized Moracin N (MAN)-Probe conjugated with alkyne to label lung cancer cells and identified protein targets by chemical proteomic analysis. MAN and its probe exerted similar growth-inhibitory effect on human lung cancer cells. Chemical proteomic results showed that MAN targeted the programmed death ligand 1 (PD-L1) checkpoint pathway and T cell receptor (TCR) signaling pathway, indicating its immune-regulatory function. Cell-free surface plasmon resonance (SPR) results showed the direct interaction of MAN with PD-L1 protein. Molecular docking analysis demonstrated that MAN bound to E158 residue of PD-L1 protein. MAN downregulated the expression levels of PD-L1 in a time- and dose-dependent manner and disrupted the PD-L1/programmed death 1 (PD-1) binding, including other secondary metabolites of mulberry leaves Guangsangon E (GSE) and Chalcomoracin (CMR). Human peripheral blood mononuclear cells (PBMCs) co-cultured with MAN-treated A549 cells, resulting in the increase of CD8+ GZMB+ T cells and the decrease of CD8+ PD-1+ T cells. It suggested that MAN exerts anti-cancer effect through blocking the PD-L1/PD-1 signaling. In vivo, MAN combined with anti-PD-1 antibody significantly inhibited lung cancer development and metastasis, indicating their synergistic effect. Taken together, secondary metabolites of mulberry leaves target the PD-L1/PD-1 signaling, enhance T cell-mediated immunity and inhibit the tumorigenesis of lung cancer. Their modulatory effect on tumor microenvironment makes them able to enhance the therapeutic efficacy of immune checkpoint inhibitors in lung cancer.
Collapse
Affiliation(s)
- Guiqin Ye
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosisand Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Laboratory, Yuhuan City Hospital, Taizhou, Zhejiang, 317600, China
- Hangzhou Medical College, Hangzhou, 311300, China
| | - Xin Sun
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosisand Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jiuzhou Li
- Department of Neurosurgery, Binzhou People's Hospital, Binzhou, Shandong, 256600, China
| | - Yuanyuan Mai
- Hangzhou Medical College, Hangzhou, 311300, China
| | - Ruilan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Jianbin Zhang
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosisand Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
11
|
Cai M, Xu M, Yu D, Wang Q, Liu S. Posttranslational regulatory mechanism of PD-L1 in cancers and associated opportunities for novel small-molecule therapeutics. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1415-1424. [PMID: 38826132 PMCID: PMC11532205 DOI: 10.3724/abbs.2024085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/03/2024] [Indexed: 06/04/2024] Open
Abstract
Despite the tremendous progress in cancer research over the past few decades, effective therapeutic strategies are still urgently needed. Accumulating evidence suggests that immune checkpoints are the cause of tumor immune escape. PD-1/PD-L1 are among them. Posttranslational modification is the most critical step for protein function, and the regulation of PD-L1 by small molecules through posttranslational modification is highly valuable. In this review, we discuss the mechanisms of tumor cell immune escape and several posttranslational modifications associated with PD-L1 and describe examples in which small molecules can regulate PD-L1 through posttranslational modifications. Herein, we propose that the use of small molecule compounds that act by inhibiting PD-L1 through posttranslational modifications is a promising therapeutic approach with the potential to improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Minchen Cai
- />Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Mengting Xu
- />Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Dianping Yu
- />Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Qun Wang
- />Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Sanhong Liu
- />Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| |
Collapse
|
12
|
Wang R, He S, Long J, Wang Y, Jiang X, Chen M, Wang J. Emerging therapeutic frontiers in cancer: insights into posttranslational modifications of PD-1/PD-L1 and regulatory pathways. Exp Hematol Oncol 2024; 13:46. [PMID: 38654302 DOI: 10.1186/s40164-024-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
The interaction between programmed cell death ligand 1 (PD-L1), which is expressed on the surface of tumor cells, and programmed cell death 1 (PD-1), which is expressed on T cells, impedes the effective activation of tumor antigen-specific T cells, resulting in the evasion of tumor cells from immune-mediated killing. Blocking the PD-1/PD-L1 signaling pathway has been shown to be effective in preventing tumor immune evasion. PD-1/PD-L1 blocking antibodies have garnered significant attention in recent years within the field of tumor treatments, given the aforementioned mechanism. Furthermore, clinical research has substantiated the efficacy and safety of this immunotherapy across various tumors, offering renewed optimism for patients. However, challenges persist in anti-PD-1/PD-L1 therapies, marked by limited indications and the emergence of drug resistance. Consequently, identifying additional regulatory pathways and molecules associated with PD-1/PD-L1 and implementing judicious combined treatments are imperative for addressing the intricacies of tumor immune mechanisms. This review briefly outlines the structure of the PD-1/PD-L1 molecule, emphasizing the posttranslational modification regulatory mechanisms and related targets. Additionally, a comprehensive overview on the clinical research landscape concerning PD-1/PD-L1 post-translational modifications combined with PD-1/PD-L1 blocking antibodies to enhance outcomes for a broader spectrum of patients is presented based on foundational research.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Shiwei He
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Jie Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
13
|
Chai F, Li P, Liu X, Zhou Z, Ren H. Targeting the PD-L1 cytoplasmic domain and its regulatory pathways to enhance cancer immunotherapy. J Mol Cell Biol 2024; 15:mjad070. [PMID: 37993416 PMCID: PMC11193063 DOI: 10.1093/jmcb/mjad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/09/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
As a significant member of the immune checkpoint, programmed cell death 1 ligand 1 (PD-L1) plays a critical role in cancer immune escape and has become an important target for cancer immunotherapy. Clinically approved drugs mainly target the extracellular domain of PD-L1. Recently, the small cytoplasmic domain of PD-L1 has been reported to regulate PD-L1 stability and function through multiple pathways. Therefore, the intracellular domain of PD-L1 and its regulatory pathways could be promising targets for cancer therapy, expanding available strategies for combined immunotherapy. Here, we summarize the emerging roles of the PD-L1 cytoplasmic domain and its regulatory pathways. The conserved motifs, homodimerization, and posttranslational modifications of the PD-L1 cytoplasmic domain have been reported to regulate the membrane anchoring, degradation, nuclear translocation, and glycosylation of PD-L1. This summary provides a comprehensive understanding of the functions of the PD-L1 cytoplasmic domain and evaluates the broad prospects for targeted therapy.
Collapse
Affiliation(s)
- Fangni Chai
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Pan Li
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xin Liu
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhihui Zhou
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Haiyan Ren
- Division of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
- Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
14
|
Xi X, Zhao W. Anti-Tumor Potential of Post-Translational Modifications of PD-1. Curr Issues Mol Biol 2024; 46:2119-2132. [PMID: 38534752 DOI: 10.3390/cimb46030136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/28/2024] Open
Abstract
Programmed cell death protein-1 (PD-1) is a vital immune checkpoint molecule. The location, stability, and protein-protein interaction of PD-1 are significantly influenced by post-translational modification (PTM) of proteins. The biological information of PD-1, including its gene and protein structures and the PD-1/PD-L1 signaling pathway, was briefly reviewed in this review. Additionally, recent research on PD-1 post-translational modification, including the study of ubiquitination, glycosylation, phosphorylation, and palmitoylation, was summarized, and research strategies for PD-1 PTM drugs were concluded. At present, only a part of PD-1/PD-L1 treated patients (35-45%) are benefited from immunotherapies, and novel strategies targeting PTM of PD-1/PD-L1 may be important for anti-PD-1/PD-L1 non-responders (poor responders).
Collapse
Affiliation(s)
- Xiaoming Xi
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Medical Biotechnology, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Medical Biotechnology, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
15
|
Kim SB, Hwang S, Cha JY, Lee HJ. Programmed Death Ligand 1 Regulatory Crosstalk with Ubiquitination and Deubiquitination: Implications in Cancer Immunotherapy. Int J Mol Sci 2024; 25:2939. [PMID: 38474186 DOI: 10.3390/ijms25052939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Programmed death ligand 1 (PD-L1) plays a pivotal role in cancer immune evasion and is a critical target for cancer immunotherapy. This review focuses on the regulation of PD-L1 through the dynamic processes of ubiquitination and deubiquitination, which are crucial for its stability and function. Here, we explored the intricate mechanisms involving various E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) that modulate PD-L1 expression in cancer cells. Specific ligases are discussed in detail, highlighting their roles in tagging PD-L1 for degradation. Furthermore, we discuss the actions of DUBs that stabilize PD-L1 by removing ubiquitin chains. The interplay of these enzymes not only dictates PD-L1 levels but also influences cancer progression and patient response to immunotherapies. Furthermore, we discuss the therapeutic implications of targeting these regulatory pathways and propose novel strategies to enhance the efficacy of PD-L1/PD-1-based therapies. Our review underscores the complexity of PD-L1 regulation and its significant impact on the tumor microenvironment and immunotherapy outcomes.
Collapse
Affiliation(s)
- Soon-Bin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ji-Young Cha
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ho-Jae Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
16
|
Zou W, Luo X, Gao M, Yu C, Wan X, Yu S, Wu Y, Wang A, Fenical W, Wei Z, Zhao Y, Lu Y. Optimization of cancer immunotherapy on the basis of programmed death ligand-1 distribution and function. Br J Pharmacol 2024; 181:257-272. [PMID: 36775813 PMCID: PMC11080663 DOI: 10.1111/bph.16054] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/04/2023] [Indexed: 02/14/2023] Open
Abstract
Programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) immune checkpoint blockade as a breakthrough in cancer immunotherapy has shown unprecedented positive outcomes in the clinic. However, the overall effectiveness of PD-L1 antibody is less than expected. An increasing number of studies have demonstrated that PD-L1 is widely distributed and expressed not only on the cell membrane but also on the inside of the cells as well as on the extracellular vesicles secreted by tumour cells. Both endogenous and exogenous PD-L1 play significant roles in influencing the therapeutic effect of anti-tumour immunity. Herein, we mainly focused on the distribution and function of PD-L1 and further summarized the potential targeted therapeutic strategies. More importantly, in addition to taking the overall expression abundance of PD-L1 as a predictive indicator for selecting corresponding PD-1/PD-L1 monoclonal antibodies (mAbs), we also proposed that personalized combination therapies based on the different distribution of PD-L1 are worth attention to achieve more efficient and effective therapeutic outcomes in cancer patients. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Luo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengyuan Gao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueting Wan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyun Yu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, California, USA
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Zhou Z, Wang H, Li J, Jiang X, Li Z, Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int J Biol Macromol 2024; 254:127911. [PMID: 37939766 DOI: 10.1016/j.ijbiomac.2023.127911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
18
|
Liao L, Xu H, Zhao Y, Zheng X. Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies. Front Med 2023; 17:805-822. [PMID: 37897562 DOI: 10.1007/s11684-023-1025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/16/2023] [Indexed: 10/30/2023]
Abstract
Immunotherapies based on immune checkpoint blockade (ICB) have significantly improved patient outcomes and offered new approaches to cancer therapy over the past decade. To date, immune checkpoint inhibitors (ICIs) of CTLA-4 and PD-1/PD-L1 represent the main class of immunotherapy. Blockade of CTLA-4 and PD-1/PD-L1 has shown remarkable efficacy in several specific types of cancers, however, a large subset of refractory patients presents poor responsiveness to ICB therapy; and the underlying mechanism remains elusive. Recently, numerous studies have revealed that metabolic reprogramming of tumor cells restrains immune responses by remodeling the tumor microenvironment (TME) with various products of metabolism, and combination therapies involving metabolic inhibitors and ICIs provide new approaches to cancer therapy. Nevertheless, a systematic summary is lacking regarding the manner by which different targetable metabolic pathways regulate immune checkpoints to overcome ICI resistance. Here, we demonstrate the generalized mechanism of targeting cancer metabolism at three crucial immune checkpoints (CTLA-4, PD-1, and PD-L1) to influence ICB therapy and propose potential combined immunotherapeutic strategies co-targeting tumor metabolic pathways and immune checkpoints.
Collapse
Affiliation(s)
- Liming Liao
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Huilin Xu
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuhan Zhao
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Feng C, Zhang L, Chang X, Qin D, Zhang T. Regulation of post-translational modification of PD-L1 and advances in tumor immunotherapy. Front Immunol 2023; 14:1230135. [PMID: 37554324 PMCID: PMC10405826 DOI: 10.3389/fimmu.2023.1230135] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
The immune checkpoint molecules programmed cell death receptor 1 (PD-1) and programmed death ligand 1 (PD-L1) are one of the most promising targets for tumor immunotherapy. PD-L1 is overexpressed on the surface of tumor cells and inhibits T cell activation upon binding to PD⁃1 on the surface of T cells, resulting in tumor immune escape. The therapeutic strategy of targeting PD-1/PD-L1 involves blocking this binding and restoring the tumor-killing effect of immune cells. However, in clinical settings, a relatively low proportion of cancer patients have responded well to PD-1/PD-L1 blockade, and clinical outcomes have reached a bottleneck and no substantial progress has been made. In recent years, PD-L1 post-translation modifications (PTMs) have gradually become a hot topic in the field of PD-L1 research, which will provide new insights to improve the efficacy of current anti-PD-1/PD-L1 therapies. Here, we summarized and discussed multiple PTMs of PD-L1, including glycosylation, ubiquitination, phosphorylation, acetylation and palmitoylation, with a major emphasis on mechanism-based therapeutic strategies (including relevant enzymes and targets that are already in clinical use and that may become drugs in the future). We also summarized the latest research progress of PTMs of PD-L1/PD-1 in regulating immunotherapy. The review provided novel strategies and directions for tumor immunotherapy research based on the PTMs of PD-L1/PD-1.
Collapse
Affiliation(s)
- Chong Feng
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lening Zhang
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Chang
- Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dongliang Qin
- Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Tao Zhang
- Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
20
|
Mao C, Li J, Feng L, Gao W. Beyond antibody fucosylation: α-(1,6)-fucosyltransferase (Fut8) as a potential new therapeutic target for cancer immunotherapy. Antib Ther 2023; 6:87-96. [PMID: 37077473 PMCID: PMC10108557 DOI: 10.1093/abt/tbad004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Aberrant post-translational glycosylation is a well-established hallmark of cancer. Altered core fucosylation mediated by α-(1,6)-fucosyltransferase (Fut8) is one of the key changes in tumor glycan patterns that contributes to neoplastic transformation, tumor metastasis, and immune evasion. Increased Fut8 expression and activity are associated with many types of human cancers, including lung, breast, melanoma, liver, colorectal, ovarian, prostate, thyroid, and pancreatic cancer. In animal models, inhibition of Fut8 activity by gene knockout, RNA interference, and small analogue inhibitors led to reduced tumor growth/metastasis, downregulation of immune checkpoint molecules PD-1, PD-L1/2, and B7-H3, and reversal of the suppressive state of tumor microenvironment. Although the biologics field has long benefited tremendously from using FUT8 -/- Chinese hamster ovary cells to manufacture IgGs with greatly enhanced effector function of antibody-dependent cellular cytotoxicity for therapy, it is only in recent years that the roles of Fut8 itself in cancer biology have been studied. Here, we summarize the pro-oncogenic mechanisms involved in cancer development that are regulated by Fut8-mediated core fucosylation, and call for more research in this area where modifying the activity of this sole enzyme responsible for core fucosylation could potentially bring rewarding surprises in fighting cancer, infections, and other immune-related diseases.
Collapse
Affiliation(s)
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Lili Feng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Wenda Gao
- Antagen Pharmaceuticals, Inc., Canton, MA 02021, USA
| |
Collapse
|
21
|
Wang Y, Jia Z, Liang C, He Y, Cong M, Wu Q, Tian P, He D, Miao X, Sun B, Yin Y, Peng C, Yao F, Fu D, Liang Y, Zhang P, Xiong H, Hu G. MTSS1 curtails lung adenocarcinoma immune evasion by promoting AIP4-mediated PD-L1 monoubiquitination and lysosomal degradation. Cell Discov 2023; 9:20. [PMID: 36810288 PMCID: PMC9944270 DOI: 10.1038/s41421-022-00507-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/07/2022] [Indexed: 02/23/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy targeting PD-1/PD-L1 has shown durable clinical benefits in lung cancer. However, many patients respond poorly to ICB treatment, underscoring an incomplete understanding of PD-L1 regulation and therapy resistance. Here, we find that MTSS1 is downregulated in lung adenocarcinoma, leading to PD-L1 upregulation, impairment of CD8+ lymphocyte function, and enhanced tumor progression. MTSS1 downregulation correlates with improved ICB efficacy in patients. Mechanistically, MTSS1 interacts with the E3 ligase AIP4 for PD-L1 monoubiquitination at Lysine 263, leading to PD-L1 endocytic sorting and lysosomal degradation. In addition, EGFR-KRAS signaling in lung adenocarcinoma suppresses MTSS1 and upregulates PD-L1. More importantly, combining AIP4-targeting via the clinical antidepressant drug clomipramine and ICB treatment improves therapy response and effectively suppresses the growth of ICB-resistant tumors in immunocompetent mice and humanized mice. Overall, our study discovers an MTSS1-AIP4 axis for PD-L1 monoubiquitination and reveals a potential combinatory therapy with antidepressants and ICB.
Collapse
Affiliation(s)
- Yuan Wang
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenchang Jia
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenxi Liang
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunfei He
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Cong
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuyao Wu
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pu Tian
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dasa He
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Miao
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Beibei Sun
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yue Yin
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Chao Peng
- grid.9227.e0000000119573309National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Feng Yao
- grid.16821.3c0000 0004 0368 8293Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Da Fu
- grid.412538.90000 0004 0527 0050Department of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China ,grid.16821.3c0000 0004 0368 8293General Surgery, Ruijin Hospital & Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yajun Liang
- grid.410726.60000 0004 1797 8419Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peiyuan Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
22
|
Zhao M, Shao T, Chi Z, Tang W. Effectiveness and cost-effectiveness analysis of 11 treatment paths, seven first-line and three second-line treatments for Chinese patients with advanced wild-type squamous non-small cell lung cancer: A sequential model. Front Public Health 2023; 11:1051484. [PMID: 36908446 PMCID: PMC9999022 DOI: 10.3389/fpubh.2023.1051484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Background A total of 11 treatment sequences for advanced wild-type squamous non-small cell lung cancer are recommended by Chinese Society of Clinical Oncology Guidelines, consisting of seven first-line and three second-line treatments. Five of these treatments were newly approved in China between 2021 and 2022. We evaluated the effectiveness and cost-effectiveness of these strategies from the Chinese healthcare system perspective. Methods Network meta-analysis with non-proportional hazards was used to calculate the relative efficacy between interventions. A sequential model was developed to estimate costs and quality-adjusted life years (QALY) for treatment sequences with first-line platinum- and paclitaxel-based chemotherapy (SC) with or without nedaplatin, tislelizumab, camrelizumab, sintilimab, sugemalimab or pembrolizumab, followed by second-line docetaxel, tislelizumab or nivolumab. SC and docetaxel were used as comparators for first-line and second-line treatments, respectively. QALY and incremental cost-effectiveness ratio (ICER) were used to evaluate effectiveness and cost-effectiveness, respectively. Cost-effective threshold was set as USD 19,091. Subgroup analysis was conducted to determine the best first-line and second-line therapy. Results Pembrolizumab + SC, followed by docetaxel (PED) was the most effective treatment sequence. QALYs for patients received SC, nedaplatin + SC, tislelizumab + SC, sintilimab + SC, camrelizumab + SC, sugemalimab + SC, pembrolizumab + SC followed by docetaxel were 0.866, 0.906, 1.179, 1.266, 1.179, 1.266, 1.603, 1.721, 1.807; QALYs for SC, nedaplatin + SC followed by tislelizumab were 1.283, 1.301; QALYs for SC, nedaplatin + SC followed by nivolumab were 1.353, 1.389. Camrelizumab + SC, followed by docetaxel (CAD) was the most cost-effective. Compared to SC with or without nedaplatin, tislelizumab, or sintilimab followed by docetaxel, ICERs of CAD were USD 12,276, 13,210, 6,974, 9,421/QALY, respectively. Compared with nedaplatin or SC followed by tislelizumab, the ICERs of CAD were USD 4,183, 2,804/QALY; CAD was dominant compared with nedaplatin or SC followed by nivolumab; The ICER of sugemalimab + SC followed by docetaxel and PED were USD 522,023, 481,639/QALY compared with CAD. Pembrolizumab + SC and camrelizumab + SC were the most effective and cost-effective first-line options, respectively; tislelizumab was the most effective and cost-effective second-line therapy. Tislelizumab used in second-line was more effective than first-line, no significant differences between their cost-effectiveness. Sensitivity and scenario analysis confirmed robustness of the results. Conclusions PED and CAD are the most effective and cost-effective treatment sequence, respectively; pembrolizumab + SC and camrelizumab + SC are the most effective and cost-effective first-line choice, respectively; tislelizumab is the most effective and cost-effective second-line choice.
Collapse
Affiliation(s)
- Mingye Zhao
- Department of Pharmacoeconomics, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu, China.,Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Taihang Shao
- Department of Pharmacoeconomics, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu, China.,Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhuoyuan Chi
- Department of Pharmacoeconomics, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu, China.,Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenxi Tang
- Department of Pharmacoeconomics, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu, China.,Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Xiao L, Guan X, Xiang M, Wang Q, Long Q, Yue C, Chen L, Liu J, Liao C. B7 family protein glycosylation: Promising novel targets in tumor treatment. Front Immunol 2022; 13:1088560. [PMID: 36561746 PMCID: PMC9763287 DOI: 10.3389/fimmu.2022.1088560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy, including the inhibition of immune checkpoints, improves the tumor immune microenvironment and is an effective tool for cancer therapy. More effective and alternative inhibitory targets are critical for successful immune checkpoint blockade therapy. The interaction of the immunomodulatory ligand B7 family with corresponding receptors induces or inhibits T cell responses by sending co-stimulatory and co-inhibitory signals respectively. Blocking the glycosylation of the B7 family members PD-L1, PD-L2, B7-H3, and B7-H4 inhibited the self-stability and receptor binding of these immune checkpoint proteins, leading to immunosuppression and rapid tumor progression. Therefore, regulation of glycosylation may be the "golden key" to relieve tumor immunosuppression. The exploration of a more precise glycosylation regulation mechanism and glycan structure of B7 family proteins is conducive to the discovery and clinical application of antibodies and small molecule inhibitors.
Collapse
Affiliation(s)
- Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Mingli Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Chaoyi Yue
- School of Medicine and Technology, Zunyi Medical University, Zunyi, China
| | - Lulu Chen
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China,*Correspondence: Chengcheng Liao, ; Jianguo Liu,
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China,Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China,*Correspondence: Chengcheng Liao, ; Jianguo Liu,
| |
Collapse
|
24
|
Schafer JB, Lucas ED, Dzieciatkowska M, Forward T, Tamburini BAJ. Programmed death ligand 1 intracellular interactions with STAT3 and focal adhesion protein Paxillin facilitate lymphatic endothelial cell remodeling. J Biol Chem 2022; 298:102694. [PMID: 36375639 PMCID: PMC9761386 DOI: 10.1016/j.jbc.2022.102694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/13/2022] Open
Abstract
Lymphatic endothelial cells (LECs) comprise lymphatic capillaries and vessels that guide immune cells to lymph nodes (LNs) and form the subcapsular sinus and cortical and medullary lymphatic structures of the LN. During an active immune response, the lymphatics remodel to accommodate the influx of immune cells from the tissue, but factors involved in remodeling are unclear. Here, we determined that a TSS motif within the cytoplasmic domain of programmed death ligand 1 (PD-L1), expressed by LECs in the LN, participates in lymphatic remodeling. Mutation of the TSS motif to AAA does not affect surface expression of PD-L1, but instead causes defects in LN cortical and medullary lymphatic organization following immunostimulant, Poly I:C, administration in vivo. Supporting this observation, in vitro treatment of the LEC cell line, SVEC4-10, with cytokines TNFα and IFNα significantly impeded SVEC4-10 movement in the presence of the TSS-AAA cytoplasmic mutation. The cellular movement defects coincided with reduced F-actin polymerization, consistent with differences previously found in dendritic cells. Here, in addition to loss of actin polymerization, we define STAT3 and Paxillin as important PD-L1 binding partners. STAT3 and Paxillin were previously demonstrated to be important at focal adhesions for cellular motility. We further demonstrate the PD-L1 TSS-AAA motif mutation reduced the amount of pSTAT3 and Paxillin bound to PD-L1 both before and after exposure to TNFα and IFNα. Together, these findings highlight PD-L1 as an important component of a membrane complex that is involved in cellular motility, which leads to defects in lymphatic organization.
Collapse
Affiliation(s)
- Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Erin D Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Immunology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Tadg Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA; Immunology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.
| |
Collapse
|
25
|
Shi C, Wang Y, Wu M, Chen Y, Liu F, Shen Z, Wang Y, Xie S, Shen Y, Sang L, Zhang Z, Gao Z, Yang L, Qu L, Yang Z, He X, Guo Y, Pan C, Che J, Ju H, Liu J, Cai Z, Yan Q, Yu L, Wang L, Dong X, Xu P, Shao J, Liu Y, Li X, Wang W, Zhou R, Zhou T, Lin A. Promoting anti-tumor immunity by targeting TMUB1 to modulate PD-L1 polyubiquitination and glycosylation. Nat Commun 2022; 13:6951. [PMID: 36376293 PMCID: PMC9663433 DOI: 10.1038/s41467-022-34346-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint blockade therapies targeting the PD-L1/PD-1 axis have demonstrated clear clinical benefits. Improved understanding of the underlying regulatory mechanisms might contribute new insights into immunotherapy. Here, we identify transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) as a modulator of PD-L1 post-translational modifications in tumor cells. Mechanistically, TMUB1 competes with HECT, UBA and WWE domain-containing protein 1 (HUWE1), a E3 ubiquitin ligase, to interact with PD-L1 and inhibit its polyubiquitination at K281 in the endoplasmic reticulum. Moreover, TMUB1 enhances PD-L1 N-glycosylation and stability by recruiting STT3A, thereby promoting PD-L1 maturation and tumor immune evasion. TMUB1 protein levels correlate with PD-L1 expression in human tumor tissue, with high expression being associated with poor patient survival rates. A synthetic peptide engineered to compete with TMUB1 significantly promotes antitumor immunity and suppresses tumor growth in mice. These findings identify TMUB1 as a promising immunotherapeutic target.
Collapse
Affiliation(s)
- Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Minjie Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Zheyuan Shen
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yiran Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Yingying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Lingjie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhen Zhang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zerui Gao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Luojia Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zuozhen Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyu He
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chenghao Pan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huaiqiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, China
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, 314400, China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Luyang Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liangjing Wang
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaowu Dong
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, 310024, China.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine; Irvine, CA, 92697, USA.
| | - Ruhong Zhou
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Shanghai Institute for Advanced Study, Zhejiang University, 201203, Shanghai, China.
- Department of Chemistry, Colombia University, New York City, NY, 10027, USA.
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Department of Gastroenterology, the Second Affiliated Hospital, School of Medicine and Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, Zhejiang, 310058, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China.
- ZJU-QILU Joint Research Institute, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
26
|
Li X, Gulati M, Larson AC, Solheim JC, Jain M, Kumar S, Batra SK. Immune checkpoint blockade in pancreatic cancer: Trudging through the immune desert. Semin Cancer Biol 2022; 86:14-27. [PMID: 36041672 PMCID: PMC9713834 DOI: 10.1016/j.semcancer.2022.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer (PC) has exceptionally high mortality due to ineffective treatment strategies. Immunotherapy, which mobilizes the immune system to fight against cancer, has been proven successful in multiple cancers; however, its application in PC has met with limited success. In this review, we articulated that the pancreatic tumor microenvironment is immuno-suppressive with extensive infiltration by M2-macrophages and myeloid-derived suppressive cells but low numbers of cytotoxic T-cells. In addition, low mutational load and poor antigen processing, presentation, and recognition contribute to the limited response to immunotherapy in PC. Immune checkpoints, the critical targets for immunotherapy, have high expression in PC and stromal cells, regulated by tumor microenvironmental milieu (cytokine and metabolites) and cell-intrinsic mechanisms (epigenetic regulation, oncogenic signaling, and post-translational modifications). Combining immunotherapy with modulators of the tumor microenvironment may facilitate the development of novel therapeutic regimens to manage PC.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alaina C Larson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joyce C Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
27
|
Dai X, Gao Y, Wei W. Post-translational regulations of PD-L1 and PD-1: Mechanisms and opportunities for combined immunotherapy. Semin Cancer Biol 2022; 85:246-252. [PMID: 33831533 PMCID: PMC8490479 DOI: 10.1016/j.semcancer.2021.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022]
Abstract
Antibodies targeting programmed cell death protein 1 (PD-1) or its ligand programmed death-ligand 1 (PD-L1) are profoundly changing the methods to treat cancers with long-term clinical benefits. Unlike conventional methods that directly target tumor cells, PD-1/PD-L1 blockade exerts anti-tumor effects largely through reactivating or normalizing cytotoxic T lymphocyte in the tumor microenvironment to combat cancer cells. However, only a small fraction of cancer patients responds well to PD-1/PD-L1 blockade and clinical outcomes have reached a bottleneck without substantial advances. Therefore, better understanding the molecular mechanisms underlying how PD-1/PD-L1 expression is regulated will provide new insights to improve the efficacy of current anti-PD-1/PD-L1 therapy. Here, we provide an update of current progress of PD-L1 and PD-1 post-translational regulations and highlight the mechanism-based combination therapy strategies for a better treatment of human cancer.
Collapse
Affiliation(s)
- Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Yang Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA; Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Tamburini BAJ. Contributions of PD-L1 reverse signaling to dendritic cell trafficking. FEBS J 2022; 289:6256-6266. [PMID: 34146376 PMCID: PMC8684559 DOI: 10.1111/febs.16084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
Programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) interactions are critical for dampening the immune response to both self and foreign antigens. The signaling of PD-L1 via its cytoplasmic domain, rather than through its interactions with PD-1 via the extracellular domain, has been termed PD-L1 reverse signaling. While this signaling is beneficial for cancer progression, little is understood about the consequences of PD-L1 reverse signaling in immune cells that express PD-L1 at steady state or in response to infection. Loss of PD-L1 during infection leads to unchecked T-cell proliferation and increased autoimmune T-cell responses. While the T-cell intrinsic role of PD-1 for inhibiting T-cell responses has been well explored, little to no effort has been directed at investigating the consequences of PD-L1 reverse signaling on the DCs interacting with PD-1+ T cells. We recently reported a defect in dendritic cell (DC) trafficking from the skin to the draining lymph node (LN) following immunization or infection in the absence of PD-L1. We demonstrated that a region within the cytoplasmic tail was responsible for the defect in DC trafficking. Here, we review the processes involved in DC trafficking and highlight what we know about PD-L1 expression, PD-L1 post-translational modifications, PD-L1 intracellular interactions, and PD-L1 extracellular interactions.
Collapse
Affiliation(s)
- Beth Ann Jirón Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
29
|
Qu L, Jin J, Lou J, Qian C, Lin J, Xu A, Liu B, Zhang M, Tao H, Yu W. The nuclear transportation of PD-L1 and the function in tumor immunity and progression. Cancer Immunol Immunother 2022; 71:2313-2323. [DOI: 10.1007/s00262-022-03176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 12/08/2022]
|
30
|
Zhao M, Shao T, Ren Y, Zhou C, Tang W. Identifying optimal PD-1/PD-L1 inhibitors in first-line treatment of patients with advanced squamous non-small cell lung cancer in China: Updated systematic review and network meta-analysis. Front Pharmacol 2022; 13:910656. [PMID: 36249794 PMCID: PMC9558711 DOI: 10.3389/fphar.2022.910656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: After Gemstone-302 was published in Lancet in January 2022, seven PD-(L)1 inhibitors launched or about to be launched in China, but there are no head-to-head RCTs reporting the comparative efficacy for squamous non-small cell lung cancer (sq-NSCLC). Therefore, we aimed to indirectly compare the efficacy of these treatments to provide evidence for clinical decision and Chinese national reimbursement drug listing. Methods: We collected phase III clinical trials targeted on stage IIIB–IV patients for first-line immunotherapy of sq-NSCLC by systematically searching databases. Relative effects of competing treatments were assessed by Bayesian network meta-analysis and non-parametric restricted mean survival time (RMST) model. Hazard ratio (HR), severe adverse events (SAEs, grade 3–5), progression-free survival (PFS) and overall survival (OS) years were the outcomes. Subgroup analysis was done according to PD-(L)1 expression, smoking, gender, Eastern Cooperative Oncology Group performance status, age and disease stage. Sensitivity analysis using the range of parameters distribution as well as different comparison methods was performed to test the robustness of the results. Results: A total of 7 clinical trials with 2,640 patients were included. For OS, the efficiency (HR, 95%CI) ranks from high to low were sugemalimab (0.48, 0.32–0.73), camrelizumab (0.55, 0.40–0.76), sintilimab (0.56, 0.35–0.90), pembrolizumab (0.71, 0.58–0.87) and atezolizumab (0.88, 0.73–1.05). For PFS, the efficiency ranks from high to low were sugemalimab (0.33, 0.24–0.45), camrelizumab (0.37, 0.30–0.46), tislelizumab (0.53, 0.36–0.79), sintilimab (0.54, 0.42–0.69), toripalimab (0.56, 0.38–0.83), pembrolizumab (0.57, 0.47–0.70) and atezolizumab (0.71, 0.59–0.85). Proportional hazard models and non-proportional hazard models showed consistent efficiency ranks. When extrapolated to long-term survival benefit, under non-proportional hazard ratio, sugemalimab achieved the highest PFS benefit (lifeyears, LYs) in 2 years (1.323), with camrelizumab (1.320), sintilimab (1.243), tislelizumab (1.189), pembrolizumab (0.990) and atezolizumab (0.947) ranking in order; Camrelizumab achieved the highest OS benefit (LYs) in 10 years (2.723), with atezolizumab (2.445) and pembrolizumab (2.397) ranking in order. RMST model showed similar results. In terms of safety, PD-(L)1 inhibitors increased the incidence of SAEs when combined with chemotherapy, sugemalimab and camrelizumab was the safest drugs. Conclusion: Sugemalimab is superior both in HR and long-term survival benefit for Chinese patients with advanced sq-NSCLC.
Collapse
Affiliation(s)
- Mingye Zhao
- Department of Pharmacoeconomics, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Taihang Shao
- Department of Pharmacoeconomics, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Yinan Ren
- Department of Pharmacoeconomics, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Caicun Zhou
- Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- *Correspondence: Wenxi Tang, ; Caicun Zhou,
| | - Wenxi Tang
- Department of Pharmacoeconomics, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
- *Correspondence: Wenxi Tang, ; Caicun Zhou,
| |
Collapse
|
31
|
Yong J, Gröger S, von Bremen J, Meyle J, Ruf S. PD-L1, a Potential Immunomodulator Linking Immunology and Orthodontically Induced Inflammatory Root Resorption (OIIRR): Friend or Foe? Int J Mol Sci 2022; 23:ijms231911405. [PMID: 36232704 PMCID: PMC9570182 DOI: 10.3390/ijms231911405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is considered an undesired and inevitable complication induced by orthodontic forces. This inflammatory mechanism is regulated by immune cells that precede orthodontic tooth movement (OTM) and can influence the severity of OIIRR. The process of OIIRR is based on an immune response. On some occasions, the immune system attacks the dentition by inflammatory processes during orthodontic treatment. Studies on the involvement of the PD-1/PD-L1 immune checkpoint have demonstrated its role in evading immune responses, aiming to identify possible novel therapeutic approaches for periodontitis. In the field of orthodontics, the important question arises of whether PD-L1 has a role in the development of OIIRR to amplify the amount of resorption. We hypothesize that blocking of the PD-L1 immune checkpoint could be a suitable procedure to reduce the process of OIIRR during orthodontic tooth movement. This review attempts to shed light on the regulation of immune mechanisms and inflammatory responses that could influence the pathogenesis of OIIRR and to acquire knowledge about the role of PD-L1 in the immunomodulation involved in OIIRR. Possible clinical outcomes will be discussed in relation to PD-L1 expression and immunologic changes throughout the resorption process.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence: or ; Tel.: +49-641-99-46131
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
32
|
Zhou S, Zhu J, Xu J, Gu B, Zhao Q, Luo C, Gao Z, Chin YE, Cheng X. Antitumor potential of PD-L1/PD-1 post-translational modifications. Immunol Suppl 2022; 167:471-481. [PMID: 36065492 DOI: 10.1111/imm.13573] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
The immune checkpoint programmed death receptor 1 (PD-1) and programmed death ligand 1 (PD-L1) are biologically important immunosuppressive molecules, and the PD-L1/PD-1-mediated signaling pathway is currently considered one of the main mechanisms of tumor escape immune surveillance. PD-L1 is highly expressed on the cytomembrane of tumor cell and binds to PD-1 receptor of activated T cells. This interaction activates PD-L1/PD-1 downstream signal transduction, inhibiting T cells anti-tumor activity. Therefore, inhibitors of PD-L1/PD-1 activation, showing significant efficacy in some types of tumors, have been widely approved in clinical tumor therapy. Recent research on PD-L1/PD-1 signaling pathway regulation has shown post-translational modifications (PTMs) form of PD-L1 or PD-1, including glycosylation, ubiquitination, phosphorylation, and acetylation, which may play an important role in PD-L1/PD-1 signaling pathway regulation and anti-tumor function of T cells. In this review, we focused on PTMs of PD-L1/PD-1 research and potential applications in tumor immunotherapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shimeng Zhou
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P. R. China
| | - Jinfeng Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, China
| | - Jingwei Xu
- Department of Cardiothoralic Surgery, Suzhou Municipal Hospital Institution, Suzhou, P. R. China
| | - Bingzi Gu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P. R. China
| | - Qiao Zhao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P. R. China
| | - Congzhou Luo
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P. R. China
| | - Zhoufeng Gao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P. R. China
| | - Y Eugene Chin
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P. R. China
| | - Xiaju Cheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P. R. China.,State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, China
| |
Collapse
|
33
|
Method for detecting acetylated PD-L1 in cell lysates by immunoprecipitation and western blot analysis. PLoS One 2022; 17:e0268887. [PMID: 35849582 PMCID: PMC9292098 DOI: 10.1371/journal.pone.0268887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Lysine acetylation is an important regulatory post-translational modification (PTM) that occurs sub-stoichiometrically, often representing less than 1% of the target protein. This makes studying endogenous protein acetylation extremely challenging. Recent reports suggest that several post-translational modifications (PTMs), including lysine acetylation, play a major role in the regulation the programmed cell death-ligand 1 (PD-L1), a clinically important protein target. An enrichment step is necessary to enable identification of the acetylated species by either antibody or mass spectrometry-based detection methods. This report describes a robust lab protocol for the enrichment and detection of endogenous acetylated PD-L1 protein. A recently developed acetyl lysine affinity matrix was utilized to enrich >90% of acetylated PD-L1 species, from a variety of cell lines, spanning a fourteen-fold range of target protein levels. Western blot analysis, using a highly sensitive PD-L1 antibody and optimized transfer times, was used to determine that the endogenous level of acetylated PD-L1 is in the range of 0.02–0.07% of total PD-L1. As validation, we demonstrate that acetylation levels increase to 0.11–0.17% of total PD-L1 after a 4h treatment with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA). The method described here is simple to perform in any lab equipped with tissue culture and western blot equipment.
Collapse
|
34
|
Immunorthodontics: Role of HIF-1α in the Regulation of (Peptidoglycan-Induced) PD-L1 Expression in Cementoblasts under Compressive Force. Int J Mol Sci 2022; 23:ijms23136977. [PMID: 35805974 PMCID: PMC9266671 DOI: 10.3390/ijms23136977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Patients with periodontitis undergoing orthodontic therapy may suffer from undesired dental root resorption. The purpose of this in vitro study was to investigate the molecular mechanisms resulting in PD-L1 expression of cementoblasts in response to infection with Porphyromonas gingivalis (P. gingivalis) peptidoglycan (PGN) and compressive force (CF), and its interaction with hypoxia-inducible factor (HIF)-1α molecule: The cementoblast (OCCM-30) cells were kinetically infected with various concentrations of P. gingivalis PGN in the presence and absence of CF. Western blotting and RT-qPCR were performed to examine the protein expression of PD-L1 and HIF-1α as well as their gene expression. Immunofluorescence was applied to visualize the localization of these proteins within cells. An HIF-1α inhibitor was added for further investigation of necroptosis by flow cytometry analysis. Releases of soluble GAS-6 were measured by ELISA. P. gingivalis PGN dose dependently stimulated PD-L1 upregulation in cementoblasts at protein and mRNA levels. CF combined with P. gingivalis PGN had synergistic effects on the induction of PD-L1. Blockade of HIF-1α inhibited the P. gingivalis PGN-inducible PD-L1 protein expression under compression, indicating an HIF-1α dependent regulation of PD-L1 induction. Concomitantly, an HIF-1α inhibitor decreased the GAS-6 release in the presence of CF and P. gingivalis PGN co-stimulation. The data suggest that PGN of P. gingivalis participates in PD-L1 up-regulation in cementoblasts. Additionally, the influence of compressive force on P. gingivalis PGN-induced PD-L1 expression occurs in HIF-1α dependently. In this regard, HIF-1α may play roles in the immune response of cementoblasts via immune-inhibitory PD-L1. Our results underline the importance of molecular mechanisms involved in bacteria-induced periodontics and root resorption.
Collapse
|
35
|
Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther 2022; 30:529-547. [PMID: 35393571 DOI: 10.1038/s41417-022-00464-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Posttranslational modifications (PTMs) of proteins, the major mechanism of protein function regulation, play important roles in regulating a variety of cellular physiological and pathological processes. Although the classical PTMs, such as phosphorylation, acetylation, ubiquitination and methylation, have been well studied, the emergence of many new modifications, such as succinylation, hydroxybutyrylation, and lactylation, introduces a new layer to protein regulation, leaving much more to be explored and wide application prospects. In this review, we will provide a broad overview of the significant roles of PTMs in regulating human cancer hallmarks through selecting a diverse set of examples, and update the current advances in the therapeutic implications of these PTMs in human cancer.
Collapse
Affiliation(s)
- Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China. .,Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
36
|
Jafarzadeh A, Kumar S, Bodhale N, Jafarzadeh S, Nemati M, Sharifi I, Sarkar A, Saha B. The expression of PD-1 and its ligands increases in Leishmania infection and its blockade reduces the parasite burden. Cytokine 2022; 153:155839. [PMID: 35276636 DOI: 10.1016/j.cyto.2022.155839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 11/03/2022]
Abstract
The expression of programmed cell death protein-1 (PD-1) and its ligands- PD-L1 and PD-L2- on T cells and macrophages', respectively, increases in Leishmania infection. The PD-1/PD-L1 interaction induces T cell anergy, T cell apoptosis and exhaustion, diversion of T cells toward TH2 and T-reg cells but inhibits M1 macrophage activities by suppression of nitric oxide (NO) and reactive oxygen species (ROS) production. These changes exacerbate Leishmania infection. As PD-L1-deficient, but not PD-L2-deficient, mice were protected againstL. mexicanainfection, differential roles have been proposed for PD-L1 and PD-L2 in mouse models of leishmaniasis. Blockade of PD-1/PD-L1 interaction in various in vitro and Leishmania-infected mouse, hamster and dog models enhanced IFN-γ and NO production, reduced IL-10 and TGF-β generation, promoted T cell proliferation and reduced parasite burden. Therefore, PD-1/PD-L1 blockade is being considered as a potential therapeutic strategy to restore protective immunity during leishmaniasis, particularly, in drug-resistant cases.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sunil Kumar
- National Centre For Cell Science, Pune 411007, India
| | | | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, India
| | - Bhaskar Saha
- National Centre For Cell Science, Pune 411007, India; Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Trident Academy of Creative Technology, Bhubaneswar, India.
| |
Collapse
|
37
|
Liu L, Huang X, Shi F, Song J, Guo C, Yang J, Liang T, Bai X. Combination therapy for pancreatic cancer: anti-PD-(L)1-based strategy. J Exp Clin Cancer Res 2022; 41:56. [PMID: 35139879 PMCID: PMC8827285 DOI: 10.1186/s13046-022-02273-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Mortality associated with pancreatic cancer is among the highest of all malignancies, with a 5-year overall survival of 5-10%. Immunotherapy, represented by the blocking antibodies against programmed cell death protein 1 or its ligand 1 (anti-PD-(L)1), has achieved remarkable success in a number of malignancies. However, due to the immune-suppressive tumor microenvironment, the therapeutic efficacy of anti-PD-(L)1 in pancreatic cancer is far from expectation. To address such a fundamental issue, chemotherapy, radiotherapy, targeted therapy and even immunotherapy itself, have individually been attempted to combine with anti-PD-(L)1 in preclinical and clinical investigation. This review, with a particular focus on pancreatic cancer therapy, collects current anti-PD-(L)1-based combination strategy, highlights potential adverse effects of accumulative combination, and further points out future direction in optimization of combination, including targeting post-translational modification of PD-(L)1 and improving precision of treatment.
Collapse
Affiliation(s)
- Lingyue Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fukang Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
38
|
Yamaguchi H, Hsu JM, Yang WH, Hung MC. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat Rev Clin Oncol 2022; 19:287-305. [DOI: 10.1038/s41571-022-00601-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
|
39
|
The modulation of PD-L1 induced by the oncogenic HBXIP for breast cancer growth. Acta Pharmacol Sin 2022; 43:429-445. [PMID: 33824459 PMCID: PMC8791967 DOI: 10.1038/s41401-021-00631-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 02/03/2023]
Abstract
Programmed death ligand-1 (PD-L1)/PD-1 checkpoint extensively serves as a central mediator of immunosuppression. A tumor-promoting role for abundant PD-L1 in several cancers is revealed. However, the importance of PD-L1 and how the PD-L1 expression is controlled in breast cancer remains obscure. Here, the mechanisms of controlling PD-L1 at the transcription and protein acetylation levels in promoting breast cancer growth are presented. Overexpressed PD-L1 accelerates breast cancer growth in vitro and in vivo. RNA-seq uncovers that PD-L1 can induce some target genes affecting many cellular processes, especially cancer development. In clinical breast cancer tissues and cells, PD-L1 and HBXIP are both increased, and their expressions are positively correlated. Mechanistic exploration identifies that HBXIP stimulates the transcription of PD-L1 through co-activating ETS2. Specifically, HBXIP induces PD-L1 acetylation at K270 site through interacting with acetyltransferase p300, leading to the stability of PD-L1 protein. Functionally, depletion of HBXIP attenuates PD-L1-accelerated breast tumor growth. Aspirin alleviates breast cancer via targeting PD-L1 and HBXIP. Collectively, the findings display new light into the mechanisms of controlling tumor PD-L1 and broaden the utility for PD-L1 as a target in breast cancer therapy.
Collapse
|
40
|
Parihar N, Bhatt LK. Deubiquitylating enzymes: potential target in autoimmune diseases. Inflammopharmacology 2021; 29:1683-1699. [PMID: 34792672 DOI: 10.1007/s10787-021-00890-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
The ubiquitin-proteasome pathway is responsible for the turnover of different cellular proteins, such as transport proteins, presentation of antigens to the immune system, control of the cell cycle, and activities that promote cancer. The enzymes which remove ubiquitin, deubiquitylating enzymes (DUBs), play a critical role in central and peripheral immune tolerance to prevent the development of autoimmune diseases and thus present a potential therapeutic target for the treatment of autoimmune diseases. DUBs function by removing ubiquitin(s) from target protein and block ubiquitin chain elongation. The addition and removal of ubiquitin molecules have a significant impact on immune responses. DUBs and E3 ligases both specifically cleave target protein and modulate protein activity and expression. The balance between ubiquitylation and deubiquitylation modulates protein levels and also protein interactions. Dysregulation of the ubiquitin-proteasome pathway results in the development of various autoimmune diseases such as inflammatory bowel diseases (IBD), psoriasis, multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This review summarizes the current understanding of ubiquitination in autoimmune diseases and focuses on various DUBs responsible for the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
41
|
Yu X, Li W, Young KH, Li Y. Posttranslational Modifications in PD-L1 Turnover and Function: From Cradle to Grave. Biomedicines 2021; 9:1702. [PMID: 34829931 PMCID: PMC8615371 DOI: 10.3390/biomedicines9111702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is one of the most classic immune checkpoint molecules. Cancer cells express PD-L1 to inhibit the activity of effector T cells' cytotoxicity through programmed death 1 (PD-1) engagement in exposure to inflammatory cytokines. PD-L1 expression levels on cancer cells might affect the clinical response to anti-PD-1/PD-L1 therapies. Hence, understanding molecular mechanisms for regulating PD-L1 expression is essential for improving the clinical response rate and efficacy of PD-1/PD-L1 blockade. Posttranslational modifications (PTMs), including phosphorylation, glycosylation, ubiquitination, and acetylation, regulate PD-L1 stability, cellular translocation, and interaction with its receptor. A coordinated positive and negative regulation via PTMs is required to ensure the balance and function of the PD-L1 protein. In this review, we primarily focus on the roles of PTMs in PD-L1 expression, trafficking, and antitumor immune response. We also discuss the implication of PTMs in anti-PD-1/PD-L1 therapies.
Collapse
Affiliation(s)
- Xinfang Yu
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (X.Y.); (W.L.)
| | - Wei Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (X.Y.); (W.L.)
| | - Ken H. Young
- Hematopathology Division, Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (X.Y.); (W.L.)
| |
Collapse
|
42
|
Wudtiwai B, Makeudom A, Krisanaprakornkit S, Pothacharoen P, Kongtawelert P. Anticancer Activities of Hesperidin via Suppression of Up-Regulated Programmed Death-Ligand 1 Expression in Oral Cancer Cells. Molecules 2021; 26:molecules26175345. [PMID: 34500779 PMCID: PMC8434411 DOI: 10.3390/molecules26175345] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Up-regulated expression of programmed death-ligand 1 (PD-L1) by interferon-gamma (IFN-γ) has been associated with promotion of cancer cell survival and tumor cell escape from anti-tumor immunity. Therefore, a blockade of PD-L1 expression can potentially be used as a molecular target for cancer therapy. The aim of this study was to investigate whether suppression of IFN-γ induced PD-L1 expression in two oral cancer cell lines, HN6 and HN15, by hesperidin effectively decreased cell proliferation and migration. Further, our objective was to elucidate the involvement of the signal transducer and activator of transcription 1 (STAT1) and STAT3 in the inhibition of induced PD-L1 expression by hesperidin. Our findings indicate that IFN-γ induced expression of PD-L1 protein in HN6 and HN15 via phosphorylation of STAT1 and STAT3 and that hesperidin significantly reduced that induction through suppression of phosphorylated STAT1 and STAT3 in both cell lines. Moreover, hesperidin also significantly decreased the viability, proliferation, migration, and invasion of both cell lines. In conclusion, hesperidin exerted anticancer effects against oral cancer cells through the suppression of PD-L1 expression via inactivation of the STAT1 and STAT3 signaling molecules. The findings of this study support the use of hesperidin as a potential adjunctive treatment for oral cancer.
Collapse
Affiliation(s)
- Benjawan Wudtiwai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (B.W.); (P.P.)
| | - Anupong Makeudom
- Center of Excellence in Oral and Maxillofacial Biology, Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (S.K.)
- School of Dentistry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Suttichai Krisanaprakornkit
- Center of Excellence in Oral and Maxillofacial Biology, Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (A.M.); (S.K.)
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (B.W.); (P.P.)
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (B.W.); (P.P.)
- Correspondence:
| |
Collapse
|
43
|
Hu X, Lin Z, Wang Z, Zhou Q. Emerging role of PD-L1 modification in cancer immunotherapy. Am J Cancer Res 2021; 11:3832-3840. [PMID: 34522452 PMCID: PMC8414388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023] Open
Abstract
Accumulating evidence demonstrates that the expression levels of programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) are regulated at the various levels, including transcription, post-transcriptional modification and post-translational modifications (PTMs). The PTMs of PD-1/PD-L1 contain phosphorylation, ubiquitination, methylation, glycosylation and palmitoylation. Recently, PD-L1 was reported to be acetylated at Lys263 site by p300 and was deacetylated by histone deacetylase 2 (HDAC2). Acetylation of PD-L1 prevented its translocation to the nucleus and led to a reduction of the nuclear portion of PD-L1, resulting in evading immune surveillance of tumor cells. In this review article, we briefly describe the PTMs of PD-1/PD-L1 and mainly summarize the novel findings of PD-L1 acetylation in tumor cells. Moreover, we discuss the associations of PD-L1 acetylation and ubiquitination, phosphorylation and methylation. Furthermore, we highlight that targeting acetylation of PD-L1 by HDAC inhibitors might be useful for enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| | - Zixia Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| | - Zhiwei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| | - Qiangyong Zhou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| |
Collapse
|
44
|
Signore M, Alfonsi R, Federici G, Nanni S, Addario A, Bertuccini L, Aiello A, Di Pace AL, Sperduti I, Muto G, Giacobbe A, Collura D, Brunetto L, Simone G, Costantini M, Crinò L, Rossi S, Tabolacci C, Diociaiuti M, Merlino T, Gallucci M, Sentinelli S, Papalia R, De Maria R, Bonci D. Diagnostic and prognostic potential of the proteomic profiling of serum-derived extracellular vesicles in prostate cancer. Cell Death Dis 2021; 12:636. [PMID: 34155195 PMCID: PMC8215487 DOI: 10.1038/s41419-021-03909-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) and their cargo represent an intriguing source of cancer biomarkers for developing robust and sensitive molecular tests by liquid biopsy. Prostate cancer (PCa) is still one of the most frequent and deadly tumor in men and analysis of EVs from biological fluids of PCa patients has proven the feasibility and the unprecedented potential of such an approach. Here, we exploited an antibody-based proteomic technology, i.e. the Reverse-Phase Protein microArrays (RPPA), to measure key antigens and activated signaling in EVs isolated from sera of PCa patients. Notably, we found tumor-specific protein profiles associated with clinical settings as well as candidate markers for EV-based tumor diagnosis. Among others, PD-L1, ERG, Integrin-β5, Survivin, TGF-β, phosphorylated-TSC2 as well as partners of the MAP-kinase and mTOR pathways emerged as differentially expressed endpoints in tumor-derived EVs. In addition, the retrospective analysis of EVs from a 15-year follow-up cohort generated a protein signature with prognostic significance. Our results confirm that serum-derived EV cargo may be exploited to improve the current diagnostic procedures while providing potential prognostic and predictive information. The approach proposed here has been already applied to tumor entities other than PCa, thus proving its value in translational medicine and paving the way to innovative, clinically meaningful tools.
Collapse
Affiliation(s)
- Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Romina Alfonsi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Simona Nanni
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonio Addario
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Bertuccini
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Aurora Aiello
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy
| | - Anna Laura Di Pace
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giovanni Muto
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Alessandro Giacobbe
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Devis Collura
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Lidia Brunetto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Simone
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Manuela Costantini
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Lucio Crinò
- Department of Oncology, IRST-Meldola, Meldola, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Diociaiuti
- Department of Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Tania Merlino
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Gallucci
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy.,Department of Urology, Sapienza University of Rome, Rome, Italy
| | | | | | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Désirée Bonci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy. .,IRCCS, Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
45
|
Liu J, Cheng Y, Zheng M, Yuan B, Wang Z, Li X, Yin J, Ye M, Song Y. Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduct Target Ther 2021; 6:28. [PMID: 33479196 PMCID: PMC7819986 DOI: 10.1038/s41392-020-00418-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
The immune system initiates robust immune responses to defend against invading pathogens or tumor cells and protect the body from damage, thus acting as a fortress of the body. However, excessive responses cause detrimental effects, such as inflammation and autoimmune diseases. To balance the immune responses and maintain immune homeostasis, there are immune checkpoints to terminate overwhelmed immune responses. Pathogens and tumor cells can also exploit immune checkpoint pathways to suppress immune responses, thus escaping immune surveillance. As a consequence, therapeutic antibodies that target immune checkpoints have made great breakthroughs, in particular for cancer treatment. While the overall efficacy of immune checkpoint blockade (ICB) is unsatisfactory since only a small group of patients benefited from ICB treatment. Hence, there is a strong need to search for other targets that improve the efficacy of ICB. Ubiquitination is a highly conserved process which participates in numerous biological activities, including innate and adaptive immunity. A growing body of evidence emphasizes the importance of ubiquitination and its reverse process, deubiquitination, on the regulation of immune responses, providing the rational of simultaneous targeting of immune checkpoints and ubiquitination/deubiquitination pathways to enhance the therapeutic efficacy. Our review will summarize the latest findings of ubiquitination/deubiquitination pathways for anti-tumor immunity, and discuss therapeutic significance of targeting ubiquitination/deubiquitination pathways in the future of immunotherapy.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
| | - Yicheng Cheng
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Ming Zheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu, China
| | - Bingxiao Yuan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, 210002, Nanjing, Jiangsu, China
| | - Zimu Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
| | - Xinying Li
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China
| | - Jie Yin
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China.
| | - Mingxiang Ye
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 210002, Nanjing, China.
| |
Collapse
|
46
|
Costa F, Marchica V, Storti P, Malavasi F, Giuliani N. PD-L1/PD-1 Axis in Multiple Myeloma Microenvironment and a Possible Link with CD38-Mediated Immune-Suppression. Cancers (Basel) 2021; 13:E164. [PMID: 33418913 PMCID: PMC7825118 DOI: 10.3390/cancers13020164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 12/20/2022] Open
Abstract
The emerging role of the PD-1/PD-L1 axis in MM immune-microenvironment has been highlighted by several studies. However, discordant data have been reported on PD-1/PD-L1 distribution within the bone marrow (BM) microenvironment of patients with monoclonal gammopathies. In addition, the efficacy of PD-1/PD-L1 blockade as a therapeutic strategy to reverse myeloma immune suppression and inhibit myeloma cell survival still remains unknown. Recent data suggest that, among the potential mechanisms behind the lack of responsiveness or resistance to anti-PD-L1/PD-1 antibodies, the CD38 metabolic pathways involving the immune-suppressive factor, adenosine, could play an important role. This review summarizes the available data on PD-1/PD-L1 expression in patients with MM, reporting the main mechanisms of regulation of PD-1/PD-L1 axis. The possible link between the CD38 and PD-1/PD-L1 pathways is also reported, highlighting the rationale for the potential use of a combined therapeutic approach with CD38 blocking agents and anti-PD-1/PD-L1 antibodies in order to improve their anti-tumoral effect in MM patients.
Collapse
Affiliation(s)
- Federica Costa
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (V.M.); (P.S.)
| | - Valentina Marchica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (V.M.); (P.S.)
| | - Paola Storti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (V.M.); (P.S.)
| | - Fabio Malavasi
- Department of Medical Science, University of Turin and Fondazione Ricerca Molinette, 10123 Turin, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.C.); (V.M.); (P.S.)
- Hematology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy
| |
Collapse
|
47
|
Lamberti G, Sisi M, Andrini E, Palladini A, Giunchi F, Lollini PL, Ardizzoni A, Gelsomino F. The Mechanisms of PD-L1 Regulation in Non-Small-Cell Lung Cancer (NSCLC): Which Are the Involved Players? Cancers (Basel) 2020; 12:E3129. [PMID: 33114576 PMCID: PMC7692442 DOI: 10.3390/cancers12113129] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Treatment with inhibition of programmed cell death 1 (PD-1) or its ligand (PD-L1) improves survival in advanced non-small-cell lung cancer (NSCLC). Nevertheless, only a subset of patients benefit from treatment and biomarkers of response to immunotherapy are lacking. Expression of PD-L1 on tumor cells is the primary clinically-available predictive factor of response to immune checkpoint inhibitors, and its relevance in cancer immunotherapy has fostered several studies to better characterize the mechanisms that regulate PD-L1 expression. However, the factors associated with PD-L1 expression are still not well understood. Genomic alterations that activate KRAS, EGFR, and ALK, as well as the loss of PTEN, have been associated with increased PD-L1 expression. In addition, PD-L1 expression is reported to be increased by amplification of CD274, and decreased by STK11 deficiency. Furthermore, PD-L1 expression can be modulated by either tumor extrinsic or intrinsic factors. Among extrinsic factors, the most prominent one is interferon-γ release by immune cells, while there are several tumor intrinsic factors such as activation of the mechanistic target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and Myc pathways that can increase PD-L1 expression. A deeper understanding of PD-L1 expression regulation is crucial for improving strategies that exploit inhibition of this immune checkpoint in the clinic, especially in NSCLC where it is central in the therapeutic algorithm. We reviewed current preclinical and clinical data about PD-L1 expression regulation in NSCLC.
Collapse
Affiliation(s)
- Giuseppe Lamberti
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.L.); (M.S.); (E.A.); (A.A.)
| | - Monia Sisi
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.L.); (M.S.); (E.A.); (A.A.)
| | - Elisa Andrini
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.L.); (M.S.); (E.A.); (A.A.)
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, viale Filopanti 22, 40126 Bologna, Italy; (A.P.); (P.-L.L.)
| | - Francesca Giunchi
- Laboratory of Oncologic Molecular Pathology, S.Orsola-Malpighi Teaching Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, viale Filopanti 22, 40126 Bologna, Italy; (A.P.); (P.-L.L.)
| | - Andrea Ardizzoni
- Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola-Malpighi University Hospital, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.L.); (M.S.); (E.A.); (A.A.)
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni—15, 40138 Bologna, Italy
| | - Francesco Gelsomino
- Oncologia Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni—15, 40138 Bologna, Italy
| |
Collapse
|
48
|
Meng F, Su Y, Xu B. Rho-associated protein kinase-dependent moesin phosphorylation is required for PD-L1 stabilization in breast cancer. Mol Oncol 2020; 14:2701-2712. [PMID: 32941674 PMCID: PMC7607174 DOI: 10.1002/1878-0261.12804] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 01/12/2023] Open
Abstract
Expression of programmed cell death ligand (PD-L1) is associated with poor prognosis in breast cancer. Understanding the regulation of PD-L1 expression in breast cancer could provide a new strategy for breast cancer treatment. Here, we demonstrate that moesin (MSN) phosphorylation by Rho-associated protein kinase (ROCK) stabilizes PD-L1 protein levels. Our results indicate that phosphorylated MSN may compete with the E3 ubiquitin ligase SPOP for binding PD-L1. ROCK inhibition via the Y-27632 inhibitor or MSN silencing decreased PD-L1 expression, resulting in T-cell activation both in vitro and in vivo. Administration of Y-27632 into immunocompetent Balb/c mice bearing breast tumors suppressed tumor progression and enhanced CD4+ and CD8+ T-cell infiltration. RNA-seq analysis of Y-27632-treated mouse tumors revealed that ROCK inhibition upregulated several immune response genes. However, the combination of Y-27632 and an anti-PD-1 antibody did not show additive or synergistic effects due to reduced PD-L1 in the presence of Y-27632. Our study unravels a previously unappreciated mechanism of PD-L1 regulation through the ROCK-MSN pathway. Moreover, we found that ROCK inhibitors could be combined with breast cancer immunotherapy.
Collapse
Affiliation(s)
- Fanbiao Meng
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yang Su
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Center for Intelligent Oncology, Chongqing University Cancer Hospital, Chongqing University School of Medicine, Chongqing, China
| |
Collapse
|
49
|
Regulation of CD47 expression in cancer cells. Transl Oncol 2020; 13:100862. [PMID: 32920329 PMCID: PMC7494507 DOI: 10.1016/j.tranon.2020.100862] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
CD47 is overexpressed in various types of cancers and it can directly bind with SIRPα, which is mainly located on macrophages. The binding of CD47-SIRPα transmits a “don't eat me” signal, which can prevent cancer cells from immune clearance. Targeting the phagocytosis checkpoint of CD47-SIRPα axis has shown remarkable anticancer effect in preclinical and clinical research, which indicates the potential application of CD47-SIRPα blockade for cancer treatment. In this case, the comprehensive description of the regulation of CD47 in different types of cancer cells has significant implications for furthering our understanding of the role of CD47 in cancer. Based on the current reports, we summarized the regulatory factors, i.e., cytokines, oncogenes, microRNAs as well as enzymes, of CD47 expression in cancer cells. Accordingly, we also proposed several points needing further research, hoping to provide useful insights for the future investigation on the regulation of CD47 in cancers. Cytokines, oncogenes, microRNAs and enzymes regulate CD47 expression in cancer. CD47 expression could be regulated at the transcriptional, post-transcriptional and post-translational modification level. Further studies are required to determine other factors that regulate CD47 expression.
Collapse
|
50
|
Gao Y, Nihira NT, Bu X, Chu C, Zhang J, Kolodziejczyk A, Fan Y, Chan NT, Ma L, Liu J, Wang D, Dai X, Liu H, Ono M, Nakanishi A, Inuzuka H, North BJ, Huang YH, Sharma S, Geng Y, Xu W, Liu XS, Li L, Miki Y, Sicinski P, Freeman GJ, Wei W. Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat Cell Biol 2020; 22:1064-1075. [PMID: 32839551 PMCID: PMC7484128 DOI: 10.1038/s41556-020-0562-4] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
Immunotherapies that target programmed cell death protein 1 (PD-1) and its ligand PD-L1 as well as cytotoxic T-lymphocyte-associated protein 4 (CTLA4) have shown impressive clinical outcomes for multiple tumours. However, only a subset of patients achieves durable responses, suggesting that the mechanisms of the immune checkpoint pathways are not completely understood. Here, we report that PD-L1 translocates from the plasma membrane into the nucleus through interactions with components of the endocytosis and nucleocytoplasmic transport pathways, regulated by p300-mediated acetylation and HDAC2-dependent deacetylation of PD-L1. Moreover, PD-L1 deficiency leads to compromised expression of multiple immune-response-related genes. Genetically or pharmacologically modulating PD-L1 acetylation blocks its nuclear translocation, reprograms the expression of immune-response-related genes and, as a consequence, enhances the anti-tumour response to PD-1 blockade. Thus, our results reveal an acetylation-dependent regulation of PD-L1 nuclear localization that governs immune-response gene expression, and thereby advocate targeting PD-L1 translocation to enhance the efficacy of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Naoe Taira Nihira
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aleksandra Kolodziejczyk
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yizeng Fan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ngai Ting Chan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Leina Ma
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dong Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xiaoming Dai
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi' an, China
| | - Masaya Ono
- Department of Clinical Proteomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Nakanishi
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yu-Han Huang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Samanta Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yan Geng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|