1
|
Toba H, Jin D, Takai S. Suppressing SPARC gene with siRNA exerts therapeutic effects and inhibits MMP-2/9 and ADAMTS1 overexpression in a murine model of ischemia/reperfusion-induced acute kidney injury. J Pharmacol Sci 2025; 158:103-112. [PMID: 40288820 DOI: 10.1016/j.jphs.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), a collagen-binding matricellular protein, is reported to facilitate inflammation and fibrosis in various tissues including the kidneys. Ischemia/reperfusion (I/R) is a major process of acute kidney injury. To investigate whether SPARC inhibition might attenuate renal I/R injury, we injected small interfering RNA (siRNA) targeting SPARC into male BALB/c mice one day before 45 min of renal ischemia followed by 72 h of reperfusion. Serum creatinine concentration, blood urea nitrogen, histological tubular damage, tubulointerstitial fibrosis, and expression of collagen I and transforming growth factor-β were increased after I/R. Expression of 4-hydroxy-2-nonenal, an oxidative stress marker, and the inflammatory cytokines monocyte chemoattractant protein-1 and tumor necrosis factor-α, were also upregulated in I/R kidneys. Overexpression of SPARC mRNA was observed after I/R, and immunohistochemistry revealed that SPARC was localized mainly in damaged tubuloepithelial cells. Additionally, a disintegrin and metalloproteinase with thrombospondin type 1 motif (ADAMTS1) expression colocalized with SPARC. Injection of siRNA targeting SPARC attenuated renal dysfunction, histological abnormalities, collagen deposition, oxidative stress, and renal inflammation. In addition, SPARC gene knockdown suppressed the I/R-induced increases in ADAMTS1 and matrix metalloproteinase-2/9 expression. In conclusion, I/R-induced SPARC could be a novel therapeutic target against acute kidney injury.
Collapse
Affiliation(s)
- Hiroe Toba
- Laboratory of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, 1 Misasagi Shichono-cho, Yamashina-ku, Kyoto, 607-8412, Japan; Department of Pharmacology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-City, Osaka, 569-8686, Japan.
| | - Denan Jin
- Department of Pharmacology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-City, Osaka, 569-8686, Japan
| | - Shinji Takai
- Department of Pharmacology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-City, Osaka, 569-8686, Japan
| |
Collapse
|
2
|
Yang H, Xiang Y, Wang J, Ke Z, Zhou W, Yin X, Zhang M, Chen Z. Modulating the blood-brain barrier in CNS disorders: A review of the therapeutic implications of secreted protein acidic and rich in cysteine (SPARC). Int J Biol Macromol 2025; 288:138747. [PMID: 39674451 DOI: 10.1016/j.ijbiomac.2024.138747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Secreted protein acidic and rich in cysteine (SPARC), an essential stromal cell protein, plays a crucial role in angiogenesis and maintaining endothelial barrier function. This protein is expressed by diverse cell types, including endothelial cells, fibroblasts, and macrophages, with increased expression found in regions of tissues undergoing active remodeling, repair, and proliferation. The role of SPARC in non-neural tissues is of significant interest. In the central nervous system (CNS), SPARC is highly expressed in blood vessels during early development. It becomes down-regulated as the brain matures, a pattern consistent with its role in angiogenesis and blood-brain barrier (BBB) establishment. In this review, we explore the multifaceted roles of SPARC in regulating CNS disorders, particularly its action in angiogenesis, inflammatory responses, neural system development and repair, barrier establishment, maintenance of BBB function, and the pathogenesis of CNS disorders triggered by BBB dysfunction.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Yuanyuan Xiang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jiaxuan Wang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Zunliang Ke
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
3
|
Kumar M, Patel K, Chinnapparaj S, Sharma T, Aggarwal A, Singla N, Karthigeyan M, Singh A, Sahoo SK, Tripathi M, Takkar A, Gupta T, Pal A, Attri SV, Bansal YS, Ratho RK, Gupta SK, Khullar M, Vashishta RK, Mukherjee KK, Grover VK, Prasad R, Chatterjee A, Gowda H, Bhagat H. Dysregulated Genes and Signaling Pathways in the Formation and Rupture of Intracranial Aneurysm. Transl Stroke Res 2024; 15:865-879. [PMID: 37644376 DOI: 10.1007/s12975-023-01178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
Intracranial aneurysm (IA) has the potential to rupture. Despite scientific advances, we are still not in a position to screen patients for IA and identify those at risk of rupture. It is critical to comprehend the molecular basis of disease to facilitate the development of novel diagnostic strategies. We used transcriptomics to identify the dysregulated genes and understand their role in the disease biology. In particular, RNA-Seq was performed in tissue samples of controls, unruptured IA, and ruptured IA. Dysregulated genes (DGs) were identified and analyzed to understand the functional aspects of molecules. Subsequently, candidate genes were validated at both transcript and protein level. There were 314 DGs in patients with unruptured IA when compared to control samples. Out of these, SPARC and OSM were validated as candidate molecules in unruptured IA. PI3K-AKT signaling pathway was found to be an important pathway for the formation of IA. Similarly, 301 DGs were identified in the samples of ruptured IA when compared with unruptured IAs. CTSL was found to be a key candidate molecule which along with Hippo signaling pathway may be involved in the rupture of IA. We conclude that activation of PI3K-AKT signaling pathway by OSM along with up-regulation of SPARC is important for the formation of IA. Further, regulation of Hippo pathway through PI3K-AKT signaling results in the down-regulation of YAP1 gene. This along with up-regulation of CTSL leads to further weakening of aneurysm wall and its subsequent rupture.
Collapse
Affiliation(s)
- Munish Kumar
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Shobia Chinnapparaj
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tanavi Sharma
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Aggarwal
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singla
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhivanan Karthigeyan
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Apinderpreet Singh
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sushanta Kumar Sahoo
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aastha Takkar
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Savita Verma Attri
- Pediatric Biochemistry, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yogender Singh Bansal
- Department of Forensic Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Radha Kanta Ratho
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil K Gupta
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Vashishta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanchan Kumar Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinod Kumar Grover
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajendra Prasad
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Hemant Bhagat
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
4
|
Eun K, Kim AY, Ryu S. Matricellular proteins in immunometabolism and tissue homeostasis. BMB Rep 2024; 57:400-416. [PMID: 38919018 PMCID: PMC11444987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2023] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
Matricellular proteins are integral non-structural components of the extracellular matrix. They serve as essential modulators of immunometabolism and tissue homeostasis, playing critical roles in physiological and pathological conditions. These extracellular matrix proteins including thrombospondins, osteopontin, tenascins, the secreted protein acidic and rich in cysteine (SPARC) family, the Cyr61, CTGF, NOV (CCN) family, and fibulins have multi-faceted functions in regulating immune cell functions, metabolic pathways, and tissue homeostasis. They are involved in immune-metabolic regulation and influence processes such as insulin signaling, adipogenesis, lipid metabolism, and immune cell function, playing significant roles in metabolic disorders such as obesity and diabetes. Furthermore, their modulation of tissue homeostasis processes including cellular adhesion, differentiation, migration, repair, and regeneration is instrumental for maintaining tissue integrity and function. The importance of these proteins in maintaining physiological equilibrium is underscored by the fact that alterations in their expression or function often coincide with disease manifestation. This review contributes to our growing understanding of these proteins, their mechanisms, and their potential therapeutic applications. [BMB Reports 2024; 57(9): 400-416].
Collapse
Affiliation(s)
- Kyoungjun Eun
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Ah Young Kim
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Seungjin Ryu
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Natural Medicine, College of Medicine, Hallym Unviersity, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| |
Collapse
|
5
|
Chuang TD, Ton N, Rysling S, Quintanilla D, Boos D, Khorram O. Therapeutic effects of in vivo administration of an inhibitor of tryptophan 2,3-dioxygenase (680c91) for the treatment of fibroids: a preclinical study. Fertil Steril 2024; 121:669-678. [PMID: 38072367 PMCID: PMC10978289 DOI: 10.1016/j.fertnstert.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE Fibroids are characterized by marked overexpression of tryptophan 2,3 dioxygenase (TDO2). The objective of this study was to determine the effectiveness of in vivo administration of an inhibitor of TDO2 (680C91) on fibroid size and gene expression. DESIGN Animal and ex vivo human study. SETTING Academic Research Institution. SUBJECTS Severe combined immunodeficiency mice bearing human fibroid xenografts treated with vehicle and TDO2 inhibitor. INTERVENTION Daily intraperitoneal administration of 680C91 or vehicle for 2 months and in vitro studies with fibroid explants. MAIN OUTCOME MEASURES Tumor weight and gene expression profile of xenografts and in vitro mechanistic experiments using fibroid explants. RESULTS Compound 680C91 was well-tolerated with no effects on blood chemistry and body weight. Treatment of mice with 680C91 resulted in 30% reduction in the weight of fibroid xenografts after 2 months of treatment and as expected lower levels of kynurenine, the byproduct of tryptophan degradation and an endogenous ligand of aryl hydrocarbon receptor (AhR) in the xenografts. The expression of cytochrome P450 family 1 subfamily B member 1 (CYP1B1), transforming growth factor β3 (TGF-β3), fibronectin (FN1), cyclin-dependent kinase 2 (CDK2), E2F transcription factor 1 (E2F1), interleukin 8 (IL-8) and secreted protein acidic and cysteine rich (SPARC) mRNA were lower in the xenografts of mice treated with 680C91 compared with vehicle controls. Similarly, the protein abundance of collagen, FN1, CYP1B1, and SPARC were lower in the xenografts of 680C9- treated mice compared with vehicle controls. Immunohistochemical analysis of xenografts indicated decreased expression of collagen, Ki67 and E2F1 but no significant changes in cleaved caspase 3 expression in mice treated with 680C91. The levels of kynurenine in the xenografts showed a direct correlation with the tumor weight and FN1 levels. In vitro studies with fibroid explants showed a significant induction of CYP1B1, TGF-β3, FN1, CDK2, E2F1, IL8, and SPARC mRNA by tryptophan, which could be blocked by cotreatment with 680C91 and the AhR antagonist CH-223191. CONCLUSION The results indicate that correction of aberrant tryptophan catabolism in fibroids could be an effective treatment through its effect to reduce cell proliferation and extracellular matrix accumulation.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, California; The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Derek Quintanilla
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, California
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, California; The Lundquist Institute for Biomedical Innovation, Torrance, California; Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
6
|
Dochi H, Kondo S, Komura S, Moriyama-Kita M, Komori T, Nanbo A, Sakaguchi M, Fukuyo M, Hamabe-Horiike T, Tanaka M, Mizokami H, Kano M, Kitagawa Y, Kobayashi E, Hirai N, Ueno T, Nakanishi Y, Endo K, Sugimoto H, Hanayama R, Kaneda A, Yoshizaki T. Peritumoral SPARC expression induced by exosomes from nasopharyngeal carcinoma infected Epstein-Barr virus: A poor prognostic marker. Int J Cancer 2024; 154:895-911. [PMID: 37907830 DOI: 10.1002/ijc.34777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) cells have high metastatic potential. Recent research has revealed that the interaction of between tumor cells and the surrounding stroma plays an important role in tumor invasion and metastasis. In this study, we showed the prognostic value of expression of SPARC, an extracellular matrix protein with multiple cellular functions, in normal adjacent tissues (NAT) surrounding NPC. In the immunohistochemical analysis of 51 NPC biopsy specimens, SPARC expression levels were significantly elevated in the NAT of EBER (EBV-encoded small RNA)-positive NPC compared to that in the NAT of EBER-negative NPC. Moreover, increased SPARC expression in NAT was associated with a worsening of overall survival. The enrichment analysis of RNA-seq of publicly available NPC and NAT surrounding NPC data showed that high SPARC expression in NPC was associated with epithelial mesenchymal transition promotion, and there was a dynamic change in the gene expression profile associated with interference of cellular proliferation in NAT, including SPARC expression. Furthermore, EBV-positive NPC cells induce SPARC expression in normal nasopharyngeal cells via exosomes. Induction of SPARC in cancer-surrounding NAT cells reduced intercellular adhesion in normal nasopharyngeal structures and promoted cell competition between cancer cells and normal epithelial cells. These results suggest that epithelial cells loosen their own binding with the extracellular matrix as well as stromal cells, facilitating the invasion of tumor cells into the adjacent stroma by activating cell competition. Our findings reveal a new mechanism by which EBV creates a pro-metastatic microenvironment by upregulating SPARC expression in NPC.
Collapse
Affiliation(s)
- Hirotomo Dochi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoru Kondo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shigetaka Komura
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takeshi Komori
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Asuka Nanbo
- Department of Virus Infection Dynamics, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Mariko Tanaka
- Center for Biochemical Research and Education, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Harue Mizokami
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Kano
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuki Kitagawa
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiji Kobayashi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Nobuyuki Hirai
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takayoshi Ueno
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosuke Nakanishi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hisashi Sugimoto
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Rikinari Hanayama
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
7
|
Wang C, Xu Y, Xu M, Sun C, Zhang X, Tao X, Song T. SPOCK2 modulates neuropathic pain by interacting with MT1-MMP to regulate astrocytic MMP-2 activation in rats with chronic constriction injury. J Neuroinflammation 2024; 21:57. [PMID: 38388415 PMCID: PMC10885439 DOI: 10.1186/s12974-024-03051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Neuropathic pain (NP) is a kind of intractable pain. The pathogenesis of NP remains a complicated issue for pain management practitioners. SPARC/osteonectin, CWCV, and Kazal-like domains proteoglycan 2 (SPOCK2) are members of the SPOCK family that play a significant role in the development of the central nervous system. In this study, we investigated the role of SPOCK2 in the development of NP in a rat model of chronic constriction injury (CCI). METHODS Sprague-Dawley rats were randomly grouped to establish CCI models. We examined the effects of SPOCK2 on pain hpersensitivity and spinal astrocyte activation after CCI-induced NP. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were used to reflects the pain behavioral degree. Molecular mechanisms involved in SPOCK2-mediated NP in vivo were examined by western blot analysis, immunofluorescence, immunohistochemistry, and co-immunoprecipitation. In addition, we examined the SPOCK2-mediated potential protein-protein interaction (PPI) in vitro coimmunoprecipitation (Co-IP) experiments. RESULTS We founded the expression level of SPOCK2 in rat spinal cord was markedly increased after CCI-induced NP, while SPOCK2 downregulation could partially relieve pain caused by CCI. Our research showed that SPOCK2 expressed significantly increase in spinal astrocytes when CCI-induced NP. In addition, SPOCK2 could act as an upstream signaling molecule to regulate the activation of matrix metalloproteinase-2 (MMP-2), thus affecting astrocytic ERK1/2 activation and interleukin (IL)-1β production in the development of NP. Moreover, in vitro coimmunoprecipitation (Co-IP) experiments showed that SPOCK2 could interact with membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP14) to regulate MMP-2 activation by the SPARC extracellular (SPARC_EC) domain. CONCLUSIONS Research shows that SPOCK2 can interact with MT1-MMP to regulate MMP-2 activation, thus affecting astrocytic ERK1/2 activation and IL-1β production to achieve positive promotion of NP.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Pain, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yitong Xu
- Department of Pathology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Miao Xu
- Department of Pain, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Cong Sun
- Department of Pain, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaojiao Zhang
- Department of Pain, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Tao Song
- Department of Pain, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
8
|
Zhu L, Tang Y, Li XY, Kerk SA, Lyssiotis CA, Sun X, Wang Z, Cho JS, Ma J, Weiss SJ. Proteolytic regulation of a galectin-3/Lrp1 axis controls osteoclast-mediated bone resorption. J Cell Biol 2023; 222:e202206121. [PMID: 36880731 PMCID: PMC9998966 DOI: 10.1083/jcb.202206121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/18/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
Bone-resorbing osteoclasts mobilize proteolytic enzymes belonging to the matrix metalloproteinase (MMP) family to directly degrade type I collagen, the dominant extracellular matrix component of skeletal tissues. While searching for additional MMP substrates critical to bone resorption, Mmp9/Mmp14 double-knockout (DKO) osteoclasts-as well as MMP-inhibited human osteoclasts-unexpectedly display major changes in transcriptional programs in tandem with compromised RhoA activation, sealing zone formation and bone resorption. Further study revealed that osteoclast function is dependent on the ability of Mmp9 and Mmp14 to cooperatively proteolyze the β-galactoside-binding lectin, galectin-3, on the cell surface. Mass spectrometry identified the galectin-3 receptor as low-density lipoprotein-related protein-1 (Lrp1), whose targeting in DKO osteoclasts fully rescues RhoA activation, sealing zone formation and bone resorption. Together, these findings identify a previously unrecognized galectin-3/Lrp1 axis whose proteolytic regulation controls both the transcriptional programs and the intracellular signaling cascades critical to mouse as well as human osteoclast function.
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Samuel A. Kerk
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Costas A. Lyssiotis
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Xiaoyue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zijun Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Jun Ma
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Stephen J. Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Libby CJ, Gc S, Benavides GA, Fisher JL, Williford SE, Zhang S, Tran AN, Gordon ER, Jones AB, Tuy K, Flavahan W, Gordillo J, Long A, Cooper SJ, Lasseigne BN, Augelli-Szafran CE, Darley-Usmar V, Hjelmeland AB. A role for GLUT3 in glioblastoma cell invasion that is not recapitulated by GLUT1. Cell Adh Migr 2021; 15:101-115. [PMID: 33843470 PMCID: PMC8043167 DOI: 10.1080/19336918.2021.1903684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The multifaceted roles of metabolism in invasion have been investigated across many cancers. The brain tumor glioblastoma (GBM) is a highly invasive and metabolically plastic tumor with an inevitable recurrence. The neuronal glucose transporter 3 (GLUT3) was previously reported to correlate with poor glioma patient survival and be upregulated in GBM cells to promote therapeutic resistance and survival under restricted glucose conditions. It has been suggested that the increased glucose uptake mediated by GLUT3 elevation promotes survival of circulating tumor cells to facilitate metastasis. Here we suggest a more direct role for GLUT3 in promoting invasion that is not dependent upon changes in cell survival or metabolism. Analysis of glioma datasets demonstrated that GLUT3, but not GLUT1, expression was elevated in invasive disease. In human xenograft derived GBM cells, GLUT3, but not GLUT1, elevation significantly increased invasion in transwell assays, but not growth or migration. Further, there were no changes in glycolytic metabolism that correlated with invasive phenotypes. We identified the GLUT3 C-terminus as mediating invasion: substituting the C-terminus of GLUT1 for that of GLUT3 reduced invasion. RNA-seq analysis indicated changes in extracellular matrix organization in GLUT3 overexpressing cells, including upregulation of osteopontin. Together, our data suggest a role for GLUT3 in increasing tumor cell invasion that is not recapitulated by GLUT1, is separate from its role in metabolism and survival as a glucose transporter, and is likely broadly applicable since GLUT3 expression correlates with metastasis in many solid tumors.
Collapse
Affiliation(s)
- Catherine J Libby
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sajina Gc
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gloria A Benavides
- Mitochondria Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L Fisher
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah E Williford
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sixue Zhang
- Chemistry Department, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | - Anh Nhat Tran
- Department of Neurosurgery, Northwestern University, Chicago, IL, USA
| | - Emily R Gordon
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Amber B Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kaysaw Tuy
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William Flavahan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worchester, MA, USA
| | - Juan Gordillo
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashlee Long
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Brittany N Lasseigne
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham, Birmingham, AL, USA.,The Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA.,UAB IMPACT Fund, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Victor Darley-Usmar
- Mitochondria Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
10
|
Wang L, Wang W, Xu Y, Wang Q. Low Levels of SPARC are Associated with Tumor Progression and Poor Prognosis in Human Endometrial Carcinoma. Onco Targets Ther 2020; 13:11549-11569. [PMID: 33204109 PMCID: PMC7667597 DOI: 10.2147/ott.s277795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background SPARC (secreted protein acidic and rich in cysteine), also known as osteonectin, BM-40, and 43 K protein, is a matricellular protein associated with various tumor progressions. The aim of this research was to investigate the prognostic value of SPARC in endometrial carcinoma (EC) and its function in cancer cell invasion and metastasis. Methods From both mRNA and protein levels, SPARC expression in normal endometrial tissue and EC tissue, normal endometrial cells and 4 EC cell lines (KLE, HEC-1A, HEC-1B, Ishikawa) were evaluated by immunohistochemistry (IHC) or immunocytochemistry (ICC), quantitative real-time PCR (qRT-PCR) and Western blotting. RNA interference mediated by lentivirus was performed to get the stable SPARC down-expressing cells. The functional analysis techniques in vitro and in vivo were used to detect the effects of SPARC knockdown on EC cell proliferation, apoptosis, invasion and metastasis. Results The expressions of SPARC in EC tissues and cells were much lower than those in normal endometrial cells and tissues; meanwhile, its low expression was closely related to the malignant clinicopathological characteristics of EC. SPARC knockdown could inhibit apoptosis, promote the process of EMT and improve the proliferation and invasion capacities of EC cells in vitro and in vivo. Conclusion The low expression of SPARC was detected in EC tissues and cells, which was positively correlated with the poor prognosis of EC patients. SPARC acted as a tumor suppressor gene that hindered EC progression, which proposed a new therapeutic strategy for EC treatment.
Collapse
Affiliation(s)
- Ling Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Wei Wang
- Department of Radiology, The First Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yangchun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Qiang Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
11
|
Abstract
Cancer is a complex disease with high incidence and mortality rates. The important role played by the tumor microenvironment in regulating oncogenesis, tumor growth, and metastasis is by now well accepted in the scientific community. SPARC is known to participate in tumor-stromal interactions and impact cancer growth in ambiguous ways, which either enhance or suppress cancer aggressiveness, in a context-dependent manner. p53 transcription factor, a well-established tumor suppressor, has been reported to promote tumor growth in certain situations, such as hypoxia, thus displaying a duality in its action. Although both proteins are being tested in clinical trials, the synergistic relation between them is yet to be explored in clinical practice. In this review, we address the controversial roles of SPARC and p53 as double agents in cancer, briefly summarizing the interaction found between these two molecules and its importance in cancer.
Collapse
|
12
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Robinson BS, Arthur CM, Evavold B, Roback E, Kamili NA, Stowell CS, Vallecillo-Zúniga ML, Van Ry PM, Dias-Baruffi M, Cummings RD, Stowell SR. The Sweet-Side of Leukocytes: Galectins as Master Regulators of Neutrophil Function. Front Immunol 2019; 10:1762. [PMID: 31440233 PMCID: PMC6693361 DOI: 10.3389/fimmu.2019.01762] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Among responders to microbial invasion, neutrophils represent one of the earliest and perhaps most important factors that contribute to initial host defense. Effective neutrophil immunity requires their rapid mobilization to the site of infection, which requires efficient extravasation, activation, chemotaxis, phagocytosis, and eventual killing of potential microbial pathogens. Following pathogen elimination, neutrophils must be eliminated to prevent additional host injury and subsequent exacerbation of the inflammatory response. Galectins, expressed in nearly every tissue and regulated by unique sensitivity to oxidative and proteolytic inactivation, appear to influence nearly every aspect of neutrophil function. In this review, we will examine the impact of galectins on neutrophils, with a particular focus on the unique biochemical traits that allow galectin family members to spatially and temporally regulate neutrophil function.
Collapse
Affiliation(s)
- Brian S Robinson
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Birk Evavold
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ethan Roback
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Nourine A Kamili
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Caleb S Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Pam M Van Ry
- Department of Biochemistry, Brigham Young University, Provo, UT, United States
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
14
|
Pancreatic acinar differentiation is guided by differential laminin deposition. Sci Rep 2019; 9:2711. [PMID: 30804366 PMCID: PMC6389953 DOI: 10.1038/s41598-019-39077-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/12/2018] [Indexed: 01/03/2023] Open
Abstract
Endothelial cells play multiple roles during pancreas organogenesis. First, they are required to instruct endoderm-derived pancreatic progenitor cells to initiate branching morphogenesis. Later, blood vessels promote β-cell differentiation but also limit acinar development. In this work, we show how endothelial cells might signal to pancreatic progenitors and spatially regulate acinar differentiation. Using an ex vivo culture system of undifferentiated E12.5 pancreata, we demonstrate that embryonic endothelial progenitor cells and their conditioned medium prevent the expression of two members of the pro-acinar transcriptional PTF1L-complex. This effect is not mediated by SPARC, a protein abundantly released in the medium conditioned by endothelial progenitors. On the contrary, heterotrimeric laminin-α1β1γ1, also produced by endothelial progenitor cells, can repress acinar differentiation when used on its own on pancreatic explants. Lastly, we found that laminin-α1 is predominantly found in vivo around the pancreatic trunk cells, as compared to the tip cells, at E14.5. In conclusion, we propose that expression or deposition of laminin-α1β1γ1 around the trunk cells, where blood vessels are predominantly localized, prevent acinar differentiation of these cells. On the contrary, transient decreased expression or deposition of laminin-α1β1γ1 around the tip cells would allow PTF1L-complex formation and acinar differentiation.
Collapse
|
15
|
Suzuki Y, Oshima T, Yoshihara K, Sakamaki K, Aoyama T, Cho H, Shiozawa M, Yoshikawa T, Rino Y, Imada T, Masuda M. Clinical significance of secreted protein, acidic and cysteine-rich gene expression in patients with stage II/III gastric cancer following curative resection and adjuvant chemotherapy with S-1. Oncol Lett 2018; 15:7335-7343. [PMID: 29725448 DOI: 10.3892/ol.2018.8248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/20/2017] [Indexed: 11/06/2022] Open
Abstract
The standard treatment for stage II/III gastric cancer is surgical resection followed by adjuvant chemotherapy with fluoropyrimidine anticancer agents, including S-1. The protein, secreted protein, acidic and cysteine-rich (SPARC), promotes angiogenesis, and the proliferation and migration of cancer cells. The present study evaluated the significance of expression of the SPARC gene in patients with stage II/III gastric cancer who had undergone surgical resection and adjuvant chemotherapy with S-1. In the present study, reverse transcription-quantitative polymerase chain reaction was performed in order to quantify mRNA expression levels of SPARC in cancer tissues and adjacent normal mucosa obtained from 134 patients with stage II/III gastric cancer who had undergone surgical resection followed by adjuvant chemotherapy with S-1. The mRNA expression level of SPARC was significantly higher in cancer tissues than in adjacent normal mucosa (P=0.0012). Additionally, the 5-year overall survival rate was significantly poorer in patients with high SPARC gene expression than in those with low expression (P<0.0001). Furthermore, multivariate analysis indicated that high SPARC mRNA expression was a significant predictor of poorer survival in patients with stage II/III gastric cancer who had undergone surgical resection and adjuvant chemotherapy with S-1 (HR, 5.347; P<0.0001). Therefore, high expression of the SPARC gene may be a useful predictor of outcomes in patients with stage II/III gastric cancer, who have received treatment involving surgical resection and adjuvant chemotherapy with S-1.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Takashi Oshima
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Kazue Yoshihara
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Kentaro Sakamaki
- Department of Biostatistics and Epidemiology, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Toru Aoyama
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Haruhiko Cho
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Manabu Shiozawa
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Takaki Yoshikawa
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Toshio Imada
- Department of Surgery, Yokohama City Nanbu Hospital, Yokohama, Kanagawa 234-0054, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
16
|
Gao X, Liu J, Liu X, Li L, Zheng J. Cleavage and phosphorylation: important post-translational modifications of galectin-3. Cancer Metastasis Rev 2018; 36:367-374. [PMID: 28378189 DOI: 10.1007/s10555-017-9666-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As the unique chimeric member of the β-galactoside-binding protein family, galectin-3 is a multivalent and multifunctional oncogenic protein involved in multiple physiological and pathological processes, including cell growth, cell differentiation, cell adhesion, RNA splicing, cell apoptosis, and malignant transformation. Post-translational modifications can effectively increase a protein's functional diversity, either by degradation or adding chemical modifications, thus regulating activity, localization, and ligand interaction. In order to clearly understand the functional mechanisms of galectin-3 involved in normal cell biology and pathogenesis, here, we have summarized the previously reported post-translational modifications of galectin-3, including cleavage and phosphorylation. Cleavage of galectin-3 by MMPs, PSA, and proteases from parasites generated intact carbohydrate-recognition domain and N-terminal peptides of varying lengths that retained lectin binding activity but lost multivalence. Serine and tyrosine phosphorylation of galectin-3 by c-Abl, CKI, and GSK-3β could regulate its localization and associated signal transduction. Accordingly, cleavage and phosphorylation play an important role in regulating galectin-3 function via altering its multivalence, localization, and ligand interaction.
Collapse
Affiliation(s)
- Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Jingjie Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Xiangye Liu
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, People's Republic of China
| | - Liantao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, People's Republic of China.
| |
Collapse
|
17
|
Proteomic profiling identifies markers for inflammation-related tumor-fibroblast interaction. Clin Proteomics 2017; 14:33. [PMID: 29176937 PMCID: PMC5689177 DOI: 10.1186/s12014-017-9168-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/25/2017] [Indexed: 02/08/2023] Open
Abstract
Background Cancer associated fibroblasts are activated in the tumor microenvironment and contribute to tumor progression, angiogenesis, extracellular matrix remodeling, and inflammation. Methods To identify proteins characteristic for fibroblasts in colorectal cancer we used liquid chromatography-tandem mass spectrometry to derive protein abundance from whole-tissue homogenates of human colorectal cancer/normal mucosa pairs. Alterations of protein levels were determined by two-sided t test with greater than threefold difference and an FDR of < 0.05. Public available datasets were used to predict proteins of stromal origin and link protein with mRNA regulation. Immunohistochemistry confirmed the localization of selected proteins. Results We identified a set of 24 proteins associated with inflammation, matrix organization, TGFβ receptor signaling and angiogenesis mainly originating from the stroma. Most prominent were increased abundance of SerpinB5 in the parenchyme and latent transforming growth factor β-binding protein, thrombospondin-B2, and secreted protein acidic-and-cysteine-rich in the stroma. Extracellular matrix remodeling involved collagens type VIII, XII, XIV, and VI as well as lysyl-oxidase-2. In silico analysis of mRNA levels demonstrated altered expression in the tumor and the adjacent normal tissue as compared to mucosa of healthy individuals indicating that inflammatory activation affected the surrounding tissue. Immunohistochemistry of 26 tumor specimen confirmed upregulation of SerpinB5, thrombospondin B2 and secreted protein acidic-and-cysteine-rich. Conclusions This study demonstrates the feasibility of detecting tumor- and compartment-specific protein-signatures that are functionally meaningful by proteomic profiling of whole-tissue extracts together with mining of RNA expression datasets. The results provide the basis for further exploration of inflammation-related stromal markers in larger patient cohorts and experimental models.
Collapse
|
18
|
Nishiumi F, Ogawa M, Nakura Y, Hamada Y, Nakayama M, Mitobe J, Hiraide A, Sakai N, Takeuchi M, Yoshimori T, Yanagihara I. Intracellular fate of Ureaplasma parvum entrapped by host cellular autophagy. Microbiologyopen 2017; 6. [PMID: 28088841 PMCID: PMC5458467 DOI: 10.1002/mbo3.441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Genital mycoplasmas, including Ureaplasma spp., are among the smallest human pathogenic bacteria and are associated with preterm birth. Electron microscopic observation of U. parvum showed that these prokaryotes have a regular, spherical shape with a mean diameter of 146 nm. U. parvum was internalized into HeLa cells by clathrin‐mediated endocytosis and survived for at least 14 days around the perinuclear region. Intracellular U. parvum reached endosomes in HeLa cells labeled with EEA1, Rab7, and LAMP‐1 within 1 to 3 hr. After 3 hr of infection, U. parvum induced the cytosolic accumulation of galectin‐3 and was subsequently entrapped by the autophagy marker LC3. However, when using atg7−/−MEF cells, autophagy was inadequate for the complete elimination of U. parvum in HeLa cells. U. parvum also colocalized with the recycling endosome marker Rab11. Furthermore, the exosomes purified from infected HeLa cell culture medium included U. parvum. In these purified exosomes ureaplasma lipoprotein multiple banded antigen, host cellular annexin A2, CD9, and CD63 were detected. This research has successfully shown that Ureaplasma spp. utilize the host cellular membrane compartments possibly to evade the host immune system.
Collapse
Affiliation(s)
- Fumiko Nishiumi
- Department of Developmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Michinaga Ogawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukiko Nakura
- Department of Developmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Yusuke Hamada
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Nakayama
- Department of Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Jiro Mitobe
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsushi Hiraide
- Critical Care Medical Center, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Norio Sakai
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Takeuchi
- Department of Pathology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| |
Collapse
|
19
|
Choi JS. Development of surface curcumin nanoparticles modified with biological macromolecules for anti-tumor effects. Int J Biol Macromol 2016; 92:850-859. [PMID: 27481341 DOI: 10.1016/j.ijbiomac.2016.07.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
Abstract
The rationale of this study was to improve the stability, cellular uptake, and evaluate the cytotoxicity of surface modified curcumin nanoparticles (CUR NP). CUR NP were surface modified with proteins (transferrin [Tf] and gelatin [GT]) by adsorption to improve their stability and targeting property. CUR NP were evaluated for stability, in vitro drug release, cellular uptake and cell cytotoxicity. The particle sizes of CUR NP were 153.2±56.4nm (CUR NP), 145.0±26.8nm (Tf-CUR NP), and 167.7±42.7nm (GT-CUR NP). The stabilities of Tf-CUR NP and GT-CUR NP were higher than that of CUR NP. Tf-CUR NP and GT-CUR NP showed faster drug release than those shown by CUR NP and CUR (pure) in pH 7.4 PBS and cell media (RPMI) for 36h. The cellular uptake and cytotoxicity of Tf- and GT-modified CUR NP were higher than those of CUR NP in MCF-7 and A549 cells. In conclusion, Tf-CUR NP and GT-CUR NP exhibited improved stability, enhanced cellular uptake, and stronger cytotoxicity.
Collapse
Affiliation(s)
- Jin-Seok Choi
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea.
| |
Collapse
|
20
|
Toba H, de Castro Brás LE, Baicu CF, Zile MR, Lindsey ML, Bradshaw AD. Increased ADAMTS1 mediates SPARC-dependent collagen deposition in the aging myocardium. Am J Physiol Endocrinol Metab 2016; 310:E1027-35. [PMID: 27143554 PMCID: PMC4935141 DOI: 10.1152/ajpendo.00040.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/29/2016] [Indexed: 01/08/2023]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is a collagen-binding matricellular protein highly expressed during fibrosis. Fibrosis is a prominent component of cardiac aging that reduces myocardial elasticity. Previously, we reported that SPARC deletion attenuated myocardial stiffness and collagen deposition in aged mice. To investigate the mechanisms by which SPARC promotes age-related cardiac fibrosis, we evaluated six groups of mice (n = 5-6/group): young (3-5 mo old), middle-aged (10-12 mo old), and old (18-29 mo old) C57BL/6 wild type (WT) and SPARC-null (Null) mice. Collagen content, determined by picrosirius red staining, increased in an age-dependent manner in WT but not in Null mice. A disintegrin and metalloproteinase with thrombospondin-like motifs 1 (ADAMTS1) increased in middle-aged and old WT compared with young, whereas in Null mice only old animals showed increased ADAMTS1 expression. Versican, a substrate of ADAMTS1, decreased with age only in WT. To assess the mechanisms of SPARC-induced collagen deposition, we stimulated cardiac fibroblasts with SPARC. SPARC treatment increased secretion of collagen I and ADAMTS1 (both the 110-kDa latent and 87-kDa active forms) into the conditioned media as well as the cellular expression of transforming growth factor-β1-induced protein (Tgfbi) and phosphorylated Smad2. An ADAMTS1 blocking antibody suppressed the SPARC-induced collagen I secretion, indicating that SPARC promoted collagen production directly through ADAMTS1 interaction. In conclusion, ADAMTS1 is an important mediator of SPARC-regulated cardiac aging.
Collapse
Affiliation(s)
- Hiroe Toba
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan;
| | - Lisandra E de Castro Brás
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; Department of Physiology, East Carolina University, Greenville, North Carolina
| | - Catalin F Baicu
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Michael R Zile
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina; and
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; G. V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi
| | - Amy D Bradshaw
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina; and
| |
Collapse
|
21
|
Morrissey MA, Jayadev R, Miley GR, Blebea CA, Chi Q, Ihara S, Sherwood DR. SPARC Promotes Cell Invasion In Vivo by Decreasing Type IV Collagen Levels in the Basement Membrane. PLoS Genet 2016; 12:e1005905. [PMID: 26926673 PMCID: PMC4771172 DOI: 10.1371/journal.pgen.1005905] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/07/2016] [Indexed: 02/04/2023] Open
Abstract
Overexpression of SPARC, a collagen-binding glycoprotein, is strongly associated with tumor invasion through extracellular matrix in many aggressive cancers. SPARC regulates numerous cellular processes including integrin-mediated cell adhesion, cell signaling pathways, and extracellular matrix assembly; however, the mechanism by which SPARC promotes cell invasion in vivo remains unclear. A main obstacle in understanding SPARC function has been the difficulty of visualizing and experimentally examining the dynamic interactions between invasive cells, extracellular matrix and SPARC in native tissue environments. Using the model of anchor cell invasion through the basement membrane (BM) extracellular matrix in Caenorhabditis elegans, we find that SPARC overexpression is highly pro-invasive and rescues BM transmigration in mutants with defects in diverse aspects of invasion, including cell polarity, invadopodia formation, and matrix metalloproteinase expression. By examining BM assembly, we find that overexpression of SPARC specifically decreases levels of BM type IV collagen, a crucial structural BM component. Reduction of type IV collagen mimicked SPARC overexpression and was sufficient to promote invasion. Tissue-specific overexpression and photobleaching experiments revealed that SPARC acts extracellularly to inhibit collagen incorporation into BM. By reducing endogenous SPARC, we also found that SPARC functions normally to traffic collagen from its site of synthesis to tissues that do not express collagen. We propose that a surplus of SPARC disrupts extracellular collagen trafficking and reduces BM collagen incorporation, thus weakening the BM barrier and dramatically enhancing its ability to be breached by invasive cells.
Collapse
Affiliation(s)
- Meghan A Morrissey
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ranjay Jayadev
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ginger R Miley
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Catherine A Blebea
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Shinji Ihara
- Multicellular Organization Laboratory, National Institute of Genetics,Yata, Mishima, Japan
| | - David R Sherwood
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
22
|
Neuzillet C, Tijeras-Raballand A, Cros J, Faivre S, Hammel P, Raymond E. Stromal expression of SPARC in pancreatic adenocarcinoma. Cancer Metastasis Rev 2014; 32:585-602. [PMID: 23690170 DOI: 10.1007/s10555-013-9439-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands as the poorest prognostic tumor of the digestive tract, with a 5-year survival rate of less than 5%. Therapeutic options for unresectable PDAC are extremely limited and there is a pressing need for expanded therapeutic approaches to improve current options available with gemcitabine-based regimens. With PDAC displaying one of the most prominent desmoplastic stromal reactions of all carcinomas, recent research has focused on the microenvironment surrounding PDAC cells. Secreted protein acid and rich in cysteine (SPARC), which is overexpressed in PDAC, may display tumor suppressor functions in several cancers (e.g., in colorectal, ovarian, prostate cancers, and acute myelogenous leukemia) but also appears to be overexpressed in other tumor types (e.g., breast cancer, melanoma, and glioblastoma). The apparent contradictory functions of SPARC may yield inhibition of angiogenesis via inhibition of vascular endothelial growth factor, while promoting epithelial-to-mesenchymal transition and invasion through matrix metalloprotease expression. This feature is of particular interest in PDAC where SPARC overexpression in the stroma stands along with inhibition of angiogenesis and promotion of cancer cell invasion and metastasis. Several therapeutic strategies to deplete stromal tissue have been developed. In this review, we focused on key preclinical and clinical data describing the role of SPARC in PDAC biology, the properties, and mechanisms of delivery of drugs that interact with SPARC and discuss the proof-of-concept clinical trials using nab-paclitaxel.
Collapse
Affiliation(s)
- Cindy Neuzillet
- Department of Medical Oncology (INSERM U728-PRES Paris 7 Diderot), Beaujon University Hospital, Assistance Publique-Hôpitaux de Paris, 100 boulevard du Général Leclerc, 92110, Clichy-La-Garenne, France
| | | | | | | | | | | |
Collapse
|
23
|
Mateo F, Meca-Cortés O, Celià-Terrassa T, Fernández Y, Abasolo I, Sánchez-Cid L, Bermudo R, Sagasta A, Rodríguez-Carunchio L, Pons M, Cánovas V, Marín-Aguilera M, Mengual L, Alcaraz A, Schwartz S, Mellado B, Aguilera KY, Brekken R, Fernández PL, Paciucci R, Thomson TM. SPARC mediates metastatic cooperation between CSC and non-CSC prostate cancer cell subpopulations. Mol Cancer 2014; 13:237. [PMID: 25331979 PMCID: PMC4210604 DOI: 10.1186/1476-4598-13-237] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/08/2014] [Indexed: 12/29/2022] Open
Abstract
Background Tumor cell subpopulations can either compete with each other for nutrients and physical space within the tumor niche, or co-operate for enhanced survival, or replicative or metastatic capacities. Recently, we have described co-operative interactions between two clonal subpopulations derived from the PC-3 prostate cancer cell line, in which the invasiveness of a cancer stem cell (CSC)-enriched subpopulation (PC-3M, or M) is enhanced by a non-CSC subpopulation (PC-3S, or S), resulting in their accelerated metastatic dissemination. Methods M and S secretomes were compared by SILAC (Stable Isotope Labeling by Aminoacids in Cell Culture). Invasive potential in vitro of M cells was analyzed by Transwell-Matrigel assays. M cells were co-injected with S cells in the dorsal prostate of immunodeficient mice and monitored by bioluminescence for tumor growth and metastatic dissemination. SPARC levels were determined by immunohistochemistry and real-time RT-PCR in tumors and by ELISA in plasma from patients with metastatic or non-metastatic prostate cancer. Results Comparative secretome analysis yielded 213 proteins differentially secreted between M and S cells. Of these, the protein most abundantly secreted in S relative to M cells was SPARC. Immunodepletion of SPARC inhibited the enhanced invasiveness of M induced by S conditioned medium. Knock down of SPARC in S cells abrogated the capacity of its conditioned medium to enhance the in vitro invasiveness of M cells and compromised their potential to boost the metastatic behavior of M cells in vivo. In most primary human prostate cancer samples, SPARC was expressed in the epithelial tumoral compartment of metastatic cases. Conclusions The matricellular protein SPARC, secreted by a prostate cancer clonal tumor cell subpopulation displaying non-CSC properties, is a critical mediator of paracrine effects exerted on a distinct tumor cell subpopulation enriched in CSC. This paracrine interaction results in an enhanced metastatic behavior of the CSC-enriched tumor subpopulation. SPARC is expressed in the neoplastic cells of primary prostate cancer samples from metastatic cases, and could thus constitute a tumor progression biomarker and a therapeutic target in advanced prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-237) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Timothy M Thomson
- Department of Cell Biology, Molecular Biology Institute of Barcelona, National Research Council (CSIC), c, Baldiri Reixac 15-21, Barcelona 08028, Spain.
| |
Collapse
|
24
|
Yi L, Hou X, Zhou J, Xu L, Ouyang Q, Liang H, Zheng Z, Chen H, Xu M. HIF-1α genetic variants and protein expression confer the susceptibility and prognosis of gliomas. Neuromolecular Med 2014; 16:578-86. [PMID: 24929654 DOI: 10.1007/s12017-014-8310-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/26/2014] [Indexed: 02/01/2023]
Abstract
To investigate the role of HIF-1α genetic polymorphism of c.1772C>T and c.1790G>A in the incidence and prognosis of gliomas in a Chinese cohort, a total of 387 gliomas patients and 437 age- and sex-matched healthy controls were recruited. The genetic polymorphism of c.1772C>T and c.1790G>A was determined. We found that the genotype distribution at c.1772C>T showed significant difference between patients and controls. Multivariable analyses showed a significantly higher risk for gliomas in 1772TT genotype carriers (odds ratio 2.68, with CC as reference). In addition, we also found a significantly higher risk for grade III + IV gliomas was observed in 1772TT genotype carriers (odds ratio 2.21, with CC as reference). The overall survival rates in patients with 1772TT or 1772CT genotype were markedly lower compared with patients with CC (both P < 0.01). Our in vitro studies revealed that HIF-1α regulates the proliferation, migration and invasion of human glioma U251 cells. This study suggests that the c.1772C>T polymorphisms may be used as a molecular marker for gliomas occurrence, grades and clinical outcome in gliomas patients.
Collapse
Affiliation(s)
- Liang Yi
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chatterjee A, Villarreal G, Rhee DJ. Matricellular proteins in the trabecular meshwork: review and update. J Ocul Pharmacol Ther 2014; 30:447-63. [PMID: 24901502 DOI: 10.1089/jop.2014.0013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide, and intraocular pressure (IOP) is an important modifiable risk factor. IOP is a function of aqueous humor production and aqueous humor outflow, and it is thought that prolonged IOP elevation leads to optic nerve damage over time. Within the trabecular meshwork (TM), the eye's primary drainage system for aqueous humor, matricellular proteins generally allow cells to modulate their attachments with and alter the characteristics of their surrounding extracellular matrix (ECM). It is now well established that ECM turnover in the TM affects outflow facility, and matricellular proteins are emerging as significant players in IOP regulation. The formalized study of matricellular proteins in TM has gained increased attention. Secreted protein acidic and rich in cysteine (SPARC), myocilin, connective tissue growth factor (CTGF), and thrombospondin-1 and -2 (TSP-1 and -2) have been localized to the TM, and a growing body of evidence suggests that these matricellular proteins play an important role in IOP regulation and possibly the pathophysiology of POAG. As evidence continues to emerge, these proteins are now seen as potential therapeutic targets. Further study is warranted to assess their utility in treating glaucoma in humans.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Case Western Reserve University School of Medicine , Cleveland, Ohio
| | | | | |
Collapse
|
26
|
Nagaraju GP, Dontula R, El-Rayes BF, Lakka SS. Molecular mechanisms underlying the divergent roles of SPARC in human carcinogenesis. Carcinogenesis 2014; 35:967-73. [PMID: 24675529 DOI: 10.1093/carcin/bgu072] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Communication between the cell and its surrounding environment, consisting of proteinaceous (non-living material) and extracellular matrix (ECM), is important for biophysiological and chemical signaling. This signaling results in a range of cellular activities, including cell division, adhesion, differentiation, invasion, migration and angiogenesis. The ECM non-structural secretory glycoprotein called secreted protein, acidic and rich in cysteine (SPARC), plays a significant role in altering cancer cell activity and the tumor's microenvironment (TME). However, the role of SPARC in cancer research has been the subject of controversy. This review mainly focuses on recent advances in understanding the contradictory nature of SPARC in relation to ECM assembly, cancer cell proliferation, adhesion, migration, apoptosis and tumor growth.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA and
| | | | | | | |
Collapse
|
27
|
Blanchard H, Bum-Erdene K, Hugo MW. Inhibitors of Galectins and Implications for Structure-Based Design of Galectin-Specific Therapeutics. Aust J Chem 2014. [DOI: 10.1071/ch14362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Galectins are a family of galactoside-specific lectins that are involved in a myriad of metabolic and disease processes. Due to roles in cancer and inflammatory and heart diseases, galectins are attractive targets for drug development. Over the last two decades, various strategies have been used to inhibit galectins, including polysaccharide-based therapeutics, multivalent display of saccharides, peptides, peptidomimetics, and saccharide-modifications. Primarily due to galectin carbohydrate binding sites having high sequence identities, the design and development of selective inhibitors targeting particular galectins, thereby addressing specific disease states, is challenging. Furthermore, the use of different inhibition assays by research groups has hindered systematic assessment of the relative selectivity and affinity of inhibitors. This review summarises the status of current inhibitors, strategies, and novel scaffolds that exploit subtle differences in galectin structures that, in conjunction with increasing available data on multiple galectins, is enabling the feasible design of effective and specific inhibitors of galectins.
Collapse
|
28
|
Sayegh ET, Kaur G, Bloch O, Parsa AT. Systematic review of protein biomarkers of invasive behavior in glioblastoma. Mol Neurobiol 2013; 49:1212-44. [PMID: 24271659 DOI: 10.1007/s12035-013-8593-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/11/2013] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable brain tumor with a grave prognosis. Recurrence is inevitable even with maximal surgical resection, in large part because GBM is a highly invasive tumor. Invasiveness also contributes to the failure of multiple cornerstones of GBM therapy, including radiotherapy, temozolomide chemotherapy, and vascular endothelial growth factor blockade. In recent years there has been significant progress in the identification of protein biomarkers of invasive phenotype in GBM. In this article, we comprehensively review the literature and survey a broad spectrum of biomarkers, including proteolytic enzymes, extracellular matrix proteins, cell adhesion molecules, neurodevelopmental factors, cell signaling and transcription factors, angiogenic effectors, metabolic proteins, membrane channels, and cytokines and chemokines. In light of the marked variation seen in outcomes in GBM patients, the systematic use of these biomarkers could be used to form a framework for better prediction, prognostication, and treatment selection, as well as the identification of molecular targets for further laboratory investigation and development of nascent, directed therapies.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611-2911, USA
| | | | | | | |
Collapse
|
29
|
Xu Y, Yang L, Jiang X, Yu J, Yang J, Zhang H, Tai G, Yuan X, Liu F. Adenovirus-mediated coexpression of DCX and SPARC radiosensitizes human malignant glioma cells. Cell Mol Neurobiol 2013; 33:965-71. [PMID: 23846421 PMCID: PMC11498020 DOI: 10.1007/s10571-013-9963-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/03/2013] [Indexed: 12/30/2022]
Abstract
This study is designed to examine the radiosensitizing effects of coexpression of doublecortin (DCX) and secreted protein and rich in cysteine (SPARC). Previously, we showed that downregulation of SPARC by small interfering RNA increased radioresistance of U-87MG glioma cells. Therefore, overexpression of SPARC might increase radiosensitivity of glioma cells. But SPARC has been shown to promote glioma cell invasion both in vitro and vivo. In order to radiosensitize glioma cells without stimulating invasion, we chose DCX, which is a well-characterized anti-tumor gene, to coexpress with SPARC. An adenovirus-mediated double gene expression system was constructed and applied to U251 and A172 glioma cell lines. Our data showed that coexpression of DCX and SPARC collaboratively diminished radioresistance of glioma cells, interfered with cell cycle turnover and increased irradiation-induced apoptosis. In addition, transwell assay revealed that coexpression was able to counteract the invasion-promoting effects of SPARC, and even inhibited intrinsic invasion, evidenced by less invading cells in double gene overexpressed group than that of control adenovirus-treated group. In conclusion, genetic engineering combining two or more genes might be a more effective method to overcome radioresistance of glioma cells.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, No. 199 Ren’ai Street, Suzhou, 215123 China
| | - Lei Yang
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, No. 199 Ren’ai Street, Suzhou, 215123 China
| | - Xin Jiang
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, No. 199 Ren’ai Street, Suzhou, 215123 China
| | - Jiahua Yu
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, No. 199 Ren’ai Street, Suzhou, 215123 China
| | - Jicheng Yang
- Cell and Molecular Biology Institute, Medical College of Soochow University, Suzhou, 215123 China
| | - Haowen Zhang
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, No. 199 Ren’ai Street, Suzhou, 215123 China
| | - Guomei Tai
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, No. 199 Ren’ai Street, Suzhou, 215123 China
| | - Xiaopeng Yuan
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, No. 199 Ren’ai Street, Suzhou, 215123 China
| | - Fenju Liu
- Department of Radiobiology, School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and Interdisciplinary Sciences, Soochow University, No. 199 Ren’ai Street, Suzhou, 215123 China
| |
Collapse
|
30
|
Dumaual CM, Steere BA, Walls CD, Wang M, Zhang ZY, Randall SK. Integrated analysis of global mRNA and protein expression data in HEK293 cells overexpressing PRL-1. PLoS One 2013; 8:e72977. [PMID: 24019887 PMCID: PMC3760866 DOI: 10.1371/journal.pone.0072977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The protein tyrosine phosphatase PRL-1 represents a putative oncogene with wide-ranging cellular effects. Overexpression of PRL-1 can promote cell proliferation, survival, migration, invasion, and metastasis, but the underlying mechanisms by which it influences these processes remain poorly understood. METHODOLOGY To increase our comprehension of PRL-1 mediated signaling events, we employed transcriptional profiling (DNA microarray) and proteomics (mass spectrometry) to perform a thorough characterization of the global molecular changes in gene expression that occur in response to stable PRL-1 overexpression in a relevant model system (HEK293). PRINCIPAL FINDINGS Overexpression of PRL-1 led to several significant changes in the mRNA and protein expression profiles of HEK293 cells. The differentially expressed gene set was highly enriched in genes involved in cytoskeletal remodeling, integrin-mediated cell-matrix adhesion, and RNA recognition and splicing. In particular, members of the Rho signaling pathway and molecules that converge on this pathway were heavily influenced by PRL-1 overexpression, supporting observations from previous studies that link PRL-1 to the Rho GTPase signaling network. In addition, several genes not previously associated with PRL-1 were found to be significantly altered by its expression. Most notable among these were Filamin A, RhoGDIα, SPARC, hnRNPH2, and PRDX2. CONCLUSIONS AND SIGNIFICANCE This systems-level approach sheds new light on the molecular networks underlying PRL-1 action and presents several novel directions for future, hypothesis-based studies.
Collapse
Affiliation(s)
- Carmen M. Dumaual
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Boyd A. Steere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Chad D. Walls
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mu Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Stephen K. Randall
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
31
|
Patterson NL, Iyer RP, de Castro Brás LE, Li Y, Andrews TG, Aune GJ, Lange RA, Lindsey ML. Using proteomics to uncover extracellular matrix interactions during cardiac remodeling. Proteomics Clin Appl 2013; 7:516-27. [PMID: 23532927 DOI: 10.1002/prca.201200100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/30/2013] [Accepted: 02/18/2013] [Indexed: 01/13/2023]
Abstract
The left ventricle (LV) responds to a myocardial infarction with an orchestrated sequence of events that result in fundamental changes to both the structure and function of the myocardium. This collection of responses is termed as LV remodeling. Myocardial ischemia resulting in necrosis is the initiating event that culminates in the formation of an extracellular matrix (ECM) rich infarct scar that replaces necrotic myocytes. While the cardiomyocyte is the major cell type that responds to ischemia, infiltrating leukocytes and cardiac fibroblasts coordinate the subsequent wound healing response. The matrix metalloproteinase family of enzymes regulates the inflammatory and ECM responses that modulate scar formation. Matridomics is the proteomic evaluation focused on ECM, while degradomics is the proteomic evaluation of proteases as well as their inhibitors and substrates. This review will summarize the use of proteomics to better understand matrix metalloproteinase roles in post myocardial infarction LV remodeling.
Collapse
Affiliation(s)
- Nicolle L Patterson
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ahi EP, Guðbrandsson J, Kapralova KH, Franzdóttir SR, Snorrason SS, Maier VH, Jónsson ZO. Validation of reference genes for expression studies during craniofacial development in arctic charr. PLoS One 2013; 8:e66389. [PMID: 23785496 PMCID: PMC3681766 DOI: 10.1371/journal.pone.0066389] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/05/2013] [Indexed: 01/08/2023] Open
Abstract
Arctic charr (Salvelinus alpinus) is a highly polymorphic species and in Lake Thingvallavatn, Iceland, four phenotypic morphs have evolved. These differences in morphology, especially in craniofacial structures are already apparent during embryonic development, indicating that genes important in the formation of the craniofacial features are expressed differentially between the morphs. In order to generate tools to examine these expression differences in Arctic charr, the aim of the present study was to identify reference genes for quantitative real-time PCR (qPCR). The specific aim was to select reference genes which are able to detect very small expression differences among different morphs. We selected twelve candidate reference genes from the literature, identified corresponding charr sequences using data derived from transcriptome sequencing (RNA-seq) and examined their expression using qPCR. Many of the candidate reference genes were found to be stably expressed, yet their quality-rank as reference genes varied considerably depending on the type of analysis used. In addition to commonly used software for reference gene validation, we used classical statistics to evaluate expression profiles avoiding a bias for reference genes with similar expression patterns (co-regulation). Based on these analyses we chose three reference genes, ACTB, UB2L3 and IF5A1 for further evaluation. Their consistency was assessed in an expression study of three known craniofacially expressed genes, sparc (or osteonectin), matrix metalloprotease 2 (mmp2) and sox9 (sex-determining region Y box 9 protein) using qPCR in embryo heads derived from four charr groups at three developmental time points. The three reference genes were found to be very suitable for studying expression differences between the morphotypes, enabling robust detection of small relative expression changes during charr development. Further, the results showed that sparc and mmp2 are differentially expressed in embryos of different Arctic charr morphotypes.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Jóhannes Guðbrandsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Kalina H. Kapralova
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Sigurður S. Snorrason
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Valerie H. Maier
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
- * E-mail:
| | - Zophonías O. Jónsson
- Institute of Life- and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
33
|
Cassidy PB, Fain HD, Cassidy JP, Tran SM, Moos PJ, Boucher KM, Gerads R, Florell SR, Grossman D, Leachman SA. Selenium for the prevention of cutaneous melanoma. Nutrients 2013; 5:725-49. [PMID: 23470450 PMCID: PMC3705316 DOI: 10.3390/nu5030725] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 12/30/2022] Open
Abstract
The role of selenium (Se) supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence.
Collapse
Affiliation(s)
- Pamela B. Cassidy
- Department of Medicinal Chemistry, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
- Department of Dermatology, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; E-Mails: (H.D.F.); (J.P.C.); (D.G.); (S.A.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-801-581-6268; Fax: +1-801-585-7477
| | - Heidi D. Fain
- Department of Dermatology, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; E-Mails: (H.D.F.); (J.P.C.); (D.G.); (S.A.L.)
| | - James P. Cassidy
- Department of Dermatology, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; E-Mails: (H.D.F.); (J.P.C.); (D.G.); (S.A.L.)
| | - Sally M. Tran
- University of Utah School of Medicine, 50 North Campus Dr., Salt Lake City, UT 84112, USA; E-Mail:
| | - Philip J. Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA; E-Mail:
| | - Kenneth M. Boucher
- Biostatistics Unit, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; E-Mail:
| | - Russell Gerads
- Applied Speciation, 18804 Northcreek Parkway, Bothell, WA 98011, USA; E-Mail:
| | - Scott R. Florell
- Department of Dermatology, University of Utah School of Medicine, 50 North Campus Dr., Salt Lake City, UT 84112, USA; E-Mail:
| | - Douglas Grossman
- Department of Dermatology, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; E-Mails: (H.D.F.); (J.P.C.); (D.G.); (S.A.L.)
- Department of Oncological Sciences, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Sancy A. Leachman
- Department of Dermatology, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; E-Mails: (H.D.F.); (J.P.C.); (D.G.); (S.A.L.)
| |
Collapse
|
34
|
Yabluchanskiy A, Li Y, Chilton RJ, Lindsey ML. Matrix metalloproteinases: drug targets for myocardial infarction. Curr Drug Targets 2013; 14:276-86. [PMID: 23316962 PMCID: PMC3828124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/15/2012] [Accepted: 01/01/2012] [Indexed: 06/01/2023]
Abstract
Myocardial infarction (MI) remains a major cause of morbidity and mortality worldwide. Rapid advances in the treatment of acute MI have significantly improved short-term outcomes in patients, due in large part to successes in preventing myocardial cell death and limiting infarct area during the time of ischemia and subsequent reperfusion. Matrix metalloproteases (MMPs) play key roles in post-MI cardiac remodeling and in the development of adverse outcomes. This review highlights the importance of MMPs in the injury and remodeling response of the left ventricle and also discusses their potential as therapeutic targets Additional pre-clinical and clinical research is needed to further investigate and understand the cardioprotective effects of MMPs inhibitors.
Collapse
Affiliation(s)
- Andriy Yabluchanskiy
- San Antonio Cardiovascular Proteomics Center
- Barshop Institute for Longevity and Aging Studies
- Division of Geriatrics, Gerontology and Palliative Medicine, Department of Medicine
| | - Yaojun Li
- San Antonio Cardiovascular Proteomics Center
- Barshop Institute for Longevity and Aging Studies
- Division of Geriatrics, Gerontology and Palliative Medicine, Department of Medicine
| | | | - Merry L. Lindsey
- San Antonio Cardiovascular Proteomics Center
- Barshop Institute for Longevity and Aging Studies
- Division of Geriatrics, Gerontology and Palliative Medicine, Department of Medicine
| |
Collapse
|
35
|
Seet LF, Su R, Toh LZ, Wong TT. In vitro analyses of the anti-fibrotic effect of SPARC silencing in human Tenon's fibroblasts: comparisons with mitomycin C. J Cell Mol Med 2012; 16:1245-59. [PMID: 21801304 PMCID: PMC3823078 DOI: 10.1111/j.1582-4934.2011.01400.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Failure of glaucoma filtration surgery (GFS) is commonly attributed to scarring at the surgical site. The human Tenon’s fibroblasts (HTFs) are considered the major cell type contributing to the fibrotic response. We previously showed that SPARC (secreted protein, acidic, rich in cysteine) knockout mice had improved surgical success in a murine model of GFS. To understand the mechanisms of SPARC deficiency in delaying subconjunctival fibrosis, we used the gene silencing approach to reduce SPARC expression in HTFs and examined parameters important for wound repair and fibrosis. Mitomycin C-treated HTFs were used for comparison. We demonstrate that SPARC-silenced HTFs showed normal proliferation and negligible cellular necrosis but were impaired in motility and collagen gel contraction. The expression of pro-fibrotic genes including collagen I, MMP-2, MMP-9, MMP-14, IL-8, MCP-1 and TGF-β2 were also reduced. Importantly, TGF-β2 failed to induce significant collagen I and fibronectin expressions in the SPARC-silenced HTFs. Together, these data demonstrate that SPARC knockdown in HTFs modulates fibroblast functions important for wound fibrosis and is therefore a promising strategy in the development of anti-scarring therapeutics.
Collapse
Affiliation(s)
- Li-Fong Seet
- Ocular Wound Healing and Therapeutics, Singapore Eye Research Institute, Singapore.
| | | | | | | |
Collapse
|
36
|
The efficacy of abraxane on osteosarcoma xenografts in nude mice and expression of secreted protein, acidic and rich in cysteine. Am J Med Sci 2012; 344:199-205. [PMID: 22222334 DOI: 10.1097/maj.0b013e31823e62e5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Although there have been previous efforts to optimize dose intensity or change the chemotherapy protocol for osteosarcoma, long-term survival has not been markedly improved during the past 15 years. METHOD Nude mice bearing established OS-732 human osteosarcoma received varying doses of Adriamycin, paclitaxel and Abraxane to assess tumor growth inhibition. For the dose-response experiments, mice were treated with the following agents at the indicated doses: (A) Adriamycin (2.5 mg/kg, ip), (B) paclitaxel (20 mg/kg, ip), (C-E) Abraxane (10, 20 and 40 mg/kg, ip, respectively) and (F) Saline (20 mg/kg, ip). All agents were administered every 4 days. Mean tumor volume and mice weight measurements were recorded every 3 days. Tumor weights were examined after mice were killed. Real-time polymerase chain reaction and Western blot were used to detect the expression levels of secreted protein, acidic and rich in cysteine (SPARC) in osteosarcoma specimens. RESULTS Administration of 40 mg/kg Abraxane showed a tumor inhibitory rate of 98.8% (tumor weight, 0.033 ± 0.044 g, P < 0.01), which was significantly higher than Adriamycin (46.1%, tumor weight, 1.455 ± 1.115 g, P < 0.01) and paclitaxel (40.8%, tumor weight, 1.597 ± 1.834 g, P < 0.05). Real-time polymerase chain reaction and Western blot showed higher expression of SPARC in tumor tissues than in normal tissues. CONCLUSION The antitumor effect of Abraxane was demonstrated in osteosarcoma xenografts in vivo. It suggests that SPARC tends to be highly expressed in osteosarcoma and further experiments need to explore its clinical relevance and the possible mechanisms.
Collapse
|
37
|
Chen J, Shi D, Liu X, Fang S, Zhang J, Zhao Y. Targeting SPARC by lentivirus-mediated RNA interference inhibits cervical cancer cell growth and metastasis. BMC Cancer 2012; 12:464. [PMID: 23050783 PMCID: PMC3488331 DOI: 10.1186/1471-2407-12-464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022] Open
Abstract
Background Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, is implicated in the progressions of some cancers. However, no information has been available to date regarding the function of SPARC in cervical cancer cell growth and metastasis. Methods In this study, we isolated and established high invasive subclones and low invasive subclones from human cervical cancer cell lines HeLa and SiHa by the limited dilution method. Real-time q-RT-PCR, Western Blot and ICC were performed to investigate SPARC mRNA and protein expressions in high invasive subclones and low invasive subclones. Then lentivirus vector with SPARC shRNA was constructed and infected the highly invasive subclones. Real-time q-RT-PCR, Western Blot and ICC were also performed to investigate the changes of SPARC expression after viral infection. In functional assays, effects of SPARC knockdown on the biological behaviors of cervical cancer cells were investigated. The mechanisms of SPARC in cervical cancer proliferation, apoptosis and invasion were also researched. Results SPARC was over-expressed in the highly invasive subclones compared with the low invasive subclones. Knockdown of SPARC significantly suppressed cervical cancer cell proliferation, and induced cell cycle arrest at the G1/G0 phase through the p53/p21 pathway, also caused cell apoptosis accompanied by the decreased ratio of Bcl-2/Bax, and inhibited cell invasion and metastasis accompanied by down-regulated MMP2 and MMP9 expressions and up-regulated E-cadherin expression. Conclusion SPARC is related to the invasive phenotype of cervical cancer cells. Knockdown of SPARC significantly suppresses cervical cancer cell proliferation, induces cell apoptosis and inhibits cell invasion and metastasis. SPARC as a promoter improves cervical cancer cell growth and metastasis.
Collapse
Affiliation(s)
- Jie Chen
- Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
38
|
Chen J, Wang M, Xi B, Xue J, He D, Zhang J, Zhao Y. SPARC is a key regulator of proliferation, apoptosis and invasion in human ovarian cancer. PLoS One 2012; 7:e42413. [PMID: 22879971 PMCID: PMC3411787 DOI: 10.1371/journal.pone.0042413] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/05/2012] [Indexed: 01/03/2023] Open
Abstract
Background Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, is implicated in the progression of many cancers. In this study, we investigated the expression and function of SPARC in ovarian cancer. Methods cDNA microarray analysis was performed to compare gene expression profiles of the highly invasive and the low invasive subclones derived from the SKOV3 human ovarian cancer cell line. Immunohistochemistry (IHC) staining was performed to investigate SPARC expression in a total of 140 ovarian tissue specimens. In functional assays, effects of SPARC knockdown on the biological behavior of ovarian cancer cells were investigated. The mechanisms of SPARC in ovarian cancer proliferation, apoptosis and invasion were also researched. Results SPARC was overexpressed in the highly invasive subclone compared with the low invasive subclone. High SPARC expression was associated with high stage, low differentiation, lymph node metastasis and poor prognosis of ovarian cancer. Knockdown of SPARC expression significantly suppressed ovarian cancer cell proliferation, induced cell apoptosis and inhibited cell invasion and metastasis. Conclusion SPARC is overexpressed in highly invasive subclone and ovarian cancer tissues and plays an important role in ovarian cancer growth, apoptosis and metastasis.
Collapse
Affiliation(s)
- Jie Chen
- Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan, China
| | - Mei Wang
- Pharmacy Department, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Bo Xi
- Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan, China
| | - Jian Xue
- Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan, China
| | - Dan He
- Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan, China
| | - Jie Zhang
- Central Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
- * E-mail: (JZ); (YZ)
| | - Yueran Zhao
- Central Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
- * E-mail: (JZ); (YZ)
| |
Collapse
|
39
|
Budiono BP, See Hoe LE, Peart JN, Sabapathy S, Ashton KJ, Haseler LJ, Headrick JP. Voluntary running in mice beneficially modulates myocardial ischemic tolerance, signaling kinases, and gene expression patterns. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1091-100. [DOI: 10.1152/ajpregu.00406.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exercise triggers hormesis, conditioning hearts against damaging consequences of subsequent ischemia-reperfusion (I/R). We test whether “low-stress” voluntary activity modifies I/R tolerance and molecular determinants of cardiac survival. Male C57BL/6 mice were provided 7-day access to locked (7SED) or rotating (7EX) running-wheels before analysis of cardiac prosurvival (Akt, ERK 1/2) and prodeath (GSK3β) kinases, transcriptomic adaptations, and functional tolerance of isolated hearts to 25-min ischemia/45-min reperfusion. Over 7 days, 7EX mice increased running from 2.1 ± 0.2 to 5.3 ± 0.3 km/day (mean speed 38 ± 2 m/min), with activity improving myocardial I/R tolerance: 7SED hearts recovered 43 ± 3% of ventricular force with diastolic contracture of 33 ± 3 mmHg, whereas 7EX hearts recovered 63 ± 5% of force with diastolic dysfunction reduced to 23 ± 2 mmHg ( P < 0.05). Cytosolic expression (total protein) of Akt and GSK3β was unaltered, while ERK 1/2 increased 30% in 7EX vs. 7SED hearts. Phosphorylation of Akt and ERK 1/2 was unaltered, whereas GSK3β phosphorylation increased ∼90%. Microarray interrogation identified significant changes (≥1.3-fold expression change, ≤5% FDR) in 142 known genes, the majority (92%) repressed. Significantly modified paths/networks related to inflammatory/immune function (particularly interferon-dependent), together with cell movement, growth, and death. Of only 14 induced transcripts, 3 encoded interrelated sarcomeric proteins titin, α-actinin, and myomesin-2, while transcripts for protective actin-stabilizing ND1-L and activator of mitochondrial biogenesis ALAS1 were also induced. There was no transcriptional evidence of oxidative heat-shock or other canonical “stress” responses. These data demonstrate that relatively brief voluntary activity substantially improves cardiac ischemic tolerance, an effect independent of shifts in Akt, but associated with increased total ERK 1/2 and phospho-inhibition of GSK3β. Transcriptomic data implicate inflammatory/immune and sarcomeric modulation in activity-dependent protection.
Collapse
Affiliation(s)
- Boris P. Budiono
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - Louise E. See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - Jason N. Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - Surendran Sabapathy
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - Kevin J. Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Luke J. Haseler
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| | - John P. Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia; and
| |
Collapse
|
40
|
Horn MA, Graham HK, Richards MA, Clarke JD, Greensmith DJ, Briston SJ, Hall MCS, Dibb KM, Trafford AW. Age-related divergent remodeling of the cardiac extracellular matrix in heart failure: collagen accumulation in the young and loss in the aged. J Mol Cell Cardiol 2012; 53:82-90. [PMID: 22516365 DOI: 10.1016/j.yjmcc.2012.03.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/14/2012] [Accepted: 03/21/2012] [Indexed: 01/03/2023]
Abstract
The incidence of heart failure (HF) increases with age. This study sought to determine whether aging exacerbates structural and functional remodeling of the myocardium in HF. HF was induced in young (~18 months) and aged sheep (>8 years) by right ventricular tachypacing. In non-paced animals, aging was associated with increased left ventricular (LV) end diastolic internal dimensions (EDID, P<0.001), reduced fractional shortening (P<0.01) and an increase in myocardial collagen content (P<0.01). HF increased EDID and reduced fractional shortening in both young and aged animals, although these changes were more pronounced in the aged (P<0.05). Age-associated differences in cardiac extracellular matrix (ECM) remodeling occurred in HF with collagen accumulation in young HF (P<0.001) and depletion in aged HF (P<0.05). MMP-2 activity increased in the aged control and young HF groups (P<0.05). Reduced tissue inhibitor of metalloproteinase (TIMP) expression (TIMPs 3 and 4, P<0.05) was present only in the aged HF group. Secreted protein acidic and rich in cysteine (SPARC) was increased in aged hearts compared to young controls (P<0.05) while serum procollagen type I C-pro peptide (PICP) was increased in both young failing (P<0.05) and aged failing (P<0.01) animals. In conclusion, collagen content of the cardiac ECM changes in both aging and HF although; whether collagen accumulation or depletion occurs depends on age. Changes in TIMP expression in aged failing hearts alongside augmented collagen synthesis in HF provide a potential mechanism for the age-dependent ECM remodeling. Aging should therefore be considered an important factor when elucidating cardiac disease mechanisms.
Collapse
Affiliation(s)
- Margaux A Horn
- Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, 3.08 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Delic S, Lottmann N, Jetschke K, Reifenberger G, Riemenschneider MJ. Identification and functional validation of CDH11, PCSK6 and SH3GL3 as novel glioma invasion-associated candidate genes. Neuropathol Appl Neurobiol 2012; 38:201-12. [DOI: 10.1111/j.1365-2990.2011.01207.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Bradshaw AD. Diverse biological functions of the SPARC family of proteins. Int J Biochem Cell Biol 2012; 44:480-8. [PMID: 22249026 DOI: 10.1016/j.biocel.2011.12.021] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/09/2011] [Accepted: 12/27/2011] [Indexed: 12/14/2022]
Abstract
The SPARC family of proteins represents a diverse group of proteins that modulate cell interaction with the extracellular milieu. The eight members of the SPARC protein family are modular in nature. Each shares a follistatin-like domain and an extracellular calcium binding E-F hand motif. In addition, each family member is secreted into the extracellular space. Some of the shared activities of this family include, regulation of extracellular matrix assembly and deposition, counter-adhesion, effects on extracellular protease activity, and modulation of growth factor/cytokine signaling pathways. Recently, several SPARC family members have been implicated in human disease pathogenesis. This review discusses recent advances in the understanding of the functional roles of the SPARC family of proteins in development and disease.
Collapse
Affiliation(s)
- Amy D Bradshaw
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veteran's Administration, Charleston, SC, United States.
| |
Collapse
|
43
|
Liu H, Zhang H, Jiang X, Ma Y, Xu Y, Feng S, Liu F. Knockdown of Secreted Protein Acidic and Rich in Cysteine (SPARC) Expression Diminishes Radiosensitivity of Glioma Cells. Cancer Biother Radiopharm 2011; 26:705-15. [DOI: 10.1089/cbr.2011.0987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Haiyan Liu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, China
| | - Haowen Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Jiang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yan Ma
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yuanyuan Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Shuang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Fenju Liu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
44
|
Liu H, Xu Y, Chen Y, Zhang H, Fan S, Feng S, Liu F. RNA interference against SPARC promotes the growth of U-87MG human malignant glioma cells. Oncol Lett 2011; 2:985-990. [PMID: 22866161 DOI: 10.3892/ol.2011.360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/23/2011] [Indexed: 01/29/2023] Open
Abstract
Malignant glioma is a highly invasive brain tumor resistant to conventional therapies. Secreted protein acidic and rich in cysteine (SPARC) has been shown to facilitate glioma invasion. However, the effects of SPARC on cell growth have yet to be adequately elucidated. In this study, we constructed a plasmid expressing shRNA against SPARC, evaluated the effect of SPARCshRNA on SPARC expression and then assessed its effect on cell growth in U-87MG cells. Using plasmid-delivered shRNA, we effectively suppressed SPARC expression in U-87MG cells. Cell growth curves and colony formation assay suggested that the introduction of SPARCshRNA resulted in an increase of cell growth and colony formation. We also showed that knockdown of SPARC expression was capable of promoting the cell cycle progression from the G1 to S phase. However, no difference was found in the level of apoptosis. A molecular analysis of signal mediators indicated that the inhibition of p-c-Raf (Ser259) and accumulation of p-GSK-3β (Ser9) and p-AKT (Ser473) may be connected with the growth promotion by SPARC shRNA. Our study may provide an insight into the biological function of SPARC in glioma.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Radiobiology, School of Radiation Medicine and Public Health, Soochow University, Suzhou 215123, P.R. China
| | | | | | | | | | | | | |
Collapse
|
45
|
Ku BM, Lee YK, Ryu J, Jeong JY, Choi J, Eun KM, Shin HY, Kim DG, Hwang EM, Yoo JC, Park JY, Roh GS, Kim HJ, Cho GJ, Choi WS, Paek SH, Kang SS. CHI3L1 (YKL-40) is expressed in human gliomas and regulates the invasion, growth and survival of glioma cells. Int J Cancer 2011; 128:1316-26. [PMID: 20506295 DOI: 10.1002/ijc.25466] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chitinase 3-like 1 (CHI3L1) is a secreted glycoprotein that has pleiotropic activity in aggressive cancers. In our study, we examined the expression and function of CHI3L1 in glioma cells. CHI3L1 was highly expressed in human glioma tissue, whereas its expression in normal brain tissue was very low. CHI3L1 suppression by shRNA reduced glioma cell invasion, anchorage-independent growth and increased cell death triggered by several anticancer drugs, including cisplatin, etoposide and doxorubicin, whereas CHI3L1 overexpression had the opposite effect in glioma cells. Because the invasive nature of glioma cells plays a critical role in the high morbidity of glioma, we have further defined the role of CHI3L1 in the process of glioma invasion. Downregulation of CHI3L1 results in decreased cell-matrix adhesion and causes a marked increase in stress fiber formation and cell size with fewer cellular processes. Furthermore, the expression and activity of matrix metalloproteinase-2 was also decreased in glioma cells in which CHI3L1 was knocked down. Taken together, these results suggest that CHI3L1 plays an important role in the regulation of malignant transformation and local invasiveness in gliomas. Thus, targeting the CHI3L1 molecule may be a potential therapeutic molecular target for gliomas.
Collapse
Affiliation(s)
- Bo Mi Ku
- Department of Anatomy and Neurobiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Huynh MH, Zhu SJ, Kollara A, Brown T, Winklbauer R, Ringuette M. Knockdown of SPARC leads to decreased cell-cell adhesion and lens cataracts during post-gastrula development in Xenopus laevis. Dev Genes Evol 2011; 220:315-27. [PMID: 21384171 DOI: 10.1007/s00427-010-0349-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 12/16/2010] [Indexed: 12/01/2022]
Abstract
SPARC is a multifunctional matricellular glycoprotein with complex, transient tissue distribution during embryonic development. In Xenopus laevis embryos, zygotic activation of SPARC is first detected during late gastrulation, undergoing rapid changes in its spatiotemporal distribution throughout organogenesis. Injections of anti-sense Xenopus SPARC morpholinos (XSMOs) into 2- and 4-cell embryos led to a dose-dependent dissociation of embryos during neurula and tailbud stages of development. Animal cap explants derived from XSMO-injected embryos also dissociated, resulting in the formation of amorphous ciliated microspheres. At low doses of XSMOs, lens cataracts were formed, phenocopying that observed in Sparc-null mice. At XSMOs concentrations that did not result in a loss of axial tissue integrity, adhesion between myotomes at intersomitic borders was compromised with a reduction in SPARC concentration. The combined data suggest a critical requirement for SPARC during post-gastrula development in Xenopus embryos and that SPARC, directly or indirectly, promotes cell-cell adhesion in vivo.
Collapse
Affiliation(s)
- My-Hang Huynh
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, 48109-5620, USA
| | | | | | | | | | | |
Collapse
|
47
|
Scuteri A, Ravasi M, Pasini S, Bossi M, Tredici G. Mesenchymal stem cells support dorsal root ganglion neurons survival by inhibiting the metalloproteinase pathway. Neuroscience 2011; 172:12-19. [PMID: 21044661 DOI: 10.1016/j.neuroscience.2010.10.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 10/13/2010] [Accepted: 10/25/2010] [Indexed: 12/21/2022]
Abstract
The positive effect of adult undifferentiated mesenchymal stem cells (MSCs) on neuronal survival has already been reported, although the mechanisms by which MSCs exert their effect are still a matter of debate. Here we have demonstrated that MSCs are able to prolong the survival of dorsal root ganglion (DRG) neurons mainly by inhibiting some proteolytic enzymes, and in particular the pathway of metalloproteinases (MMPs), a family of proteins that are involved in many neuronal processes, including survival. The inhibition of MMPs was both direct, by acting on MT-MMP1, and indirect, by acting on those proteins that regulate MMPs' activation, such as Timp-1 and Sparc. The importance of the MMPs' down-regulation for neuronal survival was also demonstrated by using N-isobutyl-N-(4-methoxyphenylsulfonyl)-glycyl hydroxamic acid (NNGH), a wide range inhibitor of metalloproteinases, which was able to increase the survival of DRG neurons in a significant manner. The down-regulation of MMPs, obtained both by MSC contact and by chemical inhibition, led to the inactivation of caspase 3, the executor of apoptotic death in DRG neurons cultured alone, while caspase 7 was found to be irrelevant for the apoptotic process. The capacity of MSCs to prevent apoptosis mainly by inactivating the metalloproteinase pathway is an important finding that sheds light on MSCs' mechanism of action, making undifferentiated MSCs a promising tool for the treatment of many different neurodegenerative pathologies.
Collapse
Affiliation(s)
- A Scuteri
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Università degli Studi di Milano-Bicocca, via Cadore 48, 20052 Monza, Italy.
| | | | | | | | | |
Collapse
|
48
|
Thomas SL, Alam R, Lemke N, Schultz LR, Gutiérrez JA, Rempel SA. PTEN augments SPARC suppression of proliferation and inhibits SPARC-induced migration by suppressing SHC-RAF-ERK and AKT signaling. Neuro Oncol 2010; 12:941-55. [PMID: 20472716 DOI: 10.1093/neuonc/noq048] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SPARC (secreted protein acidic and rich in cysteine) is expressed in all grades of astrocytoma, including glioblastoma (GBM). SPARC suppresses glioma growth but promotes migration and invasion by mediating integrin and growth factor receptor-regulated kinases and their downstream effectors. PTEN (phosphatase and tensin homolog deleted on chromosome 10), which is commonly lost in primary GBMs, negatively regulates proliferation and migration by inhibiting some of the same SPARC-mediated signaling pathways. This study determined whether PTEN reconstitution in PTEN-mutant, SPARC-expressing U87MG cells could further suppress proliferation and tumor growth but inhibit migration and invasion in SPARC-expressing cells in vitro and in vivo, and thereby prolong survival in animals with xenograft tumors. In vitro, PTEN reduced proliferation and migration in both SPARC-expressing and control cells, with a greater suppression in SPARC-expressing cells. PTEN reconstitution suppressed AKT activation in SPARC-expressing and control cells but suppressed the SHC-RAF-ERK signaling pathway only in SPARC-expressing cells. Importantly, coexpression of SPARC and PTEN resulted in the smallest, least proliferative tumors with reduced invasive capacity and longer animal survival. Furthermore, direct inhibition of the AKT and SHC-RAF-ERK signaling pathways suppressed the proliferation and migration of SPARC-expressing cells in vitro. These findings demonstrate that PTEN reconstitution or inhibition of signaling pathways that are activated by the loss of PTEN provide potential therapeutic strategies to inhibit SPARC-induced invasion while enhancing the negative effect of SPARC on tumor growth.
Collapse
Affiliation(s)
- Stacey L Thomas
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|
49
|
Capper D, Mittelbronn M, Goeppert B, Meyermann R, Schittenhelm J. Secreted protein, acidic and rich in cysteine (SPARC) expression in astrocytic tumour cells negatively correlates with proliferation, while vascular SPARC expression is associated with patient survival. Neuropathol Appl Neurobiol 2010; 36:183-97. [DOI: 10.1111/j.1365-2990.2010.01072.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Seet LF, Su R, Barathi VA, Lee WS, Poh R, Heng YM, Manser E, Vithana EN, Aung T, Weaver M, Sage EH, Wong TT. SPARC deficiency results in improved surgical survival in a novel mouse model of glaucoma filtration surgery. PLoS One 2010; 5:e9415. [PMID: 20195533 PMCID: PMC2828474 DOI: 10.1371/journal.pone.0009415] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/05/2010] [Indexed: 01/06/2023] Open
Abstract
Glaucoma is a disease frequently associated with elevated intraocular pressure that can be alleviated by filtration surgery. However, the post-operative subconjunctival scarring response which blocks filtration efficiency is a major hurdle to the achievement of long-term surgical success. Current application of anti-proliferatives to modulate the scarring response is not ideal as these often give rise to sight-threatening complications. SPARC (secreted protein, acidic and rich in cysteine) is a matricellular protein involved in extracellular matrix (ECM) production and organization. In this study, we investigated post-operative surgical wound survival in an experimental glaucoma filtration model in SPARC-null mice. Loss of SPARC resulted in a marked (87.5%) surgical wound survival rate compared to 0% in wild-type (WT) counterparts. The larger SPARC-null wounds implied that aqueous filtration through the subconjunctival space was more efficient in comparison to WT wounds. The pronounced increase in both surgical survival and filtration efficiency was associated with a less collagenous ECM, smaller collagen fibril diameter, and a loosely-organized subconjunctival matrix in the SPARC-null wounds. In contrast, WT wounds exhibited a densely packed collagenous ECM with no evidence of filtration capacity. Immunolocalization assays confirmed the accumulation of ECM proteins in the WT but not in the SPARC-null wounds. The observations in vivo were corroborated by complementary data performed on WT and SPARC-null conjunctival fibroblasts in vitro. These findings indicate that depletion of SPARC bestows an inherent change in post-operative ECM remodeling to favor wound maintenance. The evidence presented in this report is strongly supportive for the targeting of SPARC to increase the success of glaucoma filtration surgery.
Collapse
Affiliation(s)
- Li-Fong Seet
- Ocular Wound Healing and Therapeutics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Roseline Su
- Ocular Wound Healing and Therapeutics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - V. A. Barathi
- Ocular Wound Healing and Therapeutics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Wing Sum Lee
- Ocular Wound Healing and Therapeutics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Rebekah Poh
- Ocular Wound Healing and Therapeutics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Yee Meng Heng
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ed Manser
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Eranga N. Vithana
- Ocular Genetics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Tin Aung
- Department of Glaucoma, Singapore National Eye Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ocular Genetics Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Matt Weaver
- The Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - E. Helene Sage
- The Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Tina T. Wong
- Ocular Wound Healing and Therapeutics Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Glaucoma, Singapore National Eye Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|