1
|
Ebrahimzadeh E, Sadjadi SM, Asgarinejad M, Dehghani A, Rajabion L, Soltanian-Zadeh H. Neuroenhancement by repetitive transcranial magnetic stimulation (rTMS) on DLPFC in healthy adults. Cogn Neurodyn 2025; 19:34. [PMID: 39866659 PMCID: PMC11759757 DOI: 10.1007/s11571-024-10195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2024] [Accepted: 10/27/2024] [Indexed: 01/28/2025] Open
Abstract
The term "neuroenhancement" describes the enhancement of cognitive function associated with deficiencies resulting from a specific condition. Nevertheless, there is currently no agreed-upon definition for the term "neuroenhancement", and its meaning can change based on the specific research being discussed. As humans, our continual pursuit of expanding our capabilities, encompassing both cognitive and motor skills, has led us to explore various tools. Among these, repetitive Transcranial Magnetic Stimulation (rTMS) stands out, yet its potential remains underestimated. Historically, rTMS was predominantly employed in studies focused on rehabilitation objectives. A small amount of research has examined its use on healthy subjects with the goal of improving cognitive abilities like risk-seeking, working memory, attention, cognitive control, learning, computing speed, and decision-making. It appears that the insights gained in this domain largely stem from indirect outcomes of rehabilitation research. This review aims to scrutinize these studies, assessing the effectiveness of rTMS in enhancing cognitive skills in healthy subjects. Given that the dorsolateral prefrontal cortex (DLPFC) has become a popular focus for rTMS in treating psychiatric disorders, corresponding anatomically to Brodmann areas 9 and 46, and considering the documented success of rTMS stimulation on the DLPFC for cognitive improvement, our focus in this review article centers on the DLPFC as the focal point and region of interest. Additionally, recognizing the significance of theta burst magnetic stimulation protocols (TBS) in mimicking the natural firing patterns of the brain to modulate excitability in specific cortical areas with precision, we have incorporated Theta Burst Stimulation (TBS) wave patterns. This inclusion, mirroring brain patterns, is intended to enhance the efficacy of the rTMS method. To ascertain if brain magnetic stimulation consistently improves cognition, a thorough meta-analysis of the existing literature has been conducted. The findings indicate that, after excluding outlier studies, rTMS may improve cognition when compared to appropriate control circumstances. However, there is also a considerable degree of variation among the researches. The navigation strategy used to reach the stimulation site and the stimulation location are important factors that contribute to the variation between studies. The results of this study can provide professional athletes, firefighters, bodyguards, and therapists-among others in high-risk professions-with insightful information that can help them perform better on the job.
Collapse
Affiliation(s)
- Elias Ebrahimzadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran Ave., Tehran, Iran
| | - Seyyed Mostafa Sadjadi
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran Ave., Tehran, Iran
| | | | - Amin Dehghani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH USA
| | - Lila Rajabion
- School of Graduate Studies, SUNY Empire State College, Manhattan, NY USA
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran Ave., Tehran, Iran
| |
Collapse
|
2
|
Nikolin S, Moffa A, Martin D, Loo C, Boonstra T. Assessing Neuromodulation Effects of Theta Burst Stimulation to the Prefrontal Cortex Using Transcranial Magnetic Stimulation Electroencephalography (TMS-EEG). Eur J Neurosci 2025; 61:e70121. [PMID: 40308179 PMCID: PMC12044518 DOI: 10.1111/ejn.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
Theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation (TMS), is capable of non-invasively modulating cortical excitability. TBS is gaining popularity as a therapeutic tool for psychiatric disorders such as depression, in which the dorsolateral prefrontal cortex (DLPFC) is the main therapeutic target. However, the neuromodulatory effects of TBS on prefrontal regions remain unclear. Concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) can assess neuromodulation in non-motor regions using TMS-evoked potentials (TEPs) and event-related synchronisation/desynchronisation (ERS/D). We assessed 24 healthy participants (13 males, mean age 25.2 ± 9.9 years) in a single-blinded crossover study design, following intermittent TBS, continuous TBS and sham applied to the left DLPFC. TEPs and ERS/D were obtained at baseline and 2-, 15- and 30-min post-stimulation. Four TEP components (N40, P60, N100 and P200) and two frequency bands (theta and gamma) were analysed using mixed effects repeated measures models (MRMM). Results indicated no significant effects for any assessed components or frequency bands. Relative to sham, the largest TEP effect size was obtained for the N100 component at 15 min post-iTBS (d = -0.50), and the largest frequency effect was obtained for gamma ERS at 15 min post-cTBS (d = 0.53). These results were in the same direction but smaller than found in previous studies, suggesting that effect sizes of the neuromodulatory effects of TBS may be lower than previously reported.
Collapse
Affiliation(s)
- Stevan Nikolin
- School of Clinical Medicine, Discipline of Psychiatry & Mental HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Black Dog InstituteSydneyNew South WalesAustralia
| | - Adriano H. Moffa
- School of Clinical Medicine, Discipline of Psychiatry & Mental HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Black Dog InstituteSydneyNew South WalesAustralia
| | - Donel Martin
- School of Clinical Medicine, Discipline of Psychiatry & Mental HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Black Dog InstituteSydneyNew South WalesAustralia
| | - Colleen Loo
- School of Clinical Medicine, Discipline of Psychiatry & Mental HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Black Dog InstituteSydneyNew South WalesAustralia
| | - Tjeerd W. Boonstra
- School of Clinical Medicine, Discipline of Psychiatry & Mental HealthUniversity of New South WalesSydneyNew South WalesAustralia
- Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtNetherlands
| |
Collapse
|
3
|
Liu P, Song D, Deng X, Shang Y, Ge Q, Wang Z, Zhang H. The effects of intermittent theta burst stimulation (iTBS) on resting-state brain entropy (BEN). Neurotherapeutics 2025; 22:e00556. [PMID: 40050146 PMCID: PMC12047393 DOI: 10.1016/j.neurot.2025.e00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 04/19/2025] Open
Abstract
Intermittent theta burst stimulation (iTBS), a novel protocol within repetitive transcranial magnetic stimulation (rTMS), has shown superior therapeutic effects for depression compared to conventional high-frequency rTMS (HF-rTMS). However, the neural mechanisms underlying iTBS remain poorly understood. Brain entropy (BEN), a measure of the irregularity of brain activity, has recently emerged as a promising marker for regional brain function and has demonstrated sensitivity to depression and HF-rTMS. Given its potential, BEN may help elucidate the mechanisms of iTBS. In this study, we computed BEN using resting-state fMRI data from sixteen healthy participants obtained from OpenNeuro. Participants underwent iTBS over the left dorsolateral prefrontal cortex (L-DLPFC) at two different intensities (90 % and 120 % of resting motor threshold (rMT)) on separate days. We used a 2 × 2 repeated measures analysis of variance (ANOVA) to analyze the interaction between iTBS stimulation intensity and the pre- vs. post-stimulation effects on BEN and paired sample t-tests to examine the specific BEN effects of iTBS at different intensities. Additionally, spatial correlation analysis was conducted to determine whether iTBS altered the baseline coupling between BEN and neurotransmitter receptors/transporters, to investigate potential neurotransmitter changes induced by iTBS. Our results indicate that subthreshold iTBS (90 % rMT) reduced striatal BEN, while suprathreshold iTBS (120 % rMT) increased it. Subthreshold iTBS led to changes in the baseline coupling between BEN and several neurotransmitter receptor/transporter maps, primarily involving serotonin (5-HT), cannabinoid (CB), acetylcholine (ACh), and glutamate (Glu). Our findings suggest that BEN is sensitive to the effects of iTBS, with different stimulation intensities having distinct effects on neural activity. Notably, subthreshold iTBS may offer more effective stimulation. This research highlights the crucial role of stimulation intensity in modulating brain activity and lays the groundwork for future clinical studies focused on optimizing therapeutic outcomes through precise stimulation intensity.
Collapse
Affiliation(s)
- Panshi Liu
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
| | - Donghui Song
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100091, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100091, China.
| | - Xinping Deng
- Shien-Ming Wu School of Intelligent Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - Yuanqi Shang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-being, Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiu Ge
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China; College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Intelligent Imaging Big Data and Functional Nanoimaging Engineering Research Center of Shanxi Province, First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
4
|
Xu X, Nikolin S, Moffa AH, Xu M, Cao TV, Loo CK, Martin DM. Effects of repetitive transcranial magnetic stimulation combined with cognitive training for improving response inhibition: A proof-of-concept, single-blind randomised controlled study. Behav Brain Res 2025; 480:115372. [PMID: 39643046 DOI: 10.1016/j.bbr.2024.115372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Impaired response inhibition is a common characteristic of various psychiatric disorders. Cognitive training (CT) can improve cognitive function, but the benefits may be limited. Repetitive transcranial magnetic stimulation (rTMS) is a promising tool to enhance neuroplasticity, and thereby augment the effects of CT. We aimed to investigate the augmentation effects of rTMS on CT for response inhibition in healthy participants. METHODS Sixty healthy participants were randomly assigned to two experimental groups: one with prolonged intermittent theta burst stimulation (iTBS) + CT and the other with sham iTBS + CT over four experimental sessions. Prolonged iTBS (1800 pulses) was used to stimulate the right inferior frontal cortex (rIFC) and pre-supplementary motor area (pre-SMA) in a counterbalanced order. Participants completed a Stop Signal training task following iTBS over one brain region, followed by the Go/No-Go training task after iTBS over the other brain region. The Stroop task with concomitant electroencephalography was conducted before and immediately after the intervention. RESULTS There were no significant differences between groups in behavioural outcomes on the Stop Signal task, Go/No-Go task, Stroop task or Behavior Rating Inventory of Executive Functioning for Adults. Similarly, analysis of event-related potentials (ERPs) from the Stroop task (N200 and N400) and exploratory cluster-based permutation analysis did not reveal any significant differences between groups. Subgroup analyses revealed that individuals with higher baseline impulsivity exhibited better learning effects in the active group. CONCLUSIONS This first proof of concept study did not find evidence that four sessions of active rTMS + CT could induce cognitive or neurophysiological effects on response inhibition in healthy participants. However, subgroup analyses suggests that rTMS combined with CT could be useful in improving response inhibition in individuals with high impulsivity. It is recommended that future proof of concept studies examine its potential in this clinical population.
Collapse
Affiliation(s)
- Xiaomin Xu
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Adriano H Moffa
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Mei Xu
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Thanh Vinh Cao
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Colleen K Loo
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia
| | - Donel M Martin
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faulty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Black Dog Institute, Hospital Road, Randwick, NSW 2031, Australia.
| |
Collapse
|
5
|
Ren J, Su W, Zhou Y, Han K, Pan R, Duan X, Liu J, Lu H, Zhang P, Zhang W, Sun J, Ding M, Zhu Y, Xie W, Huang J, Zhang H, Liu H. Efficacy and safety of high-dose and personalized TBS on post-stroke cognitive impairment: A randomized controlled trial. Brain Stimul 2025; 18:249-258. [PMID: 39978727 DOI: 10.1016/j.brs.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Cognitive impairments are prevalent among stroke patients, impacting independent living. While intermittent theta burst stimulation (iTBS) shows potential for rehabilitation, the efficacy of the commonly-used doses remains unsatisfactory. OBJECTIVE To investigate the efficacy, dose-dependent effect, and safety of high-dose iTBS targeting the individualized frontoparietal cognitive network (FCN) for post-stroke cognitive recovery. METHODS In a randomized, sham-controlled, three-arm trial, patients with post-stroke cognitive impairment (PSCI) received 15 days of high-dose (3600 pulses/day), standard low-dose (1200 pulses/day) as an active control, or sham iTBS targeting the individualized FCN, alongside cognitive training. Primary outcome measured changes in global cognition via the Montreal Cognitive Assessment (MoCA). Secondary measures included MoCA response rates and score changes in the Wechsler Memory Scale, Wechsler Adult Intelligence Scale, and Mini-Mental State Examination. RESULTS Of forty-five randomized participants, forty-one (8 women; mean [SD] age, 58.63 [8.64] years) were analyzed. Personalized targeting improved focality by 33.0 % over the standard F3 target in E-field analysis. Both high-dose and standard low-dose groups showed significant improvements in MoCA. Importantly, the high-dose group demonstrated superior cognitive recovery over both the active control group (estimated difference = 2.50, p = 0.0339, 95 % CI = 0.15-4.84) and the sham control group (estimated difference = 4.29, p = 0.0001, 95 % CI = 1.99-6.60), indicating a superior effect of high-dose stimulation for cognitive recovery. Similar high-dose and dose-dependent effects were observed in other secondary outcomes, suggesting consistent effects on the memory, intelligence, and mental state. No serious adverse events occurred. CONCLUSIONS This study highlights the efficacy and safety of high-dose iTBS targeting the individualized FCN for post-stroke cognitive recovery.
Collapse
Affiliation(s)
- Jianxun Ren
- Changping Laboratory, Beijing, 102206, China
| | - Wenlong Su
- School of Rehabilitation, Capital Medical University, Beijing, 100069, China; China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, China; School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, 266000, China
| | - Ying Zhou
- Changping Laboratory, Beijing, 102206, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100091, China
| | - Kaiyue Han
- School of Rehabilitation, Capital Medical University, Beijing, 100069, China; China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, China
| | - Ruiqi Pan
- Neural Galaxy Inc., Beijing, 102206, China
| | - Xinyu Duan
- Changping Laboratory, Beijing, 102206, China
| | - Jiajie Liu
- School of Rehabilitation, Capital Medical University, Beijing, 100069, China; China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, China
| | - Haitao Lu
- School of Rehabilitation, Capital Medical University, Beijing, 100069, China; China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, China
| | - Ping Zhang
- Changping Laboratory, Beijing, 102206, China
| | - Wei Zhang
- Changping Laboratory, Beijing, 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jian Sun
- Changping Laboratory, Beijing, 102206, China
| | | | - Yafei Zhu
- Changping Laboratory, Beijing, 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Wuxiang Xie
- Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, 100191, China
| | - Jianting Huang
- Changping Laboratory, Beijing, 102206, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, 100069, China; China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, China; School of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao, 266000, China; Cheeloo College of Medicine, Shandong University, Jinan, 250100, China.
| | - Hesheng Liu
- Changping Laboratory, Beijing, 102206, China; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Meng T, Zhang X, Zhao J, Xue H, Yu L. Acetate and propionate vs. iTBS as a novel method for cognitive dysfunction and anxiety symptoms in delayed encephalopathy after acute carbon monoxide poisoning rat. Front Pharmacol 2025; 16:1520988. [PMID: 40078293 PMCID: PMC11897562 DOI: 10.3389/fphar.2025.1520988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Background The optimal treatment methods for delayed encephalopathy after acute carbon monoxide (CO) poisoning (DEACMP) were not identified. Thus, this study was conducted to compare the efficacies of intermittent theta burst stimulation (iTBS) and short-chain fatty acids (SCFAs) in treating cognitive dysfunction and anxiety symptoms of DEACMP rat. Methods In phase I, a DEACMP rat model was built to assess the inflammation levels in the hippocampus and levels of SCFAs in the serum of DEACMP rats. In phase II, DEACMP rats were randomly assigned into four groups: DEACMP + placebo, DEACMP + SCFAs, DEACMP + sham iTBS, and DEACMP + iTBS. The intervention was continued for 2 weeks. A Morris water maze and open field tests were used to assess cognitive function and anxiety symptoms, respectively. Results The levels of three inflammatory factors (IL-1β, IL-6, and TNF-α) and two SCFAs (acetate and propionate) were significantly increased and decreased, respectively, in DEACMP rats. After treatment, cognitive dysfunction and anxiety symptoms were significantly improved in the DEACMP + iTBS group and the DEACMP + SCFAs (consisting of acetate and propionate) group. Both SCFAs and iTBS could significantly improve the increased levels of IL-1β, IL-6, and TNF-α in the hippocampus, and SCFAs could also improve the decreased levels of GPR41, GPR43, dopamine, and norepinephrine in the hippocampus of DEACMP rats. Conclusion These results indicate that both iTBS and SCFA solutions consisting of acetate and propionate produced good effects on DEACMP rats by regulating inflammation levels in the hippocampus, and acetate/propionate-GPR41/GPR43-IL-1β/IL-6/TNF-α-dopamine/norepinephrine may be a potential pathway in SCFAs for the treatment of DEACMP.
Collapse
Affiliation(s)
- Tianyu Meng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Zhang
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Jili Zhao
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Hui Xue
- Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Chen Y, Xia N, Li J, Liang W, Yin Y, Zhai L, Wang M, Wang Q, Zhang J. Effect of intermittent theta burst stimulation combined with acoustic startle priming motor training on upper limb motor function and neural plasticity in stroke individuals: study protocol for a randomised controlled proof-of-concept trial. BMJ Open 2025; 15:e090049. [PMID: 39894516 PMCID: PMC11792295 DOI: 10.1136/bmjopen-2024-090049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
INTRODUCTION Stroke is a major cause of acquired disability globally, yet the neural mechanisms driving motor recovery post-stroke remain elusive. Recent research has underscored the growing significance of subcortical pathways in neural plasticity and motor control. Among these, the cortico-reticulospinal tract (CRST) has gained attention in rehabilitation due to its unique ascending and descending structural features as well as its cellular properties which position it as an excellent candidate to compensate for inadequate motor control post-stroke. However, the optimal strategies to harness the CRST for motor recovery remain unknown. Non-invasive modulation of the CRST presents a promising though challenging, therapeutic opportunity. Acoustic startle priming (ASP) training and intermittent theta burst stimulation (iTBS) are emerging as potential methods to regulate CRST function. This study aims to investigate the feasibility of segmentally modulating the cortico-reticular and reticulospinal tracts through ASP and iTBS while evaluating the resulting therapeutic effects. METHODS AND ANALYSIS This is a randomised, blinded interventional trial with three parallel groups. A total of 36 eligible participants will be randomly assigned to one of three groups: (1) iTBS+ASP group, (2) iTBS+non-ASP group, (3) sham iTBS+ASP group. The trial comprises four phases: baseline assessment, post-first intervention assessment, assessment after 3 weeks of intervention and a 4-week follow-up. The primary outcomes are the changes in the Fugl-Meyer Assessment-Upper Extremity and Modified Ashworth Scale after the 3-week intervention. Secondary outcomes include neurophysiological metrics and neuroimaging results from diffusion tensor imaging and resting-state functional MRI. ETHICS AND DISSEMINATION The trial is registered with the Chinese Clinical Trial Registry (Registration No. ChiCTR2400085220) and Medical Ethics Committee of Tongji Hospital, affiliated with Tongji Medical College, Huazhong University of Science and Technology (Registration No.TJ-IRB20231109). It will be conducted in the Departments of Rehabilitation Medicine and Radiology at Tongji Hospital in Wuhan, China. The findings will be disseminated through peer-reviewed journal publications and presentations at scientific conferences. TRIAL REGISTRATION NUMBER ChiCTR2400085220.
Collapse
Affiliation(s)
- Yu Chen
- Department of Radiology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Nan Xia
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Jinghong Li
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Weiqiang Liang
- Department of Radiology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Yangyang Yin
- Department of Radiology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Linhan Zhai
- Department of Radiology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Mingzhu Wang
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Qiuxia Wang
- Department of Radiology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Radiology, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, Hubei, China
| |
Collapse
|
8
|
Fedotchev AI. Possibilities of Restoring Impaired Cognitive Functions Using Non-Invasive Activation of Neuroplasticity Mechanisms. Bull Exp Biol Med 2025; 178:399-403. [PMID: 40138109 DOI: 10.1007/s10517-025-06344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 03/29/2025]
Abstract
Negative consequences of various cognitive impairments accompanying many CNS diseases require reliable means for restoring impaired cognitive functions. A promising approach successfully used for this purpose and actively developing line of research is non-invasive brain stimulation that involves neuroplasticity mechanisms in the treatment process. The purpose of this work was to analyze publications of the last 5 years and consider the effects of the used non-invasive stimulation depending on the conditions and parameters of their organization. Examples of successful use of non-invasive brain stimulation with and without feedback from the patient's own bioelectric characteristics, as well as with the use of preliminary activation of neuroplasticity processes using priming were analyzed. The results of the author's own research are presented, demonstrating the possibilities of restoring impaired cognitive functions using EEG-guided light and music stimulation.
Collapse
Affiliation(s)
- A I Fedotchev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|
9
|
Pappalettera C, Fabbrocino A, Miraglia F, Rossini PM, Vecchio F. Combining non-invasive brain stimulation techniques and EEG markers analysis: an innovative approach to cognitive health in aging. GeroScience 2025:10.1007/s11357-025-01545-5. [PMID: 39888586 DOI: 10.1007/s11357-025-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
In an era marked by a rapidly aging global population, delving into the intricate neurophysiological changes that accompany the aging process assumes paramount importance. This narrative review offers a comprehensive exploration of the intricate relationship between electromagnetic neuromodulation and electroencephalography (EEG) within the context of aging. Moreover, it showed the promising landscape of non-invasive neuromodulation techniques, encompassing established methodologies like transcranial magnetic stimulation (TMS) and transcranial direct and alternating current stimulation (tDCS/tACS). These modalities are analyzed for their potential to shape EEG marks in the aging population. These associations not only could broaden our understanding of the aging brain but could also suggest exciting scenarios for therapeutic interventions and cognitive enhancement among the elderly. Consequently, the comprehension of these mechanisms emerges as a critical key player for the development of precisely tailored interventions, aimed at mitigating age-associated cognitive decline and supporting robust brain health in the elderly.
Collapse
Affiliation(s)
- Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Anna Fabbrocino
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy.
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy.
| |
Collapse
|
10
|
Wang J, Zhang M, Wei X, Yang C, Dai M, Dou Z, Wang Y. Effects of intermittent theta burst stimulation on cognitive and swallowing function in patients with MCI and dysphagia risk: a randomized controlled trial. BMC Geriatr 2025; 25:8. [PMID: 39755599 PMCID: PMC11699646 DOI: 10.1186/s12877-024-05625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a high-risk factor for dementia and dysphagia; therefore, early intervention is vital. The effectiveness of intermittent theta burst stimulation (iTBS) targeting the right dorsal lateral prefrontal cortex (rDLPFC) remains unclear. METHODS Thirty-six participants with MCI were randomly allocated to receive real (n = 18) or sham (n = 18) iTBS. Global cognitive function was assessed using the Montreal Cognitive Assessment (MoCA), and executive function was evaluated with the Trail Making Test (TMT), Digital span test (DST) and Stroop color word test (SCWT). Quantitative swallowing measurements were obtained using temporal and kinetic parameters based on the videofluoroscopic swallowing study (VFSS). Resting-state functional magnetic imaging (fMRI) was performed to observe brain plasticity, functional connectivity (FC) values were calculated. All assessments were completed at baseline and two weeks after treatment. Participants received 10 sessions of daily robotic navigated iTBS. RESULTS The MoCA score and the SCWT duration of the real group improved significantly compared with that of the sham group. Temporal parameters of VFSS included 5-ml oral transit time (OTT), 5-ml soft palate elevation time (SET) and 10-ml OTT showed a decreasing trend. However, there was significant improvement in 10-ml OTT when choosing patients with OTT exceeding 1000 ms. FC value between the left middle frontal gyrus and the rDLPFC increased significantly in real stimulation group (p < 0.05 with false discovery rate corrected). We found that baseline FC scores were negatively correlated with the SCWT task duration (r = -0.554, p = 0.017) and with the 10-ml OTT (rho = -0.442, p = 0.027) across all participants. Among those in the iTBS group with a pre-10-ml OTT greater than 1000 ms, we observed a positive correlation between changes in MoCA scores and changes in FC values (r = 0.789, p = 0.035). Furthermore, changes in MoCA scores were positively correlated with changes in 10-ml OTT (r = 0.648, p = 0.031), as determined by Pearson analysis. CONCLUSIONS Navigated iTBS over the rDLPFC has the potential to improve global cognition, response inhibition ability, and certain aspects of swallowing function for patients with MCI at high risk for dysphagia. Changes in FC between right and left DLPFC may underlie the neural mechanisms responsible for the effectiveness of iTBS targeting the right DLPFC.
Collapse
Affiliation(s)
- Jie Wang
- Department of Rehabilitation Medicine (Rehabilitation Center), Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan , Shandong, 250012, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou , Guangdong, 510630, China
| | - Mengqing Zhang
- Department of Rehabilitation Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 318, Middle Renmin Road, Guangzhou , Guangdong, 510120, China
| | - Xiaomei Wei
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou , Guangdong, 510630, China
| | - Cheng Yang
- Department of Rehabilitation Medicine, Shenzhen Hospital of Southern Medical University, No. 1333, Xinhu Road, Shenzhen , Guangdong, 518101, China
| | - Meng Dai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou , Guangdong, 510630, China
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600, Tianhe Road, Guangzhou , Guangdong, 510630, China.
| | - Yonghui Wang
- Department of Rehabilitation Medicine (Rehabilitation Center), Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan , Shandong, 250012, China.
| |
Collapse
|
11
|
Zhang ZR, Li YZ, Wu XQ, Chen WJ, Xu J, Zhao WH, Gong XY. Postoperative cognitive dysfunction in elderly postcardiac surgery patients: progress in rehabilitation application research. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1525813. [PMID: 39741908 PMCID: PMC11686598 DOI: 10.3389/fresc.2024.1525813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025]
Abstract
Postoperative cognitive dysfunction (POCD) is a prevalent complication of the central nervous system in elderly patients following cardiac surgery. This review aims to provide an overview of the etiology, risk factors, diagnostic assessment, and rehabilitation strategies for cognitive dysfunction occurring after cardiac surgery. The pathogenesis of POCD after cardiac surgery includes cerebral microembolism, neuroinflammation, and cryptogenic strokes. Risk factors are associated with advanced age, diminished preoperative cognitive status, and anesthesia. Cognitive function screening tools used for pre- and postoperative assessments can detect changes in patients' cognitive levels in a timely manner. The timely provision of appropriate rehabilitation methods, including cognitive function training, exercise training, transcranial direct current stimulation, and perioperative acupuncture, is crucial, with emerging technologies such as virtual reality playing an increasingly significant role. In conclusion, POCD is a common postoperative complication in elderly cardiac surgery patients, with age and reduced preoperative cognitive function being the primary risk factors. A comprehensive rehabilitation strategy can more effectively address postoperative cognitive dysfunction in patients.
Collapse
Affiliation(s)
- Zhen-Rong Zhang
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang-Zheng Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Qing Wu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen-Jun Chen
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Xu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei-Hua Zhao
- Department of Rehabilitation Medicine, The First People’s Hospital of Shizuishan, Shizuishan, Ningxia, China
| | - Xiao-Yan Gong
- Nursing Department, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Liu M, Jin S, Liu M, Yang B, Wang Q, Fan C, Li Z, Wu L. Global research hotspots and trends of theta burst stimulation from 2004 to 2023: a bibliometric analysis. Front Neurol 2024; 15:1469877. [PMID: 39719979 PMCID: PMC11666417 DOI: 10.3389/fneur.2024.1469877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
Background Theta burst stimulation (TBS) has garnered widespread attention in the scientific community, but a comprehensive bibliometric analysis of TBS research remains absent. This study aims to fill this gap by elucidating the characteristics, hotspots, and trends in TBS publications over the past 20 years using bibliometric methods. Methods We retrieved TBS-related publications from January 1, 2004, to December 31, 2023, from the Web of Science Core Collection (WoSCC). The analysis focused on articles and review articles. Data were processed using the bibliometric package in R software, and CiteSpace and VOSviewer were employed for bibliometric and knowledge mapping analyses. Results A total of 1,206 publications were identified, with 858 included in the analysis. The annual publication volume showed a fluctuating upward trend. Leading institutions and authors were predominantly from the United States of America (USA) and European countries. Core journals and publications also primarily originated from these regions. Current research hotspots include the clinical applications and mechanisms of TBS in neurorehabilitation and depression. TBS cerebellar stimulation has emerged as a promising therapeutic target. Future research is likely to focus on dysphagia, cognitive impairments, and post-traumatic stress disorder. Conclusion This bibliometric analysis provides an overview of the basic knowledge structure, research hotspots, and development trends in TBS research over the past two decades. The findings offer valuable insights into the evolving landscape of TBS research and its potential directions.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Shasha Jin
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Mengya Liu
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qian Wang
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Chunliang Fan
- Department of Physical Therapy, Beijing Xiaotangshan Hospital, Beijing, China
| | - Zhe Li
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Wu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| |
Collapse
|
13
|
Ross JM, Forman L, Gogulski J, Hassan U, Cline CC, Parmigiani S, Truong J, Hartford JW, Chen NF, Fujioka T, Makeig S, Pascual-Leone A, Keller CJ. Sensory Entrained TMS (seTMS) enhances motor cortex excitability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625537. [PMID: 39651225 PMCID: PMC11623581 DOI: 10.1101/2024.11.26.625537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Transcranial magnetic stimulation (TMS) applied to the motor cortex has revolutionized the study of motor physiology in humans. Despite this, TMS-evoked electrophysiological responses show significant variability, due in part to inconsistencies between TMS pulse timing and ongoing brain oscillations. Variable responses to TMS limit mechanistic insights and clinical efficacy, necessitating the development of methods to precisely coordinate the timing of TMS pulses to the phase of relevant oscillatory activity. We introduce Sensory Entrained TMS (seTMS), a novel approach that uses musical rhythms to synchronize brain oscillations and time TMS pulses to enhance cortical excitability. Focusing on the sensorimotor alpha rhythm, a neural oscillation associated with motor cortical inhibition, we examine whether rhythm-evoked sensorimotor alpha phase alignment affects primary motor cortical (M1) excitability in healthy young adults (n=33). We first confirmed using electroencephalography (EEG) that passive listening to musical rhythms desynchronizes inhibitory sensorimotor brain rhythms (mu oscillations) around 200 ms before auditory rhythmic events (27 participants). We then targeted this optimal time window by delivering single TMS pulses over M1 200 ms before rhythmic auditory events while recording motor-evoked potentials (MEPs; 19 participants), which resulted in significantly larger MEPs compared to standard single pulse TMS and an auditory control condition. Neither EEG measures during passive listening nor seTMS-induced MEP enhancement showed dependence on musical experience or training. These findings demonstrate that seTMS effectively enhances corticomotor excitability and establishes a practical, cost-effective method for optimizing non-invasive brain stimulation outcomes.
Collapse
Affiliation(s)
- Jessica M. Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Lily Forman
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Juha Gogulski
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, FI-00029 HUS, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Rakentajanaukio 2, 02150, Espoo, Finland
| | - Umair Hassan
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Christopher C. Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jade Truong
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - James W. Hartford
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Nai-Feng Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Takako Fujioka
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Center for Computer Research in Music and Acoustics (CCRMA), Department of Music, Stanford University, Stanford, CA, USA
| | - Scott Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California, San Diego, CA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Corey J. Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
14
|
Xu J, Liu B, Shang G, Liu S, Feng Z, Yang H, Liu D, Chang Q, Chen Y, Yu X, Mao Z. Deep brain stimulation of the nucleus basalis of Meynert in severe Alzheimer's disease. J Alzheimers Dis Rep 2024; 8:1573-1586. [PMID: 40034361 PMCID: PMC11863734 DOI: 10.1177/25424823241296780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/05/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is increasingly prevalent, leading to severe cognitive decline and a diminished quality of life for patients. Nucleus basalis of Meynert deep brain stimulation (NBM-DBS) is a potential treatment approach. Objective This study aims to assess the efficacy and safety of NBM-DBS for AD patients. Methods We conducted a clinical study involving 6 patients with severe AD who received NBM-DBS. The treatment's safety and efficacy were evaluated using cognitive function tests (Mini-Mental State Examination, Montreal Cognitive Assessment, Alzheimer's Disease Rating Scale- cognitive subscale, Clinical Dementia Rating) and assessments of neuropsychiatric symptoms and sleep disorders (Functional Activity Questionnaire, Functional Independence Measure, Zarit Burden Interview, Hamilton Anxiety Rating Scale, Hamilton Depression Rating Scale, Neuropsychiatric Inventory, Pittsburgh Sleep Quality Index). Results NBM-DBS was safe, with no severe adverse events. It improved cognitive functions and self-care abilities without altering the disease's progression. Notably, NBM-DBS significantly alleviated neuropsychiatric symptoms and sleep disturbances. Conclusions NBM-DBS could be a promising therapeutic approach for severe AD, particularly for managing neuropsychiatric symptoms and sleep disorders. Further research is warranted to confirm these preliminary findings.
Collapse
Affiliation(s)
- Junpeng Xu
- Chinese People's Liberation Army Medical College, Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bin Liu
- Chinese People's Liberation Army Medical College, Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guosong Shang
- Chinese People's Liberation Army Medical College, Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuzhen Liu
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Zhebin Feng
- Chinese People's Liberation Army Medical College, Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haonan Yang
- Chinese People's Liberation Army Medical College, Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Di Liu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuhan Chen
- Neurosurgery Department, First Affiliated Hospital of Hebei Northern Medical College, Zhangjiakou, China
| | - Xinguang Yu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Zheng W, Shi X, Chen Y, Hou X, Yang Z, Yao W, Lv T, Bai F. Comparative efficacy of intermittent theta burst stimulation and high-frequency repetitive transcranial magnetic stimulation in amnestic mild cognitive impairment patients. Cereb Cortex 2024; 34:bhae460. [PMID: 39604076 DOI: 10.1093/cercor/bhae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Intermittent theta burst stimulation, a derivative of repetitive transcranial magnetic stimulation, has been applied to improve cognitive deficits. However, its efficacy and mechanisms in enhancing cognitive function in patients with amnestic mild cognitive impairment compared with traditional repetitive transcranial magnetic stimulation paradigms remain unclear. This study recruited 48 amnestic mild cognitive impairment patients, assigning them to intermittent theta burst stimulation, repetitive transcranial magnetic stimulation, and sham groups (5 times/wk for 4 wk). Neuropsychological assessments and functional magnetic resonance imaging data were collected pre- and post-treatment. Regarding efficacy, both angular gyrus intermittent theta burst stimulation and repetitive transcranial magnetic stimulation significantly improved general cognitive function and memory compared to the sham group, with no significant difference between the 2 treatment groups. Mechanistically, significant changes in brain activity within the temporoparietal network were observed in both the intermittent theta burst stimulation and repetitive transcranial magnetic stimulation groups, and these changes correlated with improvements in general cognitive and memory functions. Additionally, intermittent theta burst stimulation showed stronger modulation of functional connectivity between the hippocampus, parahippocampal gyrus, and temporal regions compared to repetitive transcranial magnetic stimulation. The intermittent theta burst stimulation and repetitive transcranial magnetic stimulation can improve cognitive function in amnestic mild cognitive impairment patients, but intermittent theta burst stimulation may offer higher efficiency. Intermittent theta burst stimulation and repetitive transcranial magnetic stimulation likely enhance cognitive function, especially memory function, by modulating the temporoparietal network.
Collapse
Affiliation(s)
- Wenao Zheng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xian Shi
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xinle Hou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Weina Yao
- Department of Neurology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Tingyu Lv
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 188 Lingshan North Road, Nanjing, 210046, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 188 Lingshan North Road, Nanjing, 210046, China
- Institute of Geriatric Medicine, Medical School of Nanjing University, 188 Lingshan North Road, Nanjing, 210046, China
| |
Collapse
|
16
|
Aghamoosa S, Lopez J, Rbeiz K, Fleischmann HH, Horn O, Madden K, Caulfield KA, Antonucci MU, Revuelta G, McTeague LM, Benitez A. A phase I trial of accelerated intermittent theta burst rTMS for amnestic MCI. J Neurol Neurosurg Psychiatry 2024; 95:1036-1045. [PMID: 38719432 PMCID: PMC11483208 DOI: 10.1136/jnnp-2023-332680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/27/2024] [Indexed: 05/15/2024]
Abstract
BACKGROUND Emerging evidence suggests that repetitive transcranial magnetic stimulation (rTMS) enhances cognition in mild cognitive impairment (MCI). Accelerated intermittent theta burst stimulation (iTBS) rTMS protocols are promising as they substantially reduce burden by shortening the treatment course, but the safety, feasibility, and acceptability of iTBS have not been established in MCI. METHODS 24 older adults with amnestic MCI (aMCI) due to possible Alzheimer's disease enrolled in a phase I trial of open-label accelerated iTBS to the left dorsolateral prefrontal cortex (8 stimulation sessions of 600 pulses of iTBS/day for 3 days). Participants rated common side effects during and after each session and retrospectively (at post-treatment and 4-week follow-up). They completed brain MRI (for safety assessments and electric field modeling), neuropsychiatric evaluations, and neuropsychological testing before and after treatment; a subset of measures was administered at follow-up. RESULTS Retention was high (95%) and there were no adverse neuroradiological, neuropsychiatric, or neurocognitive effects of treatment. Participants reported high acceptability, minimal side effects, and low desire to quit despite some rating the treatment as tiring. Electric field modeling data suggest that all participants received safe and therapeutic cortical stimulation intensities. We observed a significant, large effect size (d=0.98) improvement in fluid cognition using the NIH Toolbox Cognition Battery from pre-treatment to post-treatment. CONCLUSIONS Our findings support the safety, feasibility, and acceptability of accelerated iTBS in aMCI. In addition, we provide evidence of target engagement in the form of improved cognition following treatment. These promising results directly inform future trials aimed at optimizing treatment parameters. TRIAL REGISTRATION NUMBER NCT04503096.
Collapse
Affiliation(s)
- Stephanie Aghamoosa
- Health Sciences and Research, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James Lopez
- Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Katrina Rbeiz
- Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Holly H Fleischmann
- Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Olivia Horn
- Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Katrina Madden
- Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kevin A Caulfield
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
- Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael U Antonucci
- Radiological Science, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gonzalo Revuelta
- Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lisa M McTeague
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
- Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Health Care System, Charleston, South Carolina, USA
| | - Andreana Benitez
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
- Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
17
|
Tan B, Chen J, Liu Y, Lin Q, Wang Y, Shi S, Ye Y, Che X. Differential analgesic effects of high-frequency or accelerated intermittent theta burst stimulation of M1 on experimental tonic pain: Correlations with cortical activity changes assessed by TMS-EEG. Neurotherapeutics 2024; 21:e00451. [PMID: 39304439 PMCID: PMC11585887 DOI: 10.1016/j.neurot.2024.e00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024] Open
Abstract
Accelerated intermittent theta burst stimulation (AiTBS) has attracted much attention in the past few years as a new form of brain stimulation paradigm. However, it is unclear the relative efficacy of AiTBS on cortical excitability compared to conventional high-frequency rTMS. Using concurrent TMS and electroencephalogram (TMS-EEG), this study systematically compared the efficacy on cortical excitability and a typical clinical application (i.e. pain), between AiTBS with different intersession interval (ISIs) and 10-Hz rTMS. Participants received 10-Hz rTMS, AiTBS-15 (3 iTBS sessions with a 15-min ISI), AiTBS-50 (3 iTBS sessions with a 50-min ISI), or Sham stimulation over the primary motor cortex on four separate days. All four protocols included a total of 1800 pulses but with different session durations (10-Hz rTMS = 18, AiTBS-15 = 40, and AiTBS-50 = 110 min). AiTBS-50 and 10-Hz rTMS were more effective in pain reduction compared to AiTBS-15. Using single-pulse TMS-induced oscillation, our data revealed low gamma oscillation as a shared cortical excitability change across all three active rTMS protocols but demonstrated completely opposite directions. Changes in low gamma oscillation were further associated with changes in pain perception across the three active conditions. In contrast, a distinct pattern of TMS-evoked potentials (TEPs) was revealed, with 10-Hz rTMS decreasing inhibitory N100 amplitude and AiTBS-15 reducing excitatory P60 amplitude. These changes in TEPs were also covarying with low gamma power changes. Sham stimulation indicated no significant effect on either cortical excitability or pain perception. These results are relevant only for provoked experimental pain, without being predictive for chronic pain, and revealed a change in low gamma oscillation, particularly around the very particular frequency of 40 Hz, shared between AiTBS and high-frequency rTMS. Conversely, cortical excitability (balance between excitation and inhibition) assessed by TEP recording was modulated differently by AiTBS and high-frequency rTMS paradigms.
Collapse
Affiliation(s)
- Bolin Tan
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jielin Chen
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuye Lin
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuyan Shi
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yang Ye
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
18
|
Ren L, Lv M, Wang X, Schwieter JW, Liu H. iTBS reveals the roles of domain-general cognitive control and language-specific brain regions during word formation rule learning. Cereb Cortex 2024; 34:bhae356. [PMID: 39233376 DOI: 10.1093/cercor/bhae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Repeated exposure to word forms and meanings improves lexical knowledge acquisition. However, the roles of domain-general and language-specific brain regions during this process remain unclear. To investigate this, we applied intermittent theta burst stimulation over the domain-general (group left dorsolateral prefrontal cortex) and domain-specific (Group L IFG) brain regions, with a control group receiving sham intermittent theta burst stimulation. Intermittent theta burst stimulation effects were subsequently assessed in functional magnetic resonance imaging using an artificial word learning task which consisted of 3 learning phases. A generalized psychophysiological interaction analysis explored the whole brain functional connectivity, while dynamic causal modeling estimated causal interactions in specific brain regions modulated by intermittent theta burst stimulation during repeated exposure. Compared to sham stimulation, active intermittent theta burst stimulation improved word learning performance and reduced activation of the left insula in learning phase 2. Active intermittent theta burst stimulation over the domain-general region increased whole-brain functional connectivity and modulated effective connectivity between brain regions during repeated exposure. This effect was not observed when active intermittent theta burst stimulation was applied to the language-specific region. These findings suggest that the domain-general region plays a crucial role in word formation rule learning, with intermittent theta burst stimulation enhancing whole-brain connectivity and facilitating efficient information exchange between key brain regions during new word learning.
Collapse
Affiliation(s)
- Lanlan Ren
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| | - Mengjie Lv
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| | - Xiyuan Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| | - John W Schwieter
- Language Acquisition, Cognition, and Multilingualism Laboratory/Bilingualism Matters, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5, Canada
- Department of Linguistics and Languages, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M2, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Normal University, 850 Huanghe Road, Shahekou District, Liaoning Province, Dalian 116029, China
| |
Collapse
|
19
|
Schmaußer M, Raab M, Laborde S. The dynamic role of the left dlPFC in neurovisceral integration: Differential effects of theta burst stimulation on vagally mediated heart rate variability and cognitive-affective processing. Psychophysiology 2024; 61:e14606. [PMID: 38867447 DOI: 10.1111/psyp.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024]
Abstract
Adapting to the ever-changing demands of the environment requires a complex interplay between cognitive-affective, neuronal, and autonomic processes. Vagally mediated heart rate variability (vmHRV) is positively associated with both cognitive-affective functioning and prefrontal cortex (PFC) activity. Accordingly, the Neurovisceral Integration Model has posited a shared role of the PFC in the regulation of cognitive-affective processes and autonomic nervous system (ANS) activity. While there are numerous correlational findings in this regard, no study so far has investigated whether the manipulation of PFC activity induces changes in vmHRV and cognitive-affective processing in an inter-dependent manner. In a sample of 64 participants, we examined the effects of continuous (cTBS; n = 21) and intermittent theta-burst stimulation (iTBS; n = 20) compared to sham stimulation (n = 23) over the left dorsolateral PFC (dlPFC) on vmHRV and cognitive-affective processing within an emotional stop-signal task (ESST). Our results revealed that both resting vmHRV and vmHRV reactivity predicted cognitive-affective processing. Furthermore, we found a dampening effect of cTBS on resting and on-task vmHRV, as well as an enhancing effect of iTBS on ESST performance. Our results show no direct association between vmHRV changes and ESST performance alterations following stimulation. We interpret our results in the light of a hierarchical model of neurovisceral integration, suggesting a dynamical situation-dependent recruitment of higher-order cortical areas like the dlPFC in the regulation of the ANS. In conclusion, our results highlight the complex interplay between PFC activity, autonomic regulation, and cognitive-affective processing, emphasizing the need for further research to understand the causal dynamics of the underlying neural mechanisms.
Collapse
Affiliation(s)
- Maximilian Schmaußer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Performance Psychology Department, Institute of Psychology, German Sport University, Cologne, Germany
| | - Markus Raab
- Performance Psychology Department, Institute of Psychology, German Sport University, Cologne, Germany
| | - Sylvain Laborde
- Performance Psychology Department, Institute of Psychology, German Sport University, Cologne, Germany
- UFR STAPS, Université de Caen Normandie, Caen, France
| |
Collapse
|
20
|
Feng Y, Huang Z, Ma X, Zong X, Xu P, Lin HW, Zhang Q. Intermittent theta-burst stimulation alleviates hypoxia-ischemia-caused myelin damage and neurologic disability. Exp Neurol 2024; 378:114821. [PMID: 38782349 PMCID: PMC11214828 DOI: 10.1016/j.expneurol.2024.114821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Neonatal hypoxia-ischemia (HI) results in behavioral deficits, characterized by neuronal injury and retarded myelin formation. To date, limited treatment methods are available to prevent or alleviate neurologic sequelae of HI. Intermittent theta-burst stimulation (iTBS), a non-invasive therapeutic procedure, is considered a promising therapeutic tool for treating some neurocognitive disorders and neuropsychiatric diseases. Hence, this study aims to investigate whether iTBS can prevent the negative behavioral manifestations of HI and explore the mechanisms for associations. We exposed postnatal day 10 Sprague-Dawley male and female rats to 2 h of hypoxia (6% O2) following right common carotid artery ligation, resulting in oligodendrocyte (OL) dysfunction, including reduced proliferation and differentiation of oligodendrocyte precursor cells (OPCs), decreased OL survival, and compromised myelin in the corpus callosum (CC) and hippocampal dentate gyrus (DG). These alterations were concomitant with cognitive dysfunction and depression-like behaviors. Crucially, early iTBS treatment (15 G, 190 s, seven days, initiated one day post-HI) significantly alleviated HI-caused myelin damage and mitigated the neurologic sequelae both in male and female rats. However, the late iTBS treatment (initiated 18 days after HI insult) could not significantly impact these behavioral deficits. In summary, our findings support that early iTBS treatment may be a promising strategy to improve HI-induced neurologic disability. The underlying mechanisms of iTBS treatment are associated with promoting the differentiation of OPCs and alleviating myelin damage.
Collapse
Affiliation(s)
- Yu Feng
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Xuemei Zong
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, College of Pharmacy, 715 Sumter Street, CLS609D, Columbia, SC 29208, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA.
| |
Collapse
|
21
|
Zheng B, Chen J, Cao M, Zhang Y, Chen S, Yu H, Liang K. The effect of intermittent theta burst stimulation for cognitive dysfunction: a meta-analysis. Brain Inj 2024; 38:675-686. [PMID: 38651344 DOI: 10.1080/02699052.2024.2344087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Growing evidence suggests that cognitive dysfunction significantly impacts patients' quality of life. Intermittent theta burst stimulation (iTBS) has emerged as a potential intervention for cognitive dysfunction. However, consensus on the iTBS protocol for cognitive impairment is lacking. METHODS We conducted searches in the Cochrane Central Register of Controlled Trials, EMBASE, PubMed, Chinese National Knowledge Infrastructure, Wanfang Database and the Chongqing VIP Chinese Science and Technology Periodical Database from their inception to January 2024. Random-effects meta-analyzes were used to calculate standardized mean differences and 95% confidence intervals. The quality of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation approach. RESULTS Twelve studies involving 506 participants were included in the meta-analysis. The analysis showed a trend toward improvement of total cognitive function, activities of daily living and P300 latency compared to sham stimulation in patients with cognitive dysfunction. Subgroup analysis demonstrated that these effects were restricted to patients with post-stroke cognitive impairment but not Alzheimer's disease or Parkinson's disease. Furthermore, subthreshold stimulation also exhibited a significant improvement. CONCLUSIONS The results suggest that iTBS may improve cognitive function in patients with cognitive dysfunction, although the quality of evidence remains low. Further studies with better methodological quality should explore the effects of iTBS on cognitive function.
Collapse
Affiliation(s)
- Beisi Zheng
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianer Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Center for Rehabilitation Assessment and Therapy, Zhejiang Rehabilitation Medical Center, Hangzhou, Zhejiang, China
| | - Manting Cao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yujia Zhang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shishi Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hong Yu
- Department of Center for Rehabilitation Assessment and Therapy, Zhejiang Rehabilitation Medical Center, Hangzhou, Zhejiang, China
| | - Kang Liang
- The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Neurorehabilitation Department, Zhejiang Rehabilitation Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Liu M, Yu C, Shi J, Xu Y, Li Z, Huang J, Si Z, Yao L, Yin K, Zhao Z. Effects of one-week bilateral cerebellar iTBS on resting-state functional brain network and multi-task attentional performance in healthy individuals: A randomized, sham-controlled trial. Neuroimage 2024; 295:120648. [PMID: 38761882 DOI: 10.1016/j.neuroimage.2024.120648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Cerebellar intermittent theta burst stimulation (iTBS) modulates the excitability of the cerebral cortex and may enhance attentional performance. To date, few studies have conducted iTBS on healthy subjects for one week and used electroencephalography (EEG) to investigate the effect of multiple stimulation sessions on resting-state functional brain networks and the daily stimulation effect on attentional performance. METHODS 16 healthy subjects participated in a one-week experiment, receiving bilateral cerebellar iTBS or sham stimulation and engaging in multi-task attentional training. The primary measures were the one-week attentional performance and pre- and post-experiment resting-state EEG activities. Amplitude Envelope Correlation (AEC) was used to construct the functional connectivity in the eye-open (EO) and eye-closed (EC) phases. RESULTS At least three sessions of iTBS were required to enhance multi-task performance significantly, whereas only one or two sessions failed to elicit the improvement. Compared with the control group, iTBS induced significant changes in PSD, AEC functional connectivity, and AEC network properties during the EO phase, while it had little effect during the EC phase. During the EO phase, the network property changes of the iTBS subject were correlated with improved attentional performance. CONCLUSION The multi-task performance requires multiple stimulations to enhance. iTBS affects the resting-state alpha band brain activities during the EO rather than the EC phase. The AEC network properties may serve as a biomarker to assess the attentional potential of healthy subjects.
Collapse
Affiliation(s)
- Meiliang Liu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China.
| | - Chao Yu
- Nanjing Research Institute of Electronics Technology, Nanjing, China.
| | - Jinping Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yunfang Xu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zijin Li
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Junhao Huang
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zhengye Si
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Li Yao
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Kuiying Yin
- Nanjing Research Institute of Electronics Technology, Nanjing, China.
| | - Zhiwen Zhao
- School of Artificial Intelligence, Beijing Normal University, Beijing, China; Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.
| |
Collapse
|
23
|
Salabat D, Pourebrahimi A, Mayeli M, Cattarinussi G. The Therapeutic Role of Intermittent Theta Burst Stimulation in Schizophrenia: A Systematic Review and Meta-analysis. J ECT 2024; 40:78-87. [PMID: 38277616 DOI: 10.1097/yct.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
ABSTRACT Schizophrenia affects approximately 1% of the population worldwide. Multifactorial reasons, ranging from drug resistance to adverse effects of medications, have necessitated exploring further therapeutic options. Intermittent theta burst stimulation (iTBS) is a novel high-frequency form of transcranial magnetic stimulation, a safe procedure with minor adverse effects with faster and longer-lasting poststimulation effects with a potential role in treating symptoms; however, the exact target brain regions and symptoms are still controversial. Therefore, we aimed to systematically investigate the current literature regarding the therapeutic utilities of iTBS using Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Twelve studies were included among which 9 found iTBS effective to some degree. These studies targeted the dorsolateral prefrontal cortex and the midline cerebellum. We performed a random-effects meta-analysis on studies that compared the effects of iTBS on schizophrenia symptoms measured by the Positive and Negative Syndrome Scale (PANSS) to sham treatment. Our results showed no significant difference between iTBS and sham in PANSS positive and negative scores, but a trend-level difference in PANSS general scores ( k = 6, P = 0.07), and a significant difference in PANSS total scores ( k = 6, P = 0.03). Analysis of the studies targeting the dorsolateral prefrontal cortex showed improvement in PANSS negative scores ( k = 5, standardized mean difference = -0.83, P = 0.049), but not in PANSS positive scores. Moderators (intensity, pulse, quality, sessions) did not affect the results. However, considering the small number of studies included in this meta-analysis, future works are required to further explore the effects of these factors and also find optimum target regions for positive symptoms.
Collapse
|
24
|
Xu M, Nikolin S, Moffa AM, Xu XM, Su Y, Li R, Chan HF, Loo CK, Martin DM. Prolonged intermittent theta burst stimulation targeting the left prefrontal cortex and cerebellum does not affect executive functions in healthy individuals. Sci Rep 2024; 14:11847. [PMID: 38782921 PMCID: PMC11116424 DOI: 10.1038/s41598-024-61404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) for alleviating negative symptoms and cognitive dysfunction in schizophrenia commonly targets the left dorsolateral prefrontal cortex (LDLPFC). However, the therapeutic effectiveness of rTMS at this site remains inconclusive and increasingly, studies are focusing on cerebellar rTMS. Recently, prolonged intermittent theta-burst stimulation (iTBS) has emerged as a rapid-acting form of rTMS with promising clinical benefits. This study explored the cognitive and neurophysiological effects of prolonged iTBS administered to the LDLPFC and cerebellum in a healthy cohort. 50 healthy participants took part in a cross-over study and received prolonged (1800 pulses) iTBS targeting the LDLPFC, cerebellar vermis, and sham iTBS. Mixed effects repeated measures models examined cognitive and event-related potentials (ERPs) from 2-back (P300, N200) and Stroop (N200, N450) tasks after stimulation. Exploratory non-parametric cluster-based permutation tests compared ERPs between conditions. There were no significant differences between conditions for behavioural and ERP outcomes on the 2-back and Stroop tasks. Exploratory cluster-based permutation tests of ERPs did not identify any significant differences between conditions. We did not find evidence that a single session of prolonged iTBS administered to either the LDLPFC or cerebellum could cause any cognitive or ERP changes compared to sham in a healthy sample.
Collapse
Affiliation(s)
- Mei Xu
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
| | - Adriano M Moffa
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
| | - Xiao Min Xu
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Yon Su
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Roger Li
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Ho Fung Chan
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Colleen K Loo
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Donel M Martin
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia.
- Black Dog Institute, Sydney, Australia.
| |
Collapse
|
25
|
Yan M, Liu J, Guo Y, Hou Q, Song J, Wang X, Yu W, Lü Y. Comparative efficacy of non-invasive brain stimulation for post-stroke cognitive impairment: a network meta-analysis. Aging Clin Exp Res 2024; 36:37. [PMID: 38345751 PMCID: PMC10861650 DOI: 10.1007/s40520-023-02662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/14/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS) is a burgeoning approach with the potential to significantly enhance cognition and functional abilities in individuals who have undergone a stroke. However, the current evidence lacks robust comparisons and rankings of various NIBS methods concerning the specific stimulation sites and parameters used. To address this knowledge gap, this systematic review and meta-analysis seek to offer conclusive evidence on the efficacy and safety of NIBS in treating post-stroke cognitive impairment. METHODS A systematic review of randomized control trials (RCT) was performed using Bayesian network meta-analysis. We searched RCT in the following databases until June 2022: Cochrane Central Register of Controlled Trials (CENTRAL), PUBMED, and EMBASE. We compared any active NIBS to control in terms of improving cognition function and activities of daily living (ADL) capacity following stroke. RESULTS After reviewing 1577 retrieved citations, a total of 26 RCTs were included. High-frequency (HF)-repetitive transcranial magnetic stimulation (rTMS) (mean difference 2.25 [95% credible interval 0.77, 3.66]) was identified as a recommended approach for alleviating the global severity of cognition. Dual-rTMS (27.61 [25.66, 29.57]) emerged as a favorable technique for enhancing ADL function. In terms of stimulation targets, the dorsolateral prefrontal cortex exhibited a higher ranking in relation to the global severity of cognition. CONCLUSIONS Among various NIBS techniques, HF-rTMS stands out as the most promising intervention for enhancing cognitive function. Meanwhile, Dual-rTMS is highly recommended for improving ADL capacity.
Collapse
Affiliation(s)
- Mengyu Yan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China
- Institute of Neuroscience, Chongqing Medical University, No. 1 Yixuayuan Road, Yu Zhong District, Chongqing, 400016, China
| | - Jiarui Liu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China
| | - Yiming Guo
- Institute of Neuroscience, Chongqing Medical University, No. 1 Yixuayuan Road, Yu Zhong District, Chongqing, 400016, China
| | - Qingtao Hou
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China
| | - Jiaqi Song
- Institute of Neuroscience, Chongqing Medical University, No. 1 Yixuayuan Road, Yu Zhong District, Chongqing, 400016, China
| | - Xiaoqin Wang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China
| | - Weihua Yu
- Institute of Neuroscience, Chongqing Medical University, No. 1 Yixuayuan Road, Yu Zhong District, Chongqing, 400016, China.
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yu Zhong District, , Chongqing, 400016, China.
| |
Collapse
|
26
|
Yu H, Zheng B, Zhang Y, Chu M, Shu X, Wang X, Wang H, Zhou S, Cao M, Wen S, Chen J. Activation changes in patients with post-stroke cognitive impairment receiving intermittent theta burst stimulation: A functional near-infrared spectroscopy study. NeuroRehabilitation 2024; 54:677-690. [PMID: 38905062 PMCID: PMC11307044 DOI: 10.3233/nre-240068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/05/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) has demonstrated efficacy in patients with cognitive impairment. However, activation patterns and mechanisms of iTBS for post-stroke cognitive impairment (PSCI) remain insufficiently understood. OBJECTIVE To investigate the activation patterns and potential benefits of using iTBS in patients with PSCI. METHODS A total of forty-four patients with PSCI were enrolled and divided into an iTBS group (iTBS and cognitive training) or a control group (cognitive training alone). Outcomes were assessed based on the activation in functional near-infrared spectroscopy (fNIRS), as well as Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) and the modified Barthel Index (MBI). RESULTS Thirty-eight patients completed the interventions and assessments. Increased cortical activation was observed in the iTBS group after the interventions, including the right superior temporal gyrus (STG), left frontopolar cortex (FPC) and left orbitofrontal cortex (OFC). Both groups showed significant improvements in LOTCA and MBI after the interventions (p < 0.05). Furthermore, the iTBS group augmented superior improvement in the total score of MBI and LOTCA compared to the control group, especially in visuomotor organization and thinking operations (p < 0.05). CONCLUSION iTBS altered activation patterns and improved cognitive function in patients with PSCI. The activation induced by iTBS may contribute to the improvement of cognitive function.
Collapse
Affiliation(s)
- Hong Yu
- Zhejiang Rehabilitation Medical Center (The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Beisi Zheng
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Youmei Zhang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minmin Chu
- The Seconditions Hospital of Anhui Medical University, Hefei, China
| | - Xinxin Shu
- Zhejiang Rehabilitation Medical Center (The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Xiaojun Wang
- Zhejiang Rehabilitation Medical Center (The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Hani Wang
- Zhejiang Rehabilitation Medical Center (The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Siwei Zhou
- Zhejiang Rehabilitation Medical Center (The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University), Hangzhou, China
| | - Manting Cao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shilin Wen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianer Chen
- Zhejiang Rehabilitation Medical Center (The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University), Hangzhou, China
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
27
|
Lan XJ, Yang XH, Qin ZJ, Cai DB, Liu QM, Mai JX, Deng CJ, Huang XB, Zheng W. Efficacy and safety of intermittent theta burst stimulation versus high-frequency repetitive transcranial magnetic stimulation for patients with treatment-resistant depression: a systematic review. Front Psychiatry 2023; 14:1244289. [PMID: 37583841 PMCID: PMC10423820 DOI: 10.3389/fpsyt.2023.1244289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Objective Intermittent theta-burst stimulation (iTBS), which is a form of repetitive transcranial magnetic stimulation (rTMS), can produce 600 pulses to the left dorsolateral prefrontal cortex (DLPFC) in a stimulation time of just over 3 min. The objective of this systematic review was to compare the safety and efficacy of iTBS and high-frequency (≥ 5 Hz) rTMS (HF-rTMS) for patients with treatment-resistant depression (TRD). Methods Randomized controlled trials (RCTs) comparing the efficacy and safety of iTBS and HF-rTMS were identified by searching English and Chinese databases. The primary outcomes were study-defined response and remission. Results Two RCTs (n = 474) investigating the efficacy and safety of adjunctive iTBS (n = 239) versus HF-rTMS (n = 235) for adult patients with TRD met the inclusion criteria. Among the two included studies (Jadad score = 5), all were classified as high quality. No group differences were found regarding the overall rates of response (iTBS group: 48.0% versus HF-rTMS group: 45.5%) and remission (iTBS group: 30.0% versus HF-rTMS group: 25.2%; all Ps > 0.05). The rates of discontinuation and adverse events such as headache were similar between the two groups (all Ps > 0.05). Conclusion The antidepressant effects and safety of iTBS and HF-rTMS appeared to be similar for patients with TRD, although additional RCTs with rigorous methodology are needed.
Collapse
Affiliation(s)
- Xian-Jun Lan
- The Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Xin-Hu Yang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen-Juan Qin
- The Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Dong-Bin Cai
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Qi-Man Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Xin Mai
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Can-jin Deng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xing-Bing Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Liu JL, Wang S, Chen ZH, Wu RJ, Yu HY, Yang SB, Xu J, Guo YN, Ding Y, Li G, Zeng X, Ma YH, Gong YL, Wu CR, Zhang LX, Zeng YS, Lai BQ. The therapeutic mechanism of transcranial iTBS on nerve regeneration and functional recovery in rats with complete spinal cord transection. Front Immunol 2023; 14:1153516. [PMID: 37388732 PMCID: PMC10306419 DOI: 10.3389/fimmu.2023.1153516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Background After spinal cord transection injury, the inflammatory microenvironment formed at the injury site, and the cascade of effects generated by secondary injury, results in limited regeneration of injured axons and the apoptosis of neurons in the sensorimotor cortex (SMC). It is crucial to reverse these adverse processes for the recovery of voluntary movement. The mechanism of transcranial intermittent theta-burst stimulation (iTBS) as a new non-invasive neural regulation paradigm in promoting axonal regeneration and motor function repair was explored by means of a severe spinal cord transection. Methods Rats underwent spinal cord transection and 2 mm resection of spinal cord at T10 level. Four groups were studied: Normal (no lesion), Control (lesion with no treatment), sham iTBS (lesion and no functional treatment) and experimental, exposed to transcranial iTBS, 72 h after spinal lesion. Each rat received treatment once a day for 5 days a week; behavioral tests were administered one a week. Inflammation, neuronal apoptosis, neuroprotective effects, regeneration and synaptic plasticity after spinal cord injury (SCI) were determined by immunofluorescence staining, western blotting and mRNA sequencing. For each rat, anterograde tracings were acquired from the SMC or the long descending propriospinal neurons and tested for cortical motor evoked potentials (CMEPs). Regeneration of the corticospinal tract (CST) and 5-hydroxytryptamine (5-HT) nerve fibers were analyzed 10 weeks after SCI. Results When compared to the Control group, the iTBS group showed a reduced inflammatory response and reduced levels of neuronal apoptosis in the SMC when tested 2 weeks after treatment. Four weeks after SCI, the neuroimmune microenvironment at the injury site had improved in the iTBS group, and neuroprotective effects were evident, including the promotion of axonal regeneration and synaptic plasticity. After 8 weeks of iTBS treatment, there was a significant increase in CST regeneration in the region rostral to the site of injury. Furthermore, there was a significant increase in the number of 5-HT nerve fibers at the center of the injury site and the long descending propriospinal tract (LDPT) fibers in the region caudal to the site of injury. Moreover, CMEPs and hindlimb motor function were significantly improved. Conclusion Neuronal activation and neural tracing further verified that iTBS had the potential to provide neuroprotective effects during the early stages of SCI and induce regeneration effects related to the descending motor pathways (CST, 5-HT and LDPT). Furthermore, our results revealed key relationships between neural pathway activation, neuroimmune regulation, neuroprotection and axonal regeneration, as well as the interaction network of key genes.
Collapse
Affiliation(s)
- Jia-Lin Liu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Rehabilitation Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Shuai Wang
- Rehabilitation Medicine Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zheng-Hong Chen
- Rehabilitation Medicine Department, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rong-Jie Wu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, China
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai-Yang Yu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shang-Bin Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Xu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Nan Guo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangzhou Institute of Clinical Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Yu-Lai Gong
- Department of Neurology, Sichuan Provincial Rehabilitation Hospital, Chengdu, China
| | - Chuang-Ran Wu
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li-Xin Zhang
- Rehabilitation Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
29
|
Dong L, Chen WC, Su H, Wang ML, Du C, Jiang XR, Mei SF, Chen SJ, Liu XJ, Liu XB. Intermittent theta burst stimulation to the left dorsolateral prefrontal cortex improves cognitive function in polydrug use disorder patients: a randomized controlled trial. Front Psychiatry 2023; 14:1156149. [PMID: 37304431 PMCID: PMC10248467 DOI: 10.3389/fpsyt.2023.1156149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Background Polydrug abuse is common among opioid users. Individuals who use both heroin and methamphetamine (MA) have been shown to experience a wide range of cognitive deficits. Previous research shows that repetitive transcranial magnetic stimulation (rTMS) can change cerebral cortical excitability and regulate neurotransmitter concentration, which could improve cognitive function in drug addiction. However, the stimulation time, location, and possible mechanisms of rTMS are uncertain. Methods 56 patients with polydrug use disorder were randomized to receive 20 sessions of 10 Hz rTMS (n = 19), iTBS (n = 19), or sham iTBS (n = 18) to the left DLPFC. All patients used MA and heroin concurrently. Cognitive function was assessed and several related proteins including EPI, GABA-Aα5, IL-10, etc. were quantified by ELISA before and after the treatment. Results Baseline RBANS scores were lower than normal for age (77.25; IQR 71.5-85.5). After 20 treatment sessions, in the iTBS group, the RBANS score increased by 11.95 (95% CI 0.02-13.90, p = 0.05). In particular, there were improvements in memory and attention as well as social cognition. Following treatment, serum EPI and GABA-Aα5 were reduced and IL-10 was elevated. The improvement of immediate memory was negatively correlated with GABA-Aα5 (r = -0.646, p = 0.017), and attention was positively correlated with IL-10 (r = 0.610, p = 0.027). In the 10 Hz rTMS group, the improvement of the RBANS total score (80.21 ± 14.08 before vs.84.32 ± 13.80 after) and immediate memory (74.53 ± 16.65 before vs.77.53 ± 17.78 after) was statistically significant compared with the baseline (p < 0.05). However, compared with the iTBS group, the improvement was small and the difference was statistically significant. There was no statistically significant change in the sham group (78.00 ± 12.91 before vs.79.89 ± 10.92 after; p > 0.05). Conclusion Intermittent theta burst stimulation to the left DLPFC may improve cognitive function in polydrug use disorder patients. Its efficacy appears to be better than that of 10 Hz rTMS. The improvement of cognitive function may be related to GABA-Aα5 and IL-10. Our findings preliminarily demonstrate the clinical value of iTBS to the DLPFC to augment neurocognitive recovery in polydrug use disorders.
Collapse
Affiliation(s)
- Ling Dong
- Wuhan Mental Health Center, Wuhan, Hubei Province, China
- Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, China
| | - Wen-Cai Chen
- Wuhan Mental Health Center, Wuhan, Hubei Province, China
- Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai, China
| | - Mei-Ling Wang
- Wuhan Mental Health Center, Wuhan, Hubei Province, China
- Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, China
| | - Cong Du
- Wuhan Mental Health Center, Wuhan, Hubei Province, China
- Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, China
| | - Xing-ren Jiang
- Wuhan Mental Health Center, Wuhan, Hubei Province, China
- Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, China
| | - Shu-fang Mei
- Wuhan Mental Health Center, Wuhan, Hubei Province, China
- Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, China
| | - Si-Jing Chen
- Wuhan Mental Health Center, Wuhan, Hubei Province, China
- Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, China
| | - Xiu-Jun Liu
- Wuhan Mental Health Center, Wuhan, Hubei Province, China
- Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, China
| | - Xue-Bing Liu
- Wuhan Mental Health Center, Wuhan, Hubei Province, China
- Wuhan Hospital for Psychotherapy, Wuhan, Hubei Province, China
| |
Collapse
|
30
|
Casula A, Milazzo BM, Martino G, Sergi A, Lucifora C, Tomaiuolo F, Quartarone A, Nitsche MA, Vicario CM. Non-Invasive Brain Stimulation for the Modulation of Aggressive Behavior-A Systematic Review of Randomized Sham-Controlled Studies. Life (Basel) 2023; 13:life13051220. [PMID: 37240865 DOI: 10.3390/life13051220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
INTRO Aggressive behavior represents a significant public health issue, with relevant social, political, and security implications. Non-invasive brain stimulation (NIBS) techniques may modulate aggressive behavior through stimulation of the prefrontal cortex. AIMS To review research on the effectiveness of NIBS to alter aggression, discuss the main findings and potential limitations, consider the specifics of the techniques and protocols employed, and discuss clinical implications. METHODS A systematic review of the literature available in the PubMed database was carried out, and 17 randomized sham-controlled studies investigating the effectiveness of NIBS techniques on aggression were included. Exclusion criteria included reviews, meta-analyses, and articles not referring to the subject of interest or not addressing cognitive and emotional modulation aims. CONCLUSIONS The reviewed data provide promising evidence for the beneficial effects of tDCS, conventional rTMS, and cTBS on aggression in healthy adults, forensic, and clinical samples. The specific stimulation target is a key factor for the success of stimulation on aggression modulation. rTMS and cTBS showed opposite effects on aggression compared with tDCS. However, due to the heterogeneity of stimulation protocols, experimental designs, and samples, we cannot exclude other factors that may play a confounding role.
Collapse
Affiliation(s)
- Antony Casula
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| | - Bianca M Milazzo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| | - Gabriella Martino
- Dipartimento di Medicina e Clinica Sperimentale, Università degli Studi di Messina, A.O.U. "G. Martino", Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Sergi
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Chiara Lucifora
- Dipartimento di Filosofia e Comunicazione, Università di Bologna, 40131 Bologna, Italy
| | - Francesco Tomaiuolo
- Dipartimento di Medicina e Clinica Sperimentale, Università degli Studi di Messina, A.O.U. "G. Martino", Via Consolare Valeria, 98125 Messina, Italy
| | | | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| |
Collapse
|
31
|
Griff JR, Langlie J, Bencie NB, Cromar ZJ, Mittal J, Memis I, Wallace S, Marcillo AE, Mittal R, Eshraghi AA. Recent advancements in noninvasive brain modulation for individuals with autism spectrum disorder. Neural Regen Res 2022; 18:1191-1195. [PMID: 36453393 PMCID: PMC9838164 DOI: 10.4103/1673-5374.360163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Autism spectrum disorder is classified as a spectrum of neurodevelopmental disorders with an unknown definitive etiology. Individuals with autism spectrum disorder show deficits in a variety of areas including cognition, memory, attention, emotion recognition, and social skills. With no definitive treatment or cure, the main interventions for individuals with autism spectrum disorder are based on behavioral modulations. Recently, noninvasive brain modulation techniques including repetitive transcranial magnetic stimulation, intermittent theta burst stimulation, continuous theta burst stimulation, and transcranial direct current stimulation have been studied for their therapeutic properties of modifying neuroplasticity, particularly in individuals with autism spectrum disorder. Preliminary evidence from small cohort studies, pilot studies, and clinical trials suggests that the various noninvasive brain stimulation techniques have therapeutic benefits for treating both behavioral and cognitive manifestations of autism spectrum disorder. However, little data is available for quantifying the clinical significance of these findings as well as the long-term outcomes of individuals with autism spectrum disorder who underwent transcranial stimulation. The objective of this review is to highlight the most recent advancements in the application of noninvasive brain modulation technology in individuals with autism spectrum disorder.
Collapse
Affiliation(s)
- Jessica R. Griff
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jake Langlie
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nathalie B. Bencie
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zachary J. Cromar
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Idil Memis
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Steven Wallace
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander E. Marcillo
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adrien A. Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Neurotology Division, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA,Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA,Correspondence to: Adrien A. Eshraghi, .
| |
Collapse
|
32
|
Liu J, Wang S, Chen Z, Wu R, Yu H, Yang S, Xu J, Guo Y, Ding Y, Li G, Zeng X, Ma Y, Gong Y, Wu C, Zhang L, Zeng Y, Lai B. Therapeutic mechanism of transcranial iTBS on nerve regeneration and functional recovery in rats with complete spinal cord transection.. [DOI: 10.21203/rs.3.rs-2026215/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Background: After spinal cord transection injury, the inflammatory microenvironment formed in the injury site and the cascade of secondary injury results in limited regeneration of injured axons and the apoptosis of neurons in the sensorimotor cortex (SMC). It is crucial to reverse these adverse processes for the recovery of voluntary movement. In this study, transcranial intermittent theta-burst stimulation (iTBS) was used for the treatment of complete spinal cord transection in rats. The mechanism of transcranial iTBS as a new non-invasive neural regulation paradigm in promoting axonal regeneration and motor function repair was explored.
Methods: Rats from the iTBS group were treated with transcranial iTBS 72h after spinal cord injury (SCI). Each rat was received behavioral testing. Inflammation, neuronal apoptosis, neuroprotective effect, regeneration and synaptic plasticity were measured by immunofluorescence staining, western blotting and mRNA sequencing 2 or 4w after SCI. Each rat was received anterograde tracings in the SMC or the long descending propriospinal neurons and tested for motor evoked potentials. Regeneration of corticospinal tract (CST) and 5-hydroxytryptamine (5-HT) nerve fibers were detected eight weeks after SCI.
Results: Compared with the control group and the sham iTBS group, rats of the iTBS group showed reduced inflammatory responses and neuronal apoptosis in the SMC two weeks after treatment. After four weeks, the neuroimmune microenvironment at the injury site was improved, and neuroprotective effects were seen to promote axonal regeneration and synaptic plasticity. Significantly, eight weeks after treatment, transcranial iTBS also increased the regeneration of CST, 5-HT nerve fibers, and the long descending propriospinal tract (LDPT). Moreover, motor evoked potentials and hindlimb motor function were significantly improved at eight weeks.
Conclusions: Collectively, our results verified that iTBS has the potential to provide neuroprotective effects at early injury stages and pro-regeneration effects related to the 1) CST–5-HT; 2) CST–LDPT; and 3) CST–5-HT–LDPT descending motor pathways and revealed the relationships among neural pathway activation, neuroimmune regulation, neuroprotection, and axonal regeneration, as well as the interaction network of key genes. The proposed non-invasive transcranial iTBS treatment is expected to provide a serviceable practical and theoretical support for spinal cord injury.
Collapse
Affiliation(s)
- Jialin Liu
- Shengjing Hospital affiliated to China Medical University
| | - Shuai Wang
- The First Affiliated Hospital of Sun Yat-sen University,Guangzhou
| | - Zhenghong Chen
- The First Affiliated Hospital of Sun Yat-sen University,Guangzhou
| | | | | | | | | | | | | | - Ge Li
- Guangdong Academy of Medical Science
| | | | - Yuanhuan Ma
- Guangzhou Institute of Clinical Medicine, South China University of Technology
| | - Yulai Gong
- Sichuan Provincial Rehabilitation Hospital
| | | | - Lixin Zhang
- Shengjing Hospital affiliated to China Medical University
| | | | | |
Collapse
|
33
|
Neacsiu AD, Szymkiewicz V, Galla JT, Li B, Kulkarni Y, Spector CW. The neurobiology of misophonia and implications for novel, neuroscience-driven interventions. Front Neurosci 2022; 16:893903. [PMID: 35958984 PMCID: PMC9359080 DOI: 10.3389/fnins.2022.893903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Decreased tolerance in response to specific every-day sounds (misophonia) is a serious, debilitating disorder that is gaining rapid recognition within the mental health community. Emerging research findings suggest that misophonia may have a unique neural signature. Specifically, when examining responses to misophonic trigger sounds, differences emerge at a physiological and neural level from potentially overlapping psychopathologies. While these findings are preliminary and in need of replication, they support the hypothesis that misophonia is a unique disorder. In this theoretical paper, we begin by reviewing the candidate networks that may be at play in this complex disorder (e.g., regulatory, sensory, and auditory). We then summarize current neuroimaging findings in misophonia and present areas of overlap and divergence from other mental health disorders that are hypothesized to co-occur with misophonia (e.g., obsessive compulsive disorder). Future studies needed to further our understanding of the neuroscience of misophonia will also be discussed. Next, we introduce the potential of neurostimulation as a tool to treat neural dysfunction in misophonia. We describe how neurostimulation research has led to novel interventions in psychiatric disorders, targeting regions that may also be relevant to misophonia. The paper is concluded by presenting several options for how neurostimulation interventions for misophonia could be crafted.
Collapse
Affiliation(s)
- Andrada D. Neacsiu
- Duke Center for Misophonia and Emotion Regulation, Duke Brain Stimulation Research Center, Department of Psychiatry and Behavioral Neuroscience, School of Medicine, Duke University, Durham, NC, United States
| | - Victoria Szymkiewicz
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Jeffrey T. Galla
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Brenden Li
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Yashaswini Kulkarni
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Cade W. Spector
- Department of Philosophy, Duke University, Durham, NC, United States
| |
Collapse
|