1
|
Kirlioglu Balcioglu SS, Kurt Sabitay I, Uysal A, Yildirim Servi E, Yaman M, Mizrak OF, Ozturk N, Isiksacan N, Guclu O. Evaluation of changes in carbonyl stress markers with treatment in male patients with bipolar disorder manic episode: A controlled study. J Affect Disord 2024; 362:1-8. [PMID: 38944288 DOI: 10.1016/j.jad.2024.06.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Carbonyl stress, a metabolic state characterized by elevated production of reactive carbonyl compounds (RCCs), is closely related to oxidative stress and has been implicated in various diseases. This study aims to investigate carbonyl stress parameters in drug-free bipolar disorder (BD) patients compared to healthy controls, explore their relationship with clinical features, and assess the effect of treatment on these parameters. METHODS Patients with a primary diagnosis of a manic episode of BD and healthy controls were recruited. Exclusion criteria included intellectual disability, presence of neurological diseases, chronic medical conditions such as diabetes mellitus and metabolic syndrome, and clinical signs of inflammation. Levels of serum carbonyl stress parameters were determined using high-performance liquid chromatography. RESULTS Levels of glyoxal (GO) and methylglyoxal (MGO) did not differ between pre- and post-treatment patients, but malondialdehyde (MDA) levels decreased significantly post-treatment. Pre-treatment MGO and MDA levels were higher in patients compared to controls, and these differences persisted post-treatment. After adjusting for BMI and waist circumference, only MDA levels remained significantly higher in patients compared to controls. LIMITATIONS The study's limitations include the exclusion of female patients, which precluded any assessment of potential gender differences, and the lack of analysis of the effect of specific mood stabilizers or antipsychotic drugs. CONCLUSIONS This study is the first to focus on carbonyl stress markers in BD, specifically GO, MGO, and MDA. MDA levels remained significantly higher in patients, suggesting a potential role in BD pathophysiology. MGO levels were influenced by metabolic parameters, indicating a potential link to neurotoxicity in BD. Further research with larger cohorts is needed to better understand the role of RCCs in BD and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Simge Seren Kirlioglu Balcioglu
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkiye; Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkiye.
| | - Imren Kurt Sabitay
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkiye
| | - Aybegum Uysal
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkiye
| | - Esra Yildirim Servi
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkiye
| | - Mustafa Yaman
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkiye
| | - Omer Faruk Mizrak
- Sabri Ulker Food and Nutrition Center, Istanbul Sabahattin Zaim University, Istanbul, Turkiye
| | | | - Nilgun Isiksacan
- Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkiye; Department of Biochemistry, Dr Sadi Konuk Training and Research Hospital, Istanbul, Turkiye
| | - Oya Guclu
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkiye
| |
Collapse
|
2
|
Toriumi K, Miyashita M, Suzuki K, Tabata K, Horiuchi Y, Ishida H, Itokawa M, Arai M. Role of glyoxalase 1 in methylglyoxal detoxification-the broad player of psychiatric disorders. Redox Biol 2021; 49:102222. [PMID: 34953453 PMCID: PMC8718652 DOI: 10.1016/j.redox.2021.102222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
Methylglyoxal (MG) is a highly reactive α-ketoaldehyde formed endogenously as a byproduct of the glycolytic pathway. To remove MG, various detoxification systems work together in vivo, including the glyoxalase system, which enzymatically degrades MG using glyoxalase 1 (GLO1) and GLO2. Recently, numerous reports have shown that GLO1 expression and MG accumulation in the brain are involved in the pathogenesis of psychiatric disorders, such as anxiety disorder, depression, autism, and schizophrenia. Furthermore, it has been reported that GLO1 inhibitors may be promising drugs for the treatment of psychiatric disorders. In this review, we discuss the recent findings of the effects of altered GLO1 function on mental behavior, especially focusing on results obtained from animal models.
Collapse
Affiliation(s)
- Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan; Department of Psychiatry, Takatsuki Hospital, Hachioji, Tokyo, 192-0005, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, 390-8621, Japan
| | - Koichi Tabata
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry and Behavioral Science, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroaki Ishida
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya-ku, Tokyo, 156-0057, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
3
|
Yin J, Ma G, Luo S, Luo X, He B, Liang C, Zuo X, Xu X, Chen Q, Xiong S, Tan Z, Fu J, Lv D, Dai Z, Wen X, Zhu D, Ye X, Lin Z, Lin J, Li Y, Chen W, Luo Z, Li K, Wang Y. Glyoxalase 1 Confers Susceptibility to Schizophrenia: From Genetic Variants to Phenotypes of Neural Function. Front Mol Neurosci 2021; 14:739526. [PMID: 34790095 PMCID: PMC8592033 DOI: 10.3389/fnmol.2021.739526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
This research aimed to investigate the role of glyoxalase 1 (Glo-1) polymorphisms in the susceptibility of schizophrenia. Using the real-time polymerase chain reaction (PCR) and spectrophotometric assays technology, significant differences in Glo-1 messenger ribonucleic acid (mRNA) expression (P = 3.98 × 10-5) and enzymatic activity (P = 1.40 × 10-6) were found in peripheral blood of first-onset antipsychotic-naïve patients with schizophrenia and controls. The following receiver operating characteristic (ROC) curves analysis showed that Glo-1 could predict the schizophrenia risk (P = 4.75 × 10-6 in mRNA, P = 1.43 × 10-7 in enzymatic activity, respectively). To identify the genetic source of Glo-1 risk in schizophrenia, Glo-1 polymorphisms (rs1781735, rs1130534, rs4746, and rs9470916) were genotyped with SNaPshot technology in 1,069 patients with schizophrenia and 1,023 healthy individuals. Then, the impact of risk polymorphism on the promoter activity, mRNA expression, and enzymatic activity was analyzed. The results revealed significant differences in the distributions of genotype (P = 0.020, false discovery rate (FDR) correction) and allele (P = 0.020, FDR correction) in rs1781735, in which G > T mutation significantly showed reduction in the promoter activity (P = 0.016), mRNA expression, and enzymatic activity (P = 0.001 and P = 0.015, respectively, GG vs. TT, in peripheral blood of patients with schizophrenia) of Glo-1. The expression quantitative trait locus (eQTL) findings were followed up with the resting-state functional magnetic resonance imaging (fMRI) analysis. The TT genotype of rs1781735, associated with lower RNA expression in the brain (P < 0.05), showed decreased neuronal activation in the left middle frontal gyrus in schizophrenia (P < 0.001). In aggregate, this study for the first time demonstrates how the genetic and biochemical basis of Glo-1 polymorphism culminates in the brain function changes associated with increased schizophrenia risk. Thus, establishing a combination of multiple levels of changes ranging from genetic variants, transcription, protein function, and brain function changes is a better predictor of schizophrenia risk.
Collapse
Affiliation(s)
- Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao SAR, China.,Department of Psychology, Faculty of Social Sciences, University of Macau, Macao SAR, China
| | - Guoda Ma
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Shucun Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin He
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Xiang Zuo
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Xusan Xu
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Qing Chen
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi Tan
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiawu Fu
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xia Wen
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Dongjian Zhu
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoqing Ye
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - You Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China
| | - Wubiao Chen
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zebin Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang, China.,Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Clinical Neuroscience Institute, Jinan University, Guangzhou, China
| | - Yajun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
4
|
Hirai S, Miwa H, Tanaka T, Toriumi K, Kunii Y, Shimbo H, Sakamoto T, Hino M, Izumi R, Nagaoka A, Yabe H, Nakamachi T, Shioda S, Dan T, Miyata T, Nishito Y, Suzuki K, Miyashita M, Tomoda T, Hikida T, Horiuchi J, Itokawa M, Arai M, Okado H. High-sucrose diets contribute to brain angiopathy with impaired glucose uptake and psychosis-related higher brain dysfunctions in mice. SCIENCE ADVANCES 2021; 7:eabl6077. [PMID: 34757783 PMCID: PMC8580307 DOI: 10.1126/sciadv.abl6077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 05/30/2023]
Abstract
Metabolic dysfunction is thought to contribute to the severity of psychiatric disorders; however, it has been unclear whether current high–simple sugar diets contribute to pathogenesis of these diseases. Here, we demonstrate that a high-sucrose diet during adolescence induces psychosis-related behavioral endophenotypes, including hyperactivity, poor working memory, impaired sensory gating, and disrupted interneuron function in mice deficient for glyoxalase-1 (GLO1), an enzyme involved in detoxification of sucrose metabolites. Furthermore, the high-sucrose diet induced microcapillary impairments and reduced brain glucose uptake in brains of Glo1-deficient mice. Aspirin protected against this angiopathy, enhancing brain glucose uptake and preventing abnormal behavioral phenotypes. Similar vascular damage to our model mice was found in the brains of randomly collected schizophrenia and bipolar disorder patients, suggesting that psychiatric disorders are associated with angiopathy in the brain caused by various environmental stresses, including metabolic stress.
Collapse
Affiliation(s)
- Shinobu Hirai
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hideki Miwa
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Molecular Neuropsychopharmacology Section, Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
| | - Tomoko Tanaka
- Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasuto Kunii
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hiroko Shimbo
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takuya Sakamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Seiji Shioda
- Department of Clinical Pharmacy, Shonan University of Medical Sciences, Yokohama 244-0806, Japan
| | - Takashi Dan
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Miyagi 980-8575, Japan
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Miyagi 980-8575, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Toshifumi Tomoda
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Junjiro Horiuchi
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Haruo Okado
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
5
|
Karanikas E. Psychologically Traumatic Oxidative Stress; A Comprehensive Review of Redox Mechanisms and Related Inflammatory Implications. PSYCHOPHARMACOLOGY BULLETIN 2021; 51:65-86. [PMID: 34887600 PMCID: PMC8601764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The organism's energy requirements for homeostatic balance are covered by the redox mechanisms. Yet in case of psychologically traumatic stress, allostatic regulations activate both pro-oxidant and antioxidant molecules as well as respective components of the inflammatory system. Thus a new setpoint of dynamic interactions among redox elements is reached. Similarly, a multifaceted interplay between redox and inflammatory fields is activated with the mediation of major effector systems such as the immune system, Hypothalamic-Pituitary-Adrenal axis, kynurenine, and the glycaemic regulatory one. In case of sustained and/or intense traumatic stress the prophylactic antioxidant components are inadequate to provide the organism with neuroprotection finally culminating in Oxidative Stress and subsequently to cellular apoptosis. In parallel multiple inflammatory systems trigger and/or are triggered by the redox systems in tight fashion so that the causation sequence appears obscure. This exhaustive review aims at the comprehension of the interaction among components of the redox system as well as to the collection of disperse findings relative to the redox-inflammatory interplay in the context of traumatic stress so that new research strategies could be developed.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Karanikas, Department of Psychiatry, General Military Hospital, Thessaloniki, Greece
| |
Collapse
|
6
|
The Glyoxalase System in Age-Related Diseases: Nutritional Intervention as Anti-Ageing Strategy. Cells 2021; 10:cells10081852. [PMID: 34440621 PMCID: PMC8393707 DOI: 10.3390/cells10081852] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
The glyoxalase system is critical for the detoxification of advanced glycation end-products (AGEs). AGEs are toxic compounds resulting from the non-enzymatic modification of biomolecules by sugars or their metabolites through a process called glycation. AGEs have adverse effects on many tissues, playing a pathogenic role in the progression of molecular and cellular aging. Due to the age-related decline in different anti-AGE mechanisms, including detoxifying mechanisms and proteolytic capacities, glycated biomolecules are accumulated during normal aging in our body in a tissue-dependent manner. Viewed in this way, anti-AGE detoxifying systems are proposed as therapeutic targets to fight pathological dysfunction associated with AGE accumulation and cytotoxicity. Here, we summarize the current state of knowledge related to the protective mechanisms against glycative stress, with a special emphasis on the glyoxalase system as the primary mechanism for detoxifying the reactive intermediates of glycation. This review focuses on glyoxalase 1 (GLO1), the first enzyme of the glyoxalase system, and the rate-limiting enzyme of this catalytic process. Although GLO1 is ubiquitously expressed, protein levels and activities are regulated in a tissue-dependent manner. We provide a comparative analysis of GLO1 protein in different tissues. Our findings indicate a role for the glyoxalase system in homeostasis in the eye retina, a highly oxygenated tissue with rapid protein turnover. We also describe modulation of the glyoxalase system as a therapeutic target to delay the development of age-related diseases and summarize the literature that describes the current knowledge about nutritional compounds with properties to modulate the glyoxalase system.
Collapse
|
7
|
Hara T, Toyoshima M, Hisano Y, Balan S, Iwayama Y, Aono H, Futamura Y, Osada H, Owada Y, Yoshikawa T. Glyoxalase I disruption and external carbonyl stress impair mitochondrial function in human induced pluripotent stem cells and derived neurons. Transl Psychiatry 2021; 11:275. [PMID: 33966051 PMCID: PMC8106684 DOI: 10.1038/s41398-021-01392-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Carbonyl stress, a specific form of oxidative stress, is reported to be involved in the pathophysiology of schizophrenia; however, little is known regarding the underlying mechanism. Here, we found that disruption of GLO1, the gene encoding a major catabolic enzyme scavenging the carbonyl group, increases vulnerability to external carbonyl stress, leading to abnormal phenotypes in human induced pluripotent stem cells (hiPSCs). The viability of GLO1 knockout (KO)-hiPSCs decreased and activity of caspase-3 was increased upon addition of methylglyoxal (MGO), a reactive carbonyl compound. In the GLO1 KO-hiPSC-derived neurons, MGO administration impaired neurite extension and cell migration. Further, accumulation of methylglyoxal-derived hydroimidazolone (MG-H1; a derivative of MGO)-modified proteins was detected in isolated mitochondria. Mitochondrial dysfunction, including diminished membrane potential and dampened respiratory function, was observed in the GLO1 KO-hiPSCs and derived neurons after addition of MGO and hence might be the mechanism underlying the effects of carbonyl stress. The susceptibility to MGO was partially rescued by the administration of pyridoxamine, a carbonyl scavenger. Our observations can be used for designing an intervention strategy for diseases, particularly those induced by enhanced carbonyl stress or oxidative stress.
Collapse
Affiliation(s)
- Tomonori Hara
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan ,grid.69566.3a0000 0001 2248 6943Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Manabu Toyoshima
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Yasuko Hisano
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Shabeesh Balan
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan ,Neuroscience Research Laboratory, Institute of Mental Health and Neurosciences (IMHANS), Kozhikode, Kerala 673008 India
| | - Yoshimi Iwayama
- grid.474690.8Support Unit for Bio-Material Analysis, Research Division, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Harumi Aono
- grid.509461.fChemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Yushi Futamura
- grid.509461.fChemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Hiroyuki Osada
- grid.509461.fChemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Yuji Owada
- grid.69566.3a0000 0001 2248 6943Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
8
|
de Almeida GRL, Szczepanik JC, Selhorst I, Schmitz AE, Dos Santos B, Cunha MP, Heinrich IA, de Paula GC, De Bem AF, Leal RB, Dafre AL. Methylglyoxal-Mediated Dopamine Depletion, Working Memory Deficit, and Depression-Like Behavior Are Prevented by a Dopamine/Noradrenaline Reuptake Inhibitor. Mol Neurobiol 2021; 58:735-749. [PMID: 33011857 DOI: 10.1007/s12035-020-02146-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
Abstract
Methylglyoxal (MGO) is an endogenous toxin, mainly produced as a by-product of glycolysis that has been associated to aging, Alzheimer's disease, and inflammation. Cell culture studies reported that MGO could impair the glyoxalase, thioredoxin, and glutathione systems. Thus, we investigated the effect of in vivo MGO administration on these systems, but no major changes were observed in the glyoxalase, thioredoxin, and glutathione systems, as evaluated in the prefrontal cortex and the hippocampus of mice. A previous study from our group indicated that MGO administration produced learning/memory deficits and depression-like behavior. Confirming these findings, the tail suspension test indicated that MGO treatment for 7 days leads to depression-like behavior in three different mice strains. MGO treatment for 12 days induced working memory impairment, as evaluated in the Y maze spontaneous alternation test, which was paralleled by low dopamine and serotonin levels in the cerebral cortex. Increased DARPP32 Thr75/Thr34 phosphorylation ratio was observed, suggesting a suppression of phosphatase 1 inhibition, which may be involved in behavioral responses to MGO. Co-treatment with a dopamine/noradrenaline reuptake inhibitor (bupropion, 10 mg/kg, p.o.) reversed the depression-like behavior and working memory impairment and restored the serotonin and dopamine levels in the cerebral cortex. Overall, the cerebral cortex monoaminergic system appears to be a preferential target of MGO toxicity, a new potential therapeutic target that remains to be addressed.
Collapse
Affiliation(s)
| | - Jozimar Carlos Szczepanik
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ingrid Selhorst
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ariana Ern Schmitz
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Bárbara Dos Santos
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Maurício Peña Cunha
- Biochemistry Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Isabella Aparecida Heinrich
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Gabriela Cristina de Paula
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Andreza Fabro De Bem
- Biochemistry Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Department of Physiological Science, Institute for Biological Sciences, University of Brasília, Brasília, Brazil
| | - Rodrigo Bainy Leal
- Biochemistry Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Alcir Luiz Dafre
- Biochemistry Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
9
|
Reis DJ, Ilardi SS, Namekata MS, Wing EK, Fowler CH. The depressogenic potential of added dietary sugars. Med Hypotheses 2020; 134:109421. [DOI: 10.1016/j.mehy.2019.109421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022]
|
10
|
Du F, Li Y, Shen J, Zhao Y, Kaboli PJ, Xiang S, Wu X, Li M, Zhou J, Zheng Y, Yi T, Li X, Li J, Xiao Z, Wen Q. Glyoxalase 1 gene improves the antistress capacity and reduces the immune inflammatory response. BMC Genet 2019; 20:95. [PMID: 31822263 PMCID: PMC6902355 DOI: 10.1186/s12863-019-0795-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/26/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Fish immunity is not only affected by the innate immune pathways but is also triggered by stress. Transport and loading stress can induce oxidative stress and further activate the immune inflammatory response, which cause tissue damage and sudden death. Multiple genes take part in this process and some of these genes play a vital role in regulation of the immune inflammatory response and sudden death. Currently, the key genes regulating the immune inflammatory response and the sudden death caused by stress in Coilia nasus are unknown. RESULTS In this study, we studied the effects of the Glo1 gene on stress, antioxidant expression, and immune-mediated apoptosis in C. nasus. The full-length gene is 4356 bp, containing six exons and five introns. Southern blotting indicated that Glo1 is a single-copy gene in the C. nasus genome. We found two single-nucleotide polymorphisms (SNPs) in the Glo1 coding region, which affect the three-dimensional structure of Glo1 protein. An association analysis results revealed that the two SNPs are associated with stress tolerance. Moreover, Glo1 mRNA and protein expression of the heterozygous genotype was significantly higher than that of the homozygous genotype. Na+ and sorbitol also significantly enhanced Glo1 mRNA and protein expression, improved the fish's antioxidant capacity, and reduced the immune inflammatory response, thus sharply reducing the mortality caused by stress. CONCLUSIONS Glo1 plays a potential role in the stress response, antioxidant capacity, and immune-mediated apoptosis in C. nasus.
Collapse
Affiliation(s)
- Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
| | - Yan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jiangyao Zhou
- Sichuan Neijiang Medical School, Neijiang, Sichuan, China
| | - Yuan Zheng
- Neijiang Health and Health Vocational College, Neijiang, Sichuan, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
11
|
Szczepanik JC, de Almeida GRL, Cunha MP, Dafre AL. Repeated Methylglyoxal Treatment Depletes Dopamine in the Prefrontal Cortex, and Causes Memory Impairment and Depressive-Like Behavior in Mice. Neurochem Res 2019; 45:354-370. [PMID: 31786717 DOI: 10.1007/s11064-019-02921-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023]
Abstract
Methylglyoxal (MGO) is a highly reactive dicarbonyl molecule that promotes the formation of advanced glycation end products (AGEs), which are believed to play a key role in a number of pathologies, such as diabetes, Alzheimer's disease, and inflammation. Here, Swiss mice were treated with MGO by intraperitoneal injection to investigate its effects on motor activity, mood, and cognition. Acute MGO treatment heavily decreased locomotor activity in the open field test at higher doses (80-200 mg/kg), an effect not observed at lower doses (10-50 mg/kg). Several alterations were observed 4 h after a single MGO injection (10-50 mg/kg): (a) plasma MGO levels were increased, (b) memory was impaired (object location task), (c) anxiolytic behavior was observed in the open field and marble burying test, and (d) depressive-like behavior was evidenced as evaluated by the tail suspension test. Biochemical alterations in the glutathione and glyoxalase systems were not observed 4 h after MGO treatment. Mice were also treated daily with MGO at 0, 10, 25 and 50 mg/kg for 11 days. From the 5th to the 11th day, several behavioral end points were evaluated, resulting in: (a) absence of motor impairment as evaluated in the open field, horizontal bars and pole test, (b) depressive-like behavior observed in the tail suspension test, and (c) cognitive impairments detected on working, short- and long-term memory when mice were tested in the Y-maze spontaneous alternation, object location and recognition tests, and step-down inhibitory avoidance task. An interesting finding was a marked decrease in dopamine levels in the prefrontal cortex of mice treated with 50 mg/kg MGO for 11 days, along with a ~ 25% decrease in the Glo1 content. The MGO-induced dopamine depletion in the prefrontal cortex may be related to the observed memory deficits and depressive-like behavior, an interesting topic to be further studied as a potentially novel route for MGO toxicity.
Collapse
Affiliation(s)
- Jozimar Carlos Szczepanik
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Gudrian Ricardo Lopes de Almeida
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Mauricio Peña Cunha
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Alcir Luiz Dafre
- Neurosciences Post-Graduation Program, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Department of Biochemistry, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
12
|
Koike S, Ando C, Usui Y, Kibune Y, Nishimoto S, Suzuki T, Ogasawara Y. Age-related alteration in the distribution of methylglyoxal and its metabolic enzymes in the mouse brain. Brain Res Bull 2018; 144:164-170. [PMID: 30508605 DOI: 10.1016/j.brainresbull.2018.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/31/2022]
Abstract
Methylglyoxal (MG) is an α-dicarbonyl compound that is naturally produced in vivo through glucose metabolism. In general, MG is metabolized by the glyoxalase 1(GLO1)/GLO2 system and aldose reductase (AR); however, excessive MG can react with proteins and nucleic acids to induce the accumulation of advanced glycation end products (AGEs). Recently, the accumulation of AGEs in the brain has been presumed to be related to neurodegenerative diseases such as Parkinson's and Alzheimer's disease, respectively. Research investigating the role of AGEs in such diseases is ongoing. However, the changes in MG concentration that occur in the brain during healthy ageing remain unclear. Therefore, we performed fractionation of the brains of aged and young mice, measured the MG concentration in each part of the brain, and then examined the distribution. We also investigated the expression levels of GLO1 and AR, the main metabolizing enzymes of MG, in various brain regions, across age groups. We show that MG concentration varies among different regions of the brain, and that MG concentration in aged mice is significantly lower than that in young mice across all regions of the brain, except the brain stem. In addition, although the expression level of the GLO1 protein in the brain did not change with ageing, the expression level of AR was higher in aged than in young mice. Moreover, although a significant positive correlation was observed between GLO1 expression and MG concentration in the brains of young mice, no significant correlations were observed in the brains of aged mice. Meanwhile, the production of protein carbonyls and the accumulation of AGEs were not observed in the brains of aged mice. These results suggest that the accumulation of MG in the brain, along with the carbonyl stress are suppressed and regionally controlled during healthy ageing. This finding is useful as the foundation for further studies to investigate the role and toxicity of MG in various age-related disease conditions.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Chihiro Ando
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yosuke Usui
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yosuke Kibune
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Shoichi Nishimoto
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Toshihiro Suzuki
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
13
|
Assessment of a glyoxalase I frameshift variant, p.P122fs, in Japanese patients with schizophrenia. Psychiatr Genet 2018; 28:90-93. [PMID: 29975244 DOI: 10.1097/ypg.0000000000000204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Enhanced carbonyl stress has been observed in a subgroup of patients with schizophrenia. Glyoxalase I, which is encoded by GLO1, is an enzyme that protects against carbonyl stress. In this study, we focused on the association between rare genetic variants of GLO1 and schizophrenia. First, we identified one heterozygous frameshift variant, p.P122fs, in 370 Japanese schizophrenia cases with allele frequencies of up to 1% by exon-targeted mutation screening of GLO1. We then performed an association analysis on 1282 cases and 1764 controls with this variant. The variant was found in three cases and eight controls. There was no statistically significant association between p.P122fs in GLO1 and schizophrenia (P=0.25). This frameshift variant in GLO1 might occur at near-polymorphic frequencies in the Japanese population, although further investigations using larger samples and biological analyses are needed to exclude the possibility of a low-penetrance genetic risk associated with this variant.
Collapse
|
14
|
Frandsen JR, Narayanasamy P. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biol 2018; 14:465-473. [PMID: 29080525 PMCID: PMC5680520 DOI: 10.1016/j.redox.2017.10.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
The glyoxalase pathway functions to detoxify reactive dicarbonyl compounds, most importantly methylglyoxal. The glyoxalase pathway is an antioxidant defense mechanism that is essential for neuroprotection. Excessive concentrations of methylglyoxal have deleterious effects on cells, leading to increased levels of inflammation and oxidative stress. Neurodegenerative diseases - including Alzheimer's, Parkinson's, Aging and Autism Spectrum Disorder - are often induced or exacerbated by accumulation of methylglyoxal. Antioxidant compounds possess several distinct mechanisms that enhance the glyoxalase pathway and function as neuroprotectants. Flavonoids are well-researched secondary plant metabolites that appear to be effective in reducing levels of oxidative stress and inflammation in neural cells. Novel flavonoids could be designed, synthesized and tested to protect against neurodegenerative diseases through regulating the glyoxalase pathway.
Collapse
Affiliation(s)
- Joel R Frandsen
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Prabagaran Narayanasamy
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.
| |
Collapse
|
15
|
Abstract
Many current pharmacological treatments for neuropsychiatric disorders, such as anxiety and depression, are limited by a delayed onset of therapeutic effect, adverse side effects, abuse potential or lack of efficacy in many patients. These off-target effects highlight the need to identify novel mechanisms and targets for treatment. Recently, modulation of Glo1 (glyoxalase I) activity was shown to regulate anxiety-like behaviour and seizure-susceptibility in mice. These effects are likely to be mediated through the regulation of MG (methylglyoxal) by Glo1, as MG acts as a competitive partial agonist at GABA(A) (γ-aminobutyric acid A) receptors. Thus modulation of MG by Glo1 represents a novel target for treatment. In the present article, we evaluate the therapeutic potential of indirectly modulating MG concentrations through Glo1 inhibitors for the treatment of neuropsychiatric disorders.
Collapse
|
16
|
Bangel FN, Yamada K, Arai M, Iwayama Y, Balan S, Toyota T, Iwata Y, Suzuki K, Kikuchi M, Hashimoto T, Kanahara N, Mori N, Itokawa M, Stork O, Yoshikawa T. Genetic analysis of the glyoxalase system in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2015; 59:105-110. [PMID: 25645869 DOI: 10.1016/j.pnpbp.2015.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 11/26/2022]
Abstract
Recent reports suggest that carbonyl stress might affect a subset of schizophrenia patients suffering from severe symptoms. Carbonyl stress protection is achieved by the glyoxalase system consisting of two enzymes, glyoxalase 1 and 2, which in humans are encoded by the genes GLO1 and HAGH, respectively. Glyoxalase 1 and 2 catalyze the detoxification of reactive alpha-oxoaldehydes such as glyoxal and methylglyoxal, which are particularly damaging components of carbonyl stress. Here, we investigated the role of the glyoxalase system in schizophrenia by performing association analyses of common genetic variants (n=12) in GLO1 and HAGH in a Japanese sample consisting of 2012 schizophrenia patients and 2170 healthy controls. We detected a nominally significant association with schizophrenia (p=0.020) of rs11859266, a SNP in the intronic region of HAGH. However, rs11859266 did not survive multiple testing (empirical p=0.091). The variants in HAGH, rs11859266 and rs3743852, showed significant associations with schizophrenia in males at allelic and genotype levels, which remained persistent after multiple testing with the exception of rs3743852 for the genotype model. We further measured the mRNA expression of both genes in postmortem brain, but did not detect any changes in transcript expression levels between case and control samples or in sex-specific comparisons. Therefore, our findings suggest that an explanation of elevated carbonyl stress in a substantial part (reported as ~20%) of patients with schizophrenia will require the examination of a much larger cohort to detect risk alleles with weak effect size and/or other risk factors.
Collapse
Affiliation(s)
- Fabian N Bangel
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Kazuo Yamada
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Makoto Arai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Shabeesh Balan
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan
| | - Yasuhide Iwata
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Mitsuru Kikuchi
- Department of Psychiatry and Neurobiology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tasuku Hashimoto
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobuhisa Kanahara
- Department of Psychiatry, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masanari Itokawa
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|
17
|
Brenndörfer J, Altmann A, Widner-Andrä R, Pütz B, Czamara D, Tilch E, Kam-Thong T, Weber P, Rex-Haffner M, Bettecken T, Bultmann A, Müller-Myhsok B, Binder EE, Landgraf R, Czibere L. Connecting Anxiety and Genomic Copy Number Variation: A Genome-Wide Analysis in CD-1 Mice. PLoS One 2015; 10:e0128465. [PMID: 26011321 PMCID: PMC4444327 DOI: 10.1371/journal.pone.0128465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/27/2015] [Indexed: 12/05/2022] Open
Abstract
Genomic copy number variants (CNVs) have been implicated in multiple psychiatric disorders, but not much is known about their influence on anxiety disorders specifically. Using next-generation sequencing (NGS) and two additional array-based genotyping approaches, we detected CNVs in a mouse model consisting of two inbred mouse lines showing high (HAB) and low (LAB) anxiety-related behavior, respectively. An influence of CNVs on gene expression in the central (CeA) and basolateral (BLA) amygdala, paraventricular nucleus (PVN), and cingulate cortex (Cg) was shown by a two-proportion Z-test (p = 1.6 x 10-31), with a positive correlation in the CeA (p = 0.0062), PVN (p = 0.0046) and Cg (p = 0.0114), indicating a contribution of CNVs to the genetic predisposition to trait anxiety in the specific context of HAB/LAB mice. In order to confirm anxiety-relevant CNVs and corresponding genes in a second mouse model, we further examined CD-1 outbred mice. We revealed the distribution of CNVs by genotyping 64 CD 1 individuals using a high-density genotyping array (Jackson Laboratory). 78 genes within those CNVs were identified to show nominally significant association (48 genes), or a statistical trend in their association (30 genes) with the time animals spent on the open arms of the elevated plus-maze (EPM). Fifteen of them were considered promising candidate genes of anxiety-related behavior as we could show a significant overlap (permutation test, p = 0.0051) with genes within HAB/LAB CNVs. Thus, here we provide what is to our knowledge the first extensive catalogue of CNVs in CD-1 mice and potential corresponding candidate genes linked to anxiety-related behavior in mice.
Collapse
Affiliation(s)
- Julia Brenndörfer
- Department of Behavioral Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail:
| | - André Altmann
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Regina Widner-Andrä
- Department of Behavioral Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Benno Pütz
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Darina Czamara
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Erik Tilch
- Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Tony Kam-Thong
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Peter Weber
- Department of Molecular Genetics of Affective Disorders, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department of Molecular Genetics of Affective Disorders, Max Planck Institute of Psychiatry, Munich, Germany
| | - Thomas Bettecken
- Department of Behavioral Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Andrea Bultmann
- Department of Behavioral Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bertram Müller-Myhsok
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth E. Binder
- Department of Molecular Genetics of Affective Disorders, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rainer Landgraf
- Department of Behavioral Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Ludwig Czibere
- Department of Behavioral Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
18
|
Weak association of glyoxalase 1 (GLO1) variants with autism spectrum disorder. Eur Child Adolesc Psychiatry 2015; 24:75-82. [PMID: 24671236 DOI: 10.1007/s00787-014-0537-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
Abstract
The prevalence of the autism spectrum disorder (ASD) was recently estimated to 1 in 88 children by the CDC MMWR. In up to 25 % of the cases, the genetic cause can be identified. Past studies identified increased level of advanced glycation end products (AGE) in the brain samples of ASD patients. The methylglyoxal (MG) is one of the main precursors for AGE formation. Humans developed effective mechanism of the MG metabolism involving two enzymes glyoxalase 1 (GLO1) and hydroxyacylglutathione hydrolase (HAGH). Our aim was to analyse genetic variants of GLO1 and HAGH in population of 143 paediatric participants with ASD. We detected 7 genetic variants in GLO1 and 16 variants in HAGH using high-resolution melting (HRM) analysis. A novel association between variant rs1049346 and ASD [OR (allele C)] = 1.5; 95 % CI = 1.1-2.2 and p < 0.05) was identified, and weak association between ASD and variant rs2736654 [OR (allele A)] = 2.2; 95 % CI = 0.99-4.9; p = 0.045) was confirmed. Additionally, a novel genetic variant (GLO1 c.484G > A, p.Ala161Thr) with predicted potentially damaging effect on the activity of the glyoxalase 1 that may contribute to the aetiology of ASD was identified in one participant with ASD. No association between genetic variants of the HAGH gene and ASD was found. Increased level of MG and, consequently, AGEs can induce oxidative stress, mitochondrial dysfunction and inflammation all of which have been implicated to act in the aetiology of the ASD. Our results indicate potential importance of MG metabolism in ASD. However, these results must be interpreted with caution until a causative relation is demonstrated.
Collapse
|
19
|
Gabriele S, Lombardi F, Sacco R, Napolioni V, Altieri L, Tirindelli MC, Gregorj C, Bravaccio C, Rousseau F, Persico AM. The GLO1 C332 (Ala111) allele confers autism vulnerability: family-based genetic association and functional correlates. J Psychiatr Res 2014; 59:108-16. [PMID: 25201284 DOI: 10.1016/j.jpsychires.2014.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/08/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022]
Abstract
Glyoxalase I (GLO1) is a homodimeric Zn(2+)-dependent isomerase involved in the detoxification of methylglyoxal and in limiting the formation of advanced glycation end-products (AGE). We previously found the rs4746 A332 (Glu111) allele of the GLO1 gene, which encodes for glyoxalase I, associated with "unaffected sibling" status in families with one or more children affected by Autism Spectrum Disorder (ASD). To identify and characterize this protective allele, we sequenced GLO1 exons and exon-intron junctions, detecting two additional SNPs (rs1049346, rs1130534) in linkage disequilibrium with rs4746. A family-based association study involving 385 simplex and 20 multiplex Italian families yielded a significant association with autism driven only by the rs4746 C332 (Ala111) allele itself (P < 0.05 and P < 0.001 under additive and dominant/recessive models, respectively). Glyoxalase enzymatic activity was significantly reduced both in leukocytes and in post-mortem temporocortical tissue (N = 38 and 13, respectively) of typically developing C332 allele carriers (P < 0.05 and <0.01), with no difference in Glo1 protein levels. Conversely, AGE amounts were significantly higher in the same C332 post-mortem brains (P = 0.001), with a strong negative correlation between glyoxalase activity and AGE levels (τ = -0.588, P < 0.01). Instead, 19 autistic brains show a dysregulation of the glyoxalase-AGE axis (τ = -0.209, P = 0.260), with significant blunting of glyoxalase activity and AGE amounts compared to controls (P < 0.05), and loss of rs4746 genotype effects. In summary, the GLO1 C332 (Ala111) allele confers autism vulnerability by reducing brain glyoxalase activity and enhancing AGE formation, but years after an autism diagnosis the glyoxalase-AGE axis appears profoundly disrupted, with loss of C332 allelic effects.
Collapse
Affiliation(s)
- Stefano Gabriele
- Unit of Child and Adolescent NeuroPsychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy; Department of Experimental Neurosciences, I.R.C.C.S. "Fondazione Santa Lucia", Rome, Italy
| | - Federica Lombardi
- Unit of Child and Adolescent NeuroPsychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy; Department of Experimental Neurosciences, I.R.C.C.S. "Fondazione Santa Lucia", Rome, Italy
| | - Roberto Sacco
- Unit of Child and Adolescent NeuroPsychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy; Department of Experimental Neurosciences, I.R.C.C.S. "Fondazione Santa Lucia", Rome, Italy
| | - Valerio Napolioni
- Unit of Child and Adolescent NeuroPsychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy; Department of Experimental Neurosciences, I.R.C.C.S. "Fondazione Santa Lucia", Rome, Italy
| | - Laura Altieri
- Unit of Child and Adolescent NeuroPsychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy; Department of Experimental Neurosciences, I.R.C.C.S. "Fondazione Santa Lucia", Rome, Italy
| | | | - Chiara Gregorj
- Hematology Transfusion Medicine, University "Campus Bio-Medico", Rome, Italy
| | - Carmela Bravaccio
- Department of Translational Medical Science, University "Federico II", Naples, Italy
| | | | - Antonio M Persico
- Unit of Child and Adolescent NeuroPsychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy; Department of Experimental Neurosciences, I.R.C.C.S. "Fondazione Santa Lucia", Rome, Italy; Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy.
| |
Collapse
|
20
|
Arai M, Miyashita M, Kobori A, Toriumi K, Horiuchi Y, Itokawa M. Carbonyl stress and schizophrenia. Psychiatry Clin Neurosci 2014; 68:655-65. [PMID: 24995521 DOI: 10.1111/pcn.12216] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2014] [Indexed: 12/26/2022]
Abstract
Appropriate biological treatment and psychosocial support are essential to achieve and maintain recovery for patients with schizophrenia. Despite extensive efforts to clarify the underlying disease mechanisms, the main cause and pathophysiology of schizophrenia remain unclear. This is due in large part to disease heterogeneity, which results in biochemical differences within a single disease entity. Other factors include variability across clinical symptoms and disease course, along with varied risk factors and treatment responses. Although schizophrenia's positive symptoms are largely managed through treatment with atypical antipsychotics, new classes of drugs are needed to address the unmet medical need for improving cognitive dysfunction and promoting recovery of negative symptoms in these patients. Accumulation of toxic reactive dicarbonyls, such as methylglyoxal, are typical indicators of carbonyl stress, and result in the modification of proteins and the formation of advanced glycation end products, such as pentosidine. In June 2010, we reported on idiopathic carbonyl stress in a subpopulation of schizophrenia patients, leading to a failure of metabolic systems with plasma pentosidine accumulation and serum pyridoxal depletion. Our findings suggest two markers, pentosidine and pyridoxal, as beneficial for distinguishing a specific subgroup of schizophrenics. We believe that this information, derived from in vitro and in vivo studies, is beneficial in the search for personalized and hopefully more effective treatment regimens in schizophrenia. Here, we define a subtype of schizophrenia based on carbonyl stress and the potential for using carbonyl stress as a biomarker in the challenge of overcoming heterogeneity in schizophrenia treatment.
Collapse
Affiliation(s)
- Makoto Arai
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
21
|
McIntyre RS, Cha DS, Jerrell JM, Swardfager W, Kim RD, Costa LG, Baskaran A, Soczynska JK, Woldeyohannes HO, Mansur RB, Brietzke E, Powell AM, Gallaugher A, Kudlow P, Kaidanovich-Beilin O, Alsuwaidan M. Advancing biomarker research: utilizing 'Big Data' approaches for the characterization and prevention of bipolar disorder. Bipolar Disord 2014; 16:531-47. [PMID: 24330342 DOI: 10.1111/bdi.12162] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To provide a strategic framework for the prevention of bipolar disorder (BD) that incorporates a 'Big Data' approach to risk assessment for BD. METHODS Computerized databases (e.g., Pubmed, PsychInfo, and MedlinePlus) were used to access English-language articles published between 1966 and 2012 with the search terms bipolar disorder, prodrome, 'Big Data', and biomarkers cross-referenced with genomics/genetics, transcriptomics, proteomics, metabolomics, inflammation, oxidative stress, neurotrophic factors, cytokines, cognition, neurocognition, and neuroimaging. Papers were selected from the initial search if the primary outcome(s) of interest was (were) categorized in any of the following domains: (i) 'omics' (e.g., genomics), (ii) molecular, (iii) neuroimaging, and (iv) neurocognitive. RESULTS The current strategic approach to identifying individuals at risk for BD, with an emphasis on phenotypic information and family history, has insufficient predictive validity and is clinically inadequate. The heterogeneous clinical presentation of BD, as well as its pathoetiological complexity, suggests that it is unlikely that a single biomarker (or an exclusive biomarker approach) will sufficiently augment currently inadequate phenotypic-centric prediction models. We propose a 'Big Data'- bioinformatics approach that integrates vast and complex phenotypic, anamnestic, behavioral, family, and personal 'omics' profiling. Bioinformatic processing approaches, utilizing cloud- and grid-enabled computing, are now capable of analyzing data on the order of tera-, peta-, and exabytes, providing hitherto unheard of opportunities to fundamentally revolutionize how psychiatric disorders are predicted, prevented, and treated. High-throughput networks dedicated to research on, and the treatment of, BD, integrating both adult and younger populations, will be essential to sufficiently enroll adequate samples of individuals across the neurodevelopmental trajectory in studies to enable the characterization and prevention of this heterogeneous disorder. CONCLUSIONS Advances in bioinformatics using a 'Big Data' approach provide an opportunity for novel insights regarding the pathoetiology of BD. The coordinated integration of research centers, inclusive of mixed-age populations, is a promising strategic direction for advancing this line of neuropsychiatric research.
Collapse
Affiliation(s)
- Roger S McIntyre
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
We have identified idiopathic carbonyl stress in a subpopulation of schizophrenic patients. We first identified a patient with a mutation in GLO1 (glyoxalase I) who showed increased AGE (advanced glycation end-product) levels and decreased vitamin B6 levels. By applying the observations from this rare case to the general schizophrenic population, we were able to identify a subset of patients (20%) for whom carbonyl stress may represent a causative pathophysiological process. Genetic defects in GLO1 increase the risk of carbonyl stress 5-fold, and the resulting increased AGE levels correlate significantly with PANSS (Positive and Negative Syndrome Scale) scored negative symptoms. Pyridoxamine, an active form of vitamin B6 and scavenger for carbonyl stress, could represent a novel and efficacious therapeutic agent for these treatment-resistant symptoms. In the present article, we describe a unique research approach to identify the causative process in the pathophysiology of a subset of schizophrenia. Our findings could form the basis of a schizophrenia subtype classification within this very heterogeneous disease and ultimately lead to better targeted therapy.
Collapse
|
23
|
Hassan W, Silva CEB, Mohammadzai IU, da Rocha JBT, Landeira-Fernandez J. Association of oxidative stress to the genesis of anxiety: implications for possible therapeutic interventions. Curr Neuropharmacol 2014; 12:120-39. [PMID: 24669207 PMCID: PMC3964744 DOI: 10.2174/1570159x11666131120232135] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 06/16/2013] [Accepted: 11/02/2013] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress caused by reactive species, including reactive oxygen species, reactive nitrogen species, and unbound, adventitious metal ions (e.g., iron [Fe] and copper [Cu]), is an underlying cause of various neurodegenerative diseases. These reactive species are an inevitable by-product of cellular respiration or other metabolic processes that may cause the oxidation of lipids, nucleic acids, and proteins. Oxidative stress has recently been implicated in depression and anxiety-related disorders. Furthermore, the manifestation of anxiety in numerous psychiatric disorders, such as generalized anxiety disorder, depressive disorder, panic disorder, phobia, obsessive-compulsive disorder, and posttraumatic stress disorder, highlights the importance of studying the underlying biology of these disorders to gain a better understanding of the disease and to identify common biomarkers for these disorders. Most recently, the expression of glutathione reductase 1 and glyoxalase 1, which are genes involved in antioxidative metabolism, were reported to be correlated with anxiety-related phenotypes. This review focuses on direct and indirect evidence of the potential involvement of oxidative stress in the genesis of anxiety and discusses different opinions that exist in this field. Antioxidant therapeutic strategies are also discussed, highlighting the importance of oxidative stress in the etiology, incidence, progression, and prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Waseem Hassan
- Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | - Imdad Ullah Mohammadzai
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Joao Batista Teixeira da Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
24
|
Proteomics reveals energy and glutathione metabolic dysregulation in the prefrontal cortex of a rat model of depression. Neuroscience 2013; 247:191-200. [DOI: 10.1016/j.neuroscience.2013.05.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/02/2013] [Accepted: 05/19/2013] [Indexed: 10/26/2022]
|
25
|
Coding and noncoding gene expression biomarkers in mood disorders and schizophrenia. DISEASE MARKERS 2013; 35:11-21. [PMID: 24167345 PMCID: PMC3774957 DOI: 10.1155/2013/748095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/20/2013] [Indexed: 12/13/2022]
Abstract
Mood disorders and schizophrenia are common and complex disorders with consistent evidence of genetic and environmental influences on predisposition. It is generally believed that the consequences of disease, gene expression, and allelic heterogeneity may be partly the explanation for the variability observed in treatment response. Correspondingly, while effective treatments are available for some patients, approximately half of the patients fail to respond to current neuropsychiatric treatments. A number of peripheral gene expression studies have been conducted to understand these brain-based disorders and mechanisms of treatment response with the aim of identifying suitable biomarkers and perhaps subgroups of patients based upon molecular fingerprint. In this review, we summarize the results from blood-derived gene expression studies implemented with the aim of discovering biomarkers for treatment response and classification of disorders. We include data from a biomarker study conducted in first-episode subjects with schizophrenia, where the results provide insight into possible individual biological differences that predict antipsychotic response. It is concluded that, while peripheral studies of expression are generating valuable results in pathways involving immune regulation and response, larger studies are required which hopefully will lead to robust biomarkers for treatment response and perhaps underlying variations relevant to these complex disorders.
Collapse
|
26
|
Sokolowska E, Hovatta I. Anxiety genetics - findings from cross-species genome-wide approaches. BIOLOGY OF MOOD & ANXIETY DISORDERS 2013; 3:9. [PMID: 23659354 PMCID: PMC3655048 DOI: 10.1186/2045-5380-3-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/16/2013] [Indexed: 12/02/2022]
Abstract
Anxiety disorders are complex diseases, which often occur in combination with major depression, alcohol use disorder, or general medical conditions. Anxiety disorders were the most common mental disorders within the EU states in 2010 with 14% prevalence. Anxiety disorders are triggered by environmental factors in genetically susceptible individuals, and therefore genetic research offers a great route to unravel molecular basis of these diseases. As anxiety is an evolutionarily conserved response, mouse models can be used to carry out genome-wide searches for specific genes in a setting that controls for the environmental factors. In this review, we discuss translational approaches that aim to bridge results from unbiased genome-wide screens using mouse models to anxiety disorders in humans. Several methods, such as quantitative trait locus mapping, gene expression profiling, and proteomics, have been used in various mouse models of anxiety to identify genes that regulate anxiety or play a role in maintaining pathological anxiety. We first discuss briefly the evolutionary background of anxiety, which justifies cross-species approaches. We then describe how several genes have been identified through genome-wide methods in mouse models and subsequently investigated in human anxiety disorder samples as candidate genes. These studies have led to the identification of completely novel biological pathways that regulate anxiety in mice and humans, and that can be further investigated as targets for therapy.
Collapse
Affiliation(s)
- Ewa Sokolowska
- Department of Biosciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
27
|
Hepgul N, Cattaneo A, Zunszain PA, Pariante CM. Depression pathogenesis and treatment: what can we learn from blood mRNA expression? BMC Med 2013; 11:28. [PMID: 23384232 PMCID: PMC3606439 DOI: 10.1186/1741-7015-11-28] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/05/2013] [Indexed: 11/10/2022] Open
Abstract
Alterations in several biological systems, including the neuroendocrine and immune systems, have been consistently demonstrated in patients with major depressive disorder. These alterations have been predominantly studied using easily accessible systems such as blood and saliva. In recent years there has been an increasing body of evidence supporting the use of peripheral blood gene expression to investigate the pathogenesis of depression, and to identify relevant biomarkers. In this paper we review the current literature on gene expression alterations in depression, focusing in particular on three important and interlinked biological domains: inflammation, glucocorticoid receptor functionality and neuroplasticity. We also briefly review the few existing transcriptomics studies. Our review summarizes data showing that patients with major depressive disorder exhibit an altered pattern of expression in several genes belonging to these three biological domains when compared with healthy controls. In particular, we show evidence for a pattern of 'state-related' gene expression changes that are normalized either by remission or by antidepressant treatment. Taken together, these findings highlight the use of peripheral blood gene expression as a clinically relevant biomarker approach.
Collapse
Affiliation(s)
- Nilay Hepgul
- Section of Perinatal Psychiatry & Stress, Department of Psychological Medicine, Institute of Psychiatry, King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | | | | | | |
Collapse
|
28
|
Distler MG, Palmer AA. Role of Glyoxalase 1 (Glo1) and methylglyoxal (MG) in behavior: recent advances and mechanistic insights. Front Genet 2012. [PMID: 23181072 PMCID: PMC3500958 DOI: 10.3389/fgene.2012.00250] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glyoxalase 1 (GLO1) is a ubiquitous cellular enzyme that participates in the detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis that induces protein modification (advanced glycation end-products, AGEs), oxidative stress, and apoptosis. The concentration of MG is elevated under high-glucose conditions, such as diabetes. As such, GLO1 and MG have been implicated in the pathogenesis of diabetic complications. Recently, findings have linked GLO1 to numerous behavioral phenotypes, including psychiatric diseases (anxiety, depression, schizophrenia, and autism) and pain. This review highlights GLO1's association with behavioral phenotypes, describes recent discoveries that have elucidated the underlying mechanisms, and identifies opportunities for future research.
Collapse
|
29
|
Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012; 14:684-96. [PMID: 23043691 DOI: 10.1111/bdi.12005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Alterations in gene expression in bipolar disorder have been found in numerous studies. It is unclear whether such alterations are related to specific mood states. As a biphasic disorder, mood state-related alterations in gene expression have the potential to point to markers of disease activity, and trait-related alterations might indicate vulnerability pathways. This review therefore evaluated the evidence for whether gene expression in bipolar disorder is state or trait related. METHODS A systematic review, using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline for reporting systematic reviews, based on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications. RESULTS A total of 17 studies were included, comprising 565 patients and 418 control individuals. Six studies evaluated intraindividual alterations in gene expression across mood states. Two of five studies found evidence of intraindividual alterations in gene expression between a depressed state and a euthymic state. No studies evaluated intraindividual differences in gene expression between a manic state and a euthymic state, while only one case study evaluated differences between a manic state and a depressed state, finding altered expression in seven genes. No study investigated intraindividual variations in gene expression between a euthymic state and multiple states of various polarities (depressive, manic, hypomanic). Intraindividual alterations in expression of the same genes were not investigated across studies. Only one gene (the brain-derived neurotrophic factor gene; BDNF) was investigated across multiple studies, showing no alteration between bipolar disorder patients and control individuals. CONCLUSIONS There is evidence of some genes exhibiting state-related alterations in expression in bipolar disorder; however, this finding is limited by the lack of replication across studies. Further prospective studies are warranted, measuring gene expression in various affective phases, allowing for assessment of intraindividual differences.
Collapse
Affiliation(s)
- Klaus Munkholm
- Psychiatric Center Copenhagen, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
30
|
Distler MG, Plant LD, Sokoloff G, Hawk AJ, Aneas I, Wuenschell GE, Termini J, Meredith SC, Nobrega MA, Palmer AA. Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal. J Clin Invest 2012; 122:2306-15. [PMID: 22585572 DOI: 10.1172/jci61319] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/04/2012] [Indexed: 12/11/2022] Open
Abstract
Glyoxalase 1 (Glo1) expression has previously been associated with anxiety in mice; however, its role in anxiety is controversial, and the underlying mechanism is unknown. Here, we demonstrate that GLO1 increases anxiety by reducing levels of methylglyoxal (MG), a GABAA receptor agonist. Mice overexpressing Glo1 on a Tg bacterial artificial chromosome displayed increased anxiety-like behavior and reduced brain MG concentrations. Treatment with low doses of MG reduced anxiety-like behavior, while higher doses caused locomotor depression, ataxia, and hypothermia, which are characteristic effects of GABAA receptor activation. Consistent with these data, we found that physiological concentrations of MG selectively activated GABAA receptors in primary neurons. These data indicate that GLO1 increases anxiety by reducing levels of MG, thereby decreasing GABAA receptor activation. More broadly, our findings potentially link metabolic state, neuronal inhibitory tone, and behavior. Finally, we demonstrated that pharmacological inhibition of GLO1 reduced anxiety, suggesting that GLO1 is a possible target for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Margaret G Distler
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Benton CS, Miller BH, Skwerer S, Suzuki O, Schultz LE, Cameron MD, Marron JS, Pletcher MT, Wiltshire T. Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains. Psychopharmacology (Berl) 2012; 221:297-315. [PMID: 22113448 PMCID: PMC3337404 DOI: 10.1007/s00213-011-2574-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/03/2011] [Indexed: 02/03/2023]
Abstract
RATIONALE Identification of biomarkers that establish diagnosis or treatment response is critical to the advancement of research and management of patients with depression. OBJECTIVE Our goal was to identify biomarkers that can potentially assess fluoxetine response and risk to poor treatment outcome. METHODS We measured behavior, gene expression, and the levels of 36 neurobiochemical analytes across a panel of genetically diverse mouse inbred lines after chronic treatment with water or fluoxetine. RESULTS Glyoxylase 1 (GLO1) and guanine nucleotide-binding protein 1 (GNB1) mostly account for baseline anxiety-like and depressive-like behavior, indicating a common biological link between depression and anxiety. Fluoxetine-induced biochemical alterations discriminated positive responders, while baseline neurobiochemical differences differentiated negative responders (p < 0.006). Results show that glial fibrillary acidic protein, S100 beta protein, GLO1, and histone deacetylase 5 contributed most to fluoxetine response. These proteins are linked within a cellular growth/proliferation pathway, suggesting the involvement of cellular genesis in fluoxetine response. Furthermore, a candidate genetic locus that associates with baseline depressive-like behavior contains a gene that encodes for cellular proliferation/adhesion molecule (Cadm1), supporting a genetic basis for the role of neuro/gliogenesis in depression. CONCLUSION We provided a comprehensive analysis of behavioral, neurobiochemical, and transcriptome data across 30 mouse inbred strains that has not been accomplished before. We identified biomarkers that influence fluoxetine response, which, altogether, implicate the importance of cellular genesis in fluoxetine treatment. More broadly, this approach can be used to assess a wide range of drug response phenotypes that are challenging to address in human samples.
Collapse
Affiliation(s)
- Cristina S. Benton
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Brooke H. Miller
- Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, FL USA
| | - Sean Skwerer
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Oscar Suzuki
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Laura E. Schultz
- Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, FL USA
| | - Michael D. Cameron
- Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, FL USA
| | - J. S. Marron
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Mathew T. Pletcher
- Orphan and Genetic Diseases Research Unit, Pfizer Global Research and Development, 200 Cambridge Park Drive, Cambridge, MA 02140 USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27599 USA
| |
Collapse
|
32
|
Energy metabolism, proteotoxic stress and age-related dysfunction - protection by carnosine. Mol Aspects Med 2011; 32:267-78. [PMID: 22020113 DOI: 10.1016/j.mam.2011.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 10/11/2011] [Indexed: 01/09/2023]
Abstract
This review will discuss the relationship between energy metabolism, protein dysfunction and the causation and modulation of age-related proteotoxicity and disease. It is proposed that excessive glycolysis, rather than aerobic (mitochondrial) activity, could be causal to proteotoxic stress and age-related pathology, due to the generation of endogenous glycating metabolites: the deleterious role of methylglyoxal (MG) is emphasized. It is suggested that TOR inhibition, exercise, fasting and increased mitochondrial activity suppress formation of MG (and other deleterious low molecular weight carbonyl compounds) which could control onset and progression of proteostatic dysfunction. Possible mechanisms by which the endogenous dipeptide, carnosine, which, by way of its putative aldehyde-scavenging activity, may control age-related proteotoxicity, cellular dysfunction and pathology, including cancer, are also considered. Whether carnosine could be regarded as a rapamycin mimic is briefly discussed.
Collapse
|
33
|
Jack MM, Ryals JM, Wright DE. Characterisation of glyoxalase I in a streptozocin-induced mouse model of diabetes with painful and insensate neuropathy. Diabetologia 2011; 54:2174-82. [PMID: 21633909 PMCID: PMC3762253 DOI: 10.1007/s00125-011-2196-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 04/27/2011] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Diabetic peripheral neuropathy (DN) is a common complication of diabetes; however, the mechanisms producing positive or negative symptoms are not well understood. The enzyme glyoxalase I (GLO1) detoxifies reactive dicarbonyls that form AGEs and may affect the way sensory neurons respond to heightened AGE levels in DN. We hypothesised that differential GLO1 levels in sensory neurons may lead to differences in AGE formation and modulate the phenotype of DN. METHODS Inbred strains of mice were used to assess the variability of Glo1 expression by quantitative RT-PCR. Non-diabetic C57BL/6 mice were used to characterise the distribution of GLO1 in neural tissues by immunofluorescence. Behavioural assessments were conducted in diabetic A/J and C57BL/6 mice to determine mechanical sensitivity, and GLO1 abundance was determined by western blot. RESULTS GLO1 immunoreactivity was found throughout the nervous system, but selectively in small, unmyelinated peptidergic dorsal root ganglia (DRG) neurons that are involved in pain transmission. GLO1 protein was present at various levels in DRG from different inbred mice strains. Diabetic A/J and C57BL/6 mice, two mouse strains with different levels of GLO1, displayed dramatically different behavioural responses to mechanical stimuli. Diabetic C57BL/6 mice also had a reduced abundance of GLO1 following diabetes induction. CONCLUSIONS/INTERPRETATION These findings reveal that the abundance of GLO1 varies between different murine strains and within different sensory neuron populations. These differences could lead to different responses of sensory neurons to the toxic effects of hyperglycaemia and reactive dicarbonyls associated with diabetes.
Collapse
Affiliation(s)
- M M Jack
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
34
|
Abe N, Uchida S, Otsuki K, Hobara T, Yamagata H, Higuchi F, Shibata T, Watanabe Y. Altered sirtuin deacetylase gene expression in patients with a mood disorder. J Psychiatr Res 2011; 45:1106-12. [PMID: 21349544 DOI: 10.1016/j.jpsychires.2011.01.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/27/2011] [Accepted: 01/27/2011] [Indexed: 11/17/2022]
Abstract
Sirtuins are a family of NAD+-dependent enzymes that regulate cellular functions through deacetylation of various proteins. Although recent reports have suggested an important role of deacetylases (i.e., histone deacetylases) in mood disorders and antidepressant action, the involvement of sirtuins in the pathophysiology of mood disorders is largely unknown. In this study, we aimed to determine whether there are alterations in sirtuin mRNA expression in peripheral white blood cells of patients with a mood disorder. Also, to examine whether the altered sirtuin mRNA expression is state- or trait-dependent, mood disorder patients who were in a remissive state were assessed. We used quantitative real-time polymerase chain reaction to measure the mRNA levels of seven sirtuin isoforms (SIRT1-7) in peripheral white blood cells of patients with major depressive disorder (MDD) or bipolar disorder (BPD) during depressive and remissive states and in normal healthy subjects. The SIRT1, 2 and 6 mRNA levels in MDD and BPD patients decreased significantly in those who were in a depressive state compared to healthy controls, whereas the expression of those mRNAs in both MDD and BPD of patients in a remissive state were comparable to those in healthy controls. Thus, our data suggest that altered SIRT1, 2 and 6 expression is state-dependent and might be associated with the pathogenesis and/or pathophysiology of mood disorders.
Collapse
Affiliation(s)
- Naoko Abe
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Barua M, Jenkins EC, Chen W, Kuizon S, Pullarkat RK, Junaid MA. Glyoxalase I polymorphism rs2736654 causing the Ala111Glu substitution modulates enzyme activity--implications for autism. Autism Res 2011; 4:262-70. [PMID: 21491613 PMCID: PMC3138858 DOI: 10.1002/aur.197] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 03/12/2011] [Indexed: 11/08/2022]
Abstract
Autism is a pervasive, heterogeneous, neurodevelopmental disability characterized by impairments in verbal communications, reciprocal social interactions, and restricted repetitive stereotyped behaviors. Evidence suggests the involvement of multiple genetic factors in the etiology of autism, and extensive genome-wide association studies have revealed several candidate genes that bear single nucleotide polymorphisms (SNPs) in non-coding and coding regions. We have shown that a non-conservative, non-synonymous SNP in the glyoxalase I gene, GLOI, may be an autism susceptibility factor. The GLOI rs2736654 SNP is a C→A change that causes an Ala111Glu change in the Glo1 enzyme. To identify the significance of the SNP, we have conducted functional assays for Glo1. We now present evidence that the presence of the A-allele at rs2736654 results in reduced enzyme activity. Glo1 activity is decreased in lymphoblastoid cells that are homozygous for the A allele. The Glu-isoform of Glo1 in these cells is hyperphosphorylated. Direct HPLC measurements of the glyoxalase I substrate, methylglyoxal (MG), show an increase in MG in these cells. Western blot analysis revealed elevated levels of the receptor for advanced glycation end products (RAGEs). We also show that MG is toxic to the developing neuronal cells. We suggest that accumulation of MG results in the formation of AGEs, which induce expression of the RAGE that during crucial neuronal development may be a factor in the pathology of autism.
Collapse
Affiliation(s)
- Madhabi Barua
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY 10314, USA
| | | | | | | | | | | |
Collapse
|
36
|
Sartori SB, Landgraf R, Singewald N. The clinical implications of mouse models of enhanced anxiety. FUTURE NEUROLOGY 2011; 6:531-571. [PMID: 21901080 PMCID: PMC3166843 DOI: 10.2217/fnl.11.34] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying 'normal' anxiety rather than 'psychopathological' animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| | - Rainer Landgraf
- Max Planck Institute of Psychiatry, Department of Behavioral Neuroendocrinology, Munich, Germany
| | - Nicolas Singewald
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| |
Collapse
|
37
|
The role of glyoxalases for sugar stress and aging, with relevance for dyskinesia, anxiety, dementia and Parkinson's disease. Aging (Albany NY) 2011; 3:5-9. [PMID: 21248374 PMCID: PMC3047129 DOI: 10.18632/aging.100258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Hambsch B. Altered glyoxalase 1 expression in psychiatric disorders: cause or consequence? Semin Cell Dev Biol 2011; 22:302-8. [PMID: 21315168 DOI: 10.1016/j.semcdb.2011.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/02/2011] [Indexed: 11/25/2022]
Abstract
Glyoxalase 1 is an enzyme, shown to protect against dicarbonyl glycation and the formation of advanced glycation end products. Recent findings suggest glyoxalase 1 as a molecular marker of psychiatric disorders. In clinical studies aberrant expression of glyoxalase 1 was shown to be involved in major depression, panic disorders and schizophrenia. In mouse models glyoxalase 1 was identified as a molecular marker of trait anxiety. However, anxiety-related behaviour in mice was inconsistently reported to correlate with elevated or reduced expression of glyoxalase 1. As yet, those findings were considered contradicting and the contribution of glyoxalase 1 to the aetiology of psychiatric disorders remained elusive. This review summarizes recent clinical and animal studies. In order to unravel the role of glyoxalase 1 in mental disease, findings are discussed with a particular focus on dicarbonyl substrate concentration. Prevailing the impact of dicarbonyl substrates on anxiety-related behaviour over the influence of glyoxalase 1 expression may consolidate findings that have been considered inconsistent. Taken together, this report suggests that physiological concentration of dicarbonyl compounds may differentiate a remedy from a poison.
Collapse
Affiliation(s)
- Boris Hambsch
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany.
| |
Collapse
|
39
|
Glyoxalase-I mRNA expression and CCK-4 induced panic attacks. J Psychiatr Res 2011; 45:60-3. [PMID: 20542521 DOI: 10.1016/j.jpsychires.2010.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 11/21/2022]
Abstract
RATIONALE There is evidence that the anti-glycation enzyme glyoxalase-1 (GLO1) may play a role in anxiety-related behaviour. However, discordant findings between GLO1 expression and anxiety-related behaviour have been observed in animal models. Because no data are available on the relation between GLO1 mRNA expression and human anxiety so far, we investigated the expression of GLO1 mRNA in peripheral blood cells in relation to cholecystokinin-tetrapeptide (CCK-4) induced panic anxiety in healthy subjects as an established model of human anxiety in healthy volunteers. METHODS Twenty-three healthy subjects underwent challenge with CCK-4. GLO1 mRNA expression was assessed by quantitative real-time polymerase chain reaction prior to CCK-4 injection. Baseline anxiety was assessed with the State-Trait-Anxiety-Inventory (STAI) and panic response was measured with the Panic Symptom Scale (PSS). RESULTS CCK-4 elicited a marked anxiety response accompanied by a significant increase in heart rate. GLO1 mRNA expression did not correlate with state or trait anxiety nor with severity of CCK-4 induced anxiety. CONCLUSIONS The lack of correlation between GLO1 mRNA expression and CCK-4 induced panic severity suggests that GLO1 is not involved into the acute panic response to CCK-4 in healthy volunteers. Therefore, further studies are needed to clarify the involvement of GLO1 in anxiety disorders at baseline and in anxiety challenge paradigms to resolve the apparent contradictions of preclinical studies concerning the relationship between GLO1 expression and anxiety.
Collapse
|
40
|
Filiou MD, Turck CW, Martins-de-Souza D. Quantitative proteomics for investigating psychiatric disorders. Proteomics Clin Appl 2010; 5:38-49. [DOI: 10.1002/prca.201000060] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 12/21/2022]
|
41
|
Belzeaux R, Formisano-Tréziny C, Loundou A, Boyer L, Gabert J, Samuelian JC, Féron F, Naudin J, Ibrahim EC. Clinical variations modulate patterns of gene expression and define blood biomarkers in major depression. J Psychiatr Res 2010; 44:1205-13. [PMID: 20471034 DOI: 10.1016/j.jpsychires.2010.04.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 12/12/2022]
Abstract
The aim of the study is to compare the expression level of candidate genes between patients suffering from a severe major depressive episode (MDE) and controls, and also among patients during MDE evolution. After a comprehensive review of the biological data related to mood disorders, we initiated a hypothesis-driven exploration of candidate mRNAs. Using RT-qPCR, we analyzed peripheral blood mononuclear cells (PBMCs) mRNA obtained from a homogeneous population of 11 patients who suffered from severe melancholic MDE. To assess the evolution of MDE, we analyzed PBMC mRNAs that were collected on Day 1 and 8 weeks later. Data from these patient samples were analyzed in comparison to age- and sex-matched healthy controls. Among 40 candidate genes consistently transcribed in PBMCs, 10 were differentially expressed in at least one comparison. We found that variations of mRNA levels for NRG1, SORT1 and TPH1 were interesting state-dependent biological markers of the disease. We also observed that variations in other mRNA expression were associated with treatment efficacy or clinical improvement (CREB1, HDAC5, HSPA2, HTR1B, HTR2A, and SLC6A4/5HTT). Significantly, 5HTT exhibited a strong correlation with clinical score evolution. We also found a state-independent marker, IL10. Moreover, the analysis of 2 separate MDEs concerning a same patient revealed comparable results for the expression of CREB1, HSPA2, HTR1B, NRG1 and TPH1. Overall, our results indicate that PBMCs obtained at different time points during MDE progression represent a promising avenue to discover biological markers for depression.
Collapse
Affiliation(s)
- Raoul Belzeaux
- NICN-CNRS UMR 6184, Faculté de Médecine Nord-IFR Jean Roche, 51 Bd Pierre Dramard, 13344 Marseille Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Comprehensive copy number variant (CNV) analysis of neuronal pathways genes in psychiatric disorders identifies rare variants within patients. J Psychiatr Res 2010; 44:971-8. [PMID: 20398908 DOI: 10.1016/j.jpsychires.2010.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/12/2010] [Accepted: 03/16/2010] [Indexed: 01/11/2023]
Abstract
BACKGROUND Copy number variations (CNV) have become an important source of human genome variability noteworthy to consider when studying genetic susceptibility to complex diseases. As recent studies have found evidences for the potential involvement of CNVs in psychiatric disorders, we have studied the dosage effect of structural genome variants as a possible susceptibility factor for different psychiatric disorders in a candidate gene approach. METHODS After selection of 68 psychiatric disorders' candidate genes overlapping with CNVs, MLPA assays were designed to determine changes in copy number of these genes. The studied sample consisted of 724 patients with psychiatric disorders (accounting for anxiety disorders, mood disorders, eating disorders and schizophrenia) and 341 control individuals. RESULTS CNVs were detected in 30 out of the 68 genes screened, indicating that a considerable proportion of neuronal pathways genes contain CNVs. When testing the overall burden of rare structural genomic variants in the different psychiatric disorders compared to control individuals, there was no statistically significant difference in the total amount of gains and losses. However, 14 out of the 30 changes were only found in psychiatric disorder patients but not in control individuals. These genes include GRM7, previously associated to major depression disorder and bipolar disorder, SLC6A13, in anxiety disorders, and S100B, SSTR5 and COMT in schizophrenia. CONCLUSIONS Although we have not been able to found a clear association between the studied CNVs and psychiatric disorders, the rare variants found only within the patients could account for a step further towards understanding the pathophysiology of psychiatric disorders.
Collapse
|
43
|
Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res 2010; 68:261-75. [PMID: 20804792 DOI: 10.1016/j.neures.2010.08.007] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 01/12/2023]
Abstract
Anxiety disorders, depression, and alcohol use disorder are common neuropsychiatric diseases that often occur together. Oxidative stress has been suggested to contribute to their etiology. Oxidative stress is a consequence of either increased generation of reactive oxygen species or impaired enzymatic or non-enzymatic defense against it. When excessive it leads to damage of all major classes of macromolecules, and therefore affects several fundamentally important cellular functions. Consequences that are especially detrimental to the proper functioning of the brain include mitochondrial dysfunction, altered neuronal signaling, and inhibition of neurogenesis. Each of these can further contribute to increased oxidative stress, leading to additional burden to the brain. In this review, we will provide an overview of recent work on oxidative stress markers in human patients with anxiety, depressive, or alcohol use disorders, and in relevant animal models. In addition, putative oxidative stress-related mechanisms important for neuropsychiatric diseases are discussed. Despite the considerable interest this field has obtained, the detailed mechanisms that link oxidative stress to the pathogenesis of neuropsychiatric diseases remain largely unknown. Since this pathway may be amenable to pharmacological intervention, further studies are warranted.
Collapse
Affiliation(s)
- Iiris Hovatta
- Research Program of Molecular Neurology, Faculty of Medicine, University of Helsinki, Finland.
| | | | | |
Collapse
|
44
|
Abstract
The dramatic technical advances in methods to measure gene expression on a genome-wide level thus far have not been paralleled by breakthrough discoveries in psychiatric disorders-including major depression (MD)-using these hypothesis-free approaches. In this review, we first describe the methodologic advances made in gene expression analysis, from quantitative polymerase chain reaction to next-generation sequencing. We then discuss issues in gene expression experiments specific to MD, ranging from the choice of target tissues to the characterization of the case group. We provide a synopsis of the gene expression studies published thus far for MD, with a focus on studies using mRNA microarray methods. Finally, we discuss possible new strategies for the gene expression studies in MD that circumvent some of the addressed issues.
Collapse
Affiliation(s)
- Divya Mehta
- Max-Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Andreas Menke
- Max-Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Elisabeth B. Binder
- Max-Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| |
Collapse
|
45
|
Hambsch B, Chen BG, Brenndörfer J, Meyer M, Avrabos C, Maccarrone G, Liu RH, Eder M, Turck CW, Landgraf R. Methylglyoxal-mediated anxiolysis involves increased protein modification and elevated expression of glyoxalase 1 in the brain. J Neurochem 2010; 113:1240-51. [PMID: 20345757 DOI: 10.1111/j.1471-4159.2010.06693.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Methylglyoxal (MG) is a highly reactive metabolite that forms adducts with basic amino acid side chains in proteins. MG is degraded by glyoxalase1 (GLO1), an enzyme shown to be differentially expressed in several mouse models of anxiety-related behavior. As yet, molecular mechanisms by which altered GLO1 expression influences emotionality have not been elucidated. Here we report that both MG concentration and protein modification are altered in brain tissue of a mouse model for trait anxiety, with elevated levels in low anxiety-related behavior relative to high anxiety-related behavior animals. Accordingly, repeated intracerebroventricular injections of MG mediated anxiolysis in inbred high anxiety-related behavior and outbred CD1 mice. We found that anxiolytic-like properties of MG were independent of GLO1 expression. In contrast, antidepressant-like properties of intracerebroventricular MG were suppressed in CD1 mice carrying extra copies of the GLO1 gene. Moreover, MG treatment increased expression of GLO1 only in CD1 mice that did not have extra copies of GLO1. Taken together, these results suggest that the MG levels in brain are negatively correlated with anxiety. Thereby, we identified a novel molecular mechanism for anxiety-related behavior in mice that may help to elucidate genesis of psychiatric disorders in humans.
Collapse
Affiliation(s)
- Boris Hambsch
- Department of Behavioral Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Marais L, Hattingh SM, Stein DJ, Daniels WMU. A proteomic analysis of the ventral hippocampus of rats subjected to maternal separation and escitalopram treatment. Metab Brain Dis 2009; 24:569-86. [PMID: 19838779 DOI: 10.1007/s11011-009-9156-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/29/2009] [Indexed: 12/24/2022]
Abstract
Early life stress is known to predispose humans to the development of depression. Developmental stress has been shown to cause various changes in neurotransmitter systems, neurotrophin expression and the hypothalamic pituitary adrenal-axis in the rat brain. The aim of this study was to identify which cytosolic proteins are altered by maternal separation, as a model for depression, as well as by chronic antidepressant treatment. Rats were maternally separated from postnatal day 2-14 for 3 h per day while control rats were normally reared. Both groups were divided and received either escitalopram or saline injections for 6 weeks starting from postnatal day 40. The ventral hippocampal tissue was fractionated and the cytosolic fraction used for 2-D-gel electrophoresis and liquid chromatography coupled to mass spectrometry analyses to identify peptides. Mascot database searches were done to identify proteins that were differentially expressed between the groups. Proteins that were significantly changed by maternal separation included amongst others: molecular chaperones and proteins related to energy metabolism; neuroplasticity; oxidative stress regulation; and protein metabolism. Treatment with escitalopram, a selective-serotonin reuptake inhibitor, induced changes in a different group of proteins, except for a few involved in energy metabolism and neuroprotective pathways. The results indicate which cytosolic proteins are changed by early life stress and may therefore be involved in the development of depression.
Collapse
Affiliation(s)
- Lelanie Marais
- Division of Medical Physiology, University of Stellenbosch, PO Box 19063, Tygerberg, 7505, South Africa.
| | | | | | | |
Collapse
|
47
|
Rosen GD, Pung CJ, Owens CB, Caplow J, Kim H, Mozhui K, Lu L, Williams RW. Genetic modulation of striatal volume by loci on Chrs 6 and 17 in BXD recombinant inbred mice. GENES, BRAIN, AND BEHAVIOR 2009; 8:296-308. [PMID: 19191878 PMCID: PMC2706028 DOI: 10.1111/j.1601-183x.2009.00473.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural variation in the absolute and relative size of different parts of the human brain is substantial, with a range that often exceeds a factor of 2. Much of this variation is generated by the cumulative effects of sets of unknown gene variants that modulate the proliferation, growth and death of neurons and glial cells. Discovering and testing the functions of these genes should contribute significantly to our understanding of differences in brain development, behavior and disease susceptibility. We have exploited a large population of genetically well-characterized strains of mice (BXD recombinant inbred strains) to map gene variants that influence the volume of the dorsal striatum (caudate-putamen without nucleus accumbens). We used unbiased methods to estimate volumes bilaterally in a sex-balanced sample taken from the Mouse Brain Library (www.mbl.org). We generated a matched microarray data set to efficiently evaluate candidate genes (www.genenetwork.org). As in humans, volume of the striatum is highly heritable, with greater than twofold differences among strains. We mapped a locus that modulates striatal volume on chromosome (Chr) 6 at 88 +/- 5 Mb. We also uncovered an epistatic interaction between loci on Chr 6 and Chr 17 that modulates striatal volume. Using bioinformatic tools and the corresponding expression database, we have identified positional candidates in these quantitative trait locus intervals.
Collapse
Affiliation(s)
- G D Rosen
- Division of Behavioral Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Williams R, Lim JE, Harr B, Wing C, Walters R, Distler MG, Teschke M, Wu C, Wiltshire T, Su AI, Sokoloff G, Tarantino LM, Borevitz JO, Palmer AA. A common and unstable copy number variant is associated with differences in Glo1 expression and anxiety-like behavior. PLoS One 2009; 4:e4649. [PMID: 19266052 PMCID: PMC2650792 DOI: 10.1371/journal.pone.0004649] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 01/05/2009] [Indexed: 12/15/2022] Open
Abstract
Glyoxalase 1 (Glo1) has been implicated in anxiety-like behavior in mice and in multiple psychiatric diseases in humans. We used mouse Affymetrix exon arrays to detect copy number variants (CNV) among inbred mouse strains and thereby identified a ∼475 kb tandem duplication on chromosome 17 that includes Glo1 (30,174,390–30,651,226 Mb; mouse genome build 36). We developed a PCR-based strategy and used it to detect this duplication in 23 of 71 inbred strains tested, and in various outbred and wild-caught mice. Presence of the duplication is associated with a cis-acting expression QTL for Glo1 (LOD>30) in BXD recombinant inbred strains. However, evidence for an eQTL for Glo1 was not obtained when we analyzed single SNPs or 3-SNP haplotypes in a panel of 27 inbred strains. We conclude that association analysis in the inbred strain panel failed to detect an eQTL because the duplication was present on multiple highly divergent haplotypes. Furthermore, we suggest that non-allelic homologous recombination has led to multiple reversions to the non-duplicated state among inbred strains. We show associations between multiple duplication-containing haplotypes, Glo1 expression and anxiety-like behavior in both inbred strain panels and outbred CD-1 mice. Our findings provide a molecular basis for differential expression of Glo1 and further implicate Glo1 in anxiety-like behavior. More broadly, these results identify problems with commonly employed tests for association in inbred strains when CNVs are present. Finally, these data provide an example of biologically significant phenotypic variability in model organisms that can be attributed to CNVs.
Collapse
Affiliation(s)
- Richard Williams
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois, United States of America
| | - Jackie E. Lim
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Bettina Harr
- Max-Planck-Institute for Evolutionary Biology, Department of Evolutionary Genetics, Ploen, Germany
| | - Claudia Wing
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Ryan Walters
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Margaret G. Distler
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Meike Teschke
- Max-Planck-Institute for Evolutionary Biology, Department of Evolutionary Genetics, Ploen, Germany
| | - Chunlei Wu
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Tim Wiltshire
- Department of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Andrew I. Su
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Greta Sokoloff
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Lisa M. Tarantino
- Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Justin O. Borevitz
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Abraham A. Palmer
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
49
|
Hipkiss AR. Carnosine and its possible roles in nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 57:87-154. [PMID: 19595386 DOI: 10.1016/s1043-4526(09)57003-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dipeptide carnosine has been observed to exert antiaging activity at cellular and whole animal levels. This review discusses the possible mechanisms by which carnosine may exert antiaging action and considers whether the dipeptide could be beneficial to humans. Carnosine's possible biological activities include scavenger of reactive oxygen species (ROS) and reactive nitrogen species (RNS), chelator of zinc and copper ions, and antiglycating and anticross-linking activities. Carnosine's ability to react with deleterious aldehydes such as malondialdehyde, methylglyoxal, hydroxynonenal, and acetaldehyde may also contribute to its protective functions. Physiologically carnosine may help to suppress some secondary complications of diabetes, and the deleterious consequences of ischemic-reperfusion injury, most likely due to antioxidation and carbonyl-scavenging functions. Other, and much more speculative, possible functions of carnosine considered include transglutaminase inhibition, stimulation of proteolysis mediated via effects on proteasome activity or induction of protease and stress-protein gene expression, upregulation of corticosteroid synthesis, stimulation of protein repair, and effects on ADP-ribose metabolism associated with sirtuin and poly-ADP-ribose polymerase (PARP) activities. Evidence for carnosine's possible protective action against secondary diabetic complications, neurodegeneration, cancer, and other age-related pathologies is briefly discussed.
Collapse
Affiliation(s)
- Alan R Hipkiss
- School of Clinicial and Experimental Medicine, College of Medical and Dental Sciences, The Univeristy of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
50
|
Wu YY, Chien WH, Huang YS, Gau SSF, Chen CH. Lack of evidence to support the glyoxalase 1 gene (GLO1) as a risk gene of autism in Han Chinese patients from Taiwan. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1740-4. [PMID: 18721844 DOI: 10.1016/j.pnpbp.2008.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/28/2008] [Accepted: 07/28/2008] [Indexed: 11/16/2022]
Abstract
PURPOSE Previous studies have revealed inconsistent findings regarding the association between the glyoxalase 1 protein (GLO1) gene and autism. This study aimed to replicate the genetic association of the C419A of the GLO1 gene with autism and to perform mutation screening of all the exons of the GLO1 gene in a sample of Han Chinese patients with autism from Taiwan. METHODS The sample included 272 patients with autism and 310 healthy controls. All the exons and the promoter region of the GLO1 gene were PCR-amplified and sequenced for mutation screening and genotyping. RESULTS We did not find significant differences of allelic and genotypic frequency distributions of C419A between the autism and control groups. Moreover, we did not identify any other mutations in the exon regions associated with autism in this sample. We discovered two single nucleotide polymorphisms (SNPs) at the 5' untranslated region of the GLO1 gene, designated g.-264T/G and g.-7T/C; however, these two SNPs were not associated with autism in this sample. Further analysis of halplotypes constructed from these 3 SNPs (g.-264T/G, g.-7T/C, and C419A) found no haplotype associated with autism. Our sample size has the power of 0.57 and 0.94 to detect a small effect (0.1) in the genotype and allele frequency distributions at the alpha level of 0.05, respectively. CONCLUSIONS Our findings suggest that the GLO1 gene is unlikely a major susceptible gene for autism in an ethnic Chinese population from Taiwan.
Collapse
Affiliation(s)
- Yu-Yu Wu
- Department of Child Psychiatry, Chang-Gung Children's Hospital, Kewi-Shan, Taiwan
| | | | | | | | | |
Collapse
|