1
|
Yang Y, Shi M, Liu X, Zhu Q, Xu Z, Liu G, Feng T, Stewart T, Zhang J. Calcium influx: An essential process by which α-Synuclein regulates morphology of erythrocytes. J Adv Res 2024; 62:187-198. [PMID: 37714326 PMCID: PMC11331169 DOI: 10.1016/j.jare.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023] Open
Abstract
INTRODUCTION Morphological abnormalities of erythrocytes/red blood cells (RBCs), e.g., increased acanthocytes, in Parkinson's disease (PD) have been reported previously, although the underlying mechanisms remain to be characterized. In this study, the potential roles of α-synuclein (α-syn), a protein critically involved in PD and highly abundant in RBCs, were studied in PD patients as well as in a PD mouse model. METHODS Transgenic [PAC-Tg (SNCAA53T), A53T] mice overexpressing A53T mutant α-syn and SNCA knockout mice were employed to characterize the effect of α-syn on RBC morphology. In addition to A53T and SNCA knockout mice, the morphology of RBCs of PD patients was also examined using scanning electron microscopy. The potential roles of α-syn were further investigated in cultured RBCs and mice. RESULTS Morphological abnormalities of RBCs and increased accumulation of aggregated α-syn on the RBC membrane were observed in PD patients. A similar phenomenon was also observed in A53T mice. Furthermore, while mice lacking α-syn expression showed a lower proportion of acanthocytes, treating RBCs derived from SNCA knockout mice with aggregated α-syn resulted in a higher percentage of acanthocytes. In a follow-up proteomic investigation, several major classes of proteins were identified as α-syn-associated proteins on the RBC membrane, seven of which were calcium-binding proteins. Applying aggregated α-syn to the RBC membrane directly induced extracellular calcium influx along with morphological changes; both observations were adequately reversed by blocking calcium influx. CONCLUSIONS This study demonstrated that α-syn plays a critical role in PD-associated morphological abnormalities of RBCs, at least partially via a process mediated by extracellular calcium influx.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China; Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Min Shi
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Xiaodan Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China
| | - Qiaoyun Zhu
- Central Laboratory, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Zhi Xu
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China
| | - Genliang Liu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| | - Tessandra Stewart
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA.
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China; National Human Brain Bank for Health and Disease, Zhejiang University, Zhejiang, Hangzhou, China.
| |
Collapse
|
2
|
Song SE, Shin SK, Kim YW, Do YR, Lim AK, Bae JH, Jeong GS, Im SS, Song DK. Lupenone attenuates thapsigargin-induced endoplasmic reticulum stress and apoptosis in pancreatic beta cells possibly through inhibition of protein tyrosine kinase 2 activity. Life Sci 2023; 332:122107. [PMID: 37739164 DOI: 10.1016/j.lfs.2023.122107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
AIMS Prolonged high levels of cytokines, glucose, or free fatty acids are associated with diabetes, elevation of cytosolic Ca2+ concentration ([Ca2+]C), and depletion of Ca2+ concentration in the endoplasmic reticulum (ER) of pancreatic beta cells. This Ca2+ imbalance induces ER stress and apoptosis. Lupenone, a lupan-type triterpenoid, is beneficial in diabetes; however, its mechanism of action is yet to be clarified. This study evaluated the protective mechanism of lupenone against thapsigargin-induced ER stress and apoptosis in pancreatic beta cells. MATERIALS AND METHODS MIN6, INS-1, and native mouse islet cells were used. Western blot for protein expressions, measurement of [Ca2+]C, and in vivo glucose tolerance test were mainly performed. KEY FINDINGS Thapsigargin increased the protein levels of cleaved caspase 3, cleaved PARP, and the phosphorylated form of JNK, ATF4, and CHOP. Thapsigargin increased the interaction between stromal interaction molecule1 (Stim1) and Orai1, enhancing store-operated calcium entry (SOCE). SOCE is further activated by protein tyrosine kinase 2 (Pyk2), which is Ca2+-dependent and phosphorylates the tyrosine residue at Y361 in Stim1. Lupenone inhibited thapsigargin-mediated Pyk2 activation, suppressed [Ca2+]C, ER stress, and apoptosis. Lupenone restored impaired glucose-stimulated insulin secretion effectuated by thapsigargin and glucose intolerance in a low-dose streptozotocin-induced diabetic mouse model. SIGNIFICANCE These results suggested that lupenone attenuated thapsigargin-induced ER stress and apoptosis by inhibiting SOCE; this may be due to the hindrance of Pyk2-mediated Stim1 tyrosine phosphorylation. In beta cells that are inevitably exposed to frequent [Ca2+]C elevation, the attenuation of abnormally high SOCE would be beneficial for their survival.
Collapse
Affiliation(s)
- Seung-Eun Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, South Korea
| | - Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, South Korea
| | - Yong-Woon Kim
- Department of Physiology, Yeungnam University School of Medicine, Daegu, South Korea
| | - Young Rok Do
- Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Ae Kyoung Lim
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, South Korea
| | - Jae-Hoon Bae
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, South Korea
| | - Gil-Saeng Jeong
- Keimyung University, College of Pharmacy, Daegu, South Korea
| | - Seung-Soon Im
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, South Korea
| | - Dae-Kyu Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, South Korea.
| |
Collapse
|
3
|
Alkazmi L, Al-Kuraishy HM, Al-Gareeb AI, El-Bouseary MM, Ahmed EA, Batiha GES. Dantrolene and ryanodine receptors in COVID-19: The daunting task and neglected warden. Clin Exp Pharmacol Physiol 2023; 50:335-352. [PMID: 36732880 DOI: 10.1111/1440-1681.13756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Dantrolene (DTN) is a ryanodine receptor (RyR) antagonist that inhibits Ca2+ release from stores in the sarcoplasmic reticulum. DTN is mainly used in the management of malignant hyperthermia. RyRs are highly expressed in immune cells and are involved in different viral infections, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), because Ca2+ is necessary for viral replication, maturation and release. DTN can inhibit the proliferation of SARS-CoV-2, indicating its potential role in reducing entry and pathogenesis of SARS-CoV-2. DTN may increase clearance of SARS-CoV-2 and promote coronavirus disease 2019 (COVID-19) recovery by shortening the period of infection. DTN inhibits N-methyl-D-aspartate (NMDA) mediated platelets aggregations and thrombosis. Therefore, DTN may inhibit thrombosis and coagulopathy in COVID-19 through suppression of platelet NMDA receptors. Moreover, DTN has a neuroprotective effect against SARS-CoV-2 infection-induced brain injury through modulation of NMDA receptors, which are involved in excitotoxicity, neuronal injury and the development of neuropsychiatric disorders. In conclusion, DTN by inhibiting RyRs may attenuate inflammatory disorders in SARS-CoV-2 infection and associated cardio-pulmonary complications. Therefore, DNT could be a promising drug therapy against COVID-19. Preclinical and clinical studies are warranted in this regards.
Collapse
Affiliation(s)
- Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Maisra M El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Cegarra L, Aguirre P, Nuñez MT, Gerdtzen ZP, Salgado JC. Calcium is a noncompetitive inhibitor of DMT1 on the intestinal iron absorption process: empirical evidence and mathematical modeling analysis. Am J Physiol Cell Physiol 2022; 323:C1791-C1806. [PMID: 36342159 DOI: 10.1152/ajpcell.00411.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Iron absorption is a complex and highly controlled process where DMT1 transports nonheme iron through the brush-border membrane of enterocytes to the cytoplasm but does not transport alkaline-earth metals such as calcium. However, it has been proposed that high concentrations of calcium in the diet could reduce iron bioavailability. In this work, we investigate the effect of intracellular and extracellular calcium on iron uptake by Caco-2 cells, as determined by calcein fluorescence quenching. We found that extracellular calcium inhibits iron uptake by Caco-2 cells in a concentration-dependent manner. Chelation of intracellular calcium with BAPTA did not affect iron uptake, which indicates that the inhibitory effect of calcium is not exerted through intracellular calcium signaling. Kinetic studies performed, provided evidence that calcium acts as a reversible noncompetitive inhibitor of the iron transport activity of DMT1. Based on these experimental results, a mathematical model was developed that considers the dynamics of noncompetitive inhibition using a four-state mechanism to describe the inhibitory effect of calcium on the DMT1 iron transport process in intestinal cells. The model accurately predicts the calcein fluorescence quenching dynamics observed experimentally after an iron challenge. Therefore, the proposed model structure is capable of representing the inhibitory effect of extracellular calcium on DMT1-mediated iron entry into the cLIP of Caco-2 cells. Considering the range of calcium concentrations that can inhibit iron uptake, the possible inhibition of dietary calcium on intestinal iron uptake is discussed.
Collapse
Affiliation(s)
- Layimar Cegarra
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Mammalian Cell Culture Laboratory, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile
| | - Pabla Aguirre
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Marco T Nuñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ziomara P Gerdtzen
- Mammalian Cell Culture Laboratory, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile.,Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.,Millennium Nucleus Marine Agronomy of Seaweed Holobionts, Puerto Mont, Chile
| | - J Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile.,Centre for Biotechnology and Bioengineering, University of Chile, Santiago, Chile
| |
Collapse
|
5
|
Patel V, Abu-Hijleh F, Rigg N, Mishra R. Cannabidiol Protects Striatal Neurons by Attenuating Endoplasmic Reticulum Stress. Cannabis Cannabinoid Res 2022; 8:299-308. [PMID: 36454179 DOI: 10.1089/can.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction: The aggregation of misfolded proteins in the endoplasmic reticulum (ER) is a pathological trait shared by many neurodegenerative disorders. This aggregation leads to the persistent activation of the unfolded protein response (UPR) and ultimately apoptosis as a result of ER stress. Cannabidiol (CBD) has been demonstrated to be neuroprotective in various cellular and animal models of neurodegeneration, which has been attributed to its antioxidant and anti-inflammatory properties. However, little is known about the role of CBD in the context of protein folding and ER stress. The purpose of this study was to investigate whether CBD is neuroprotective against an in vitro model of ER stress. Materials and Methods: Using different exposure models, mouse striatal STHdhQ7/Q7 cells were exposed to either the ER stress inducer thapsigargin (TG) and/or CBD. Cell viabilities assays were used to investigate the effect of CBD pre-treatment, co-treatment, and post-treatment on TG-induced cell death. Real-time quantitative polymerase chain reaction was used to measure changes in ER stress regulators and UPR genes such as glucose-regulated protein-78 (GRP78), mesencephalic astrocyte-derived neurotrophic factor (MANF), B cell lymphoma 2 (BCL-2), BCL-2 interacting mediator of cell death (BIM), and caspase-12. Results: Cell viability increased significantly when cells were pre-treated with CBD before TG exposure. An increase in the gene expression of pro-survival ER chaperone GRP78 and ER-resident neurotrophic factor MANF coincided with this effect and decreased ER-mediated pro-apoptotic markers such as BIM, and caspase-12 was observed. Conclusions: These data suggest that CBD pre-treatment is neuroprotective against TG-induced cell death. Understanding the role of ER stress in CBD-driven neuroprotection provides insight into the therapeutic potential of CBD and the role of ER dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vidhi Patel
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Fahed Abu-Hijleh
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicolette Rigg
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Ram Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Bea-Mascato B, Neira-Goyanes E, Iglesias-Rodríguez A, Valverde D. Depletion of ALMS1 affects TGF-β signalling pathway and downstream processes such as cell migration and adhesion capacity. Front Mol Biosci 2022; 9:992313. [PMID: 36325276 PMCID: PMC9621122 DOI: 10.3389/fmolb.2022.992313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/13/2022] [Indexed: 12/23/2023] Open
Abstract
Background: ALMS1 is a ubiquitous gene associated with Alström syndrome (ALMS). The main symptoms of ALMS affect multiple organs and tissues, generating at last, multi-organic fibrosis in the lungs, kidneys and liver. TGF-β is one of the main pathways implicated in fibrosis, controlling the cell cycle, apoptosis, cell migration, cell adhesion and epithelial-mesenchymal transition (EMT). Nevertheless, the role of ALMS1 gene in fibrosis generation and other implicated processes such as cell migration or cell adhesion via the TGF- β pathway has not been elucidated yet. Methods: Initially, we evaluated how depletion of ALMS1 affects different processes like apoptosis, cell cycle and mitochondrial activity in HeLa cells. Then, we performed proteomic profiling with TGF-β stimuli in HeLa ALMS1 -/- cells and validated the results by examining different EMT biomarkers using qPCR. The expression of these EMT biomarkers were also studied in hTERT-BJ-5ta ALMS1 -/-. Finally, we evaluated the SMAD3 and SMAD2 phosphorylation and cell migration capacity in both models. Results: Depletion of ALMS1 generated apoptosis resistance to thapsigargin (THAP) and C2-Ceramide (C2-C), and G2/M cell cycle arrest in HeLa cells. For mitochondrial activity, results did not show significant differences between ALMS1 +/+ and ALMS1 -/-. Proteomic results showed inhibition of downstream pathways regulated by TGF-β. The protein-coding genes (PCG) were associated with processes like focal adhesion or cell-substrate adherens junction in HeLa. SNAI1 showed an opposite pattern to what would be expected when activating the EMT in HeLa and BJ-5ta. Finally, in BJ-5ta model a reduced activation of SMAD3 but not SMAD2 were also observed. In HeLa model no alterations in the canonical TGF-β pathway were observed but both cell lines showed a reduction in migration capacity. Conclusion: ALMS1 has a role in controlling the cell cycle and the apoptosis processes. Moreover, the depletion of ALMS1 affects the signal transduction through the TGF-β and other processes like the cell migration and adhesion capacity.
Collapse
Affiliation(s)
- Brais Bea-Mascato
- CINBIO, Universidad de Vigo, Vigo, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Elena Neira-Goyanes
- CINBIO, Universidad de Vigo, Vigo, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Antía Iglesias-Rodríguez
- CINBIO, Universidad de Vigo, Vigo, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Diana Valverde
- CINBIO, Universidad de Vigo, Vigo, Spain
- Grupo de Investigación en Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| |
Collapse
|
7
|
Turishcheva E, Vildanova M, Onishchenko G, Smirnova E. The Role of Endoplasmic Reticulum Stress in Differentiation of Cells of Mesenchymal Origin. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:916-931. [PMID: 36180988 PMCID: PMC9483250 DOI: 10.1134/s000629792209005x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 05/23/2023]
Abstract
Endoplasmic reticulum (ER) is a multifunctional membrane-enclosed organelle. One of the major ER functions is cotranslational transport and processing of secretory, lysosomal, and transmembrane proteins. Impaired protein processing caused by disturbances in the ER homeostasis results in the ER stress. Restoration of normal ER functioning requires activation of an adaptive mechanism involving cell response to misfolded proteins, the so-called unfolded protein response (UPR). Besides controlling protein folding, UPR plays a key role in other physiological processes, in particular, differentiation of cells of connective, muscle, epithelial, and neural tissues. Cell differentiation is induced by the physiological levels of ER stress, while excessive ER stress suppresses differentiation and can result in cell death. So far, it remains unknown whether UPR activation induces cell differentiation or if UPR is initiated by the upregulated synthesis of secretory proteins during cell differentiation. Cell differentiation is an important stage in the development of multicellular organisms and is tightly controlled. Suppression or excessive activation of this process can lead to the development of various pathologies in an organism. In particular, impairments in the differentiation of connective tissue cells can result in the development of fibrosis, obesity, and osteoporosis. Recently, special attention has been paid to fibrosis as one of the major complications of COVID-19. Therefore, studying the role of UPR in the activation of cell differentiation is of both theoretical and practical interest, as it might result in the identification of molecular targets for selective regulation of cell differentiation stages and as well as the potential to modulate the mechanisms involved in the development of various pathological states.
Collapse
Affiliation(s)
| | - Mariya Vildanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Galina Onishchenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
8
|
Varlamova EG, Goltyaev MV, Simakin AV, Gudkov SV, Turovsky EA. Comparative Analysis of the Cytotoxic Effect of a Complex of Selenium Nanoparticles Doped with Sorafenib, "Naked" Selenium Nanoparticles, and Sorafenib on Human Hepatocyte Carcinoma HepG2 Cells. Int J Mol Sci 2022; 23:6641. [PMID: 35743086 PMCID: PMC9223423 DOI: 10.3390/ijms23126641] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the use of sorafenib as one of the most effective drugs for the treatment of liver cancer, its significant limitations remain-poor solubility, the need to use high doses with the ensuing complications on healthy tissues and organs, and the formation of cell resistance to the drug. At the same time, there is more and more convincing evidence of the anticancer effect of selenium-containing compounds and nanoparticles. The aim of this work was to develop a selenium-sorafenib nanocomplex and study the molecular mechanisms of its anticancer effect on human hepatocyte carcinoma cells, where nanoselenium is not only a sorafenib transporter, but also an active compound. We have created a selenium-sorafenib nanocomplex based on selenium nanoparticles with size 100 nm. Using vitality tests, fluorescence microscopy, and PCR analysis, it was possible to show that selenium nanoparticles, both by themselves and doped with sorafenib, have a pronounced pro-apoptotic effect on HepG2 cells with an efficiency many times greater than that of sorafenib (So). "Naked" selenium nanoparticles (SeNPs) and the selenium-sorafenib nanocomplex (SeSo), already after 24 h of exposure, lead to the induction of the early stages of apoptosis with the transition to the later stages with an increase in the incubation time up to 48 h. At the same time, sorafenib, at the studied concentrations, began to exert a proapoptotic effect only after 48 h. Under the action of SeNPs and SeSo, both classical pathways of apoptosis induction and ER-stress-dependent pathways involving Ca2+ ions are activated. Thus, sorafenib did not cause the generation of Ca2+ signals by HepG2 cells, while SeNPs and SeSo led to the activation of the Ca2+ signaling system of cells. At the same time, the selenium-sorafenib nanocomplex turned out to be more effective in activating the Ca2+ signaling system of cells, inducing apoptosis and ER stress by an average of 20-25% compared to "naked" selenium nanoparticles. Our data on the mechanisms of action and the created nanocomplex are promising as a platform for the creation of highly selective and effective drugs with targeted delivery to tumors.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Mikhail V. Goltyaev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Aleksander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia; (A.V.S.); (S.V.G.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia; (A.V.S.); (S.V.G.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| |
Collapse
|
9
|
Erythropoietin Nanobots: Their Feasibility for the Controlled Release of Erythropoietin and Their Neuroprotective Bioequivalence in Central Nervous System Injury. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Erythropoietin (EPO) plays important roles in neuroprotection in central nervous system injury. Due to the limited therapeutic time window and coexistence of hematopoietic/extrahematopoietic receptors displaying heterogenic and phylogenetic differences, fast, targeted delivery agents, such as nanobots, are needed. To confirm the feasibility of EPO-nanobots (ENBs) as therapeutic tools, the authors evaluated controlled EPO release from ENBs and compared the neuroprotective bioequivalence of these substances after preconditioning sonication. Methods: ENBs were manufactured by a nanospray drying technique with preconditioning sonication. SH-SY5Y neuronal cells were cotreated with thapsigargin and either EPO or ENBs before cell viability, EPO receptor activation, and endoplasmic reticulum stress-related pathway deactivation were determined over 24 h. Results: Preconditioning sonication (50–60 kHz) for 1 h increased the cumulative EPO release from the ENBs (84% versus 25% at 24 h). Between EPO and ENBs at 24 h, both neuronal cell viability (both > 65% versus 15% for thapsigargin alone) and the expression of the proapoptotic/apoptotic biomolecular markers JAK2, PDI, PERK, GRP78, ATF6, CHOP, TGF-β, and caspase-3 were nearly the same or similar. Conclusion: ENBs controlled EPO release in vitro after preconditioning sonication, leading to neuroprotection similar to that of EPO at 24 h.
Collapse
|
10
|
Jiang X, Yu W, Wu S, Tang L, Zhong G, Wan F, Lan J, Zhang H, Pan J, Tang Z, Zhang X, Hu L, Huang R. Arsenic (III) and/or Antimony (III) induced disruption of calcium homeostasis and endoplasmic reticulum stress resulting in apoptosis in mice heart. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112394. [PMID: 34091186 DOI: 10.1016/j.ecoenv.2021.112394] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) and antimony (Sb) are known as an environmental contaminant with cardiotoxicity properties. The endoplasmic reticulum (ER) is the largest calcium reservoir in the cell, and its calcium homeostasis disorder plays a vital role in endoplasmic reticulum stress (ERS) and apoptosis. The objective of this study was to investigate whether As and Sb induced apoptosis via endoplasmic reticulum stress (ERS) linked to calcium homeostasis disturbance. In this study, thirty-two adult mice were gavage-fed daily with As2O3 (4 mg/kg), SbCl3 (15 mg/kg) and co-treat with SbCl3 (15 mg/kg) and As2O3 (4 mg/kg) daily for 60 days. It was observed that As or/and Sb caused histopathological lesions and ER expansion of the heart. Meanwhile, the gene expression of ER Ca2+ release channels (RyR2 and IP3R) and calmodulin-dependent protein kinase II (CaMKII) increased while the levels of mRNA and protein of ER Ca2+ uptake channel (SERCA2) downregulated significantly compared to the controls. Then, As or/and Sb induced ERS and triggered the ER apoptotic pathway by activating unfolded protein response (UPR)-associated genes ((PERK, ATF6, IRE1, XBP1, JNK, GRP78), and apoptosis-related genes (Caspase12, Caspase3, p53, CHOP). Above indicators in As + Sb group became more severe than that of As group and Sb group. Overall, our results proved that the cardiotoxicity caused by As or/and Sb might be concerning disturbing calcium homeostasis, which induced apoptosis through the ERS pathway.
Collapse
Affiliation(s)
- Xuanxuan Jiang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Wenlan Yu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Lixuan Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Wan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Lan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Guzmán Mendoza NA, Homma K, Osada H, Toda E, Ban N, Nagai N, Negishi K, Tsubota K, Ozawa Y. Neuroprotective Effect of 4-Phenylbutyric Acid against Photo-Stress in the Retina. Antioxidants (Basel) 2021; 10:1147. [PMID: 34356380 PMCID: PMC8301054 DOI: 10.3390/antiox10071147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Exposure to excessive visible light causes retinal degeneration and may influence the progression of retinal blinding diseases. However, there are currently no applied treatments. Here, we focused on endoplasmic reticulum (ER) stress, which can cause cellular degeneration and apoptosis in response to stress. We analyzed functional, histological, and molecular changes in the light-exposed retina and the effects of administering an ER-stress inhibitor, 4-phenylbutyric acid (4-PBA), in mice. We found that light-induced visual function impairment related to photoreceptor cell loss and outer segment degeneration were substantially suppressed by 4-PBA administration, following attenuated photoreceptor apoptosis. Induction of retinal ER stress soon after light exposure, represented by upregulation of the immunoglobulin heavy chain binding protein (BiP) and C/EBP-Homologous Protein (CHOP), were suppressed by 4-PBA. Concurrently, light-induced oxidative stress markers, Nuclear factor erythroid 2-related factor 2 (Nrf2) and Heme Oxygenase 1 (HO-1), and mitochondrial apoptotic markers, B-cell lymphoma 2 apoptosis regulator (Bcl-2)-associated death promoter (Bad), and Bcl-2-associated X protein (Bax), were suppressed by 4-PBA administration. Increased expression of glial fibrillary acidic protein denoted retinal neuroinflammation, and inflammatory cytokines were induced after light exposure; however, 4-PBA acted as an anti-inflammatory. Suppression of ER stress by 4-PBA may be a new therapeutic approach to suppress the progression of retinal neurodegeneration and protect visual function against photo-stress.
Collapse
Affiliation(s)
- Naymel Alejandra Guzmán Mendoza
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Kohei Homma
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Hideto Osada
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Eriko Toda
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Norimitsu Ban
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Norihiro Nagai
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
- Department of Ophthalmology, St. Luke’s International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
- Laboratory of Retinal Cell Biology, St. Luke’s International University, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Kazuo Tsubota
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
| | - Yoko Ozawa
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.A.G.M.); (K.H.); (H.O.); (E.T.); (N.B.); (N.N.)
- Department of Ophthalmology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.N.); (K.T.)
- Department of Ophthalmology, St. Luke’s International Hospital, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
- Laboratory of Retinal Cell Biology, St. Luke’s International University, 9-1 Akashi-cho, Chuo-ku, Tokyo 104-8560, Japan
| |
Collapse
|
12
|
Hanna AD, Lee CS, Babcock L, Wang H, Recio J, Hamilton SL. Pathological mechanisms of vacuolar aggregate myopathy arising from a Casq1 mutation. FASEB J 2021; 35:e21349. [PMID: 33786938 DOI: 10.1096/fj.202001653rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/11/2022]
Abstract
Mice with a mutation (D244G, DG) in calsequestrin 1 (CASQ1), analogous to a human mutation in CASQ1 associated with a delayed onset human myopathy (vacuolar aggregate myopathy), display a progressive myopathy characterized by decreased activity, decreased ability of fast twitch muscles to generate force and low body weight after one year of age. The DG mutation causes CASQ1 to partially dissociate from the junctional sarcoplasmic reticulum (SR) and accumulate in the endoplasmic reticulum (ER). Decreased junctional CASQ1 reduces SR Ca2+ release. Muscles from older DG mice display ER stress, ER expansion, increased mTOR signaling, inadequate clearance of aggregated proteins by the proteasomes, and elevation of protein aggregates and lysosomes. This study suggests that the myopathy associated with the D244G mutation in CASQ1 is driven by CASQ1 mislocalization, reduced SR Ca2+ release, CASQ1 misfolding/aggregation and ER stress. The subsequent maladaptive increase in protein synthesis and decreased protein aggregate clearance are likely to contribute to disease progression.
Collapse
Affiliation(s)
- Amy D Hanna
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Chang Seok Lee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Lyle Babcock
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Hui Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Recio
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Susan L Hamilton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Gonzalez-Gronow M, Gopal U, Austin RC, Pizzo SV. Glucose-regulated protein (GRP78) is an important cell surface receptor for viral invasion, cancers, and neurological disorders. IUBMB Life 2021; 73:843-854. [PMID: 33960608 DOI: 10.1002/iub.2502] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 12/22/2022]
Abstract
The 78 kDa glucose-regulated protein (GRP78) is an endoplasmic reticulum (ER)-resident molecular chaperone. GRP78 is a member of the 70 kDa heat shock family of proteins involved in correcting and clearing misfolded proteins in the ER. In response to cellular stress, GRP78 escapes from the ER and moves to the plasma membrane where it (a) functions as a receptor for many ligands, and (b) behaves as an autoantigen for autoantibodies that contribute to human disease and cancer. Cell surface GRP78 (csGRP78) associates with the major histocompatibility complex class I (MHC-I), and is the port of entry for several viruses, including the predictive binding of the novel SARS-CoV-2. Furthermore, csGRP78 is found in association with partners as diverse as the teratocarcinoma-derived growth factor 1 (Cripto), the melanocortin-4 receptor (MC4R) and the DnaJ-like protein MTJ-1. CsGRP78 also serves as a receptor for a large variety of ligands including activated α2 -macroglobulin (α2 M*), plasminogen kringle 5 (K5), microplasminogen, the voltage-dependent anion channel (VDAC), tissue factor (TF), and the prostate apoptosis response-4 protein (Par-4). In this review, we discuss the mechanisms involved in the translocation of GRP78 from the ER to the cell surface, and the role of secreted GRP78 and its autoantibodies in cancer and neurological disorders.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- Department of Biological Sciences, Laboratory of Environmental Neurotoxicology, Faculty of Medicine, Universidad Católica del Norte, Coquimbo, Chile.,Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Udhayakumar Gopal
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University and The Research Institute of St. Joseph's Hamilton, Hamilton, Ontario, Canada
| | - Salvatore V Pizzo
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
14
|
Wang Y, Zhang Z, Auyeung KKW, Cho CH, Yung KKL, Ko JKS. Cryptotanshinone-Induced p53-Dependent Sensitization of Colon Cancer Cells to Apoptotic Drive by Regulation of Calpain and Calcium Homeostasis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1179-1202. [PMID: 32668972 DOI: 10.1142/s0192415x20500585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over-expression of calpains in tumor tissues can be associated with cancer progression. Thus, inhibition of calpain activity using specific inhibitors has become a novel approach to control tumor growth. In this study, the anticancer potential of cryptotanshinone in combination with calpain inhibitor had been investigated in colon cancer cells and tumor xenograft. Cryptotanshinone elicited an initial endoplasmic reticular (ER) stress response, whereas prolonged stress would result in the promotion of apoptosis. It was then discovered that cryptotanshinone could cause rapid and sustained increase in cytosolic calcium in colon cancer cells accompanied by early GRP78 overexpression, which could be attenuated by pre-treatment of the calcium chelator BAPTA-AM. Cryptotanshinone also facilitated an early increase in calpain activity, which could be blocked by BAPTA-AM or the calpain inhibitor PD150606. A dynamic interaction between GRP78 and calpain during the action of cryptotanshinone was unveiled. This together with the altered NF-[Formula: see text]B signaling could be abolished by calpain inhibitor. GRP78 knockdown increased the sensitivity of cancer cells to cryptotanshinone-evoked apoptosis and reduction of cancer cell colony formation. Such sensitization of drug action had been confirmed to be p53-dependent by using p53-mutated (HT-29) and p53-deficient (HCT116 p53-∕-) cells. The synergistic antitumor effect of cryptotanshinone and calpain inhibitor was further exhibited in vivo. Taken together, findings in this study exemplify a new chemotherapeutic regimen comprising cryptotanshinone and calpain inhibitor by regulation of calpain and calcium homeostasis. This has provided us with new insights in the search of a potential target-specific neoadjuvant therapy against colon cancer.
Collapse
Affiliation(s)
- Yue Wang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Zhu Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Kathy Ka-Wai Auyeung
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chi-Hin Cho
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P. R. China
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, P. R. China
| | - Joshua Ka-Shun Ko
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, P. R. China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong, Baptist University, Hong Kong SAR, P. R. China
| |
Collapse
|
15
|
Munder A, Moskovitz Y, Meir A, Kahremany S, Levy L, Kolitz-Domb M, Cohen G, Shtriker E, Viskind O, Lellouche JP, Senderowitz H, Chessler SD, Korshin EE, Ruthstein S, Gruzman A. Neuroligin-2-derived peptide-covered polyamidoamine-based (PAMAM) dendrimers enhance pancreatic β-cells' proliferation and functions. MEDCHEMCOMM 2019; 10:280-293. [PMID: 30881615 PMCID: PMC6390468 DOI: 10.1039/c8md00419f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023]
Abstract
Pancreatic β-cell membranes and presynaptic areas of neurons contain analogous protein complexes that control the secretion of bioactive molecules. These complexes include the neuroligins (NLs) and their binding partners, the neurexins (NXs). It has been recently reported that both insulin secretion and the proliferation rates of β-cells increase when cells are co-cultured with full-length NL-2 clusters. The pharmacological use of full-length protein is always problematic due to its unfavorable pharmacokinetic properties. Thus, NL-2-derived short peptide was conjugated to the surface of polyamidoamine-based (PAMAM) dendrimers. This nanoscale composite improved β-cell functions in terms of the rate of proliferation, glucose-stimulated insulin secretion (GSIS), and functional maturation. This functionalized dendrimer also protected β-cells under cellular stress conditions. In addition, various novel peptidomimetic scaffolds of NL-2-derived peptide were designed, synthesized, and conjugated to the surface of PAMAM in order to increase the biostability of the conjugates. However, after being covered by peptidomimetics, PAMAM dendrimers were inactive. Thus, the original peptide-based PAMAM dendrimer is a leading compound for continued research that might provide a unique starting point for designing an innovative class of antidiabetic therapeutics that possess a unique mode of action.
Collapse
Affiliation(s)
- Anna Munder
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Yoni Moskovitz
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Aviv Meir
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Shirin Kahremany
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
- Department of Pharmacology , Cleveland Center for Membrane and Structural Biology , School of Medicine , Case Western Reserve University , Cleveland , OH , USA
| | - Laura Levy
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Michal Kolitz-Domb
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Guy Cohen
- Skin Research Institute , Dead Sea and Arava Research Center , Masada , Israel
| | - Efrat Shtriker
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Olga Viskind
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Jean-Paul Lellouche
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
- Nanomaterials Research Center , Institute of Nanotechnology & Advanced Materials (BINA) , Bar-Ilan University , Ramat-Gan , Israel
| | - Hanoch Senderowitz
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Steven D Chessler
- Division of Endocrinology, Diabetes & Metabolism , Department of Medicine , University of California , Irvine , CA , USA
| | - Edward E Korshin
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Sharon Ruthstein
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Arie Gruzman
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| |
Collapse
|
16
|
Szalai P, Parys JB, Bultynck G, Christensen SB, Nissen P, Møller JV, Engedal N. Nonlinear relationship between ER Ca 2+ depletion versus induction of the unfolded protein response, autophagy inhibition, and cell death. Cell Calcium 2018; 76:48-61. [PMID: 30261424 DOI: 10.1016/j.ceca.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/25/2018] [Accepted: 09/13/2018] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) Ca2+ depletion activates the unfolded protein response (UPR), inhibits bulk autophagy and eventually induces cell death in mammalian cells. However, the extent and duration of ER Ca2+ depletion required is unknown. We instigated a detailed study in two different cell lines, using sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors to gradually reduce ER Ca2+ levels in a controlled manner. Remarkably, UPR induction (as assessed by expression analyses of UPR-regulated proteins) and autophagy inhibition (as assessed by analyses of effects on starvation-induced bulk autophagy) required substantially higher drug concentrations than those needed to strongly decrease total ER Ca2+ levels. In fact, even when ER Ca2+ levels were so low that we could hardly detect any release of Ca2+ upon challenge with ER Ca2+ purging agents, UPR was not induced, and starvation-induced bulk autophagy was still fully supported. Moreover, although we observed reduced cell proliferation at this very low level of ER Ca2+, cells could tolerate prolonged periods (days) without succumbing to cell death. Addition of increasing concentrations of extracellular EGTA also gradually depleted the ER of Ca2+, and, as with the SERCA inhibitors, EGTA-induced activation of UPR and cell death required higher EGTA concentrations than those needed to strongly reduce ER Ca2+ levels. We conclude that ER Ca2+ depletion-induced effects on UPR, autophagy and cell death require either an extreme general depletion of ER Ca2+ levels, or Ca2+ depletion in areas of the ER that have a higher resistance to Ca2+ drainage than the bulk of the ER.
Collapse
Affiliation(s)
- Paula Szalai
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, Norway; Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus, Denmark
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Leuven, Belgium
| | | | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease (Pumpkin), Danish Research Foundation, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus, Denmark
| | - Jesper V Møller
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nikolai Engedal
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, Norway.
| |
Collapse
|
17
|
Chemaly ER, Troncone L, Lebeche D. SERCA control of cell death and survival. Cell Calcium 2017; 69:46-61. [PMID: 28747251 DOI: 10.1016/j.ceca.2017.07.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/31/2022]
Abstract
Intracellular calcium (Ca2+) is a critical coordinator of various aspects of cellular physiology. It is increasingly apparent that changes in cellular Ca2+ dynamics contribute to the regulation of normal and pathological signal transduction that controls cell growth and survival. Aberrant perturbations in Ca2+ homeostasis have been implicated in a range of pathological conditions, such as cardiovascular diseases, diabetes, tumorigenesis and steatosis hepatitis. Intracellular Ca2+ concentrations are therefore tightly regulated by a number of Ca2+ handling enzymes, proteins, channels and transporters located in the plasma membrane and in Ca2+ storage organelles, which work in concert to fine tune a temporally and spatially precise Ca2+ signal. Chief amongst them is the sarco/endoplasmic reticulum (SR/ER) Ca2+ ATPase pump (SERCA) which actively re-accumulates released Ca2+ back into the SR/ER, therefore maintaining Ca2+ homeostasis. There are at least 14 different SERCA isoforms encoded by three ATP2A1-3 genes whose expressions are species- and tissue-specific. Altered SERCA expression and activity results in cellular malignancy and induction of ER stress and ER stress-associated apoptosis. The role of SERCA misregulation in the control of apoptosis in various cell types and disease setting with prospective therapeutic implications is the focus of this review. Ca2+ is a double edge sword for both life as well as death, and current experimental evidence supports a model in which Ca2+ homeostasis and SERCA activity represent a nodal point that controls cell survival. Pharmacological or genetic targeting of this axis constitutes an incredible therapeutic potential to treat different diseases sharing similar biological disorders.
Collapse
Affiliation(s)
- Elie R Chemaly
- Division of Nephrology and Hypertension, Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Luca Troncone
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Djamel Lebeche
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Diabetes, Obesity and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Graduate School of Biological Sciences, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
18
|
Chiappisi E, Ringseis R, Eder K, Gessner DK. Effect of endoplasmic reticulum stress on metabolic and stress signaling and kidney-specific functions in Madin-Darby bovine kidney cells. J Dairy Sci 2017. [PMID: 28624282 DOI: 10.3168/jds.2016-12406] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recent studies demonstrated induction of endoplasmic reticulum (ER) stress in tissues of cows after parturition, but knowledge about the effect of ER stress on important cellular processes, such as critical signaling and metabolic pathways, in cattle is scarce. Thus, the present study aimed to investigate the effect of ER stress induction on nuclear factor-κB (NF-κB), nuclear factor E2-related factor 2 (Nrf2), and sterol regulatory element-binding protein (SREBF1) pathway in Madin-Darby bovine kidney (MDBK) cells, a widely used in vitro model in ruminant research. To consider the kidney origin of MDBK cells, the effect on renal distal tubular cell-specific functions, such as transport processes and regulation of 1,25(OH)2D3 levels, was also studied. Treatment of MDBK cells with 2 different ER stress inducers, thapsigargin (TG) and tunicamycin (TM), strongly induced ER stress as evident from induction of ER stress target genes, increased phosphorylation of PKR-like ER kinase, and enhanced splicing of X-box binding protein 1. The TM decreased the protein concentration of NF-κB p50 and the mRNA levels of the NF-κB target genes. Likewise, TG decreased the mRNA concentration of tumor necrosis factor and tended to decrease NF-κB p50 protein and mRNA levels of NF-κB target genes. The mRNA levels of most of the Nrf2 target genes investigated were reduced by TG and TM in MDBK cells. Both ER stress inducers reduced the mRNA levels of SREBF1 and its target genes in MDBK cells. Interestingly, TG decreased, but TM increased the mRNA level of the Ca2+ binding protein calbindin 1, whereas the mRNA level of the plasma membrane Ca2+-transporting ATPase 1 remained unchained. The mRNA level of the cytochrome P450 component 24A1 involved in 1α-hydroxylation of 25(OH)D3 was strongly elevated, whereas the mRNA level of the cytochrome P450 component 27A1 catalyzing the breakdown of 1,25(OH)2D3 was markedly reduced by both ER stress inducers. The concentration of 1,25(OH)2D3 in the supernatant of MDBK cells was increased by approximately 15% by both TG and TM. The present study indicates that under conditions of ER stress, critical signaling pathways, such as NF-κB, Nrf2, and SREBF1, are inhibited, whereas the formation of 1,25(OH)2D3 is stimulated in bovine MDBK cells. Future studies are necessary to clarify the physiological relevance of these findings.
Collapse
Affiliation(s)
- E Chiappisi
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - D K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
19
|
Shi M, Song W, Han T, Chang B, Li G, Jin J, Zhang Y. Role of the unfolded protein response in topography-induced osteogenic differentiation in rat bone marrow mesenchymal stem cells. Acta Biomater 2017; 54:175-185. [PMID: 28315494 DOI: 10.1016/j.actbio.2017.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/09/2017] [Accepted: 03/12/2017] [Indexed: 12/20/2022]
Abstract
The topography of biomaterials can significantly influence the osteogenic differentiation of cells. Understanding topographical signal transduction is critical for developing biofunctional surfaces, but the current knowledge is insufficient. Recently, numerous reports have suggested that the unfolded protein response (UPR) and osteogenic differentiation are inter-linked. Therefore, we hypothesize that the UPR pathway may be involved in the topography-induced osteogenesis. In the present study, different surface topographies were fabricated on pure titanium foils and the endoplasmic reticulum (ER) stress and UPR pathway were systematically investigated. We found that ER stress and the PERK-eIF2α-ATF4 pathway were activated in a time- and topography-dependent manner. Additionally, the activation of the PERK-eIF2α-ATF4 pathway by different topographies was in line with their osteogenic induction capability. More specifically, the osteogenic differentiation could be enhanced or weakened when the PERK-eIF2α-ATF4 pathway was promoted or inhibited, respectively. Furthermore, tuning of the degree of ER stress with different concentrations of thapsigargin revealed that mild ER stress promotes osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Taken together, our findings suggest that the UPR may play a critical role in topography-induced osteogenic differentiation, which may help to provide new insights into topographical signal transduction. STATEMENT OF SIGNIFICANCE Suitable implant surface topography can effectively improve bioactivity and eventual bone affinity. However, the mechanism of topographical signaling transduction is unclear and criteria for designation of an appropriate implant surface topography is lacking. This study shows that the ER stress and PERK-eIF2α-ATF4 pathway were activated by micro- and micro/nano-topographies, which is corresponding to the osteogenic induction abilities of these topographies. Furthermore, we have found that mild ER stress improves osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Our findings demonstrate that the UPR plays a critical role in the topography induced osteogenic differentiation, which may help to provide new insights into the topographical signaling transduction.
Collapse
Affiliation(s)
- Mengqi Shi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Tianxiao Han
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing 100050, PR China
| | - Bei Chang
- PLA Rocket Force General Hospital, Beijing 100088, PR China
| | - Guangwen Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Jianfeng Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
20
|
Inhibition of L-Type Ca 2+ Channels by TRPC1-STIM1 Complex Is Essential for the Protection of Dopaminergic Neurons. J Neurosci 2017; 37:3364-3377. [PMID: 28258168 DOI: 10.1523/jneurosci.3010-16.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022] Open
Abstract
Loss of dopaminergic (DA) neurons leads to Parkinson's disease; however, the mechanism(s) for the vulnerability of DA neurons is(are) not fully understood. We demonstrate that TRPC1 regulates the L-type Ca2+ channel that contributes to the rhythmic activity of adult DA neurons in the substantia nigra region. Store depletion that activates TRPC1, via STIM1, inhibits the frequency and amplitude of the rhythmic activity in DA neurons of wild-type, but not in TRPC1-/-, mice. Similarly, TRPC1-/- substantia nigra neurons showed increased L-type Ca2+ currents, decreased stimulation-dependent STIM1-Cav1.3 interaction, and decreased DA neurons. L-type Ca2+ currents and the open channel probability of Cav1.3 channels were also reduced upon TRPC1 activation, whereas increased Cav1.3 currents were observed upon STIM1 or TRPC1 silencing. Increased interaction between Cav1.3-TRPC1-STIM1 was observed upon store depletion and the loss of either TRPC1 or STIM1 led to DA cell death, which was prevented by inhibiting L-type Ca2+ channels. Neurotoxins that mimic Parkinson's disease increased Cav1.3 function, decreased TRPC1 expression, inhibited Tg-mediated STIM1-Cav1.3 interaction, and induced caspase activation. Importantly, restoration of TRPC1 expression not only inhibited Cav1.3 function but increased cell survival. Together, we provide evidence that TRPC1 suppresses Cav1.3 activity by providing an STIM1-based scaffold, which is essential for DA neuron survival.SIGNIFICANCE STATEMENT Ca2+ entry serves critical cellular functions in virtually every cell type, and appropriate regulation of Ca2+ in neurons is essential for proper function. In Parkinson's disease, DA neurons are specifically degenerated, but the mechanism is not known. Unlike other neurons, DA neurons depend on Cav1.3 channels for their rhythmic activity. Our studies show that, in normal conditions, the pacemaking activity in DA neurons is inhibited by the TRPC1-STIM1 complex. Neurotoxins that mimic Parkinson's disease target TRPC1 expression, which leads to an abnormal increase in Cav1.3 activity, thereby causing degeneration of DA neurons. These findings link TRPC1 to Cav1.3 regulation and provide important indications about how disrupting Ca2+ balance could have a direct implication in the treatment of Parkinson's patients.
Collapse
|
21
|
Sukumaran P, Sun Y, Schaar A, Selvaraj S, Singh BB. TRPC Channels and Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 976:85-94. [PMID: 28508315 DOI: 10.1007/978-94-024-1088-4_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder, which involves degeneration of dopaminergic neurons that are present in the substantia nigra pars compacta (SNpc) region. Many factors have been identified that could lead to Parkinson's disease; however, almost all of them are directly or indirectly dependent on Ca2+ signaling. Importantly, though disturbances in Ca2+ homeostasis have been implicated in Parkinson's disease and other neuronal diseases, the identity of the calcium channel remains elusive. Members of the transient receptor potential canonical (TRPC) channel family have been identified as a new class of Ca2+ channels, and it could be anticipated that these channels could play important roles in neurodegenerative diseases, especially in PD. Thus, in this chapter we have entirely focused on TRPC channels and elucidated its role in PD.
Collapse
Affiliation(s)
- Pramod Sukumaran
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Yuyang Sun
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Anne Schaar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Senthil Selvaraj
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA
| | - Brij B Singh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58201, USA.
| |
Collapse
|
22
|
Martinez NJ, Rai G, Yasgar A, Lea WA, Sun H, Wang Y, Luci DK, Yang SM, Nishihara K, Takeda S, Sagor M, Earnshaw I, Okada T, Mori K, Wilson K, Riggins GJ, Xia M, Grimaldi M, Jadhav A, Maloney DJ, Simeonov A. A High-Throughput Screen Identifies 2,9-Diazaspiro[5.5]Undecanes as Inducers of the Endoplasmic Reticulum Stress Response with Cytotoxic Activity in 3D Glioma Cell Models. PLoS One 2016; 11:e0161486. [PMID: 27570969 PMCID: PMC5003374 DOI: 10.1371/journal.pone.0161486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/06/2016] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is involved in Ca2+ signaling and protein folding. ER Ca2+ depletion and accumulation of unfolded proteins activate the molecular chaperone GRP78 (glucose-regulated protein 78) which in turn triggers the ER stress response (ERSR) pathway aimed to restore ER homeostasis. Failure to adapt to stress, however, results in apoptosis. We and others have shown that malignant cells are more susceptible to ERSR-induced apoptosis than their normal counterparts, implicating the ERSR as a potential target for cancer therapeutics. Predicated on these findings, we developed an assay that uses a GRP78 biosensor to identify small molecule activators of ERSR in glioma cells. We performed a quantitative high-throughput screen (qHTS) against a collection of ~425,000 compounds and a comprehensive panel of orthogonal secondary assays was formulated for stringent compound validation. We identified novel activators of ERSR, including a compound with a 2,9-diazaspiro[5.5]undecane core, which depletes intracellular Ca2+ stores and induces apoptosis-mediated cell death in several cancer cell lines, including patient-derived and 3D cultures of glioma cells. This study demonstrates that our screening platform enables the identification and profiling of ERSR inducers with cytotoxic activity and advocates for characterization of these compound in in vivo models.
Collapse
Affiliation(s)
- Natalia J. Martinez
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
| | - Wendy A. Lea
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
| | - Yuhong Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
| | - Diane K. Luci
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
| | - Kana Nishihara
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo, Kyoto 606–8501, Japan
| | - Shunichi Takeda
- Department of Neurosurgery, John Hopkins University, Baltimore, MD 21231, United States of America
| | - Mohiuddin Sagor
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo, Kyoto 606–8501, Japan
| | - Irina Earnshaw
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo, Kyoto 606–8501, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606–8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606–8502, Japan
| | - Kelli Wilson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
- Department of Neurosurgery, John Hopkins University, Baltimore, MD 21231, United States of America
| | - Gregory J. Riggins
- Department of Neurosurgery, John Hopkins University, Baltimore, MD 21231, United States of America
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
| | - Maurizio Grimaldi
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, AL 35205, United States of America
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
- * E-mail: (AS); (DJM)
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States of America
- * E-mail: (AS); (DJM)
| |
Collapse
|
23
|
Carmosino M, Gerbino A, Schena G, Procino G, Miglionico R, Forleo C, Favale S, Svelto M. The expression of Lamin A mutant R321X leads to endoplasmic reticulum stress with aberrant Ca 2+ handling. J Cell Mol Med 2016; 20:2194-2207. [PMID: 27421120 PMCID: PMC5082401 DOI: 10.1111/jcmm.12926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/07/2016] [Indexed: 01/13/2023] Open
Abstract
Mutations in the Lamin A/C gene (LMNA), which encodes A‐type nuclear Lamins, represent the most frequent genetic cause of dilated cardiomyopathy (DCM). This study is focused on a LMNA nonsense mutation (R321X) identified in several members of an Italian family that produces a truncated protein isoform, which co‐segregates with a severe form of cardiomyopathy with poor prognosis. However, no molecular mechanisms other than nonsense mediated decay of the messenger and possible haploinsufficiency were proposed to explain DCM. Aim of this study was to gain more insights into the disease‐causing mechanisms induced by the expression of R321X at cellular level. We detected the expression of R321X by Western blotting from whole lysate of a mutation carrier heart biopsy. When expressed in HEK293 cells, GFP‐ (or mCherry)‐tagged R321X mislocalized in the endoplasmic reticulum (ER) inducing the PERK‐CHOP axis of the ER stress response. Of note, confocal microscopy showed phosphorylation of PERK in sections of the mutation carrier heart biopsy. ER mislocalization of mCherry‐R321X also induced impaired ER Ca2+ handling, reduced capacitative Ca2+ entry at the plasma membrane and abnormal nuclear Ca2+ dynamics. In addition, expression of R321X by itself increased the apoptosis rate. In conclusion, R321X is the first LMNA mutant identified to date, which mislocalizes into the ER affecting cellular homeostasis mechanisms not strictly related to nuclear functions.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy.
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giorgia Schena
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Cinzia Forleo
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Stefano Favale
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
24
|
Takatani T, Shirakawa J, Roe MW, Leech CA, Maier BF, Mirmira RG, Kulkarni RN. IRS1 deficiency protects β-cells against ER stress-induced apoptosis by modulating sXBP-1 stability and protein translation. Sci Rep 2016; 6:28177. [PMID: 27378176 PMCID: PMC4932502 DOI: 10.1038/srep28177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/31/2016] [Indexed: 01/05/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is among several pathological features that underlie β-cell failure in the development of type 1 and type 2 diabetes. Adaptor proteins in the insulin/insulin-like-growth factor-1 signaling pathways, such as insulin receptor substrate-1 (IRS1) and IRS2, differentially impact β-cell survival but the underlying mechanisms remain unclear. Here we report that β-cells deficient in IRS1 (IRS1KO) are resistant, while IRS2 deficiency (IRS2KO) makes them susceptible to ER stress-mediated apoptosis. IRS1KOs exhibited low nuclear accumulation of spliced XBP-1 due to its poor stability, in contrast to elevated accumulation in IRS2KO. The reduced nuclear accumulation in IRS1KO was due to protein instability of Xbp1 secondary to proteasomal degradation. IRS1KO also demonstrated an attenuation in their general translation status in response to ER stress revealed by polyribosomal profiling. Phosphorylation of eEF2 was dramatically increased in IRS1KO enabling the β-cells to adapt to ER stress by blocking translation. Furthermore, significantly high ER calcium (Ca2+) was detected in IRS1KO β-cells even upon induction of ER stress. These observations suggest that IRS1 could be a therapeutic target for β-cell protection against ER stress-mediated cell death by modulating XBP-1 stability, protein synthesis, and Ca2+ storage in the ER.
Collapse
Affiliation(s)
- Tomozumi Takatani
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jun Shirakawa
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Michael W Roe
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Colin A Leech
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Bernhard F Maier
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Cellular and Integrative Physiology, Department of Biochemistry and Molecular Biology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Ohara H, Nabika T. A nonsense mutation of Stim1 identified in stroke-prone spontaneously hypertensive rats decreased the store-operated calcium entry in astrocytes. Biochem Biophys Res Commun 2016; 476:406-411. [PMID: 27237974 DOI: 10.1016/j.bbrc.2016.05.134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
We previously identified a nonsense mutation in the stromal interaction molecule-1 (Stim1) resulting in expression of a truncated STIM1 in the stroke-prone spontaneously hypertensive rat (SHRSP). In this study, we evaluated activity of the store-operated Ca(2+)-entry (SOCE) regulated by STIM1 to clarify putative functional abnormalities of the truncated STIM1. As a result, reduced SOCE activity resulting in suppression of cyclooxygenase-2 expression induced by SOCE was found in cultured astrocytes with the truncated STIM1 when compared with those with the wild-type. Our results indicated that the truncated STIM1 impaired Ca(2+) signaling regulated by SOCE and that the impaired SOCE activity might be responsible for pathological phenotypes in SHRSP.
Collapse
Affiliation(s)
- Hiroki Ohara
- Department of Functional Pathology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan.
| | - Toru Nabika
- Department of Functional Pathology, Shimane University Faculty of Medicine, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
26
|
Killing Me Softly: Connotations to Unfolded Protein Response and Oxidative Stress in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1805304. [PMID: 26881014 PMCID: PMC4736771 DOI: 10.1155/2016/1805304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/28/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022]
Abstract
This review is focused on the possible causes of mitochondrial dysfunction in AD, underlying molecular mechanisms of this malfunction, possible causes and known consequences of APP, Aβ, and hyperphosphorylated tau presence in mitochondria, and the contribution of altered lipid metabolism (nonsterol isoprenoids) to pathological processes leading to increased formation and accumulation of the aforementioned hallmarks of AD. Abnormal protein folding and unfolded protein response seem to be the outcomes of impaired glycosylation due to metabolic disturbances in geranylgeraniol intermediary metabolism. The origin and consecutive fate of APP, Aβ, and tau are emphasized on intracellular trafficking apparently influenced by inaccurate posttranslational modifications. We hypothesize that incorrect intracellular processing of APP determines protein translocation to mitochondria in AD. Similarly, without obvious reasons, the passage of Aβ and tau to mitochondria is observed. APP targeted to mitochondria blocks the activity of protein translocase complex resulting in poor import of proteins central to oxidative phosphorylation. Besides, APP, Aβ, and neurofibrillary tangles of tau directly or indirectly impair mitochondrial biochemistry and bioenergetics, with concomitant generation of oxidative/nitrosative stress. Limited protective mechanisms are inadequate to prevent the free radical-mediated lesions. Finally, neuronal loss is observed in AD-affected brains typically by pathologic apoptosis.
Collapse
|
27
|
Zhang Z, Chu SF, Mou Z, Gao Y, Wang ZZ, Wei GN, Chen NH. Ganglioside GQ1b induces dopamine release through the activation of Pyk2. Mol Cell Neurosci 2015; 71:102-13. [PMID: 26704905 DOI: 10.1016/j.mcn.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022] Open
Abstract
Growing evidence indicates that GQ1b, one of the gangliosides members, contributes to synaptic transmission and synapse formation. Previous studies have shown that GQ1b could enhance depolarization induced neurotransmitter release, while the role of GQ1b in asynchronous release is still largely unknown. Here in our result, we found low concentration of GQ1b, but not GT1b or GD1b (which were generated from GQ1b by plasma membrane-associated sialidases), evoked asynchronous dopamine (DA) release from both clonal rat pheochromocytoma PC12 cells and rat striatal slices significantly. The release peaked at 2 min after GQ1b exposure, and lasted for more than 6 min. This effect was caused by the enhancement of intracellular Ca(2+) and the activation of Pyk2. Inhibition of Pyk2 by PF-431396 (a dual inhibitor of Pyk2 and FAK) or Pyk2 siRNA abolished DA release induced by GQ1b. Moreover, Pyk2 Y402, but not other tyrosine site, was phosphorylated at the peaking time. The mutant of Pyk2 Y402 (Pyk2-Y402F) was built to confirm the essential role of Y402 activation. Further studies revealed that activated Pyk2 stimulated ERK1/2 and p-38, while only the ERK1/2 activation was indispensable for GQ1b induced DA release, which interacted with Synapsin I directly and led to its phosphorylation, then depolymerization of F-actin, thus contributed to DA release. In conclusion, low concentration of GQ1b is able to enhance asynchronous DA release through Pyk2/ERK/Synapsin I/actin pathway. Our findings provide new insights into the role of GQ1b in neuronal communication, and implicate the potential application of GQ1b in neurological disorders.
Collapse
Affiliation(s)
- Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shi-Feng Chu
- Key Laboratory of Diagnostics of Traditional Chinese Medicine, Collaborative Innovation Center of Digital Traditional Chinese Medicine, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zheng Mou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Gui-Ning Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
28
|
Richter M, Vidovic N, Honrath B, Mahavadi P, Dodel R, Dolga AM, Culmsee C. Activation of SK2 channels preserves ER Ca²⁺ homeostasis and protects against ER stress-induced cell death. Cell Death Differ 2015; 23:814-27. [PMID: 26586570 DOI: 10.1038/cdd.2015.146] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/03/2015] [Accepted: 09/21/2015] [Indexed: 01/24/2023] Open
Abstract
Alteration of endoplasmic reticulum (ER) Ca(2+) homeostasis leads to excessive cytosolic Ca(2+) accumulation and delayed neuronal cell death in acute and chronic neurodegenerative disorders. While our recent studies established a protective role for SK channels against excessive intracellular Ca(2+) accumulation, their functional role in the ER has not been elucidated yet. We show here that SK2 channels are present in ER membranes of neuronal HT-22 cells, and that positive pharmacological modulation of SK2 channels with CyPPA protects against cell death induced by the ER stressors brefeldin A and tunicamycin. Calcium imaging of HT-22 neurons revealed that elevated cytosolic Ca(2+) levels and decreased ER Ca(2+) load during sustained ER stress could be largely prevented by SK2 channel activation. Interestingly, SK2 channel activation reduced the amount of the unfolded protein response transcription factor ATF4, but further enhanced the induction of CHOP. Using siRNA approaches we confirmed a detrimental role for ATF4 in ER stress, whereas CHOP regulation was dispensable for both, brefeldin A toxicity and CyPPA-mediated protection. Cell death induced by blocking Ca(2+) influx into the ER with the SERCA inhibitor thapsigargin was not prevented by CyPPA. Blocking the K(+) efflux via K(+)/H(+) exchangers with quinine inhibited CyPPA-mediated neuroprotection, suggesting an essential role of proton uptake and K(+) release in the SK channel-mediated neuroprotection. Our data demonstrate that ER SK2 channel activation preserves ER Ca(2+) uptake and retention which determines cell survival in conditions where sustained ER stress contributes to progressive neuronal death.
Collapse
Affiliation(s)
- M Richter
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.,Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - N Vidovic
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - B Honrath
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| | - P Mahavadi
- Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - R Dodel
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - A M Dolga
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.,Faculty of Mathematics and Natural Sciences, Molecular Pharmacology - Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - C Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
29
|
Dineen SL, McKenney ML, Bell LN, Fullenkamp AM, Schultz KA, Alloosh M, Chalasani N, Sturek M. Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle. Diabetes 2015; 64:3321-7. [PMID: 25845661 PMCID: PMC4542436 DOI: 10.2337/db14-1790] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/29/2015] [Indexed: 12/21/2022]
Abstract
Metabolic syndrome (MetS) doubles the risk of adverse cardiovascular events. Glucagon-like peptide 1 (GLP-1) receptor agonists induce weight loss, increase insulin secretion, and improve glucose tolerance. Studies in healthy animals suggest cardioprotective properties of GLP-1 receptor agonists, perhaps partially mediated by improved sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) activity. We examined the acute effect of GLP-1 receptor agonists on coronary smooth muscle cells (CSM) enzymatically isolated from lean, healthy Ossabaw miniature swine. Intracellular Ca(2+) handling was interrogated with fura-2. The GLP-1 receptor agonist exenatide activated SERCA but did not alter other Ca(2+) transporters. Further, we tested the hypothesis that chronic, in vivo treatment with GLP-1 receptor agonist AC3174 would attenuate coronary artery disease (CAD) in swine with MetS. MetS was induced in 20 swine by 6 months' feeding of a hypercaloric, atherogenic diet. Swine were then randomized (n = 10/group) into placebo or AC3174 treatment groups and continued the diet for an additional 6 months. AC3174 treatment attenuated weight gain, increased insulin secretion, and improved glucose tolerance. Intravascular ultrasound and histology showed no effect of AC3174 on CAD. MetS abolished SERCA activation by GLP-1 receptor agonists. We conclude that MetS confers vascular resistance to GLP-1 receptor agonists, partially through impaired cellular signaling steps involving SERCA.
Collapse
Affiliation(s)
- Stacey L Dineen
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Mikaela L McKenney
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Lauren N Bell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | | | - Kyle A Schultz
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Mouhamad Alloosh
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Naga Chalasani
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Michael Sturek
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
30
|
Lee AY, Han YA, Kim JE, Hong SH, Park EJ, Cho MH. Saururus chinensis Baill induces apoptosis through endoplasmic reticulum stress in HepG2 hepatocellular carcinoma cells. Food Chem Toxicol 2015; 83:183-92. [PMID: 26116884 DOI: 10.1016/j.fct.2015.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/01/2015] [Accepted: 05/09/2015] [Indexed: 11/28/2022]
Abstract
In this study, we examined the mechanism underlying the effect of Saururus chinensis Baill (saururaceae) on hepatocellular carcinoma HepG2 cells. HepG2 cells and Chang cells were exposed to various concentrations of S. chinensis Baill extract (SC-E) for 24 h. SC-E affected more significantly HepG2 cells than Chang cells in terms of cell viability and ATP production. Therefore, current study examined detailed mechanism how SC-E affected HepG2 cell survival. We found that SC-E (75 and 150 μg/ml) induced apoptosis via oxidative stress. SC-E also caused CCAAT-enhancer-binding protein homologous protein (CHOP) activation by dissociating the binding immunoglobulin protein (BiP) from inositol-requiring 1α (IRE1α) in the endoplasmic reticulum (ER) and induced Bax, cytochrome c release to cytosol, caspase-3 activation, and poly ADP ribose polymerase (PARP) cleavage, resulting in HepG2 cell apoptosis. Furthermore, SC-E caused ER Ca(2+) leakage into the cytosol; ER dilation and mitochondrial membrane damage were observed in transmission electron microscopy (TEM). Taken together, our results demonstrated that SC-E induced cancer cell apoptosis specifically through ER stress.
Collapse
Affiliation(s)
- Ah Young Lee
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National, University, Seoul 151-742, Republic of Korea
| | - Young-Ah Han
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National, University, Seoul 151-742, Republic of Korea
| | - Ji-Eun Kim
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National, University, Seoul 151-742, Republic of Korea
| | - Seong-Ho Hong
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National, University, Seoul 151-742, Republic of Korea
| | - Eun-Jung Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National, University, Seoul 151-742, Republic of Korea; Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Republic of Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 151-742, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea; Institute of GreenBio Science Technology, Seoul National University, Pyeongchang 232-916, Republic of Korea.
| |
Collapse
|
31
|
Liu J, Yang JR, Chen XM, Cai GY, Lin LR, He YN. Impact of ER stress-regulated ATF4/p16 signaling on the premature senescence of renal tubular epithelial cells in diabetic nephropathy. Am J Physiol Cell Physiol 2015; 308:C621-30. [PMID: 25567807 DOI: 10.1152/ajpcell.00096.2014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 12/30/2014] [Indexed: 12/19/2022]
Abstract
Premature senescence is an important event during diabetic nephropathy (DN) progression. Here, we investigated the role of endoplasmic reticulum (ER) stress-regulated activation of transcription factor 4 (ATF4)/p16 signaling in the premature senescence of renal tubular epithelial cells (RTECs) during DN development. In the renal tissues of Type 2 DN patients, we detected an increased number of senescent cells; elevated deposition of advanced glycation end products (AGEs); upregulated expression of ER stress marker, glucose-regulated protein 78; as well as overexpression of ATF4 and p16. Similarly, these phenomena were also observed in cultured mouse RTECs following AGE treatment. Interestingly, AGE-induced p16 expression and premature senescence were successfully attenuated by ER stress inhibitor and ATF4 gene silencing. Moreover, AGE-induced premature senescence was mimicked by ER stress inducers and ATF4 overexpression, while suppressed by p16 gene silencing. In addition, ER stress inducers can augment ATF4 expression. Therefore, our results demonstrate that the ER stress-regulated ATF4/p16 pathway is involved in the premature senescence of RTECs during DN progression.
Collapse
Affiliation(s)
- Jun Liu
- Department of Nephrology, Daping Hospital, Third Military Medical University, Chongqing, China; and
- State Key Laboratory of Kidney Disease, Kidney Center of the People's Liberation Army, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Ju-Rong Yang
- Department of Nephrology, Daping Hospital, Third Military Medical University, Chongqing, China; and
| | - Xiang-Mei Chen
- State Key Laboratory of Kidney Disease, Kidney Center of the People's Liberation Army, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Guang-Yan Cai
- State Key Laboratory of Kidney Disease, Kidney Center of the People's Liberation Army, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Li-Rong Lin
- Department of Nephrology, Daping Hospital, Third Military Medical University, Chongqing, China; and
| | - Ya-Ni He
- Department of Nephrology, Daping Hospital, Third Military Medical University, Chongqing, China; and
| |
Collapse
|
32
|
Zou H, Hu D, Han T, Zhao H, Xie J, Liu X, Wang Y, Gu J, Yuan Y, Bian J, Liu Z. Salidroside ameliorates Cd-induced calcium overload and gap junction dysfunction in BRL 3A rat liver cells. Biol Trace Elem Res 2015; 164:90-8. [PMID: 25524521 DOI: 10.1007/s12011-014-0201-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/02/2014] [Indexed: 01/25/2023]
Abstract
It is known that cadmium (Cd) induces cytotoxicity via Ca(2+) signaling, although the underlying mechanism is unclear. Here, we studied the molecular mechanisms of Cd-induced cytotoxicity in BRL 3A cells, a rat liver cell line. We observed that Cd treatment was associated with a time-dependent decrease in cell index (CI) in BRL 3A cells. Mechanistically, we observed that Cd exposure was associated with decreased expression of Cx43, P-Cx43, and Cx32. Specifically, Cx43 was decreased at the site of cell-cell junctions at the cell membrane, corresponding to a decrease in gap junctional intercellular connections (GJICs). We also found that Cd triggered a rise in the intracellular free Ca(2+) concentration ([Ca(2+)]i), and the intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis, acetoxymethyl ester (BAPTA-AM), prevented the Cd-induced decrease in CI. On the other hand, the gap junction blocker 18-β-glycyrrhetinic acid (GA) and the endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin exacerbated cytotoxic injury induced by Cd via further elevating [Ca(2+)]i, The extracellular calcium chelator ethylene glycol tetraacetic acid could partly attenuate Cd-induced calcium elevation but had little effect on GA combined Cd. Furthermore, salidroside as a protective agent prevented Cd-induced GJIC inhibition and calcium overload. Our findings suggest that Cd triggers elevation of [Ca(2+)]i via mainly stimulating Ca(2+) release from intracellular Ca(2+) storage organelles and inhibiting GJIC, causing cytotoxic injury, and salidroside could be used to prevent Cd-induced cytotoxicity.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, 88 South University Ave., Yangzhou, Jiangsu, 225009, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Allethrin induces oxidative stress, apoptosis and calcium release in rat testicular carcinoma cells (LC540). Toxicol In Vitro 2014; 28:1386-95. [DOI: 10.1016/j.tiv.2014.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 07/19/2014] [Indexed: 01/17/2023]
|
34
|
Ryan AJ, Larson-Casey JL, He C, Murthy S, Carter AB. Asbestos-induced disruption of calcium homeostasis induces endoplasmic reticulum stress in macrophages. J Biol Chem 2014; 289:33391-403. [PMID: 25324550 PMCID: PMC4246095 DOI: 10.1074/jbc.m114.579870] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/10/2014] [Indexed: 01/05/2023] Open
Abstract
Although the mechanisms for fibrosis development remain largely unknown, recent evidence indicates that endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) may act as an important fibrotic stimulus in diseased lungs. ER stress is observed in lungs of patients with idiopathic pulmonary fibrosis. In this study we evaluated if ER stress and the UPR was present in macrophages exposed to chrysotile asbestos and if ER stress in macrophages was associated with asbestos-induced pulmonary fibrosis. Macrophages exposed to chrysotile had elevated transcript levels of several ER stress genes. Macrophages loaded with the Ca(2+)-sensitive dye Fura2-AM showed that cytosolic Ca(2+) increased significantly within minutes after chrysotile exposure and remained elevated for a prolonged time. Chrysotile-induced increases in cytosolic Ca(2+) were partially inhibited by either anisomycin, an inhibitor of passive Ca(2+) leak from the ER, or 1,2-bis(2-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular Ca(2+) chelator known to deplete ER Ca(2+) stores. Anisomycin inhibited X-box-binding protein 1 (XBP1) mRNA splicing and reduced immunoglobulin-binding protein (BiP) levels, whereas BAPTA-AM increased XBP1 splicing and BiP expression, suggesting that ER calcium depletion may be one factor contributing to ER stress in cells exposed to chrysotile. To evaluate ER stress in vivo, asbestos-exposed mice showed fibrosis development, and alveolar macrophages from fibrotic mice showed increased expression of BiP. Bronchoalveolar macrophages from asbestosis patients showed increased expression of several ER stress genes compared with normal subjects. These findings suggest that alveolar macrophages undergo ER stress, which is associated with fibrosis development.
Collapse
Affiliation(s)
| | - Jennifer L Larson-Casey
- Radiation Oncology and Program in Free Radical and Radiation Biology, Carver College of Medicine
| | - Chao He
- Radiation Oncology and Program in Free Radical and Radiation Biology, Carver College of Medicine
| | | | - A Brent Carter
- From the Departments of Internal Medicine, Radiation Oncology and Program in Free Radical and Radiation Biology, Carver College of Medicine, Human Toxicology, College of Public Health, University of Iowa, and Iowa City Veterans Administration Center, Iowa City, Iowa 52242
| |
Collapse
|
35
|
Liao CL, Hsu SC, Yu CC, Yang JS, Tang NY, Wood WG, Lin JG, Chung JG. The crude extract of Corni Fructus induces apoptotic cell death through reactive oxygen species-modulated pathways in U-2 OS human osteosarcoma cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:1020-1031. [PMID: 23239598 DOI: 10.1002/tox.21832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/24/2012] [Accepted: 11/02/2012] [Indexed: 06/01/2023]
Abstract
Crude extract of Corni Fructus (CECF) has been used in Traditional Chinese medicine for the treatment of different diseases for hundreds of years. The purpose of this study was to investigate the cytotoxic effects of CECF on U-2 OS human osteosarcoma cells. Flow cytometry was used for measuring the percentage of viable cells, cell-cycle distribution, apoptotic cells in sub-G1 phase, reactive oxygen species (ROS), Ca(2+) levels, and mitochondrial membrane potential (ΔΨm ). Comet assay and 4'-6-diamidino-2-phenylindole staining were used for examining DNA damage and condensation. Western blotting was used to examine apoptosis-associated protein levels in U-2 OS cells after exposed to CECF. Immunostaining and confocal laser system microscope were used to examine protein translocation after CECF incubation. CECF decreased the percentage of viability, induced DNA damage and DNA condensation, G₀/G₁ arrest, and apoptosis in U-2 OS cells. CECF-stimulated activities of caspase-8, caspase-9, and caspase-3, ROS, and Ca(2+) production, decreased ΔΨm levels of in U-2 OS cells. CECF increased protein levels of caspase-3, caspase-9, Bax, cytochrome c, GRP78, AIF, ATF-6α, Fas, TRAIL, p21, p27, and p16 which were associated with cell-cycle arrest and apoptosis. These findings suggest that CECF triggers apoptosis in U-2 OS cells via ROS-modulated caspase-dependent and -independent pathways.
Collapse
Affiliation(s)
- Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ashiru O, Howe JD, Butters TD. Nitazoxanide, an antiviral thiazolide, depletes ATP-sensitive intracellular Ca(2+) stores. Virology 2014; 462-463:135-48. [PMID: 24971706 DOI: 10.1016/j.virol.2014.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/01/2014] [Accepted: 05/14/2014] [Indexed: 12/31/2022]
Abstract
Nitazoxanide (NTZ) inhibits influenza, Japanese encephalitis, hepatitis B and hepatitis C virus replication but effects on the replication of other members of the Flaviviridae family has yet to be defined. The pestivirus bovine viral diarrhoea virus (BVDV) is a surrogate model for HCV infection and NTZ induced PKR and eIF2α phosphorylation in both uninfected and BVDV-infected cells. This led to the observation that NTZ depletes ATP-sensitive intracellular Ca(2+) stores. In addition to PKR and eIF2α phosphorylation, consequences of NTZ-mediated Ca(2+) mobilisation included induction of chronic sub-lethal ER stress as well as perturbation of viral protein N-linked glycosylation and trafficking. To adapt to NTZ-mediated ER stress, NTZ treated cells upregulated translation of Ca(2+)-binding proteins, including the ER chaperone Bip and the cytosolic pro-survival and anti-viral protein TCTP. Depletion of intracellular Ca(2+) stores is the primary consequence of NTZ treatment and is likely to underpin all antiviral mechanisms attributed to the thiazolide.
Collapse
Affiliation(s)
- Omodele Ashiru
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, UK.
| | - Jonathon D Howe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, UK.
| | - Terry D Butters
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, UK.
| |
Collapse
|
37
|
He Y, Long J, Zhong W, Fu Y, Li Y, Lin S. Sustained endoplasmic reticulum stress inhibits hepatocyte proliferation via downregulation of c-Met expression. Mol Cell Biochem 2014; 389:151-158. [PMID: 24390087 DOI: 10.1007/s11010-013-1936-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/18/2013] [Indexed: 12/25/2022]
Abstract
The molecular mechanisms of impaired liver regeneration in several liver diseases remain poorly understood. Endoplasmic reticulum (ER) stress has been observed in a variety of liver diseases. The aims of this study were to explore the impacts of ER stress on hepatocyte growth factor (HGF)-induced proliferation and c-Met expression in human hepatocyte L02 cells. Human hepatocyte L02 cells were incubated with thapsigargin (TG) to induce ER stress. 4-Phenylbutyric acid (PBA) was used to rescue ER stress. Activation of glucose-regulated protein 78, phosphorylation of PKR-like ER kinase and eukaryotic translation initiation factor-2α, and the expression of c-Met were determined by western blotting. The expression of c-Met mRNA was observed by reverse transcription polymerase chain reaction. L02 cell proliferation was determined by the MTS assay. L02 cell proliferation was significantly impaired in TG-treated L02 cells from 24 to 48 h, while PBA partly restored the proliferation of L02 cells. In addition, TG treatment significantly decreased the sensitivity of L02 cells to HGF-induced proliferation. PBA partly resumed the sensitivity of L02 cells to HGF-induced proliferation. The expression of c-Met protein in L02 cells was downregulated from 6 h after TG treatment, and PBA partly restored c-Met expression inhibited by TG. The expression of c-Met mRNA was also significantly downregulated from 24 to 48 h after TG treatment. Our results strongly suggest that sustained ER stress inhibits hepatocyte proliferation via downregulation of both c-Met mRNA and protein expression in human hepatocyte L02 cells.
Collapse
Affiliation(s)
- Yihuai He
- Department of Infectious Diseases, Zunyi Medical College, 201 Dalian Street, Zunyi, 563003, Guizhou, China
| | | | | | | | | | | |
Collapse
|
38
|
Johnson GG, White MC, Wu JH, Vallejo M, Grimaldi M. The deadly connection between endoplasmic reticulum, Ca2+, protein synthesis, and the endoplasmic reticulum stress response in malignant glioma cells. Neuro Oncol 2014; 16:1086-99. [PMID: 24569545 DOI: 10.1093/neuonc/nou012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is involved in Ca(2+) signaling and protein processing. Accumulation of unfolded proteins following ER Ca(2+) depletion triggers the ER stress response (ERSR), which facilitates protein folding and removal of damaged proteins and can induce cell death. Unfolded proteins bind to chaperones, such as the glucose-regulated protein (GRP)78 and cause the release of GRP78-repressed proteins executing ERSR. METHODS Several glioma cell lines and primary astrocytes were used to analyze ERSR using standard western blots, reverse transcription-PCR, viability assays, and single cell Ca(2+) imaging. RESULTS ERSR induction with thapsigargin results in a more intense ERSR associated with a larger loss of ER Ca(2+), activation of ER-associated caspases (4/12) and caspase 3, and a higher rate of malignant glioma cell death than in normal glial cells. Malignant glioma cells have higher levels of protein synthesis and expression of the translocon (a component of the ribosomal complex, guiding protein entry in the ER), the activity of which is associated with the loss of ER Ca(2+). Our experiments confirm increased expression of the translocon in malignant glioma cells. In addition, blockade of the ribosome-translocon complex with agents differently affecting translocon Ca(2+) permeability causes opposite effects on ERSR deployment and death of malignant glioma cells. CONCLUSIONS Excessive ER Ca(2+) loss due to translocon activity appears to be responsible for the enhancement of ERSR, leading to the death of glioma cells. The results reveal a characteristic of malignant glioma cells that could be exploited to develop new therapeutic strategies to treat incurable glial malignancies.
Collapse
Affiliation(s)
- Guyla G Johnson
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, Alabama (G.G.J., M.C.W., J-H.W., M.G.); Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama (M.V.)
| | - Misti C White
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, Alabama (G.G.J., M.C.W., J-H.W., M.G.); Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama (M.V.)
| | - Jian-He Wu
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, Alabama (G.G.J., M.C.W., J-H.W., M.G.); Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama (M.V.)
| | - Matthew Vallejo
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, Alabama (G.G.J., M.C.W., J-H.W., M.G.); Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama (M.V.)
| | - Maurizio Grimaldi
- Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, Alabama (G.G.J., M.C.W., J-H.W., M.G.); Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama (M.V.)
| |
Collapse
|
39
|
Arshad A, Chen X, Cong Z, Qing H, Deng Y. TRPC1 protects dopaminergic SH-SY5Y cells from MPP+, salsolinol, and N-methyl-(R)-salsolinol-induced cytotoxicity. Acta Biochim Biophys Sin (Shanghai) 2014; 46:22-30. [PMID: 24252728 DOI: 10.1093/abbs/gmt127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Neurotoxins and alterations in Ca2+ homeostasis have been associated with Parkinson's disease (PD), but the role of store-operated Ca2+ entry channels is not well understood. Previous studies have shown the neurotoxicity of salsolinol and 1-methyl-4-phenylpyridinium ion on SH-SY5Y cells and cytoprotection induced by transient receptor potential protein 1 (TRPC1). In the present study, N-methyl-(R)-salsolinol was tested for its cellular toxicity and effects on TRPC1 expression. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, DAPI (4',6-diamidino-2-phenylindole), fluorescein isothiocyanate-Annexin-V/propidium iodide, western blot analysis, and JC-1 labeling revealed that the three indicated drugs could induce caspase-dependent, mitochondrial-mediated apoptosis. Exposure of SH-SY5Y cells to the indicated drugs resulted in a significant decrease in thapsigargin-mediated Ca2+ influx and TRPC1 expression. Immunocytochemistry experiments revealed that neurotoxins treatment induced TRPC1 translocation to the cytoplasm. Taken together, our results indicate that treatment with neurotoxins may alter Ca2+ homeostasis and induce mitochondrial-mediated caspase-dependent cytotoxicity, an important characteristic of PD.
Collapse
Affiliation(s)
- Abida Arshad
- Cell Biology Laboratory, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | | | | | | | | |
Collapse
|
40
|
Feng Y, Wang B, Du F, Li H, Wang S, Hu C, Zhu C, Yu X. The involvement of PI3K-mediated and L-VGCC-gated transient Ca2+ influx in 17β-estradiol-mediated protection of retinal cells from H2O2-induced apoptosis with Ca2+ overload. PLoS One 2013; 8:e77218. [PMID: 24223708 PMCID: PMC3818527 DOI: 10.1371/journal.pone.0077218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Intracellular calcium concentration ([Ca2+]i) plays an important role in regulating most cellular processes, including apoptosis and survival, but its alterations are different and complicated under diverse conditions. In this study, we focused on the [Ca2+]i and its control mechanisms in process of hydrogen peroxide (H2O2)-induced apoptosis of primary cultured Sprague-Dawley (SD) rat retinal cells and 17β-estradiol (βE2) anti-apoptosis. Fluo-3AM was used as a Ca2+ indicator to detect [Ca2+]i through fluorescence-activated cell sorting (FACS), cell viability was assayed using MTT assay, and apoptosis was marked by Hoechst 33342 and annexin V/Propidium Iodide staining. Besides, PI3K activity was detected by Western blotting. Results showed: a) 100 μM H2O2-induced retinal cell apoptosis occurred at 4 h after H2O2 stress and increased in a time-dependent manner, but [Ca2+]i increased earlier at 2 h, sustained to 12 h, and then recovered at 24 h after H2O2 stress; b) 10 μM βE2 treatment for 0.5-24 hrs increased cell viability by transiently increasing [Ca2+]i, which appeared only at 0.5 h after βE2 application; c) increased [Ca2+]i under 100 µM H2O2 treatment for 2 hrs or 10 µM βE2 treatment for 0.5 hrs was, at least partly, due to extracellular Ca2+ stores; d) importantly, the transiently increased [Ca2+]i induced by 10 µM βE2 treatment for 0.5 hrs was mediated by the phosphatidylinositol-3-kinase (PI3K) and gated by the L-type voltage-gated Ca2+ channels (L-VGCC), but the increased [Ca2+]i induced by 100 µM H2O2 treatment for 2 hrs was not affected; and e) pretreatment with 10 µM βE2 for 0.5 hrs effectively protected retinal cells from apoptosis induced by 100 µM H2O2, which was also associated with its transient [Ca2+]i increase through L-VGCC and PI3K pathway. These findings will lead to better understanding of the mechanisms of βE2-mediated retinal protection and to exploration of the novel therapeutic strategies for retina degeneration.
Collapse
Affiliation(s)
- Yan Feng
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Baoying Wang
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Fangying Du
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Hongbo Li
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Shaolan Wang
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chenghu Hu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Chunhui Zhu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Xiaorui Yu
- Department of Genetics and Molecular Biology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment-and-Gene Related Diseases of the Ministry of Education, School of Medicine, Xi’an Jiaotong University, Xi’an, China
- * E-mail:
| |
Collapse
|
41
|
Lopez JJ, Palazzo A, Chaabane C, Albarran L, Polidano E, Lebozec K, Dally S, Nurden P, Enouf J, Debili N, Bobe R. Crucial role for endoplasmic reticulum stress during megakaryocyte maturation. Arterioscler Thromb Vasc Biol 2013; 33:2750-8. [PMID: 24115034 DOI: 10.1161/atvbaha.113.302184] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Apoptotic-like phase is an essential step for the platelet formation from megakaryocytes. How controlled is this signaling pathway remained poorly understood. The aim of this study was to determine whether endoplasmic reticulum (ER) stress-induced apoptosis occurs during thrombopoiesis. APPROACH AND RESULTS Investigation of ER stress and maturation markers in different models of human thrombopoiesis (CHRF, DAMI, MEG-01 cell lines, and hematopoietic stem cells: CD34(+)) as well as in immature pathological platelets clearly indicated that ER stress occurs transiently during thrombopoiesis. Direct ER stress induction by tunicamycin, an inhibitor of N-glycosylation, or by sarco/endoplasmic reticulum Ca(2+) ATPase type 3b overexpression, which interferes with reticular calcium, leads to some degree of maturation in megakaryocytic cell lines. On the contrary, exposure to salubrinal, a phosphatase inhibitor that prevents eukaryotic translation initiation factor 2α-P dephosphorylation and inhibits ER stress-induced apoptosis, decreased both expression of maturation markers in MEG-01 and CD34(+) cells as well as numbers of mature megakaryocytes and proplatelet formation in cultured CD34(+) cells. CONCLUSIONS Taken as a whole, our research suggests that transient ER stress activation triggers the apoptotic-like phase of the thrombopoiesis process.
Collapse
Affiliation(s)
- Jose J Lopez
- From the Inserm U770, Université Paris-Sud, Le Kremlin-Bicêtre, France (J.J.L., C.C., L.A., E.P., S.D., J.E., R.B.); INSERM UMR1009, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France (A.P., K.L., N.D.); and Centre de Référence des Pathologies Plaquettaires, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France (P.N.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Isomura M, Kotake Y, Masuda K, Miyara M, Okuda K, Samizo S, Sanoh S, Hosoi T, Ozawa K, Ohta S. Tributyltin-induced endoplasmic reticulum stress and its Ca2+-mediated mechanism. Toxicol Appl Pharmacol 2013; 272:137-46. [DOI: 10.1016/j.taap.2013.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/15/2013] [Accepted: 05/24/2013] [Indexed: 11/16/2022]
|
43
|
Leung YM, Wong KL, Chen SW, Lu DY, Kuo CS, Chen YR, Chen YW, Cheng TH. Down-regulation of voltage-gated Ca2+ channels in Ca2+ store-depleted rat insulinoma RINm5F cells. Biomedicine (Taipei) 2013; 3:130-139. [DOI: 10.1016/j.biomed.2012.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
44
|
Ansari N, Hadi-Alijanvand H, Sabbaghian M, Kiaei M, Khodagholi F. Interaction of 2-APB, dantrolene, and TDMT with IP3R and RyR modulates ER stress-induced programmed cell death I and II in neuron-like PC12 cells: an experimental and computational investigation. J Biomol Struct Dyn 2013; 32:1211-30. [DOI: 10.1080/07391102.2013.812520] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Paredes RM, Bollo M, Holstein D, Lechleiter JD. Luminal Ca2+ depletion during the unfolded protein response in Xenopus oocytes: cause and consequence. Cell Calcium 2013; 53:286-96. [PMID: 23415071 DOI: 10.1016/j.ceca.2013.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is a Ca(2+) storing organelle that plays a critical role in the synthesis, folding and post-translational modifications of many proteins. The ER enters into a condition of stress when the load of newly synthesized proteins exceeds its folding and processing capacity. This activates a signal transduction pathway called the unfolded protein response (UPR) that attempts to restore homeostasis. The precise role of ER Ca(2+) in the initiation of the UPR has not been defined. Specifically, it has not been established whether ER Ca(2+) dysregulation is a cause or consequence of ER stress. Here, we report that partial depletion of ER Ca(2+) stores induces a significant induction of the UPR, and leads to the retention of a normally secreted protein Carboxypeptidase Y. Moreover, inhibition of protein glycosylation by tunicamycin rapidly induced an ER Ca(2+) leak into the cytosol. However, blockade of the translocon with emetine inhibited the tunicamycin-induced Ca(2+) release. Furthermore, emetine treatment blocked elF2α phosphorylation and reduced expression of the chaperone BiP. These findings suggest that Ca(2+) may be both a cause and a consequence of ER protein misfolding. Thus, it appears that ER Ca(2+) leak is a significant co-factor for the initiation of the UPR.
Collapse
Affiliation(s)
- R Madelaine Paredes
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
46
|
Gibbons E, Nelson J, Anderson L, Brewer K, Melchor S, Judd AM, Bell JD. Role of membrane oxidation in controlling the activity of human group IIa secretory phospholipase A2 toward apoptotic lymphoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:670-6. [DOI: 10.1016/j.bbamem.2012.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/31/2012] [Accepted: 09/08/2012] [Indexed: 01/05/2023]
|
47
|
Beck D, Niessner H, Smalley KS, Flaherty K, Paraiso KH, Busch C, Sinnberg T, Vasseur S, Iovanna JL, Drießen S, Stork B, Wesselborg S, Schaller M, Biedermann T, Bauer J, Lasithiotakis K, Weide B, Eberle J, Schittek B, Schadendorf D, Garbe C, Kulms D, Meier F. Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells. Sci Signal 2013; 6:ra7. [PMID: 23362240 PMCID: PMC3698985 DOI: 10.1126/scisignal.2003057] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The V600E mutation in the kinase BRAF is frequently detected in melanomas and results in constitutive activation of BRAF, which then promotes cell proliferation by the mitogen-activated protein kinase signaling pathway. Although the BRAFV600E kinase inhibitor vemurafenib has remarkable antitumor activity in patients with BRAFV600E-mutated melanoma, its effects are limited by the onset of drug resistance. We found that exposure of melanoma cell lines with the BRAFV600E mutation to vemurafenib decreased the abundance of antiapoptotic proteins and induced intrinsic mitochondrial apoptosis. Vemurafenib-treated melanoma cells showed increased cytosolic concentration of calcium, a potential trigger for endoplasmic reticulum (ER) stress, which can lead to apoptosis. Consistent with an ER stress-induced response, vemurafenib decreased the abundance of the ER chaperone protein glucose-regulated protein 78, increased the abundance of the spliced isoform of the transcription factor X-box binding protein 1 (XBP1) (which transcriptionally activates genes involved in ER stress responses), increased the phosphorylation of the translation initiation factor eIF2α (which would be expected to inhibit protein synthesis), and induced the expression of ER stress-related genes. Knockdown of the ER stress response protein activating transcription factor 4 (ATF4) significantly reduced vemurafenib-induced apoptosis. Moreover, the ER stress inducer thapsigargin prevented invasive growth of tumors formed from vemurafenib-sensitive melanoma cells in vivo. In melanoma cells with low sensitivity or resistance to vemurafenib, combination treatment with thapsigargin augmented or induced apoptosis. Thus, thapsigargin or other inducers of ER stress may be useful in combination therapies to overcome vemurafenib resistance.
Collapse
Affiliation(s)
- Daniela Beck
- Division of Dermatologic Oncology, Department of Dermatology, University of Tuebingen, Germany
| | - Heike Niessner
- Division of Dermatologic Oncology, Department of Dermatology, University of Tuebingen, Germany
| | - Keiran S.M. Smalley
- The Departments of Molecular Oncology and Cutaneous Oncology, the Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Keith Flaherty
- Massachusetts General Hospital Cancer Center, Boston, USA
| | - Kim H.T. Paraiso
- The Departments of Molecular Oncology and Cutaneous Oncology, the Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Christian Busch
- Division of Dermatologic Oncology, Department of Dermatology, University of Tuebingen, Germany
| | - Tobias Sinnberg
- Division of Dermatologic Oncology, Department of Dermatology, University of Tuebingen, Germany
| | - Sophie Vasseur
- Centre de Recherche INSERM, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille University, Marseille, France
- CNRS, UMR7258, CRCM, Marseille, France
| | | | - Stefan Drießen
- Institute of Molecular Medicine, University Hospital Duesseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine, University Hospital Duesseldorf, Germany
| | | | - Martin Schaller
- Division of Dermatologic Oncology, Department of Dermatology, University of Tuebingen, Germany
| | - Tilo Biedermann
- Division of Dermatologic Oncology, Department of Dermatology, University of Tuebingen, Germany
| | - Jürgen Bauer
- Division of Dermatologic Oncology, Department of Dermatology, University of Tuebingen, Germany
| | | | - Benjamin Weide
- Division of Dermatologic Oncology, Department of Dermatology, University of Tuebingen, Germany
| | - Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité – Universitätsmedizin Berlin, Germany
| | - Birgit Schittek
- Division of Dermatologic Oncology, Department of Dermatology, University of Tuebingen, Germany
| | | | - Claus Garbe
- Division of Dermatologic Oncology, Department of Dermatology, University of Tuebingen, Germany
| | - Dagmar Kulms
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany
| | - Friedegund Meier
- Division of Dermatologic Oncology, Department of Dermatology, University of Tuebingen, Germany
| |
Collapse
|
48
|
Nakanishi T, Shimazawa M, Sugitani S, Kudo T, Imai S, Inokuchi Y, Tsuruma K, Hara H. Role of endoplasmic reticulum stress in light-induced photoreceptor degeneration in mice. J Neurochem 2013; 125:111-24. [PMID: 23216380 DOI: 10.1111/jnc.12116] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 12/17/2022]
Abstract
Exposure to excessive levels of light induces photoreceptor apoptosis and can be a causative factor in age-related macular degeneration (AMD). However, the cellular events that mediate this apoptotic response are poorly understood. Here, we investigated the roles of endoplasmic reticulum (ER) stress in light-induced cell death in the murine retina and murine photoreceptor cells (661W). Excessive light exposure induced retinal dysfunction, photoreceptor degeneration, and apoptosis. Furthermore, the accumulation of polyubiquitinated proteins and the transcriptional expression of ER stress-related factors, including 78-kDa glucose-regulated protein (GRP78)/immunoglobulin-binding protein (BiP) and C/EBP-homologous protein (CHOP), were increased in light-exposed retinas. Light exposure also induced both cell death and up-regulation of polyubiquitinated proteins, S-opsin aggregation, bip and chop mRNAs in 661W cells in vitro. Knock-down of chop mRNA inhibited photoreceptor cell death induced by light exposure. Furthermore, treatment with BiP inducer X (BIX), an ER stress inhibitor, induced bip mRNA and reduced both chop expression and light-induced photoreceptor cell death. These data indicate that excessive ER stress may induce photoreceptor cell death in light-exposed retinas via activation of the CHOP-dependent apoptotic pathway, suggesting that the ER stress may play a pivotal role in light exposure-induced retinal damage.
Collapse
Affiliation(s)
- Tomohiro Nakanishi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pétremand J, Puyal J, Chatton JY, Duprez J, Allagnat F, Frias M, James RW, Waeber G, Jonas JC, Widmann C. HDLs protect pancreatic β-cells against ER stress by restoring protein folding and trafficking. Diabetes 2012; 61:1100-11. [PMID: 22399686 PMCID: PMC3331764 DOI: 10.2337/db11-1221] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors.
Collapse
Affiliation(s)
- Jannick Pétremand
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Cellular Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | - Jean-Yves Chatton
- Department of Cellular Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | - Jessica Duprez
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium
| | - Florent Allagnat
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Miguel Frias
- Lipoprotein Laboratory, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Richard W. James
- Lipoprotein Laboratory, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gérard Waeber
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium
| | - Christian Widmann
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
- Corresponding author: Christian Widmann,
| |
Collapse
|
50
|
Amelioration of glucolipotoxicity-induced endoplasmic reticulum stress by a "chemical chaperone" in human THP-1 monocytes. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:356487. [PMID: 22550476 PMCID: PMC3328920 DOI: 10.1155/2012/356487] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 02/13/2012] [Indexed: 12/29/2022]
Abstract
Chronic ER stress is emerging as a trigger that imbalances a number of systemic and arterial-wall factors and promote atherosclerosis. Macrophage apoptosis within advanced atherosclerotic lesions is also known to increase the risk of atherothrombotic disease. We hypothesize that glucolipotoxicity might mediate monocyte activation and apoptosis through ER stress. Therefore, the aims of this study are (a) to investigate whether glucolipotoxicity could impose ER stress and apoptosis in THP-1 human monocytes and (b) to investigate whether 4-Phenyl butyric acid (PBA), a chemical chaperone could resist the glucolipotoxicity-induced ER stress and apoptosis. Cells subjected to either glucolipotoxicity or tunicamycin exhibited increased ROS generation, gene and protein (PERK, GRP-78, IRE1α, and CHOP) expression of ER stress markers. In addition, these cells showed increased TRPC-6 channel expression and apoptosis as revealed by DNA damage and increased caspase-3 activity. While glucolipotoxicity/tunicamycin increased oxidative stress, ER stress, mRNA expression of TRPC-6, and programmed the THP-1 monocytes towards apoptosis, all these molecular perturbations were resisted by PBA. Since ER stress is one of the underlying causes of monocyte dysfunction in diabetes and atherosclerosis, our study emphasize that chemical chaperones such as PBA could alleviate ER stress and have potential to become novel therapeutics.
Collapse
|