1
|
Liu Y, Peng S, Wu X, Liu Z, Lian Z, Fan H, Kuang N, Gu X, Yang S, Hu Y, Jiang X, Zhang Y, Cheng W, Feng J, Sahakian BJ, Zhao X, Robbins TW, Becker B, Zhang J. Neural, cognitive and psychopathological signatures of a prosocial or delinquent peer environment during early adolescence. Dev Cogn Neurosci 2025; 73:101566. [PMID: 40359598 DOI: 10.1016/j.dcn.2025.101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
Adolescence is a critical period for brain development, yet the impact of peer environments on brain structure, cognition, and psychopathology remains poorly understood. Here, we capitalized on data from 7806 adolescents (age = 12.02 ± 0.67) from the Adolescent Brain Cognitive Development (ABCD) study, to determine associations between two distinct peer environments (proportion of prosocial or delinquent friends) and the structural and functional architecture of the brain, cognition, as well as behavioral and emotional dysregulation. A higher proportion of prosocial friends was associated with fewer behavioral problems and larger fronto-cingulate and striatal regions. In contrast, a higher proportion of delinquent friends was linked to increased behavioral problems, lower neurocognitive performance, and decreased functional connectivity in the default-mode and fronto-striato-limbic circuits, which spatially overlapped with external dopamine density maps. Moreover, the associations between prosocial friends and behaviors were mediated by brain volumes (e.g., pallidum), while the associations between delinquent friends and behaviors were primarily mediated by fronto-striato-limbic connectivity. Prosocial friends also attenuated the development of internalizing problems, whereas delinquent friends promoted externalizing symptoms. These findings underscore the profound influence of peer environments on adolescent brain development and mental health, highlighting the need for early interventions to promote resilience and healthy neuro-maturation.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Songjun Peng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Zhaowen Liu
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zhengxu Lian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Huaxin Fan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Nanyu Kuang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Xinrui Gu
- Sino-European School of Technology, Shanghai University, Shanghai, China
| | - Senyou Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Yechen Hu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Xi Jiang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yufeng Zhang
- Chinese language and literature, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Barbara J Sahakian
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Xingming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Department of Psychology, The University of Hong Kong, Hong Kong.
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| |
Collapse
|
2
|
Mekelburg A, Maliske L, Kirby J, Kanske P, Förster K. Functional neural plasticity after compassion-based interventions: A scoping review of longitudinal neuroimaging studies. J Affect Disord 2025:S0165-0327(25)00763-3. [PMID: 40334852 DOI: 10.1016/j.jad.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 04/13/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Compassion-based interventions (CBIs) have been suggested as an add-on treatment to cognitive therapy in patients struggling to experience positive affect, for instance, patients with major depressive disorder. Identifying neural changes during CBIs could reveal action mechanisms beneficial for their treatment. We therefore summarize evidence regarding the neural changes after CBIs in longitudinal functional magnetic resonance imaging studies. METHODS According to PRISMA guidelines, the literature was screened via Web of Science Core Collection in December 2022. Twelve studies were checked for eligibility following PICOS criteria: longitudinal task-based fMRI-studies investigating neural changes associated with CBIs. We included eight studies with three studies reporting overlapping populations, yielding N = 441 participants (n(CBI) = 283, n(control) = 158), double sampling excluded. RESULTS CBIs were convergently associated with increased activity in prefrontal and mesolimbic brain regions and altered posterior parietal and occipital activity across included studies. Additional to these concordant findings, individual studies found increased fronto-striatal connectivity, and functional alterations in other brain regions such as temporal cortex, cerebellum or insula. CONCLUSIONS Our review points to interesting action mechanisms of CBIs corroborating previous cross-sectional evidence from fMRI studies. Increased mesolimbic activity and fronto-striatal connectivity imply upregulation of positive affect and reward-experience as putative mechanism of action, while occipital functional changes could suggest improved visual engagement in distressful stimuli. Alterations in prefronto-parietal activity indicate attention and cognitive control changes after CBIs. Hence, our review suggests a tentative neurobiological synthesis of evidence for the efficacy of CBIs in augmenting positive affect, thereby preliminarily underpinning its proposed potential as adjunctive psychotherapeutic treatment.
Collapse
Affiliation(s)
- Annelie Mekelburg
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Lara Maliske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - James Kirby
- Compassionate Mind Research Group, School of Psychology, University of Queensland, Brisbane, Queensland, Australia.
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Katharina Förster
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Wang T, Xue Y, Mohamed ZA, Jia F. Developmental functional brain network abnormalities in autism spectrum disorder comorbid with attention deficit hyperactivity disorder. Eur J Pediatr 2025; 184:166. [PMID: 39888443 DOI: 10.1007/s00431-025-05989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) often co-occur. Developmental stages significantly influence the variations in brain alterations. However, whether ASD comorbid with ADHD (ASD + ADHD) represents a unique neural characteristic from ASD without comorbid ADHD (ASD-alone), or instead manifests a shared neural correlate associated with ASD across diverse age cohorts remain unclear. This study examined topological properties and functional connectivity (FC) patterns through resting-state functional magnetic resonance imaging data from the Autism Brain Imaging Data Exchange II. Participants were divided into two age cohorts: childhood (under 12 years) and adolescence (12-18 years), consisting of 171 ASD pediatric patients and 111 typically developing (TD) controls. These cohorts were further classified into subgroups of ASD + ADHD, ASD-alone, and TD controls to compare across the age categories. The age, intelligence quotient, and gender of participants across three groups were matched within childhood and adolescence stages. We constructed functional brain networks, conducted graph-theory analysis, and analysed FC for both age cohorts. The findings revealed that both ASD + ADHD and ASD-alone shared some FC dysfunctions in the Default Mode Network (DMN) and atypical global metrics. Additionally, each group demonstrated unique neural FC and topological profiles that evolved with development. CONCLUSIONS This study highlights the neural profiles of ASD + ADHD from a developmental perspective and suggests age-considerate approaches in clinical treatments. WHAT IS KNOWN • ASD + ADHD shared some neural correlate associated with ASD-alone and also had specific neurobiological mechanisms which were different from ASD-alone. • Developmental stages significantly influence the variations in brain alterations observed in ASD or ADHD. WHAT IS NEW • Both ASD + ADHD and ASD-alone shared some FC dysfunctions in the Default Mode Network and atypical global metrics. • ASD + ADHD and ASD-alone demonstrated unique neural FC and topological profiles that evolved with development.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Developmental and Behavioral Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Yang Xue
- Department of Developmental and Behavioral Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Zakaria Ahmed Mohamed
- Department of Developmental and Behavioral Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, China
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Jilin University, Changchun, China.
- The Child Health Clinical Research Center of Jilin Province, Changchun, China.
| |
Collapse
|
4
|
Wack DS, Schweser F, Wack AS, Muldoon SF, Slavakis K, McGranor C, Kelly E, Miletich RS, McNerney K. Speech in noise listening correlates identified in resting state and DTI MRI images. BRAIN AND LANGUAGE 2025; 260:105503. [PMID: 39667096 DOI: 10.1016/j.bandl.2024.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/09/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
This study presents an examination of the neural connectivity associated with processing speech in noisy environments, an ability that declines with age. We correlated subjects' speech-in-noise (SIN) ability with resting-state MRI scans and Fractional Anisotropy (FA) values from the auditory section of the corpus callosum, both with and without correcting for age. The results revealed that subjects who performed poorly on the right ear SIN test (QuickSIN, MedRx) had higher correlations between the primary auditory cortex and regions of the brain that process language. Subjects who performed well on the QuickSIN test had stronger correlations bilaterally between the primary auditory cortices, however, this finding was due to age. Likewise, FA values seem best explained by age not SIN. The Ig2 region of the insula showed significant correlation with right ear SIN when correcting for age.
Collapse
Affiliation(s)
- David S Wack
- Dept. of Nuclear Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Dept. of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Audrey S Wack
- The Boston University School of Medicine, Boston, MA, USA
| | - Sarah F Muldoon
- Dept. of Mathematics, University at Buffalo, The State University of New York, Buffalo, NY, USA; Institute for Artificial Intelligence and Data Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Neuroscience Program, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Konstantinos Slavakis
- Dept. of Information and Communications Engineering, Institute of Science, Tokyo, Japan
| | - Cheryl McGranor
- Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Erin Kelly
- Canon Medical Systems, USA, Tustin, CA, USA
| | - Robert S Miletich
- Dept. of Nuclear Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Kathleen McNerney
- Dept. of Speech-Language Pathology, SUNY Buffalo State, Buffalo, NY, USA
| |
Collapse
|
5
|
Archer C, Jeong HJ, Reimann GE, Durham EL, Moore TM, Wang S, Ashar DA, Kaczkurkin AN. Concurrent and longitudinal neurostructural correlates of irritability in children. Neuropsychopharmacology 2024; 49:2069-2076. [PMID: 39154134 PMCID: PMC11480493 DOI: 10.1038/s41386-024-01966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Irritability, or an increased proneness to frustration and anger, is common in youth; however, few studies have examined neurostructural correlates of irritability in children. The purpose of the current study was to examine concurrent and longitudinal associations between brain structure and irritability in a large sample of 9-10-year-old children. Participants included 10,647 children from the Adolescent Brain Cognitive Developmentsm Study (ABCD Study®). We related a latent irritability factor to gray matter volume, cortical thickness, and surface area in 68 cortical regions and to gray matter volume in 19 subcortical regions using structural equation modeling. Multiple comparisons were adjusted for using the false discovery rate (FDR). After controlling for age, sex, race/ethnicity, scanner model, parent's highest level of education, medication use, and total intracranial volume, irritability was associated with smaller volumes in primarily temporal and parietal regions at baseline. Longitudinal analyses showed that baseline gray matter volume did not predict irritability symptoms at the 3rd-year follow-up. No significant associations were found for cortical thickness or surface area. The current study demonstrates inverse associations between irritability and volume in regions implicated in emotional processing/social cognition, attention allocation, and movement/perception. We advance prior research by demonstrating that neurostructural differences associated with irritability are already apparent by age 9-10 years, extending this work to children and supporting theories positing socioemotional deficits as a key feature of irritability.
Collapse
Affiliation(s)
- Camille Archer
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Hee Jung Jeong
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | | | | | - Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuti Wang
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Devisi A Ashar
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
6
|
Cotton K, Blumen HM, Ayers E, Adhikari D, Sigamani A, Pradeep Kumar VG, Verghese J. Correlates and Brain Substrates of Happiness in Community-Dwelling Older Adults in India. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae174. [PMID: 39387833 PMCID: PMC11561394 DOI: 10.1093/geronb/gbae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVES Happiness has been shown to influence many health-related outcomes in older adults. Identifying correlates and brain substrates of happiness across countries and cultures is an important goal, as the global older adult population continues to increase. METHODS We used univariate and multiple regression to examine associations between happiness and several demographic, health, and lifestyle variables in 665 older adults (39% female) from Kerala, India. We also used Bayesian regression to examine associations between cortical thickness and happiness in a subsample of 188 participants that completed MRI scanning. RESULTS Happiness was significantly associated with several variables. In our multiple regression model, which included all significant univariate predictors, self-rated health, depression, anxiety, apathy, social network size, social network diversity, and social support significantly predicted happiness. Demographic indicators (age, sex, education, marital status, residence, and employment status/type), cognitive impairment, comorbidities, and leisure activities were not significantly associated with happiness in the multiple regression model. Cortical thickness in several brain regions was positively associated with happiness scores, including frontal, temporal, parietal, occipital, and cingulate regions. DISCUSSION Understanding the key correlates is critical for identifying both modifiable factors that can be targeted in well-being interventions and fixed characteristics that identify those at-risk for reduced happiness. The widespread pattern of brain regions associated with happiness is consistent with the multifactorial nature of happiness and, given that the regions identified do not overlap with those vulnerable to cortical thinning, can help explain why subjective well-being, unlike other cognitive functions, is largely resistant to age-related decline.
Collapse
Affiliation(s)
- Kelly Cotton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Helena M Blumen
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Emmeline Ayers
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dristi Adhikari
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alben Sigamani
- Carmel Research Consultancy Pvt. Ltd, Bengaluru, Karnataka, India
| | | | - Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
7
|
Grigorenko EL. The extraordinary "ordinary magic" of resilience. Dev Psychopathol 2024; 36:2481-2498. [PMID: 39363871 DOI: 10.1017/s0954579424000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this essay, I will briefly sample different instances of the utilization of the concept of resilience, attempting to complement a comprehensive representation of the field in the special issue of Development and Psychopathology inspired by the 42nd Minnesota Symposium on Child Psychology, hosted by the Institute of Child Development at the University of Minnesota and held in October of 2022. Having established the general context of the field, I will zoom in on some of its features, which I consider "low-hanging fruit" and which can be harvested in a systematic way to advance the study of resilience in the context of the future of developmental psychopathology.
Collapse
|
8
|
Williams KA, Numssen O, Guerra JD, Kopal J, Bzdok D, Hartwigsen G. Inhibition of the inferior parietal lobe triggers state-dependent network adaptations. Heliyon 2024; 10:e39735. [PMID: 39559231 PMCID: PMC11570486 DOI: 10.1016/j.heliyon.2024.e39735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
The human brain comprises large-scale networks that flexibly interact to support diverse cognitive functions and adapt to variability in daily life. The inferior parietal lobe (IPL) is a hub of multiple brain networks that sustain various cognitive domains. It remains unclear how networks respond to acute regional perturbations to maintain normal function. To provoke network-level adaptive responses to local inhibition, we combined offline transcranial magnetic stimulation (TMS) over left or right IPL with neuroimaging during attention, semantic and social cognition tasks, and rest. Across tasks, TMS specifically affected task-active network activity with inhibition and facilitation. Network interaction responses differed between rest and tasks. After TMS over both IPL regions, large-scale network interactions were exclusively facilitated at rest, but mainly inhibited during tasks. Overall, responses to TMS primarily occurred in and between domain-general default mode and frontoparietal subnetworks. These findings elucidate short-term adaptive plasticity in response to network node inhibition.
Collapse
Affiliation(s)
- Kathleen A. Williams
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany
| | - Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Methods and Development Group “Brain Networks”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Juan David Guerra
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada
| | - Jakub Kopal
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Danilo Bzdok
- The Neuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany
| |
Collapse
|
9
|
Gastaldon S, Busan P, Molinaro N, Lizarazu M. Cortical Tracking of Speech Is Reduced in Adults Who Stutter When Listening for Speaking. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:4339-4357. [PMID: 39437265 DOI: 10.1044/2024_jslhr-24-00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
PURPOSE The purpose of this study was to investigate cortical tracking of speech (CTS) in adults who stutter (AWS) compared to typically fluent adults (TFAs) to test the involvement of the speech-motor network in tracking rhythmic speech information. METHOD Participants' electroencephalogram was recorded while they simply listened to sentences (listening only) or completed them by naming a picture (listening for speaking), thus manipulating the upcoming involvement of speech production. We analyzed speech-brain coherence and brain connectivity during listening. RESULTS During the listening-for-speaking task, AWS exhibited reduced CTS in the 3- to 5-Hz range (theta), corresponding to the syllabic rhythm. The effect was localized in the left inferior parietal and right pre/supplementary motor regions. Connectivity analyses revealed that TFAs had stronger information transfer in the theta range in both tasks in fronto-temporo-parietal regions. When considering the whole sample of participants, increased connectivity from the right superior temporal cortex to the left sensorimotor cortex was correlated with faster naming times in the listening-for-speaking task. CONCLUSIONS Atypical speech-motor functioning in stuttering impacts speech perception, especially in situations requiring articulatory alertness. The involvement of frontal and (pre)motor regions in CTS in TFAs is highlighted. Further investigation is needed into speech perception in individuals with speech-motor deficits, especially when smooth transitioning between listening and speaking is required, such as in real-life conversational settings. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.27234885.
Collapse
Affiliation(s)
- Simone Gastaldon
- Department of Developmental and Social Psychology, University of Padua, Italy
- Padova Neuroscience Center, University of Padua, Italy
| | - Pierpaolo Busan
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | - Nicola Molinaro
- Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Mikel Lizarazu
- Basque Center on Cognition, Brain and Language, Donostia-San Sebastián, Spain
| |
Collapse
|
10
|
Yang Y, Wang C, Shi J, Zou Z. Joyful growth vs. compulsive hedonism: A meta-analysis of brain activation on romantic love and addictive disorders. Neuropsychologia 2024; 204:109003. [PMID: 39293637 DOI: 10.1016/j.neuropsychologia.2024.109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Due to the similarities in behavioral characteristics between romantic love and addictive disorders, the concept of being "addicted to someone" transcends mere literary metaphor, expanding perspectives on the study of romantic love and inspiring interventions for addiction. However, there has been a lack of studies systematically exploring the similarities and differences between romantic love and addiction at the neural level. In this study, we conducted an extensive literature search, incorporating 21 studies on romantic love and 28 on addictive disorders, focusing on fMRI research utilizing the cue reactivity paradigm. Using Activation Likelihood Estimation, we examined the similarities and differences in the neural mechanisms underlying love and addiction. The results showed that the anterior cingulate cortex (ACC) exhibited both shared and distinct activation clusters between romantic love and addictive disorders. Furthermore, ventromedial prefrontal cortex (VMPFC) was more frequently activated in romantic love than in addictive disorders, while greater activation within the posterior cingulate cortex (PCC) was found in addictive disorder compared with romantic love. We discussed that the activation of ACC and VMPFC may symbolize self-expansion, a process that characterizes the development of romantic love, contributing to a more enriched self. Our study suggests that while romantic love and addictive disorders share a common neural foundation, the discernible differences in their neural representations distinguish them as joyful growth versus compulsive hedonism.
Collapse
Affiliation(s)
- Yuhang Yang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Ministry of Education, Key Laboratory of Cognition and Personality (Southwest University), Chongqing, China
| | - Chuan Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannong Shi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiling Zou
- Faculty of Psychology, Southwest University, Chongqing, 400715, China; Ministry of Education, Key Laboratory of Cognition and Personality (Southwest University), Chongqing, China.
| |
Collapse
|
11
|
Ke M, Luo X, Guo Y, Zhang J, Ren X, Liu G. Alterations in spatiotemporal characteristics of dynamic networks in juvenile myoclonic epilepsy. Neurol Sci 2024; 45:4983-4996. [PMID: 38704479 DOI: 10.1007/s10072-024-07506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Juvenile myoclonic epilepsy (JME) is characterized by altered patterns of brain functional connectivity (FC). However, the nature and extent of alterations in the spatiotemporal characteristics of dynamic FC in JME patients remain elusive. Dynamic networks effectively encapsulate temporal variations in brain imaging data, offering insights into brain network abnormalities and contributing to our understanding of the seizure mechanisms and origins. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were procured from 37 JME patients and 37 healthy counterparts. Forty-seven network nodes were identified by group-independent component analysis (ICA) to construct the dynamic network. Ultimately, patients' and controls' spatiotemporal characteristics, encompassing temporal clustering and variability, were contrasted at the whole-brain, large-scale network, and regional levels. RESULTS Our findings reveal a marked reduction in temporal clustering and an elevation in temporal variability in JME patients at the whole-brain echelon. Perturbations were notably pronounced in the default mode network (DMN) and visual network (VN) at the large-scale level. Nodes exhibiting anomalous were predominantly situated within the DMN and VN. Additionally, there was a significant correlation between the severity of JME symptoms and the temporal clustering of the VN. CONCLUSIONS Our findings suggest that excessive temporal changes in brain FC may affect the temporal structure of dynamic brain networks, leading to disturbances in brain function in patients with JME. The DMN and VN play an important role in the dynamics of brain networks in patients, and their abnormal spatiotemporal properties may underlie abnormal brain function in patients with JME in the early stages of the disease.
Collapse
Affiliation(s)
- Ming Ke
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Xiaofei Luo
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yi Guo
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Juli Zhang
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xupeng Ren
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Guangyao Liu
- Department of Nuclear Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
12
|
Ye Y, Zhong Z, Wu X, Tian Y, Wei Z, Han S, Wu P, Dai H, Shen L, Wang H, Li Y. MR Spectroscopy Assessment of Daily Variations of GABA Levels within the Parietal Lobe and Anterior Cingulate Gyrus Regions of Healthy Young Adults. J Magn Reson Imaging 2024; 60:1500-1511. [PMID: 38284542 DOI: 10.1002/jmri.29255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The changes that occur in the gamma-aminobutyric acid (GABA) levels within specific brain regions throughout the day are less clear. PURPOSE To evaluate the daily fluctuations of GABA levels within the parietal lobe (PL) and anterior cingulate gyrus (ACC) regions and explore their association with melatonin (MT) levels, heart rate (HR), and blood pressure. STUDY TYPE Prospective. SUBJECTS 26 healthy young adults (15 males and 11 females aged 22-27 years). FIELD STRENGTH/SEQUENCE 3.0T, T1-weighted imaging, Mescher-Garwood point resolved spectroscopy (MEGA-PRESS) sequence. ASSESSMENT The acquired GABA signal contained the overlapping signals of macromolecules and homocarnosine, hence expressed as GABA+. The creatine (Cr) signal was applied as an endogenous reference. The GABA+, GABA+/Cr were measured at six different time points (1:00, 5:00, 9:00, 13:00, 17:00, and 21:00 hours) using MEGA-PRESS. The blood pressure, HR and sputum MT levels, were also acquired. STATISTICAL TESTS The one-way repeated-measures analysis of variance (ANOVA) was used to evaluate the GABA, blood pressure, HR, and MT levels throughout the day. A general linear model was used to find the correlation between GABA and blood pressure, HR, and MT. P < 0.05 was statistically significant. RESULTS Significant variations in GABA+/Cr and GABA+ levels were observed throughout the day within the PL region. The lowest levels were recorded at 9:00 hour (GABA+/Cr: 0.100 ± 0.003,GABA+:1.877 ± 0.051 i.u) and the highest levels were recorded at 21:00 hour (GABA+/Cr: 0.115 ± 0.003, GABA+:2.122 ± 0.052 i.u). The MT levels were positively correlated with GABA+/Cr (r = 0.301) and GABA+ (r = 0.312) within the ACC region. DATA CONCLUSION GABA+/Cr and GABA+ in ACC are positively correlated with MT. GABA levels in the PL have diurnal differences. These findings may indicate that the body's GABA level change in response to the light-dark cycle. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yujie Ye
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zhaomin Zhong
- Center for Circadian Clocks, Soochow University, Suzhou, People's Republic of China
| | - Xiaojuan Wu
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yangyang Tian
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zifan Wei
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Shuting Han
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Peng Wu
- Philips Healthcare, Shanghai, People's Republic of China
| | - Hui Dai
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Lan Shen
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, People's Republic of China
| | - Yonggang Li
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Shi Y, Shi G, Zhao S, Wang B, Yang Y, Li H, Zhang J, Wang J, Li X, O’Connor MF. Atrophy in the supramarginal gyrus associated with impaired cognitive inhibition in grieving Chinese Shidu parents. Eur J Psychotraumatol 2024; 15:2403250. [PMID: 39297282 PMCID: PMC11413961 DOI: 10.1080/20008066.2024.2403250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Background: The loss of an only child, known as Shidu in China, is a profoundly distressing experience, often leading to Prolonged Grief Disorder (PGD). Despite its impact, the structural brain alterations associated with PGD, potentially influencing cognitive impairments in Shidu parents, remain understudied.Objective: This study aims to identify brain structural abnormalities related to prolonged grief and their relation with cognitive inhibition in Shidu parents.Methods: The study included 40 Shidu parents and 42 non-bereaved participants. Prolonged grief was evaluated using the Prolonged Grief Questionnaire (PG-13). We employed voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) to assess brain structural alterations and their correlation with cognitive inhibition, as measured by Stroop interference scores.Results: Findings suggest that greater prolonged grief intensity correlates with reduced grey matter volume in the right amygdala and the left supramarginal gyrus (SMG). Additionally, enhanced amygdala-to-whole-brain structural connectivity showed a marginal association with prolonged grief, particularly with emotional-related symptoms. Furthermore, a decrease in SMG volume was found to mediate the relation between prolonged grief and Stroop Time Inference (TI) score, indicating an indirect effect of prolonged grief on cognitive inhibition.Conclusions: The study provides insight into the neural correlates of prolonged grief in Shidu parents, highlighting the SMG's role in cognitive inhibition. These findings emphasise the need for comprehensive grief interventions to address the complex cognitive and emotional challenges faced by this unique bereaved population.
Collapse
Affiliation(s)
- Yuqing Shi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People’s Republic of China
- Department of Psychology, National University of Singapore, Singapore
| | - Guangyuan Shi
- Centre for Psychological Development, Tsinghua University, Beijing, People’s Republic of China
| | - Shaokun Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People’s Republic of China
| | - Bolong Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yiru Yang
- School of Nursing and Rehabilitation, Shandong University, Jinan, People’s Republic of China
| | - He Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Junying Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People’s Republic of China
| | - Jianping Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Centre for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, People’s Republic of China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People’s Republic of China
| | | |
Collapse
|
14
|
Wani PD. From Sound to Meaning: Navigating Wernicke's Area in Language Processing. Cureus 2024; 16:e69833. [PMID: 39435247 PMCID: PMC11491986 DOI: 10.7759/cureus.69833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
Wernicke's area, a critical brain region associated with language comprehension, was first identified by Carl Wernicke in the late 19th century. Situated in the left hemisphere's posterior superior temporal gyrus, this area is essential for processing auditory and visual language inputs. It integrates semantic and syntactic information, playing a key role in meaningful communication. The development of Wernicke's area during infancy and childhood is marked by rapid growth and refinement influenced by early language exposure and environmental stimuli. Neuroplasticity, the brain's ability to reorganize and adapt, is crucial for recovery from language impairments such as Wernicke's aphasia. This capacity for reorganization includes synaptic plasticity and axonal sprouting, which facilitate recovery through targeted rehabilitation and enriched environments. Recent research utilizing advanced neuroimaging and neuroanatomical tracing techniques has elucidated the connectivity of Wernicke's area with other language-related regions, such as Broca's area. Functional studies have revealed its specialized roles in processing different aspects of language, including phonological, semantic, and syntactic features. Moreover, investigations into language disorders and potential therapeutic interventions underscore the importance of harnessing neuroplasticity for effective treatment. Emerging technologies, such as non-invasive brain stimulation and multimodal imaging, offer promising avenues for further exploration of Wernicke's area and its role in language functions. These innovations hold the potential to enhance our understanding of language processing and improve therapeutic strategies for language impairments. In conclusion, Wernicke's area is central to language comprehension, and genetic and environmental factors influence its development. Understanding neuroplasticity and leveraging advanced research technologies can significantly advance our ability to address language-related disorders and enhance patient outcomes.
Collapse
|
15
|
Jiang Y, Zhou Y, Xie Y, Zhou J, Cai M, Tang J, Liu F, Ma J, Liu H. Functional magnetic resonance imaging alternations in suicide attempts individuals and their association with gene expression. Neuroimage Clin 2024; 43:103645. [PMID: 39059208 PMCID: PMC11326948 DOI: 10.1016/j.nicl.2024.103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Functional Magnetic Resonance Imaging (fMRI) has shown brain activity alterations in individuals with a history of attempted suicide (SA) who are diagnosed with depression disorder (DD) or bipolar disorder (BD). However, patterns of spontaneous brain activity and their genetic correlations need further investigation. METHODS A voxel-based meta-analysis of 19 studies including 26 datasets, involving 742 patients with a history of SA and 978 controls (both nonsuicidal patients and healthy controls) was conducted. We examined fMRI changes in SA patients and analyzed the association between these changes and gene expression profiles using data from the Allen Human Brain Atlas by partial least squares regression analysis. RESULTS SA patients demonstrated increased spontaneous brain activity in several brain regions including the bilateral inferior temporal gyrus, hippocampus, fusiform gyrus, and right insula, and decreased activity in areas like the bilateral paracentral lobule and inferior frontal gyrus. Additionally, 5,077 genes were identified, exhibiting expression patterns associated with SA-related fMRI alterations. Functional enrichment analyses demonstrated that these SA-related genes were enriched for biological functions including glutamatergic synapse and mitochondrial structure. Concurrently, specific expression analyses showed that these genes were specifically expressed in the brain tissue, in neurons cells, and during early developmental periods. CONCLUSION Our findings suggest a neurobiological basis for fMRI abnormalities in SA patients with DD or BD, potentially guiding future genetic and therapeutic research.
Collapse
Affiliation(s)
- Yurong Jiang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yujing Zhou
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 116000 Dalian, Liaoning, China
| | - Yingying Xie
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Junzi Zhou
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengjing Cai
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jie Tang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Juanwei Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Huaigui Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
16
|
Imai A, Matsuoka T, Ueno D, Narumoto J. Loneliness and Resting-State Functional Brain Connectivity Among Older Adults: A Proportional Correlation. J Neuropsychiatry Clin Neurosci 2024; 37:88-92. [PMID: 38988188 DOI: 10.1176/appi.neuropsych.20230167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Loneliness reportedly increases the risk of dementia, especially Alzheimer's disease (AD). The authors' previous study demonstrated associations between loneliness and structural abnormalities observed in early-stage AD. The present study examined associations between the brain's functional characteristics and loneliness among older adults with concerns about cognitive decline. METHODS This single-center study included 43 participants (13 with amnestic mild cognitive impairment and 30 with normal cognition). Participants were assessed with the revised University of California Los Angeles (UCLA) Loneliness Scale and underwent resting-state functional MRI. Functional images were preprocessed with the CONN toolbox. The selected seeds were within brain regions reportedly associated with loneliness. One-sample general linear model analysis was performed to examine regressions of UCLA Loneliness Scale scores and functional connectivity between the seeds and regions of interest. RESULTS The revised UCLA Loneliness Scale scores were positively correlated with functional connectivity between the right hippocampus and left lateral parietal lobe and were negatively correlated with functional connectivity between the left amygdala and left frontal operculum and between the left amygdala and right supramarginal gyrus. Analyses were adjusted for age, sex, and education and scores on the Mini-Mental State Examination and Clinical Dementia Rating scale. CONCLUSIONS Loneliness was associated with abnormal function of the hippocampus, parts of the parietal lobe and frontal cortex, and the amygdala. These findings may suggest a possible correlation between loneliness and neurological changes associated with dementia.
Collapse
Affiliation(s)
- Ayu Imai
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (all authors); Department of Psychiatry, National Hospital Organization Maizuru Medical Center, Kyoto, Japan (Matsuoka)
| | - Teruyuki Matsuoka
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (all authors); Department of Psychiatry, National Hospital Organization Maizuru Medical Center, Kyoto, Japan (Matsuoka)
| | - Daisuke Ueno
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (all authors); Department of Psychiatry, National Hospital Organization Maizuru Medical Center, Kyoto, Japan (Matsuoka)
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (all authors); Department of Psychiatry, National Hospital Organization Maizuru Medical Center, Kyoto, Japan (Matsuoka)
| |
Collapse
|
17
|
Subramaniam V, Conwell C, Wang C, Kreiman G, Katz B, Cases I, Barbu A. Revealing Vision-Language Integration in the Brain with Multimodal Networks. ARXIV 2024:arXiv:2406.14481v1. [PMID: 38947929 PMCID: PMC11213144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
We use (multi)modal deep neural networks (DNNs) to probe for sites of multimodal integration in the human brain by predicting stereoen-cephalography (SEEG) recordings taken while human subjects watched movies. We operationalize sites of multimodal integration as regions where a multimodal vision-language model predicts recordings better than unimodal language, unimodal vision, or linearly-integrated language-vision models. Our target DNN models span different architectures (e.g., convolutional networks and transformers) and multimodal training techniques (e.g., cross-attention and contrastive learning). As a key enabling step, we first demonstrate that trained vision and language models systematically outperform their randomly initialized counterparts in their ability to predict SEEG signals. We then compare unimodal and multimodal models against one another. Because our target DNN models often have different architectures, number of parameters, and training sets (possibly obscuring those differences attributable to integration), we carry out a controlled comparison of two models (SLIP and SimCLR), which keep all of these attributes the same aside from input modality. Using this approach, we identify a sizable number of neural sites (on average 141 out of 1090 total sites or 12.94%) and brain regions where multimodal integration seems to occur. Additionally, we find that among the variants of multimodal training techniques we assess, CLIP-style training is the best suited for downstream prediction of the neural activity in these sites.
Collapse
Affiliation(s)
| | - Colin Conwell
- Department of Cognitive Science, Johns Hopkins University
| | | | | | | | | | | |
Collapse
|
18
|
Borne A, Lemaitre C, Bulteau C, Baciu M, Perrone-Bertolotti M. Unveiling the cognitive network organization through cognitive performance. Sci Rep 2024; 14:11645. [PMID: 38773246 PMCID: PMC11109237 DOI: 10.1038/s41598-024-62234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
The evaluation of cognitive functions interactions has become increasingly implemented in the cognition exploration. In the present study, we propose to examine the organization of the cognitive network in healthy participants through the analysis of behavioral performances in several cognitive domains. Specifically, we aim to explore cognitive interactions profiles, in terms of cognitive network, and as a function of participants' handedness. To this end, we proposed several behavioral tasks evaluating language, memory, executive functions, and social cognition performances in 175 young healthy right-handed and left-handed participants and we analyzed cognitive scores, from a network perspective, using graph theory. Our results highlight the existence of intricate interactions between cognitive functions both within and beyond the same cognitive domain. Language functions are interrelated with executive functions and memory in healthy cognitive functioning and assume a central role in the cognitive network. Interestingly, for similar high performance, our findings unveiled differential organizations within the cognitive network between right-handed and left-handed participants, with variations observed both at a global and nodal level. This original integrative network approach to the study of cognition provides new insights into cognitive interactions and modulations. It allows a more global understanding and consideration of cognitive functioning, from which complex behaviors emerge.
Collapse
Affiliation(s)
- A Borne
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - C Lemaitre
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - C Bulteau
- Service de Neurochirurgie Pédiatrique, Hôpital Fondation Adolphe de Rothschild, 75019, Paris, France
- MC2 Lab, Institut de Psychologie, Université de Paris-Cité, 92100, Boulogne-Billancourt, France
| | - M Baciu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - M Perrone-Bertolotti
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France.
| |
Collapse
|
19
|
Zhao S, Sang F, Liu C, Wang F, Liu J, Chen C, Wang J, Li X, Zhang Z. Age-related enhancement of the association between episodic memory and gray matter volume in medial temporal and frontal lobes. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:10. [PMID: 38702688 PMCID: PMC11069137 DOI: 10.1186/s12993-024-00237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Episodic memory (EM) deteriorates as a result of normal aging as well as Alzheimer's disease. The neural underpinnings of such age-related memory impairments in older individuals are not well-understood. Although previous research has unveiled the association between gray matter volume (GMV) and EM in the elderly population, such findings exhibit variances across distinct age cohorts. Consequently, an investigation into the dynamic evolution of this relationship with advancing age is imperative. RESULT The present study utilized a sliding window approach to examine how the correlation between EM and GMV varied with age in a cross-sectional sample of 926 Chinese older adults. We found that both verbal EM (VEM) and spatial EM (SEM) exhibited positive correlations with GMV in extensive areas primarily in the temporal and frontal lobes and that these correlations typically became stronger with older age. Moreover, there were variations in the strength of the correlation between EM and GMV with age, which differed based on sex and the specific type of EM. Specifically, the association between VEM and GMVs in the insula and parietal regions became stronger with age for females but not for males, whereas the association between SEM and GMVs in the parietal and occipital regions became stronger for males but not for females. At the brain system level, there is a significant age-related increase in the correlations between both types of EM and the GMV of both the anterior temporal (AT) system and the posterior medial (PM) system in male group. In females, both types of EM show stronger age-related correlations with the GMV of the AT system compared to males. CONCLUSIONS Our study revealed a significant positive correlation between GMV in most regions associated with EM and age, particularly in the frontal and temporal lobes. This discovery offers new insights into the connection between brain structure and the diminishing episodic memory function among older individuals.
Collapse
Affiliation(s)
- Shaokun Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Feng Sang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Chen Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Fei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Jiawen Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA, 92697, USA
| | - Jun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- BABRI Centre, Beijing Normal University, Beijing, 100875, China.
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- BABRI Centre, Beijing Normal University, Beijing, 100875, China.
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
20
|
Schantell M, Glesinger R, Coutant AT, Okelberry HJ, John JA, Dietz SM, Springer SD, Arif Y, Wilson TW. Stress and Psychosocial Distress Scale with Blunted Oscillatory Dynamics Serving Abstract Reasoning. Depress Anxiety 2024; 2024:4720803. [PMID: 40226715 PMCID: PMC11918520 DOI: 10.1155/2024/4720803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2025] Open
Abstract
Background Chronic stress is associated with a multitude of psychopathological disorders that share similar alterations in neural dynamics and symptomatology. Applying the National Institute of Mental Health's Research Domain Criteria (RDoC) framework, we probed the stress-diathesis model by identifying how a transdiagnostic psychosocial distress index representing high-dimensional patterns of stress-related aberrations was coupled to the neural oscillatory dynamics serving abstract reasoning. Methods The sample consisted of 69 adults (mean age = 44.77 years, SD = 13.66) who completed the NIH Toolbox Emotion Battery (NIHTB-EB) and a matrix reasoning task during magnetoencephalography (MEG). A transdiagnostic psychosocial distress index was computed using exploratory factor analysis with assessments from the NIHTB-EB. Whole-brain correlations were conducted using the resulting psychosocial distress index for each oscillatory response, and the resulting peak voxels were extracted for mediation analyses to assess the degree to which neural oscillatory activity mediates the interplay between perceived stress and psychosocial distress. Results We found that elevated psychosocial distress was associated with blunted oscillatory alpha/beta and gamma responses in key cortical association regions. Further, we found that only alpha/beta activity in the right superior temporal sulcus partially mediated the relationship between perceived stress and psychosocial distress. Conclusions The present study is among the first to couple perceived stress and psychosocial distress with alterations in oscillatory activity during a matrix reasoning task. These findings illuminate the relationship between perceived stress and neural alterations associated with psychopathology.
Collapse
Affiliation(s)
- Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Ryan Glesinger
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T. Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jason A. John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Sarah M. Dietz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Seth D. Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
21
|
Zhao Q, Zhao W, Lu C, Du H, Chi P. Interpersonal neural synchronization during social interactions in close relationships: A systematic review and meta-analysis of fNIRS hyperscanning studies. Neurosci Biobehav Rev 2024; 158:105565. [PMID: 38295965 DOI: 10.1016/j.neubiorev.2024.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
In recent years, researchers have used hyperscanning techniques to explore how brains interact during various human activities. These studies have revealed a phenomenon called interpersonal neural synchronization (INS), but little research has focused on the overall effect of INS in close relationships. To address this gap, this study aims to synthesize and analyze the existing literature on INS during social interactions in close relationships. We conducted a meta-analysis of 17 functional near-infrared spectroscopy (fNIRS) hyperscanning studies involving 1149 dyads participants, including romantic couples and parent-child dyads. The results revealed robust and consistent INS in the frontal, temporal, and parietal regions of the brain and found similar INS patterns in couples and parent-child studies, providing solid empirical evidence for the attachment theory. Moreover, the age of children and brain areas were significant predictors of the effect size in parent-child research. The developmental stage of children and the mismatched development of brain structures might be the crucial factors for the difference in neural performance in social and cognitive behaviors in parent-child dyads.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China; Center for Cognitive and Brain Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China
| | - Wan Zhao
- School of Psychology, Nanjing Normal University, Nanjing 210097, Jiangsu, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hongfei Du
- Department of Psychology, Beijing Normal University at Zhuhai, Zhuhai 519087, Guangdong, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, China.
| | - Peilian Chi
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China; Center for Cognitive and Brain Sciences, University of Macau, Macau 999078, Macau Special Administrative Region of China.
| |
Collapse
|
22
|
Schantell M, Taylor BK, Mansouri A, Arif Y, Coutant AT, Rice DL, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Theta oscillatory dynamics serving cognitive control index psychosocial distress in youth. Neurobiol Stress 2024; 29:100599. [PMID: 38213830 PMCID: PMC10776433 DOI: 10.1016/j.ynstr.2023.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/09/2023] [Accepted: 12/10/2023] [Indexed: 01/13/2024] Open
Abstract
Background Psychosocial distress among youth is a major public health issue characterized by disruptions in cognitive control processing. Using the National Institute of Mental Health's Research Domain Criteria (RDoC) framework, we quantified multidimensional neural oscillatory markers of psychosocial distress serving cognitive control in youth. Methods The sample consisted of 39 peri-adolescent participants who completed the NIH Toolbox Emotion Battery (NIHTB-EB) and the Eriksen flanker task during magnetoencephalography (MEG). A psychosocial distress index was computed with exploratory factor analysis using assessments from the NIHTB-EB. MEG data were analyzed in the time-frequency domain and peak voxels from oscillatory maps depicting the neural cognitive interference effect were extracted for voxel time series analyses to identify spontaneous and oscillatory aberrations in dynamics serving cognitive control as a function of psychosocial distress. Further, we quantified the relationship between psychosocial distress and dynamic functional connectivity between regions supporting cognitive control. Results The continuous psychosocial distress index was strongly associated with validated measures of pediatric psychopathology. Theta-band neural cognitive interference was identified in the left dorsolateral prefrontal cortex (dlPFC) and middle cingulate cortex (MCC). Time series analyses of these regions indicated that greater psychosocial distress was associated with elevated spontaneous activity in both the dlPFC and MCC and blunted theta oscillations in the MCC. Finally, we found that stronger phase coherence between the dlPFC and MCC was associated with greater psychosocial distress. Conclusions Greater psychosocial distress was marked by alterations in spontaneous and oscillatory theta activity serving cognitive control, along with hyperconnectivity between the dlPFC and MCC.
Collapse
Affiliation(s)
- Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Amirsalar Mansouri
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T. Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Danielle L. Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging & Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
23
|
Davidson C, Theyer A, Amaireh G, Wijeakumar S. The impact of caregiver inhibitory control on infant visual working memory. Infant Behav Dev 2024; 74:101921. [PMID: 38211463 DOI: 10.1016/j.infbeh.2023.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
Visual working memory (VWM) emerges in the first year of life and has far-reaching implications for academic and later life outcomes. Given that caregivers play a significant role in shaping cognitive function in children, it is important to understand how they might impact VWM development as early as infancy. The current study investigated whether caregivers' efficiency of regulating inhibitory control was associated with VWM function in their infants. Eighty-eight caregivers were presented with a Go-NoGo task to assess inhibitory control. An efficiency score was calculated using their behavioural responses. Eighty-six 6-to-10-month-old infants were presented with a preferential looking task to assess VWM function. VWM load was manipulated across one (low load), two (medium load) and three (high load) items. Functional near-infrared spectroscopy was used to record brain activation from caregivers and their infants. We found no direct association between caregiver efficiency and infant VWM behaviour. However, we found an indirect association - caregiver efficiency was linked to infant VWM through left-lateralized fronto-parietal engagement. Specifically, infants with low efficiency caregivers showed decreasing left-lateralized parietal engagement with increasing VWM performance at the medium and high loads compared to infants with high efficiency caregivers, who did not show any load- or performance-dependent modulation. Our findings contribute to a growing body of literature examining the role that caregivers play in early neurocognitive development.
Collapse
Affiliation(s)
- Christina Davidson
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Aimee Theyer
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Ghada Amaireh
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
24
|
Xie Y, Li C, Guan M, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. Low-frequency rTMS induces modifications in cortical structural connectivity - functional connectivity coupling in schizophrenia patients with auditory verbal hallucinations. Hum Brain Mapp 2024; 45:e26614. [PMID: 38375980 PMCID: PMC10878014 DOI: 10.1002/hbm.26614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Auditory verbal hallucinations (AVH) are distinctive clinical manifestations of schizophrenia. While low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated potential in mitigating AVH, the precise mechanisms by which it operates remain obscure. This study aimed to investigate alternations in structural connectivity and functional connectivity (SC-FC) coupling among schizophrenia patients with AVH prior to and following treatment with 1 Hz rTMS that specifically targets the left temporoparietal junction. Initially, patients exhibited significantly reduced macroscopic whole brain level SC-FC coupling compared to healthy controls. Notably, SC-FC coupling increased significantly across multiple networks, including the somatomotor, dorsal attention, ventral attention, frontoparietal control, and default mode networks, following rTMS treatment. Significant alternations in SC-FC coupling were noted in critical nodes comprising the somatomotor network and the default mode network, such as the precentral gyrus and the ventromedial prefrontal cortex, respectively. The alternations in SC-FC coupling exhibited a correlation with the amelioration of clinical symptom. The results of our study illuminate the intricate relationship between white matter structures and neuronal activity in patients who are receiving low-frequency rTMS. This advances our understanding of the foundational mechanisms underlying rTMS treatment for AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
- Department of Radiology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chenxi Li
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Muzhen Guan
- Department of Mental HealthXi'an Medical CollegeXi'anChina
| | - Tian Zhang
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Chaozong Ma
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Zhongheng Wang
- Department of Psychiatry, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhujing Ma
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Huaning Wang
- Department of Psychiatry, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Peng Fang
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent PerceptionXi'anChina
| |
Collapse
|
25
|
Puga TB, Dai HD, Wang Y, Theye E. Maternal Tobacco Use During Pregnancy and Child Neurocognitive Development. JAMA Netw Open 2024; 7:e2355952. [PMID: 38349651 PMCID: PMC10865146 DOI: 10.1001/jamanetworkopen.2023.55952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/20/2023] [Indexed: 02/15/2024] Open
Abstract
Importance Maternal tobacco use during pregnancy (MTDP) persists across the globe. Longitudinal assessment of the association of MTDP with neurocognitive development of offspring at late childhood is limited. Objectives To examine whether MTDP is associated with child neurocognitive development at ages 9 to 12 years. Design, Setting, and Participants This cohort study included children aged 9 and 10 years at wave 1 (October 2016 to October 2018) and aged 11 to 12 years at a 2-year follow-up (wave 2, August 2018 to January 2021) across 21 US sites in the Adolescent Brain Cognitive Development (ABCD) Study. Data were analyzed from June 2022 to December 2023. Exposure MTDP. Main Outcomes and Measures Outcomes of interest were neurocognition, measured by the National Institutes of Health (NIH) Toolbox Cognition Battery, and morphometric brain measures through the region of interest (ROI) analysis from structural magnetic resonance imaging (sMRI). Results Among 11 448 children at wave 1 (mean [SD] age, 9.9 [0.6] years; 5990 [52.3%] male), 1607 children were identified with MTDP. In the NIH Toolbox Cognition Battery, children with MTDP (vs no MTDP) exhibited lower scores on the oral reading recognition (mean [SE] B = -1.2 [0.2]; P < .001), picture sequence memory (mean [SE] B = -2.3 [0.6]; P < .001), and picture vocabulary (mean [SE] B = -1.2 [0.3]; P < .001) tests and the crystallized cognition composite score (mean [SE] B = -1.3 [0.3]; P < .001) at wave 1. These differential patterns persisted at wave 2. In sMRI, children with MTDP (vs no MTDP) had smaller cortical areas in precentral (mean [SE] B = -104.2 [30.4] mm2; P = .001), inferior parietal (mean [SE] B = -153.9 [43.4] mm2; P < .001), and entorhinal (mean [SE] B = -25.1 [5.8] mm2; P < .001) regions and lower cortical volumes in precentral (mean [SE] B = -474.4 [98.2] mm3; P < .001), inferior parietal (mean [SE] B = -523.7 [136.7] mm3; P < .001), entorhinal (mean [SE] B = -94.1 [24.5] mm3; P < .001), and parahippocampal (mean [SE] B = -82.6 [18.7] mm3; P < .001) regions at wave 1. Distinct cortical volume patterns continued to be significant at wave 2. Frontal, parietal, and temporal lobes exhibited differential ROI, while there were no notable distinctions in the occipital lobe and insula cortex. Conclusions and Relevance In this cohort study, MTDP was associated with enduring deficits in childhood neurocognition. Continued research on the association of MTDP with cognitive performance and brain structure related to language processing skills and episodic memory is needed.
Collapse
Affiliation(s)
- Troy B. Puga
- College of Public Health, University of Nebraska Medical Center, Omaha
- College of Osteopathic Medicine, Kansas City University, Kansas City, Missouri
| | | | - Yingying Wang
- Neuroimaging for Language, Literacy & Learning Laboratory, University of Nebraska at Lincoln, Lincoln
| | - Elijah Theye
- College of Public Health, University of Nebraska Medical Center, Omaha
| |
Collapse
|
26
|
Huang B, Pu C, Guo X, Chan RCK, Huang J, Yu X. Hypo- and hyper-activation in frontotemporal lobe during humor processing in patients with first episode schizophrenia. Asian J Psychiatr 2024; 92:103892. [PMID: 38160523 DOI: 10.1016/j.ajp.2023.103892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Patients with schizophrenia present difficulties in humor recognition and appreciation, but the neural mechanism of these deficits remains unclear. This study aimed to elucidate neural substrates underlying humor processing in patients with first episode schizophrenia (FES). METHODS This study recruited 40 patients with FES (illness duration ≤ 4 years) and 31 healthy controls matching for age, gender and education level. Participants completed a fMRI verbal humor processing paradigm comprising 96 stories, half for funny punch-line condition and the other half for unfunny condition. Participants were required to judge whether the story was funny or not. Signal detection theory (SDT) analysis was used to calculate d' and β values which represented sensitivity and inner criteria for humor signals respectively. The funny-unfunny contrast was analyzed to identify the brain regions related with humor processing. d' and β values were put into the imaging regression analysis. RESULTS Patients with FES showed significantly lower hit rate and sensitivity of humor signals (d'). At the neural level, patients with FES hypo-activated in ventral medial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC) while hyper-activated in middle temporal gyrus (MTG) and superior temporal gyrus (STG) compared to controls. In addition, activity in vmPFC and ACC was positively associated with d' and β values, while activity in STG was positively associated with β values in the clinical group. CONCLUSIONS Patients with FES exhibited decreased sensitivity to humor signals. Hypo-activation in frontal regions and hyper-activation in temporal regions were associated with the humor processing deficits.
Collapse
Affiliation(s)
- Bingjie Huang
- Peking University Sixth Hospital, Beijing, China; Peking University Institute of Mental Health, Beijing, China; NHC Key Laboratory of Mental Health (Peking University), Beijing, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chengcheng Pu
- Peking University Sixth Hospital, Beijing, China; Peking University Institute of Mental Health, Beijing, China; NHC Key Laboratory of Mental Health (Peking University), Beijing, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiaodong Guo
- Peking University Sixth Hospital, Beijing, China; Peking University Institute of Mental Health, Beijing, China; NHC Key Laboratory of Mental Health (Peking University), Beijing, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Xin Yu
- Peking University Sixth Hospital, Beijing, China; Peking University Institute of Mental Health, Beijing, China; NHC Key Laboratory of Mental Health (Peking University), Beijing, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
27
|
Faraji R, Ganji Z, Khandan Khadem Z, Akbari-Lalimi H, Eidy F, Zare H. Volume-based and Surface-Based Methods in Autism Compared with Healthy Controls Are Free surfer and CAT12 in Agreement? IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:93-118. [PMID: 38375127 PMCID: PMC10874516 DOI: 10.22037/ijcn.v18i1.43294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/07/2023] [Indexed: 02/21/2024]
Abstract
Objectives Autism Spectrum Disorder (ASD) encompasses a range of neurodevelopmental disorders, and early detection is crucial. This study aims to identify the Regions of Interest (ROIs) with significant differences between healthy controls and individuals with autism, as well as evaluate the agreement between FreeSurfer 6 (FS6) and Computational Anatomy Toolbox (CAT12) methods. Materials & Methods Surface-based and volume-based features were extracted from FS software and CAT12 toolbox for Statistical Parametric Mapping (SPM) software to estimate ROI-wise biomarkers. These biomarkers were compared between 18 males Typically Developing Controls (TDCs) and 40 male subjects with ASD to assess group differences for each method. Finally, agreement and regression analyses were performed between the two methods for TDCs and ASD groups. Results Both methods revealed ROIs with significant differences for each parameter. The Analysis of Covariance (ANCOVA) showed that both TDCs and ASD groups indicated a significant relationship between the two methods (p<0.001). The R2 values for TDCs and ASD groups were 0.692 and 0.680, respectively, demonstrating a moderate correlation between CAT12 and FS6. Bland-Altman graphs showed a moderate level of agreement between the two methods. Conclusion The moderate correlation and agreement between CAT12 and FS6 suggest that while some consistency is observed in the results, CAT12 is not a superior substitute for FS6 software. Further research is needed to identify a potential replacement for this method.
Collapse
Affiliation(s)
- Reyhane Faraji
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Ganji
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khandan Khadem
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Akbari-Lalimi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Eidy
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Zare
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Yi X, Xiao Q, Fu Y, Wang X, Shen L, Ding J, Jiang F, Wang J, Zhang Z, Chen BT. Association of white matter microstructural alteration with non-suicidal self-injury behavior and visual working memory in adolescents with borderline personality disorder. Psychiatry Res 2024; 331:115619. [PMID: 38048646 DOI: 10.1016/j.psychres.2023.115619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Non-suicidal self-injurious behavior (NSSI) is the core characteristic of adolescent borderline personality disorder (BPD) and visual working memory is involved in the pathological processes of BPD. This study aimed to investigate alterations in white matter microstructure and their association with NSSI and visual working memory in adolescents with BPD. METHODS 53 adolescents diagnosed with BPD and 39 healthy controls (HCs) were enrolled. White matter microstructure was assessed with the fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI). Correlation analysis was performed to assess the association between FA/MD and core features of BPD. A mediation analysis was performed to test whether the effects of white matter alterations on NSSI could be mediated by visual working memory. RESULTS Adolescents with BPD showed a reduced FA and an increased MD in the cortical-limbic and cortical-thalamus circuit when compared to the HCs (p < 0.05). Increased MD was positively correlated with NSSI, impulse control and identity disturbance (p < 0.05), and was negatively correlated with the score of visual reproduction. Reserved visual working memory masked the effects of white matter microstructural alterations on NSSI behavior. CONCLUSIONS White matter microstructural deficits in the cortical-limbic and cortical-thalamus circuits may be associated with NSSI and visual working memory in adolescents with BPD. Reserved visual working memory may protect against NSSI.
Collapse
Affiliation(s)
- Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan 410008, PR China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Qian Xiao
- Mental Health Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Yan Fu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xueying Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Liying Shen
- Mental Health Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jun Ding
- Department of Public Health, Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, Guangdong, PR China
| | - Furong Jiang
- Mental Health Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Jing Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhejia Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
29
|
Luo Y, Wang K, Jiao S, Zeng J, Han Z. Distinct parallel activation and interaction between dorsal and ventral pathways during phonological and semantic processing: A cTBS-fMRI study. Hum Brain Mapp 2024; 45:e26569. [PMID: 38224540 PMCID: PMC10785560 DOI: 10.1002/hbm.26569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
Successful visual word recognition requires the integration of phonological and semantic information, which is supported by the dorsal and ventral pathways in the brain. However, the functional specialization or interaction of these pathways during phonological and semantic processing remains unclear. Previous research has been limited by its dependence on correlational functional magnetic resonance imaging (fMRI) results or causal validation using patient populations, which are susceptible to confounds such as plasticity and lesion characteristics. To address this, the present study employed continuous theta-burst stimulation combined with fMRI in a within-subject design to assess rapid adaptation in regional activity and functional connectivity of the dorsal and ventral pathways during phonological and semantic tasks. This assessment followed the precise inhibition of the left inferior parietal lobule and anterior temporal lobe in the dorsal and ventral pathways, respectively. Our results reveal that both the dorsal and ventral pathways were activated during phonological and semantic processing, while the adaptation activation and interactive network were modulated by the task type and inhibited region. The two pathways exhibited interconnectivity in phonological processing, and disruption of either pathway led to rapid adaptation across both pathways. In contrast, only the ventral pathway exhibited connectivity in semantic processing, and disruption of this pathway alone resulted in adaptive effects primarily in the ventral pathway. These findings provide essential evidence supporting the interactive theory, phonological information processing in particular, potentially providing meaningful implications for clinical populations.
Collapse
Affiliation(s)
- Yudan Luo
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ke Wang
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- School of System ScienceBeijing Normal UniversityBeijingChina
| | - Saiyi Jiao
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Jiahong Zeng
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
30
|
Sahlem GL, Dowdle LT, Baker NL, Sherman BJ, Gray KM, McRae-Clark AL, Froeliger B, Squeglia LM. Exploring the Utility of a Functional Magnetic Resonance Imaging (fMRI) Cannabis Cue-Reactivity Paradigm in Treatment Seeking Adults with Cannabis Use Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.14.23298485. [PMID: 38014250 PMCID: PMC10680897 DOI: 10.1101/2023.11.14.23298485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Introduction Functional magnetic resonance imaging (fMRI) studies examining cue-reactivity in cannabis use disorder (CUD) to date have either involved non-treatment seeking participants or been small. We addressed this gap by administering an fMRI cue-reactivity task to CUD participants entering two separate clinical trials. Methods Treatment-seeking participants with moderate or severe CUD had behavioral craving measured at baseline via the Marijuana Craving Questionnaire (MCQ-SF). They additionally completed a visual cannabis cue-reactivity paradigm during fMRI following 24-hours of abstinence from cannabis. During fMRI, the Blood Oxygen Level Dependent (BOLD) signal was acquired while participants viewed cannabis-images or matched-neutral-images. BOLD responses were correlated with the MCQ-SF using a General Linear Model. Results N=65 participants (32% female; mean age 30.4±9.9SD) averaged 46.3±15.5SD on the MCQ-SF. When contrasting cannabis-images vs. matched-neutral-images, participants showed greater BOLD response in bilateral ventromedial prefrontal, dorsolateral prefrontal, anterior cingulate, and visual cortices, as well as the striatum. Similarly, there was stronger task-based functional-connectivity (tbFC) between the medial prefrontal cortex and both the amygdala and the visual cortex. There were no significant differences in either activation or tbFC between studies or between sexes. Craving negatively correlated with BOLD response in the left ventral striatum (R 2 =-0.25; p =0.01). Conclusions We found that, among two separate treatment-seeking CUD groups, cannabis cue-reactivity was evidenced by greater activation and tbFC in regions related to executive function and reward processing, and craving was negatively associated with cue-reactivity in the ventral striatum. Future directions include examining if pharmacological, neuromodulatory, or psychosocial interventions can alter corticostriatal cue-reactivity.
Collapse
|
31
|
Luo Q, Zou Y, Nie H, Wu H, Du Y, Chen J, Li Y, Peng H. Effects of childhood neglect on regional brain activity and corresponding functional connectivity in major depressive disorder and healthy people: Risk factor or resilience? J Affect Disord 2023; 340:792-801. [PMID: 37598720 DOI: 10.1016/j.jad.2023.08.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Childhood neglect is a high risk factor for major depressive disorder (MDD). However, the effects of childhood neglect on regional brain activity and corresponding functional connectivity in MDD patients and healthy populations remains unclear. METHODS Regional homogeneity, amplitude of low-frequency fluctuations (ALFF), fractional ALFF, degree centrality, and voxel-mirrored homotopic connectivity were extensively calculated to explore intraregional brain activity in MDD patients with childhood neglect and in healthy populations with childhood neglect. Functional connectivity analysis was then performed using regions showing abnormal brain activity in regional homogeneity/ALFF/fractional ALFF/degree centrality/voxel-mirrored homotopic connectivity analysis as seed. Partial correlation analysis and moderating effect analysis were used to explore the relationship between childhood neglect, abnormal brain activity, and MDD severity. RESULTS We found decreased brain function in the inferior parietal lobe and cuneus in MDD patients with childhood neglect. In addition, we detected that childhood neglect was significant associated with abnormal cuneus brain activity in MDD patients and that abnormal cuneus brain activity moderated the relationship between childhood neglect and MDD severity. In contrast, higher brain function was observed in the inferior parietal lobe and cuneus in healthy populations with childhood neglect. CONCLUSIONS Our results provide new evidence for the identification of neural biomarkers in MDD patients with childhood neglect. More importantly, we identify brain activity characteristics of resilience in healthy populations with childhood neglect, providing more clues to identify neurobiological markers of resilience to depression after suffering childhood neglect.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yurong Zou
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huiqin Nie
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China
| | - Yingying Du
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510370, China.
| |
Collapse
|
32
|
Zhang G, Xu Y, Wang X, Li J, Shi W, Bi Y, Lin N. A social-semantic working-memory account for two canonical language areas. Nat Hum Behav 2023; 7:1980-1997. [PMID: 37735521 DOI: 10.1038/s41562-023-01704-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Language and social cognition are traditionally studied as separate cognitive domains, yet accumulative studies reveal overlapping neural correlates at the left ventral temporoparietal junction (vTPJ) and the left lateral anterior temporal lobe (lATL), which have been attributed to sentence processing and social concept activation. We propose a common cognitive component underlying both effects: social-semantic working memory. We confirmed two key predictions of our hypothesis using functional MRI. First, the left vTPJ and lATL showed sensitivity to sentences only when the sentences conveyed social meaning; second, these regions showed persistent social-semantic-selective activity after the linguistic stimuli disappeared. We additionally found that both regions were sensitive to the socialness of non-linguistic stimuli and were more tightly connected with the social-semantic-processing areas than with the sentence-processing areas. The converging evidence indicates the social-semantic working-memory function of the left vTPJ and lATL and challenges the general-semantic and/or syntactic accounts for the neural activity of these regions.
Collapse
Affiliation(s)
- Guangyao Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yangwen Xu
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jixing Li
- Department of Linguistics and Translation, City University of Hong Kong, Hong Kong SAR, China
| | - Weiting Shi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Nan Lin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Ruan Z, Gao L, Li S, Yu M, Rao B, Sun W, Zhou X, Li Y, Song X, Xu H. Functional abnormalities of the cerebellum in vascular mild cognitive impairment. Brain Imaging Behav 2023; 17:530-540. [PMID: 37433970 DOI: 10.1007/s11682-023-00783-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVES The alterations in cerebellar activity that occur in vascular mild cognitive impairment remain largely unexplored. This study aimed to investigate potential associations between abnormal cerebellar functional connectivity (FC) and changes in cognitive function by examining intracerebellar and cerebellar-cerebral FC. METHODS MRI data were collected from seventy-two patients with vascular mild cognitive impairment (VMCI), comprising 38 patients with small vessel mild cognitive impairment (SVMCI) and 34 with poststroke mild cognitive impairment (PSMCI), and from 43 demographically matched healthy controls (HCs). Changes in FC between subregions within the cerebellum and from each cerebellar subregion to the selected cerebral seed points in VMCI patients were calculated, and the association of these changes with cognitive function was examined. RESULTS Compared with HCs, we found that VMCI patients had 11 cerebellar subregions showing significant differences (mainly decreases) in FC with brain regions in the default-mode network (DMN), sensory-motor network (SMN), and frontoparietal network (FPN). In the intracerebellar FC analysis, 47 (8%) cerebellar connections had significant intergroup differences, mainly a reduced magnitude of FC in VMCI patients. In the correlation analysis, higher Montreal Cognitive Assessment (MoCA) scores were correlated with stronger intracerebellar FC (left crus II-right lobule VI, left crus II-right lobule VIIb) and cerebellar-cerebral FC (right lobule X-left precuneus, vermal lobule IX-right inferior parietal lobule) in both the SVMCI and PSMCI groups. CONCLUSION These findings suggest prominent intracerebellar and cerebellar-cerebral FC abnormalities in VMCI patients, contributing evidence for a possible role of the cerebellum in cognitive processes.
Collapse
Affiliation(s)
- Zhao Ruan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Xiaoli Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Yidan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Xiaopeng Song
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China.
| |
Collapse
|
34
|
Han Z, Liu T, Shi Z, Zhang J, Suo D, Wang L, Chen D, Wu J, Yan T. Investigating the heterogeneity within the somatosensory-motor network and its relationship with the attention and default systems. PNAS NEXUS 2023; 2:pgad276. [PMID: 37693210 PMCID: PMC10485902 DOI: 10.1093/pnasnexus/pgad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/23/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
The somatosensory-motor network (SMN) not only plays an important role in primary somatosensory and motor processing but is also central to many disorders. However, the SMN heterogeneity related to higher-order systems still remains unclear. Here, we investigated SMN heterogeneity from multiple perspectives. To characterize the SMN substructures in more detail, we used ultra-high-field functional MRI to delineate a finer-grained cortical parcellation containing 430 parcels that is more homogenous than the state-of-the-art parcellation. We personalized the new parcellation to account for individual differences and identified multiscale individual-specific brain structures. We found that the SMN subnetworks showed distinct resting-state functional connectivity (RSFC) patterns. The Hand subnetwork was central within the SMN and exhibited stronger RSFC with the attention systems than the other subnetworks, whereas the Tongue subnetwork exhibited stronger RSFC with the default systems. This two-fold differentiation was observed in the temporal ordering patterns within the SMN. Furthermore, we characterized how the distinct attention and default streams were carried forward into the functions of the SMN using dynamic causal modeling and identified two behavioral domains associated with this SMN fractionation using meta-analytic tools. Overall, our findings provided important insights into the heterogeneous SMN organization at the system level and suggested that the Hand subnetwork may be preferentially involved in exogenous processes, whereas the Tongue subnetwork may be more important in endogenous processes.
Collapse
Affiliation(s)
- Ziteng Han
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhongyan Shi
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Li Wang
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Duanduan Chen
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
35
|
Shen J, Kim WS, Tsogt U, Odkhuu S, Liu C, Kang NI, Lee KH, Sui J, Kim SW, Chung YC. Neuronal signatures of anger and fear in patients with psychosis. Psychiatry Res Neuroimaging 2023; 333:111658. [PMID: 37192564 DOI: 10.1016/j.pscychresns.2023.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
The present study investigated the functional neuroanatomy in response to sentence stimuli related to anger-provoking situations and fear of negative evaluation in patients with psychosis. The tasks consisted of four active conditions, Self-Anger (SA), Self-Fear, Other-Anger (OA), and Other-Fear (OF), and two neutral conditions, Neutral-Anger (NA) and Neutral-Fear (NF). Several relevant clinical measures were obtained. Under all contrasts, significantly higher activation in the left inferior parietal gyrus or superior parietal gyrus and the left middle occipital gyrus or superior occipital gyrus was observed in patients compared to healthy controls (HCs). However, we observed significantly lower activation in the left angular gyrus (AG) and left middle temporal gyrus (MTG) under the OA vs. NA contrast, as well as in the left precuneus and left posterior cingulate gyrus (PCG) under the OF vs. NF contrast in patients. The mean beta values for the significant regions under the SA vs. NA and OF vs. NF contrasts were significantly associated with the total PI and PANSS scores, respectively. These findings indicate that patients with psychosis exhibit hypoactivation in the AG, MTG, precuneus, and PCG compared to HCs. The findings suggest that patients with psychosis are less efficient at recruiting neural responses in those regions for semantic processing and social evaluation.
Collapse
Affiliation(s)
- Jie Shen
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
| | - Woo-Sung Kim
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
| | - Uyanga Tsogt
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
| | - Soyolsaikhan Odkhuu
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
| | - Congcong Liu
- Center for Mental Health Education, Qingdao Institute of Technology, Shandong, China
| | - Nam-In Kang
- Department of Psychiatry, Maeumsarang Hospital, Wanju, Jeollabuk-do, Korea
| | - Keon-Hak Lee
- Department of Psychiatry, Maeumsarang Hospital, Wanju, Jeollabuk-do, Korea
| | - Jing Sui
- State Key Lab of Brain Science and Learning at Beijing Normal University, China
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
36
|
Sendi MS, Zendehrouh E, Fu Z, Liu J, Du Y, Mormino E, Salat DH, Calhoun VD, Miller RL. Disrupted Dynamic Functional Network Connectivity Among Cognitive Control Networks in the Progression of Alzheimer's Disease. Brain Connect 2023; 13:334-343. [PMID: 34102870 PMCID: PMC10442683 DOI: 10.1089/brain.2020.0847] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the most common age-related dementia that promotes a decline in memory, thinking, and social skills. The initial stages of dementia can be associated with mild symptoms, and symptom progression to a more severe state is heterogeneous across patients. Recent work has demonstrated the potential for functional network mapping to assist in the prediction of symptomatic progression. However, this work has primarily used static functional connectivity (sFC) from resting-state functional magnetic resonance imaging. Recently, dynamic functional connectivity (dFC) has been recognized as a powerful advance in functional connectivity methodology to differentiate brain network dynamics between healthy and diseased populations. Methods: Group independent component analysis was applied to extract 17 components within the cognitive control network (CCN) from 1385 individuals across varying stages of AD symptomology. We estimated dFC among 17 components within the CCN, followed by clustering the dFCs into 3 recurring brain states, and then estimated a hidden Markov model and the occupancy rate for each subject. Then, we investigated the link between CCN dFC features and AD progression. Also, we investigated the link between sFC and AD progression and compared its results with dFC results. Results: Progression of AD symptoms was associated with increases in connectivity within the middle frontal gyrus. Also, the very mild AD (vmAD) showed less connectivity within the inferior parietal lobule (in both sFC and dFC) and between this region and the rest of CCN (in dFC analysis). Also, we found that within-middle frontal gyrus connectivity increases with AD progression in both sFC and dFC results. Finally, comparing with vmAD, we found that the normal brain spends significantly more time in a state with lower within-middle frontal gyrus connectivity and higher connectivity between the hippocampus and the rest of CCN, highlighting the importance of assessing the dynamics of brain connectivity in this disease. Conclusion: Our results suggest that AD progress not only alters the CCN connectivity strength but also changes the temporal properties in this brain network. This suggests the temporal and spatial pattern of CCN as a biomarker that differentiates different stages of AD.
Collapse
Affiliation(s)
- Mohammad S.E. Sendi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Elaheh Zendehrouh
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Yuhui Du
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | | | - David H. Salat
- Harvard Medical School, Cambridge, Massachusetts, USA
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Vince D. Calhoun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Robyn L. Miller
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Cosmo C, Zandvakili A, Petrosino NJ, Toutain TGLDO, Miranda JGV, Philip NS. Examining the neural mechanisms of rTMS: a naturalistic pilot study of acute and serial effects in pharmacoresistant depression. Front Neural Circuits 2023; 17:1161826. [PMID: 37206978 PMCID: PMC10188923 DOI: 10.3389/fncir.2023.1161826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Previous studies have demonstrated the effectiveness of therapeutic repetitive transcranial magnetic stimulation (rTMS) to treat pharmacoresistant depression. Nevertheless, these trials have primarily focused on the therapeutic and neurophysiological effects of rTMS following a long-term treatment course. Identifying brain-based biomarkers of early rTMS therapeutic response remains an important unanswered question. In this pilot study, we examined the effects of rTMS on individuals with pharmacoresistant depression using a graph-based method, called Functional Cortical Networks (FCN), and serial electroencephalography (EEG). We hypothesized that changes in brain activity would occur early in treatment course. Methods A total of 15 patients with pharmacoresistant depression underwent five rTMS sessions (5Hz over the left dorsolateral prefrontal cortex, 120%MT, up to 4,000 pulses/session). Five participants received additional rTMS treatment, up to 40 sessions. Resting EEG activity was measured at baseline and following every five sessions, using 64-channel EEG, for 10 minutes with eyes closed. An FCN model was constructed using time-varying graphs and motif synchronization. The primary outcome was acute changes in weighted-node degree. Secondary outcomes included serial FFT-based power spectral analysis and changes in depressive symptoms measured by the 9-Item Patient Health Questionnaire (PHQ-9) and the 30-item Inventory of Depressive Symptoms-Self Report (IDS-SR). Results We found a significant acute effect over the left posterior area after five sessions, as evidenced by an increase in weighted-node degree of 37,824.59 (95% CI, 468.20 to 75,180.98) and a marginal enhancement in the left frontal region (t (14) = 2.0820, p = 0.056). One-way repeated measures ANOVA indicated a significant decrease in absolute beta power over the left prefrontal cortex (F (7, 28) = 2.37, p = 0.048) following ten rTMS sessions. Furthermore, a significant clinical improvement was observed following five rTMS sessions on both PHQ-9 (t (14) = 2.7093, p = 0.017) and IDS-SR (t (14) = 2.5278, p = 0.024) and progressed along the treatment course. Discussion Our findings suggest that FCN models and serial EEG may contribute to a deeper understanding of mechanisms underlying rTMS treatment. Additional research is required to investigate the acute and serial effects of rTMS in pharmacoresistant depression and assess whether early EEG changes could serve as predictors of therapeutic rTMS response.
Collapse
Affiliation(s)
- Camila Cosmo
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States
| | - Amin Zandvakili
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States
| | - Nicholas J. Petrosino
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States
| | | | | | - Noah S. Philip
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, United States
| |
Collapse
|
38
|
Zhang J, Li H, Zhang M, Wang Z, Ao X, Jian J, Wei N, Liu H, Ding G, Meng X. Functional preference of the left inferior parietal lobule to second language reading. Neuroimage 2023; 270:119989. [PMID: 36858331 DOI: 10.1016/j.neuroimage.2023.119989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023] Open
Abstract
Additional neural substance for reading in a second language has been reported by prior studies. However, to date, there has been little investigation into whether and how the brain's adaptation to a second language is induced by specific linguistic tasks or is a general effect during reading in a new language. To address this issue, our study investigated Chinese children learning English as a second language by combining cross-sectional and longitudinal Functional Magnetic Resonance Imaging (fMRI) studies. We compared brain activation across four reading tasks, orthographic tasks and phonological tasks in Chinese (the first language, L1) and English (the second language, L2). By comparing the activation pattern across languages, we observed greater activation in the left inferior parietal lobule (LIPL) in English compared to Chinese, suggesting a functional preference of the LIPL to L2. In addition, greater correlation between LIPL-related FC and L2 was mainly observed in the phonological task, indicating that LIPL could be associated with phonological processing. Moreover, a proportion of the children were enrolled in an 8-week phonological-based reading-training program. We observed significant functional plasticity of the LIPL elicited by this training program only in the English phonological task and not in the orthographic task, further substantiating that the additional requirements of the LIPL in L2 are mainly associated with phonological processing. The findings provide new insights into understanding the functional contribution of the LIPL to reading in a second language.
Collapse
Affiliation(s)
- Jia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hehui Li
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Manli Zhang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing 100871, China; Human Communication, Development, and Information Sciences, Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Zhengke Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing 100871, China
| | - Xiya Ao
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing 100871, China
| | - Jie Jian
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing 100871, China
| | - Na Wei
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haiyi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing 100871, China; PekingU-PolyU Center for Child Development and Learning, Peking University, Beijing 100871, China.
| |
Collapse
|
39
|
Pasquinelli R, Tessier AM, Karas Z, Hu X, Kovelman I. The Development of Left Hemisphere Lateralization for Sentence-Level Prosodic Processing. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:1365-1377. [PMID: 36944046 PMCID: PMC10187959 DOI: 10.1044/2022_jslhr-22-00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/23/2022] [Accepted: 12/23/2022] [Indexed: 05/18/2023]
Abstract
PURPOSE The fine-tuning of linguistic prosody in later childhood is poorly understood, and its neurological processing is even less well studied. In particular, it is unknown if grammatical processing of prosody is left- or right-lateralized in childhood versus adulthood and how phonological working memory might modulate such lateralization. Furthermore, it is virtually unknown how prosody develops neurologically among children with cochlear implants (CIs). METHOD Normal-hearing (NH) children ages 6-12 years and NH adults ages 18-28 years completed a functional near-infrared spectroscopy neuroimaging task, during which they heard sentence pairs and judged whether the sentences did or did not differ in their overall prosody (declarative, question, with or without narrow focus). Children also completed standard measures of expressive and receptive language. RESULTS Age group differences emerged; children exhibited stronger bilateral temporoparietal activity but reduced left frontal activation. Furthermore, children's performance on a nonword repetition test was significantly associated with activation in the left inferior frontal gyrus-an area that was generally more activated in adults than in children. CONCLUSIONS The prosody-related findings are generally consistent with prior neurodevelopmental works on sentence comprehension, especially those involving syntax and semantics, which have also noted a developmental shift from bilateral temporal to left inferior frontal regions typically associated with increased sensitivity to sentence structure. The findings thus inform theoretical perspectives on brain and language development and have implications for studying the effects of CIs on neurodevelopmental processes for sentence prosody. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.22255996.
Collapse
Affiliation(s)
- Rennie Pasquinelli
- Department of Psychology, University of Michigan, Ann Arbor
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD
| | | | - Zachary Karas
- Department of Psychology, University of Michigan, Ann Arbor
| | - Xiaosu Hu
- Department of Psychology, University of Michigan, Ann Arbor
| | | |
Collapse
|
40
|
Kernbach JM, Hartwigsen G, Lim JS, Bae HJ, Yu KH, Schlaug G, Bonkhoff A, Rost NS, Bzdok D. Bayesian stroke modeling details sex biases in the white matter substrates of aphasia. Commun Biol 2023; 6:354. [PMID: 37002267 PMCID: PMC10066402 DOI: 10.1038/s42003-023-04733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Ischemic cerebrovascular events often lead to aphasia. Previous work provided hints that such strokes may affect women and men in distinct ways. Women tend to suffer strokes with more disabling language impairment, even if the lesion size is comparable to men. In 1401 patients, we isolate data-led representations of anatomical lesion patterns and hand-tailor a Bayesian analytical solution to carefully model the degree of sex divergence in predicting language outcomes ~3 months after stroke. We locate lesion-outcome effects in the left-dominant language network that highlight the ventral pathway as a core lesion focus across different tests of language performance. We provide detailed evidence for sex-specific brain-behavior associations in the domain-general networks associated with cortico-subcortical pathways, with unique contributions of the fornix in women and cingular fiber bundles in men. Our collective findings suggest diverging white matter substrates in how stroke causes language deficits in women and men. Clinically acknowledging such sex disparities has the potential to improve personalized treatment for stroke patients worldwide.
Collapse
Affiliation(s)
- Julius M Kernbach
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany
- Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Music, Neuroimaging, and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Lise Meitner Research Group Cognition and Plasticity, Leipzig, Germany
| | - Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee-Joon Bae
- Department of Neurology, Cerebrovascular Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Gottfried Schlaug
- Music, Neuroimaging, and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Anna Bonkhoff
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalia S Rost
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, School of Computer Science, McGill University, Montreal, QC, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| |
Collapse
|
41
|
Tantchik W, Green MJ, Quidé Y, Erk S, Mohnke S, Wackerhagen C, Romanczuk-Seiferth N, Tost H, Schwarz K, Moessnang C, Bzdok D, Meyer-Lindenberg A, Heinz A, Walter H. Investigating the neural correlates of affective mentalizing and their association with general intelligence in patients with schizophrenia. Schizophr Res 2023; 254:190-198. [PMID: 36921404 DOI: 10.1016/j.schres.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND AND HYPOTHESIS Mentalizing impairment in schizophrenia has been linked to altered neural responses. This study aimed to replicate previous findings of altered activation of the mentalizing network in schizophrenia and investigate its possible association with impaired domain-general cognition. STUDY DESIGN We analyzed imaging data from two large multi-centric German studies including 64 patients, 64 matched controls and a separate cohort of 300 healthy subjects, as well as an independent Australian study including 46 patients and 61 controls. All subjects underwent functional magnetic resonance imaging while performing the same affective mentalizing task and completed a cognitive assessment battery. Group differences in activation of the mentalizing network were assessed by classical as well as Bayesian two-sample t-tests. Multiple regression analysis was performed to investigate effects of neurocognitive measures on activation of the mentalizing network. STUDY RESULTS We found no significant group differences in activation of the mentalizing network. Bayes factors indicate that these results provide genuine evidence for the null hypothesis. We found a positive association between verbal intelligence and activation of the medial prefrontal cortex, a key region of the mentalizing network, in three independent samples. Finally, individuals with low verbal intelligence showed altered activation in areas previously implicated in mentalizing dysfunction in schizophrenia. CONCLUSIONS Mentalizing activation in patients with schizophrenia might not differ compared to large well-matched groups of healthy controls. Verbal intelligence is an important confounding variable in group comparisons, which should be considered in future studies of the neural correlates of mentalizing dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Wladimir Tantchik
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany.
| | - Melissa J Green
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Yann Quidé
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; School of Psychology, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Susanne Erk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany
| | - Sebastian Mohnke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany
| | - Carolin Wackerhagen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany
| | - Nina Romanczuk-Seiferth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany
| | - Heike Tost
- Zentralinstitut für Seelische Gesundheit, J 5, 68159 Mannheim, Germany
| | - Kristina Schwarz
- Zentralinstitut für Seelische Gesundheit, J 5, 68159 Mannheim, Germany
| | - Carolin Moessnang
- Zentralinstitut für Seelische Gesundheit, J 5, 68159 Mannheim, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, School of Computer Science, McGill University, 845 Sherbrooke St W, Montreal, Quebec H3A 0G4, Canada; Mila - Quebec Artificial Intelligence Institute, 6666 Rue Saint-Urbain, #200, Montreal, Quebec H2S 3H1, Canada
| | | | - Andreas Heinz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Neurosciences
- CCM, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
42
|
Cheng Q, Roth A, Halgren E, Klein D, Chen JK, Mayberry RI. Restricted language access during childhood affects adult brain structure in selective language regions. Proc Natl Acad Sci U S A 2023; 120:e2215423120. [PMID: 36745780 PMCID: PMC9963327 DOI: 10.1073/pnas.2215423120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/04/2023] [Indexed: 02/08/2023] Open
Abstract
Due to the ubiquitous nature of language in the environment of infants, how it affects the anatomical structure of the brain language system over the lifespan is not well understood. In this study, we investigated the effects of early language experience on the adult brain by examining anatomical features of individuals born deaf with typical or restricted language experience in early childhood. Twenty-two deaf adults whose primary language was American Sign Language and were first immersed in it at ages ranging from birth to 14 y participated. The control group was 21 hearing non-signers. We acquired T1-weighted magnetic resonance images and used FreeSurfer [B. Fischl, Neuroimage 62, 774-781(2012)] to reconstruct the brain surface. Using an a priori regions of interest (ROI) approach, we identified 17 language and 19 somatomotor ROIs in each hemisphere from the Human Connectome Project parcellation map [M. F. Glasser et al., Nature 536, 171-178 (2016)]. Restricted language experience in early childhood was associated with negative changes in adjusted grey matter volume and/or cortical thickness in bilateral fronto-temporal regions. No evidence of anatomical differences was observed in any of these regions when deaf signers with infant sign language experience were compared with hearing speakers with infant spoken language experience, showing that the effects of early language experience on the brain language system are supramodal.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Linguistics, University of Washington, Seattle, WA98195
| | - Austin Roth
- Department of Linguistics, University of California San Diego, San Diego, CA92093
| | - Eric Halgren
- Department of Radiology, University of California San Diego, San Diego, CA92093
- Department of Neuroscience, University of California San Diego, San Diego, CA92093
| | - Denise Klein
- Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealH3A 2B4Canada
| | - Jen-Kai Chen
- Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealH3A 2B4Canada
| | - Rachel I. Mayberry
- Department of Linguistics, University of California San Diego, San Diego, CA92093
| |
Collapse
|
43
|
Wiglesworth A, Fiecas MB, Xu M, Neher AT, Padilla L, Carosella KA, Roediger DJ, Mueller BA, Luciana M, Klimes-Dougan B, Cullen KR. Sex and age variations in the impact of puberty on cortical thickness and associations with internalizing symptoms and suicidal ideation in early adolescence. Dev Cogn Neurosci 2023; 59:101195. [PMID: 36621021 PMCID: PMC9849871 DOI: 10.1016/j.dcn.2022.101195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/23/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The childhood-to-adolescence transition is a notable period of change including pubertal development, neurodevelopment, and psychopathology onset, that occurs in divergent patterns between sexes. This study examined the effects of sex and puberty on cortical thickness (CT) in children and explored whether CT changes over time related to emergence of psychopathology in early adolescence. METHODS We used longitudinal data (baseline ages 9-10 and Year 2 [Y2] ages 11-12) from the ABCD Study (n = 9985). Linear and penalized function-on-function regressions modeled the impact of puberty, as it interacts with sex, on CT. Focusing on regions that showed sex differences, linear and logistic regressions modeled associations between change in CT and internalizing problems and suicide ideation. RESULTS We identified significant sex differences in the inverse relation between puberty and CT in fifteen primarily posterior brain regions. Nonlinear pubertal effects across age were identified in the fusiform, isthmus cingulate, paracentral, and precuneus. All effects were stronger for females relative to males during this developmental window. We did not identify associations between CT change and early adolescent clinical outcomes. CONCLUSION During this age range, puberty is most strongly associated with regional changes in CT in females, which may have implications for the later emergence of psychopathology.
Collapse
Affiliation(s)
| | - Mark B Fiecas
- Division of Biostatistics, University of Minnesota-Twin Cities, USA
| | - Meng Xu
- Division of Biostatistics, University of Minnesota-Twin Cities, USA
| | - Aidan T Neher
- Division of Biostatistics, University of Minnesota-Twin Cities, USA
| | - Laura Padilla
- Department of Neuroscience, University of Minnesota-Twin Cities, USA
| | | | - Donovan J Roediger
- Department of Psychiatry and Behavioral Sciences, University of Minnesota-Twin Cities, USA
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota-Twin Cities, USA
| | - Monica Luciana
- Department of Psychology, University of Minnesota-Twin Cities, USA
| | | | - Kathryn R Cullen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota-Twin Cities, USA
| |
Collapse
|
44
|
Cui M, Guo Q, Chi Y, Zhang M, Yang H, Gao X, Chen H, Liu Y, Ma X. Predictive model of language deficit after removing glioma involving language areas under general anesthesia. Front Oncol 2023; 12:1090170. [PMID: 36741717 PMCID: PMC9892894 DOI: 10.3389/fonc.2022.1090170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Purpose To establish a predictive model to predict the occurrence of language deficit for patients after surgery of glioma involving language areas (GILAs) under general anesthesia (GA). Methods Patients with GILAs were retrospectively collected in our center between January 2009 and December 2020. Clinical variables (age, sex, aphasia quotient [AQ], seizures and KPS), tumor-related variables (recurrent tumor or not, volume, language cortices invaded or not, shortest distance to language areas [SDLA], supplementary motor area or premotor area [SMA/PMA] involved or not and WHO grade) and intraoperative multimodal techniques (used or not) were analyzed by univariate and multivariate analysis to identify their association with temporary or permanent language deficits (TLD/PLD). The predictive model was established according to the identified significant variables. Receiver operating characteristic (ROC) curve was used to assess the accuracy of the predictive model. Results Among 530 patients with GILAs, 498 patients and 441 patients were eligible to assess TLD and PLD respectively. The multimodal group had the higher EOR and rate of GTR than conventional group. The incidence of PLD was 13.4% in multimodal group, which was much lower than that (27.6%, P<0.001) in conventional group. Three factors were associated with TLD, including SDLA (OR=0.85, P<0.001), preoperative AQ (OR=1.04, P<0.001) and multimodal techniques used (OR=0.41, P<0.001). Four factors were associated with PLD, including SDLA (OR=0.83, P=0.001), SMA/PMA involved (OR=3.04, P=0.007), preoperative AQ (OR=1.03, P=0.002) and multimodal techniques used (OR=0.35, P<0.001). The optimal shortest distance thresholds in detecting the occurrence of TLD/PLD were 1.5 and 4mm respectively. The optimal AQ thresholds in detecting the occurrence of TLD/PLD were 52 and 61 respectively. The cutoff values of the predictive probability for TLD/PLD were 23.7% and 16.1%. The area under ROC curve of predictive models for TLD and PLD were 0.70 (95%CI: 0.65-0.75) and 0.72 (95%CI: 0.66-0.79) respectively. Conclusion The use of multimodal techniques can reduce the risk of postoperative TLD/PLD after removing GILAs under general anesthesia. The established predictive model based on clinical variables can predict the probability of occurrence of TLD and PLD, and it had a moderate predictive accuracy.
Collapse
Affiliation(s)
- Meng Cui
- Department of Emergency, The Sixth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China,Medical School of Chinese People's Liberation Army, Beijing, China,*Correspondence: Meng Cui, ; Xiaodong Ma,
| | - Qingbao Guo
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yihong Chi
- Department of Information Technology, Xian Janssen Pharmaceutical Ltd., Beijing, China
| | - Meng Zhang
- Department of Neurosurgery, The Second Hospital of Southern District of Chinese People's Liberation Army Navy, Sanya, China
| | - Hui Yang
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin Gao
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hewen Chen
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yukun Liu
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaodong Ma
- Medical School of Chinese People's Liberation Army, Beijing, China,Department of Neurosurgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China,*Correspondence: Meng Cui, ; Xiaodong Ma,
| |
Collapse
|
45
|
Gan J, Liu W, Fan J, Yi J, Tan C, Zhu X. Correlates of poor insight: A comparative fMRI and sMRI study in obsessive-compulsive disorder and schizo-obsessive disorder. J Affect Disord 2023; 321:66-73. [PMID: 36162685 DOI: 10.1016/j.jad.2022.09.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Despite the several researches on the correlates of insight in psychosis, less is known regarding the specificity of disease diagnosis on the relationship between insight and the correlates. The current study sought to explore the effects of insight and disease diagnosis on those in patients with obsessive-compulsive disorder (OCD) and patients with schizo-obsessive disorder (SOD). METHODS We evaluated clinical symptoms and neurocognitions among 111 patients (including 41 OCD with good insight, 40 OCD with poor insight, 14 SOD with good insight and 16 SOD with poor insight. Gray matter volume and spontaneous neural activity were also examined by analyzing the voxel-based morphometry and amplitude of low frequency fluctuation (ALFF), respectively. RESULTS Interactive effects of insight and diagnosis was found on working memory and the gray matter volume in right superior and middle temporal gyrus. Main effect of insight was found on working and visual memory, compulsion and obsession, and ALFF in right middle and superior occipital cortex. Main effect of diagnosis was found on severity of compulsion, relative verbal IQ, executive function, verbal and visual memory, working memory and ALFF in precuneus, medial superior frontal gyrus, anterior cingulate and paracingulate gyri, and inferior parietal, postcentral gyrus, paracentral lobule. CONCLUSIONS As a common feature in mental disorders, insight has its own special influence on neurocognition and possible structural/functional alterations in brain, and the influence is partly dependent of disease diagnosis.
Collapse
Affiliation(s)
- Jun Gan
- Medical Psychological center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; College of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wanting Liu
- Medical Psychological center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medial Psychological institute of Central South University, Changsha, Hunan 410011, China
| | - Jie Fan
- Medical Psychological center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medial Psychological institute of Central South University, Changsha, Hunan 410011, China.; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
| | - Jinyao Yi
- Medical Psychological center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medial Psychological institute of Central South University, Changsha, Hunan 410011, China
| | - Changlian Tan
- Department of Radiology, Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, China.
| | - Xiongzhao Zhu
- Medical Psychological center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medial Psychological institute of Central South University, Changsha, Hunan 410011, China.; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China.
| |
Collapse
|
46
|
Pour-Rashidi A, Namvar M, Iranmehr A, Carpaneto A, Hanaei S, Rezaei N. Psychological and Psychiatric Aspects of Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:673-687. [PMID: 37452958 DOI: 10.1007/978-3-031-23705-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Central nervous system (CNS) tumors are mainly diagnosed by physical symptoms such as paralysis, visual field defect, seizure, and loss of consciousness. The psychological and psychiatric background of CNS tumors, whether in preoperative or postoperative period, has long been a neglected topic; however, lately, many authors and researchers have paid more attention to these manifestations. Neurocognition is a subset of parameters, including attention, memory, mood, emotions, language production, personality, executive function, problem-solving, calculation, and spatial cognition, making up the patient's cognitive performance. Also, it is worthy to say that neurocognition is considered a parameter of quality of life (QoL). Currently, we know that neurocognitive disorders are a group of symptoms presenting by the patients. These symptoms may be the first picture of CNS lesions, which result in incorrect treatment, a higher financial burden on the patient and health system, and finally, poorer QoL and performance scale if they are not diagnosed early. Psychological and psychiatric problems such as depression, anxiety, and phobia following the CNS tumors have two aspects. These may present before any treatment resulting from the tumoral mass effect, peritumoral edema, or cerebral tissue disruption due to the space-occupying lesion. On the other hand, we can see these features after a kind of therapy such as surgery, medical therapy, or adjuvant therapy. Sometimes, the CNS tumors lead to psychosocial complications postoperatively. Indeed, considering tumor surgery complications, some patients may find various degrees of deficits that make the patient isolated either socially or professionally. Obviously, the improvement rate and outcome of this specific situation depend on the mechanism of occurrence and its causes. For instance, postoperative symptom relief would be expected when the symptoms are related to the tumoral mass effect. Getting familiar with this constellation of the symptoms, realizing them, and then localizing them to the correct area of the CNS are very crucial. Accordingly, because of their importance in QoL, their influence on patient's survival even more than the extent of resection of the tumor, and somehow their ignorance, we will discuss different neurocognitive manifestations related to CNS tumors in this chapter.
Collapse
Affiliation(s)
- Ahmad Pour-Rashidi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohamad Namvar
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Arad Iranmehr
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Allegra Carpaneto
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Via Cherasco 15, 10126, Turin, Italy
| | - Sara Hanaei
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
47
|
Bruner E, Battaglia-Mayer A, Caminiti R. The parietal lobe evolution and the emergence of material culture in the human genus. Brain Struct Funct 2023; 228:145-167. [PMID: 35451642 DOI: 10.1007/s00429-022-02487-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Traditional and new disciplines converge in suggesting that the parietal lobe underwent a considerable expansion during human evolution. Through the study of endocasts and shape analysis, paleoneurology has shown an increased globularity of the braincase and bulging of the parietal region in modern humans, as compared to other human species, including Neandertals. Cortical complexity increased in both the superior and inferior parietal lobules. Emerging fields bridging archaeology and neuroscience supply further evidence of the involvement of the parietal cortex in human-specific behaviors related to visuospatial capacity, technological integration, self-awareness, numerosity, mathematical reasoning and language. Here, we complement these inferences on the parietal lobe evolution, with results from more classical neuroscience disciplines, such as behavioral neurophysiology, functional neuroimaging, and brain lesions; and apply these to define the neural substrates and the role of the parietal lobes in the emergence of functions at the core of material culture, such as tool-making, tool use and constructional abilities.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación Sobre la Evolución Humana, Burgos, Spain
| | | | - Roberto Caminiti
- Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia (IIT), Roma, Italy.
| |
Collapse
|
48
|
Coexistence of the social semantic effect and non-semantic effect in the default mode network. Brain Struct Funct 2023; 228:321-339. [PMID: 35394555 DOI: 10.1007/s00429-022-02476-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/23/2022] [Indexed: 01/07/2023]
Abstract
Neuroimaging studies have found both semantic and non-semantic effects in the default mode network (DMN), leading to an intense debate on the role of the DMN in semantic processes. Four different views have been proposed: (1) the general semantic view holds that the DMN contains several hub regions supporting general semantic processes; (2) the non-semantic view holds that the semantic effects observed in the DMN (especially the ventral angular gyrus) are confounded by difficulty and do not reflect semantic processing per se; (3) the multifunction view holds that the same areas in the DMN can support both semantic and non-semantic functions; and (4) the multisystem view holds that the DMN contains multiple subnetworks supporting different aspects of semantic processes separately. Using an fMRI experiment, we found that in one of the subnetworks of the DMN, called the social semantic network, all areas showed social semantic activation and difficulty-induced deactivation. The distributions of two non-semantic effects, that is, difficulty-induced and task-induced deactivations, showed dissociation in the DMN. In the bilateral angular gyri, the ventral subdivisions showed social semantic activation independent of difficulty, while the dorsal subdivisions showed no semantic effect but difficulty-induced activation. Our findings provide two insights into the semantic and non-semantic functions of the DMN, which are consistent with both the multisystem and multifunction views: first, the same areas of the DMN can support both social semantic and non-semantic functions; second, similar to the multiple semantic effects of the DMN, the non-semantic effects also vary across its subsystems.
Collapse
|
49
|
Wang Z, Zou Z, Xiao J, Wang P, Luo Y, Min W, He Y, Yuan C, Su Y, Yang C, Chang F, Zhu H. Task-related neural activation abnormalities in patients with remitted major depressive disorder: A coordinate-based meta-analysis. Neurosci Biobehav Rev 2022; 143:104929. [DOI: 10.1016/j.neubiorev.2022.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
50
|
Saviola F, Zigiotto L, Novello L, Zacà D, Annicchiarico L, Corsini F, Rozzanigo U, Papagno C, Jovicich J, Sarubbo S. The role of the default mode network in longitudinal functional brain reorganization of brain gliomas. Brain Struct Funct 2022; 227:2923-2937. [PMID: 35460446 PMCID: PMC9653323 DOI: 10.1007/s00429-022-02490-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
The study of patients after glioma resection offers a unique opportunity to investigate brain reorganization. It is currently unknown how the whole-brain connectomic profile evolves longitudinally after surgical resection of a glioma and how this may be associated with tumor characteristics and cognitive outcome. In this longitudinal study, we investigate the impact of tumor lateralization and grade on functional connectivity (FC) in highly connected networks, or hubs, and cognitive performance. Twenty-eight patients (17 high-grade, 11 low-grade gliomas) underwent longitudinal pre/post-surgery resting-state fMRI scans and neuropsychological assessments (73 total measures). FC matrices were constructed considering as functional hubs the default mode (DMN) and fronto-parietal networks. No-hubs included primary sensory functional networks and any other no-hubs nodes. Both tumor hemisphere and grade affected brain reorganization post-resection. In right-hemisphere tumor patients, regardless of grade and relative to left-hemisphere gliomas, FC increased longitudinally after the intervention, both in terms of FC within hubs (phubs = 0.0004) and FC between hubs and no-hubs (phubs-no-hubs = 0.005). Regardless of tumor side, only lower-grade gliomas showed longitudinal FC increases relative to high-grade tumors within a precise hub network, the DMN. The neurocognitive profile was longitudinally associated with spatial features of the connectome, mainly within the DMN. We provide evidence that clinical glioma features, such as lateralization and grade, affect post-surgical longitudinal functional reorganization and cognitive recovery. The data suggest a possible role of the DMN in supporting cognition, providing useful information for prognostic prediction and surgical planning.
Collapse
Affiliation(s)
- Francesca Saviola
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy.
| | - Luca Zigiotto
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Lisa Novello
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
| | - Domenico Zacà
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
| | - Luciano Annicchiarico
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Francesco Corsini
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Umberto Rozzanigo
- Department of Radiology, Division of Neuroradiology, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| | - Costanza Papagno
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
- Department of Psychology, Milano-Bicocca University, Milano, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini, 31-38068, Rovereto, Italy
| | - Silvio Sarubbo
- Department of Emergency, Division of Neurosurgery, Structural and Functional Connectivity Lab Project, "S. Chiara" Hospital, Azienda Provinciale Per I Servizi Sanitari Trento, Trento, Italy
| |
Collapse
|