1
|
Shah JJ, Jimenez-Jaramillo CA, Lybrand ZR, Yuan TT, Erbele ID. Modern In Vitro Techniques for Modeling Hearing Loss. Bioengineering (Basel) 2024; 11:425. [PMID: 38790292 PMCID: PMC11118046 DOI: 10.3390/bioengineering11050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is a prevalent and growing global health concern, especially within operational medicine, with limited therapeutic options available. This review article explores the emerging field of in vitro otic organoids as a promising platform for modeling hearing loss and developing novel therapeutic strategies. SNHL primarily results from the irreversible loss or dysfunction of cochlear mechanosensory hair cells (HCs) and spiral ganglion neurons (SGNs), emphasizing the need for innovative solutions. Current interventions offer symptomatic relief but do not address the root causes. Otic organoids, three-dimensional multicellular constructs that mimic the inner ear's architecture, have shown immense potential in several critical areas. They enable the testing of gene therapies, drug discovery for sensory cell regeneration, and the study of inner ear development and pathology. Unlike traditional animal models, otic organoids closely replicate human inner ear pathophysiology, making them invaluable for translational research. This review discusses methodological advances in otic organoid generation, emphasizing the use of human pluripotent stem cells (hPSCs) to replicate inner ear development. Cellular and molecular characterization efforts have identified key markers and pathways essential for otic organoid development, shedding light on their potential in modeling inner ear disorders. Technological innovations, such as 3D bioprinting and microfluidics, have further enhanced the fidelity of these models. Despite challenges and limitations, including the need for standardized protocols and ethical considerations, otic organoids offer a transformative approach to understanding and treating auditory dysfunctions. As this field matures, it holds the potential to revolutionize the treatment landscape for hearing and balance disorders, moving us closer to personalized medicine for inner ear conditions.
Collapse
Affiliation(s)
- Jamie J. Shah
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Couger A. Jimenez-Jaramillo
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Zane R. Lybrand
- Division of Biology, Texas Woman’s University, Denton, TX 76204, USA;
| | - Tony T. Yuan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
| | - Isaac D. Erbele
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
- Department of Otolaryngology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
2
|
Harding AT, Ocwieja K, Jeong M, Zhang Y, Leger V, Jhala N, Stankovic KM, Gehrke L. Human otic progenitor cell models of congenital hearing loss reveal potential pathophysiologic mechanisms of Zika virus and cytomegalovirus infections. mBio 2024; 15:e0019924. [PMID: 38440980 PMCID: PMC11005345 DOI: 10.1128/mbio.00199-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Congenital hearing loss is a common chronic condition affecting children in both developed and developing nations. Viruses correlated with congenital hearing loss include human cytomegalovirus (HCMV) and Zika virus (ZIKV), which causes congenital Zika syndrome. The mechanisms by which HCMV and ZIKV infections cause hearing loss are poorly understood. It is challenging to study human inner ear cells because they are encased in bone and also scarce as autopsy samples. Recent advances in culturing human stem cell-derived otic progenitor cells (OPCs) have allowed us herein to describe successful in vitro infection of OPCs with HCMV and ZIKV, and also to propose potential mechanisms by which each viral infection could affect hearing. We find that ZIKV infection rapidly and significantly induces the expression of type I interferon and interferon-stimulated genes, while OPC viability declines, at least in part, from apoptosis. In contrast, HCMV infection did not appear to upregulate interferons or cause a reduction in cell viability, and instead disrupted expression of key genes and pathways associated with inner ear development and function, including Cochlin, nerve growth factor receptor, SRY-box transcription factor 11, and transforming growth factor-beta signaling. These findings suggest that ZIKV and HCMV infections cause congenital hearing loss through distinct pathways, that is, by inducing progenitor cell death in the case of ZIKV infection, and by disruption of critical developmental pathways in the case of HCMV infection. IMPORTANCE Congenital virus infections inflict substantial morbidity and devastating disease in neonates worldwide, and hearing loss is a common outcome. It has been difficult to study viral infections of the human hearing apparatus because it is embedded in the temporal bone of the skull. Recent technological advances permit the differentiation of otic progenitor cells (OPCs) from human-induced pluripotent stem cells. This paper is important for demonstrating that inner ear virus infections can be modeled in vitro using OPCs. We infected OPCs with two viruses associated with congenital hearing loss: human cytomegalovirus (HCMV), a DNA virus, or Zika virus (ZIKV), an RNA virus. An important result is that the gene expression and cytokine production profiles of HCMV/ZIKV-infected OPCs are markedly dissimilar, suggesting that mechanisms of hearing loss are also distinct. The specific molecular regulatory pathways identified in this work could suggest important targets for therapeutics.
Collapse
Affiliation(s)
- Alfred T. Harding
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Karen Ocwieja
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Boston Childrens’ Hospital, Boston, Massachusetts, USA
| | - Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yichen Zhang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Valerie Leger
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nairuti Jhala
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, Massachusetts, USA
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Griffin C, Saint-Jeannet JP. In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives. Dev Biol 2024; 506:20-30. [PMID: 38052294 PMCID: PMC10843546 DOI: 10.1016/j.ydbio.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Cranial placodes are transient ectodermal thickenings that contribute to a diverse array of organs in the vertebrate head. They develop from a common territory, the pre-placodal region that over time segregates along the antero-posterior axis into individual placodal domains: the adenohypophyseal, olfactory, lens, trigeminal, otic, and epibranchial placodes. These placodes terminally differentiate into the anterior pituitary, the lens, and contribute to sensory organs including the olfactory epithelium, and inner ear, as well as several cranial ganglia. To study cranial placodes and their derivatives and generate cells for therapeutic purposes, several groups have turned to in vitro derivation of placodal cells from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs). In this review, we summarize the signaling cues and mechanisms involved in cranial placode induction, specification, and differentiation in vivo, and discuss how this knowledge has informed protocols to derive cranial placodes in vitro. We also discuss the benefits and limitations of these protocols, and the potential of in vitro cranial placode modeling in regenerative medicine to treat cranial placode-related pathologies.
Collapse
Affiliation(s)
- Casey Griffin
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
4
|
Cumpata AJ, Labusca L, Radulescu LM. Stem Cell-Based Therapies for Auditory Hair Cell Regeneration in the Treatment of Hearing Loss. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:15-28. [PMID: 37440318 DOI: 10.1089/ten.teb.2023.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The incidence and prevalence of hearing loss is increasing globally at an accelerated pace. Hair cells represent the sensory receptors of auditory and vestibular systems. Hair cell absence, loss or degeneration due to congenital diseases, trauma, toxicity, infection or advancing age, results in disabling hearing loss. Regenerative medicine approaches consisting in stem cell-based hair cell rescue or regeneration, gene therapy, as well as cell and tissue engineering are expected to dramatically improve the therapeutic arsenal available for addressing hearing loss. Current strategies that are using different stem cell types to rescue or to induce hair cell proliferation and regeneration are presented. Gene and cell therapy methods that modulates transdifferentiation of surrounding cell types into hair cells are presented, together with their specific advantages and limitations. Several modalities for improving therapeutic targeting to the inner ear such as nanoparticle-mediated cell and gene delivery are introduced. Further steps in building more relevant high-throughput models for testing novel drugs and advanced therapies are proposed as a modality to accelerate translation to clinical settings.
Collapse
Affiliation(s)
| | - Luminita Labusca
- Orthopedics and Traumatology Clinic, Emergency Hospital Saint Spiridon, Iasi, Romania
- Magnetic Materials and Sensors, National Institute of Research and Development in Technical Physics, Iasi, Romania
| | - Luminita Mihaela Radulescu
- Doctoral School, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- ENT Clinic Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
5
|
Qi J, Huang W, Lu Y, Yang X, Zhou Y, Chen T, Wang X, Yu Y, Sun JQ, Chai R. Stem Cell-Based Hair Cell Regeneration and Therapy in the Inner Ear. Neurosci Bull 2024; 40:113-126. [PMID: 37787875 PMCID: PMC10774470 DOI: 10.1007/s12264-023-01130-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/01/2023] [Indexed: 10/04/2023] Open
Abstract
Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wenjuan Huang
- Hospital of Southeast University, Nanjing, 210096, China
| | - Yicheng Lu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xuehan Yang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Tian Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiaohan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yafeng Yu
- First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Jia-Qiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China.
| |
Collapse
|
6
|
Rose KP, Manilla G, Milon B, Zalzman O, Song Y, Coate TM, Hertzano R. Spatially distinct otic mesenchyme cells show molecular and functional heterogeneity patterns before hearing onset. iScience 2023; 26:107769. [PMID: 37720106 PMCID: PMC10502415 DOI: 10.1016/j.isci.2023.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
The cochlea consists of diverse cellular populations working in harmony to convert mechanical stimuli into electrical signals for the perception of sound. Otic mesenchyme cells (OMCs), often considered a homogeneous cell type, are essential for normal cochlear development and hearing. Despite being the most numerous cell type in the developing cochlea, OMCs are poorly understood. OMCs are known to differentiate into spatially and functionally distinct cell types, including fibrocytes of the lateral wall and spiral limbus, modiolar osteoblasts, and specialized tympanic border cells of the basilar membrane. Here, we show that OMCs are transcriptionally and functionally heterogeneous and can be divided into four distinct populations that spatially correspond to OMC-derived cochlear structures. We also show that this heterogeneity and complexity of OMCs commences during early phases of cochlear development. Finally, we describe the cell-cell communication network of the developing cochlea, inferring a major role for OMC in outgoing signaling.
Collapse
Affiliation(s)
- Kevin P. Rose
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriella Manilla
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beatrice Milon
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ori Zalzman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas M. Coate
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Ronna Hertzano
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Chou CW, Hsu YC. Current development of patient-specific induced pluripotent stem cells harbouring mitochondrial gene mutations and their applications in the treatment of sensorineural hearing loss. Hear Res 2023; 429:108689. [PMID: 36649664 DOI: 10.1016/j.heares.2023.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Of all the human body's sensory systems, the auditory system is perhaps its most intricate. Hearing loss can result from even modest damage or cell death in the inner ear, and is the most common form of sensory loss. Human hearing is made possible by the sensory epithelium, the lateral wall, and auditory nerves. The most prominent functional cells in the sensory epithelium are outer hair cells (OHCs), inner hair cells (IHCs), and supporting cells. Different sound frequencies are processed by OHCs and IHCs in different cochlear regions, with those in the apex responsible for low frequencies and those in the basal region responsible for high frequencies. Hair cells can be damaged or destroyed by loud noise, aging process, genetic mutations, ototoxicity, infection, and illness. As such, they are a primary target for treating sensorineural hearing loss. Other areas known to affect hearing include spiral ganglion neurons (SGNs) in the auditory nerve. Age-related degradation of HCs and SGNs can also cause hearing loss. The aim of this review is to introduce the roles of mitochondria in human auditory system and the inner ear's main cell types and cellular functions, before going on to detail the likely health benefits of iPSC technology. We posit that patient-specific iPSCs with mitochondrial gene mutations will be an important aspect of regenerative medicine and will lead to significant progress in the treatment of SNHL.
Collapse
Affiliation(s)
- Chao-Wen Chou
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Chao Hsu
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
8
|
Connolly K, Gonzalez-Cordero A. Modelling inner ear development and disease using pluripotent stem cells - a pathway to new therapeutic strategies. Dis Model Mech 2022; 15:dmm049593. [PMID: 36331565 PMCID: PMC10621662 DOI: 10.1242/dmm.049593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
The sensory epithelia of the mammalian inner ear enable sound and movement to be perceived. Damage to these epithelia can cause irreversible sensorineural hearing loss and vestibular dysfunction because they lack regenerative capacity. The human inner ear cannot be biopsied without causing permanent damage, significantly limiting the tissue samples available for research. Investigating disease pathology and therapeutic developments have therefore traditionally relied on animal models, which often cannot completely recapitulate the human otic systems. These challenges are now being partly addressed using induced pluripotent stem cell-derived cultures, which generate the sensory epithelial-like tissues of the inner ear. Here, we review how pluripotent stem cells have been used to produce two-dimensional and three-dimensional otic cultures, the strengths and limitations of these new approaches, and how they have been employed to investigate genetic and acquired forms of audiovestibular dysfunction. This Review provides an overview of the progress in pluripotent stem cell-derived otic cultures thus far, focusing on their applications in disease modelling and therapeutic trials. We survey their current limitations and future directions, highlighting their prospective utility for high-throughput drug screening and developing personalised medicine approaches.
Collapse
Affiliation(s)
- Keeva Connolly
- Stem Cell Medicine Group, Children's Medical Research Institute, Westmead, 2145 NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145 NSW, Australia
| | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children's Medical Research Institute, Westmead, 2145 NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, 2145 NSW, Australia
| |
Collapse
|
9
|
Durán-Alonso MB, Petković H. Induced Pluripotent Stem Cells, a Stepping Stone to In Vitro Human Models of Hearing Loss. Cells 2022; 11:3331. [PMID: 36291196 PMCID: PMC9600035 DOI: 10.3390/cells11203331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss is the most prevalent sensorineural impairment in humans. Yet despite very active research, no effective therapy other than the cochlear implant has reached the clinic. Main reasons for this failure are the multifactorial nature of the disorder, its heterogeneity, and a late onset that hinders the identification of etiological factors. Another problem is the lack of human samples such that practically all the work has been conducted on animals. Although highly valuable data have been obtained from such models, there is the risk that inter-species differences exist that may compromise the relevance of the gathered data. Human-based models are therefore direly needed. The irruption of human induced pluripotent stem cell technologies in the field of hearing research offers the possibility to generate an array of otic cell models of human origin; these may enable the identification of guiding signalling cues during inner ear development and of the mechanisms that lead from genetic alterations to pathology. These models will also be extremely valuable when conducting ototoxicity analyses and when exploring new avenues towards regeneration in the inner ear. This review summarises some of the work that has already been conducted with these cells and contemplates future possibilities.
Collapse
Affiliation(s)
- María Beatriz Durán-Alonso
- Unit of Excellence, Institute of Biology and Molecular Genetics (IBGM), University of Valladolid-CSIC, 47003 Valladolid, Spain
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Conti E, Harschnitz O. Human stem cell models to study placode development, function and pathology. Development 2022; 149:276462. [DOI: 10.1242/dev.200831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Placodes are embryonic structures originating from the rostral ectoderm that give rise to highly diverse organs and tissues, comprising the anterior pituitary gland, paired sense organs and cranial sensory ganglia. Their development, including the underlying gene regulatory networks and signalling pathways, have been for the most part characterised in animal models. In this Review, we describe how placode development can be recapitulated by the differentiation of human pluripotent stem cells towards placode progenitors and their derivatives, highlighting the value of this highly scalable platform as an optimal in vitro tool to study the development of human placodes, and identify human-specific mechanisms in their development, function and pathology.
Collapse
Affiliation(s)
- Eleonora Conti
- Neurogenomics Research Centre, Human Technopole , Viale Rita Levi-Montalcini, 1, 20157 Milan , Italy
| | - Oliver Harschnitz
- Neurogenomics Research Centre, Human Technopole , Viale Rita Levi-Montalcini, 1, 20157 Milan , Italy
| |
Collapse
|
11
|
Saeki T, Yoshimatsu S, Ishikawa M, Hon CC, Koya I, Shibata S, Hosoya M, Saegusa C, Ogawa K, Shin JW, Fujioka M, Okano H. Critical roles of FGF, RA, and WNT signalling in the development of the human otic placode and subsequent lineages in a dish. Regen Ther 2022; 20:165-186. [PMID: 35620640 PMCID: PMC9114627 DOI: 10.1016/j.reth.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Efficient induction of the otic placode, the developmental origin of the inner ear from human pluripotent stem cells (hPSCs), provides a robust platform for otic development and sensorineural hearing loss modelling. Nevertheless, there remains a limited capacity of otic lineage specification from hPSCs by stepwise differentiation methods, since the critical factors for successful otic cell differentiation have not been thoroughly investigated. In this study, we developed a novel differentiation system involving the use of a three-dimensional (3D) floating culture with signalling factors for generating otic cell lineages via stepwise differentiation of hPSCs. Methods We differentiated hPSCs into preplacodal cells under a two-dimensional (2D) monolayer culture. Then, we transferred the induced preplacodal cells into a 3D floating culture under the control of the fibroblast growth factor (FGF), bone morphogenetic protein (BMP), retinoic acid (RA) and WNT signalling pathways. We evaluated the characteristics of the induced cells using immunocytochemistry, quantitative PCR (qPCR), population averaging, and single-cell RNA-seq (RNA-seq) analysis. We further investigated the methods for differentiating otic progenitors towards hair cells by overexpression of defined transcription factors. Results We demonstrated that hPSC-derived preplacodal cells acquired the potential to differentiate into posterior placodal cells in 3D floating culture with FGF2 and RA. Subsequent activation of WNT signalling induced otic placodal cell formation. By single-cell RNA-seq (scRNA-seq) analysis, we identified multiple clusters of otic placode- and otocyst marker-positive cells in the induced spheres. Moreover, the induced otic cells showed the potential to generate hair cell-like cells by overexpression of the transcription factors ATOH1, POU4F3 and GFI1. Conclusions We demonstrated the critical role of FGF2, RA and WNT signalling in a 3D environment for the in vitro differentiation of otic lineage cells from hPSCs. The induced otic cells had the capacity to differentiate into inner ear hair cells with stereociliary bundles and tip link-like structures. The protocol will be useful for in vitro disease modelling of sensorineural hearing loss and human inner ear development and thus contribute to drug screening and stem cell-based regenerative medicine. A 3D floating culture condition is critical for inducing otic placodal cells from hPSCs-derived preplacodal cells. Activation of FGF, RA, WNT signalling pathways is indispensable for differentiating otic lineage under the 3D condition. Overexpression of defined transcription factors facilitated the generation of hair cells from hPSCs-derived otic cells.
Collapse
|
12
|
Lee MP, Waldhaus J. In vitro and in vivo models: What have we learnt about inner ear regeneration and treatment for hearing loss? Mol Cell Neurosci 2022; 120:103736. [PMID: 35577314 PMCID: PMC9551661 DOI: 10.1016/j.mcn.2022.103736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023] Open
Abstract
The sensory cells of the inner ear, called hair cells, do not regenerate spontaneously and therefore, hair cell loss and subsequent hearing loss are permanent in humans. Conversely, functional hair cell regeneration can be observed in non-mammalian vertebrate species like birds and fish. Also, during postnatal development in mice, limited regenerative capacity and the potential to isolate stem cells were reported. Together, these findings spurred the interest of current research aiming to investigate the endogenous regenerative potential in mammals. In this review, we summarize current in vitro based approaches and briefly introduce different in vivo model organisms utilized to study hair cell regeneration. Furthermore, we present an overview of the findings that were made synergistically using both, the in vitro and in vivo based tools.
Collapse
Affiliation(s)
- Mary P Lee
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Waldhaus
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Stojkovic M, Han D, Jeong M, Stojkovic P, Stankovic KM. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:673-696. [PMID: 33586253 DOI: 10.1002/stem.3353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/13/2020] [Indexed: 11/09/2022]
Abstract
Hearing loss (HL) is a major global health problem of pandemic proportions. The most common type of HL is sensorineural hearing loss (SNHL) which typically occurs when cells within the inner ear are damaged. Human induced pluripotent stem cells (hiPSCs) can be generated from any individual including those who suffer from different types of HL. The development of new differentiation protocols to obtain cells of the inner ear including hair cells (HCs) and spiral ganglion neurons (SGNs) promises to expedite cell-based therapy and screening of potential pharmacologic and genetic therapies using human models. Considering age-related, acoustic, ototoxic, and genetic insults which are the most frequent causes of irreversible damage of HCs and SGNs, new methods of genome editing (GE), especially the CRISPR/Cas9 technology, could bring additional opportunities to understand the pathogenesis of human SNHL and identify novel therapies. However, important challenges associated with both hiPSCs and GE need to be overcome before scientific discoveries are correctly translated to effective and patient-safe applications. The purpose of the present review is (a) to summarize the findings from published reports utilizing hiPSCs for studies of SNHL, hence complementing recent reviews focused on animal studies, and (b) to outline promising future directions for deciphering SNHL using disruptive molecular and genomic technologies.
Collapse
Affiliation(s)
- Miodrag Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Dongjun Han
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Minjin Jeong
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Petra Stojkovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantina M Stankovic
- Eaton Peabody Laboratories, Department of Otolaryngology Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, USA.,Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA.,Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Zine A, Messat Y, Fritzsch B. A human induced pluripotent stem cell-based modular platform to challenge sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:697-706. [PMID: 33522002 PMCID: PMC8359331 DOI: 10.1002/stem.3346] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
The sense of hearing depends on a specialized sensory organ in the inner ear, called the cochlea, which contains the auditory hair cells (HCs). Noise trauma, infections, genetic factors, side effects of ototoxic drugs (ie, some antibiotics and chemotherapeutics), or simply aging lead to the loss of HCs and their associated primary neurons. This results in irreversible sensorineural hearing loss (SNHL) as in mammals, including humans; the inner ear lacks the capacity to regenerate HCs and spiral ganglion neurons. SNHL is a major global health problem affecting millions of people worldwide and provides a growing concern in the aging population. To date, treatment options are limited to hearing aids and cochlear implants. A major bottleneck for development of new therapies for SNHL is associated to the lack of human otic cell bioassays. Human induced pluripotent stem cells (hiPSCs) can be induced in two-dimensional and three-dimensional otic cells in vitro models that can generate inner ear progenitors and sensory HCs and could be a promising preclinical platform from which to work toward restoring SNHL. We review the potential applications of hiPSCs in the various biological approaches, including disease modeling, bioengineering, drug testing, and autologous stem cell based-cell therapy, that offer opportunities to understand the pathogenic mechanisms of SNHL and identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Azel Zine
- Laboratory of Bioengineering and Nanoscience, LBN, University of Montpellier, Montpellier, France
| | - Yassine Messat
- Laboratory of Bioengineering and Nanoscience, LBN, University of Montpellier, Montpellier, France
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
15
|
Roccio M. Directed differentiation and direct reprogramming: Applying stem cell technologies to hearing research. Stem Cells 2020; 39:375-388. [PMID: 33378797 DOI: 10.1002/stem.3315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Hearing loss is the most widely spread sensory disorder in our society. In the majority of cases, it is caused by the loss or malfunctioning of cells in the cochlea: the mechanosensory hair cells, which act as primary sound receptors, and the connecting auditory neurons of the spiral ganglion, which relay the signal to upper brain centers. In contrast to other vertebrates, where damage to the hearing organ can be repaired through the activity of resident cells, acting as tissue progenitors, in mammals, sensory cell damage or loss is irreversible. The understanding of gene and cellular functions, through analysis of different animal models, has helped to identify causes of disease and possible targets for hearing restoration. Translation of these findings to novel therapeutics is, however, hindered by the lack of cellular assays, based on human sensory cells, to evaluate the conservation of molecular pathways across species and the efficacy of novel therapeutic strategies. In the last decade, stem cell technologies enabled to generate human sensory cell types in vitro, providing novel tools to study human inner ear biology, model disease, and validate therapeutics. This review focuses specifically on two technologies: directed differentiation of pluripotent stem cells and direct reprogramming of somatic cell types to sensory hair cells and neurons. Recent development in the field are discussed as well as how these tools could be implemented to become routinely adopted experimental models for hearing research.
Collapse
Affiliation(s)
- Marta Roccio
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
16
|
van der Valk WH, Steinhart MR, Zhang J, Koehler KR. Building inner ears: recent advances and future challenges for in vitro organoid systems. Cell Death Differ 2020; 28:24-34. [PMID: 33318601 PMCID: PMC7853146 DOI: 10.1038/s41418-020-00678-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
While inner ear disorders are common, our ability to intervene and recover their sensory function is limited. In vitro models of the inner ear, like the organoid system, could aid in identifying new regenerative drugs and gene therapies. Here, we provide a perspective on the status of in vitro inner ear models and guidance on how to improve their applicability in translational research. We highlight the generation of inner ear cell types from pluripotent stem cells as a particularly promising focus of research. Several exciting recent studies have shown how the developmental signaling cues of embryonic and fetal development can be mimicked to differentiate stem cells into “inner ear organoids” containing otic progenitor cells, hair cells, and neurons. However, current differentiation protocols and our knowledge of embryonic and fetal inner ear development in general, have a bias toward the sensory epithelia of the inner ear. We propose that a more holistic view is needed to better model the inner ear in vitro. Moving forward, attention should be made to the broader diversity of neuroglial and mesenchymal cell types of the inner ear, and how they interact in space or time during development. With improved control of epithelial, neuroglial, and mesenchymal cell fate specification, inner ear organoids would have the ability to truly recapitulate neurosensory function and dysfunction. We conclude by discussing how single-cell atlases of the developing inner ear and technical innovations will be critical tools to advance inner ear organoid platforms for future pre-clinical applications.
Collapse
Affiliation(s)
- Wouter H van der Valk
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Matthew R Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, 02115, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, 02115, USA. .,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Yamamoto R, Ohnishi H, Omori K, Yamamoto N. In silico analysis of inner ear development using public whole embryonic body single-cell RNA-sequencing data. Dev Biol 2020; 469:160-171. [PMID: 33131705 DOI: 10.1016/j.ydbio.2020.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/02/2023]
Abstract
The inner ear comprises four epithelial domains: the cochlea, vestibule, semicircular canals, and endolymphatic duct/sac. These structures are segregated at embryonic day 13.5 (E13.5). However, these four anatomical structures remain undefined at E10.5. Here, we aimed to identify lineage-specific genes in the early developing inner ear using published data obtained from single-cell RNA-sequencing (scRNA-seq) of embryonic mice. We downloaded 5000 single-cell transcriptome data, named 'auditory epithelial trajectory', from the Mouse Organogenesis Cell Atlas. The dataset was supposed to include otic epithelial cells at E9.5-13.5. We projected the 5000 cells onto a two-dimensional space encoding the transcriptional state and visualised the pattern of otic epithelial cell differentiation. We identified 15 clusters, which were annotated as one of the four components of the inner ear epithelium using known genes that characterise the four different tissues. Additionally, we classified 15 clusters into sub-regions of the four inner ear components. By comparing transcriptomes between these 15 clusters, we identified several candidates of lineage-specific genes. Characterising these new candidate genes will help future studies about inner ear development.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
| | - Hiroe Ohnishi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
| | - Norio Yamamoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 6068507, Japan.
| |
Collapse
|
18
|
Waqas M, Us-Salam I, Bibi Z, Wang Y, Li H, Zhu Z, He S. Stem Cell-Based Therapeutic Approaches to Restore Sensorineural Hearing Loss in Mammals. Neural Plast 2020; 2020:8829660. [PMID: 32802037 PMCID: PMC7416290 DOI: 10.1155/2020/8829660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/01/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The hair cells that reside in the cochlear sensory epithelium are the fundamental sensory structures responsible for understanding the mechanical sound waves evoked in the environment. The intense damage to these sensory structures may result in permanent hearing loss. The present strategies to rehabilitate the hearing function include either hearing aids or cochlear implants that may recover the hearing capability of deaf patients to a limited extent. Therefore, much attention has been paid on developing regenerative therapies to regenerate/replace the lost hair cells to treat the damaged cochlear sensory epithelium. The stem cell therapy is a promising approach to develop the functional hair cells and neuronal cells from endogenous and exogenous stem cell pool to recover hearing loss. In this review, we specifically discuss the potential of different kinds of stem cells that hold the potential to restore sensorineural hearing loss in mammals and comprehensively explain the current therapeutic applications of stem cells in both the human and mouse inner ear to regenerate/replace the lost hair cells and spiral ganglion neurons.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing 211102, China
| | - Iram Us-Salam
- Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
| | - Zainab Bibi
- Department of Biotechnology, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal Campus, Karachi, Pakistan
| | - Yunfeng Wang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China
| | - He Li
- Department of Otolaryngology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, 325000 Zhejiang Province, China
| | - Zhongshou Zhu
- Department of Otolaryngology, Ningde Municipal Hospital Affiliated of Fujian Medical University (Ningde Institute of Otolaryngology), Ningde, Fujian 352100, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing 211102, China
| |
Collapse
|
19
|
Yamazaki H, Yamanaka D, Kawano S. A Preliminary Prototype High-Speed Feedback Control of an Artificial Cochlear Sensory Epithelium Mimicking Function of Outer Hair Cells. MICROMACHINES 2020; 11:mi11070644. [PMID: 32610696 PMCID: PMC7407979 DOI: 10.3390/mi11070644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
A novel feedback control technique for the local oscillation amplitude in an artificial cochlear sensory epithelium that mimics the functions of the outer hair cells in the cochlea is successfully developed and can be implemented with a control time on the order of hundreds of milliseconds. The prototype artificial cochlear sensory epithelium was improved from that developed in our previous study to enable the instantaneous determination of the local resonance position based on the electrical output from a bimorph piezoelectric membrane. The device contains local patterned electrodes deposited with micro electro mechanical system (MEMS) technology that is used to detect the electrical output and oscillate the device by applying local electrical stimuli. The main feature of the present feedback control system is the principle that the resonance position is recognized by simultaneously measuring the local electrical outputs of all of the electrodes and comparing their magnitudes, which drastically reduces the feedback control time. In this way, it takes 0.8 s to control the local oscillation of the device, representing the speed of control with the order of one hundred times relative to that in the previous study using the mechanical automatic stage to scan the oscillation amplitude at each electrode. Furthermore, the intrinsic difficulties in the experiment such as the electrical measurement against the electromagnetic noise, adhesion of materials, and fatigue failure mechanism of the oscillation system are also shown and discussed in detail based on the many scientific aspects. The basic knowledge of the MEMS fabrication and the experimental measurement would provide useful suggestions for future research. The proposed preliminary prototype high-speed feedback control can aid in the future development of fully implantable cochlear implants with a wider dynamic range.
Collapse
|
20
|
Durán-Alonso MB. Stem cell-based approaches: Possible route to hearing restoration? World J Stem Cells 2020; 12:422-437. [PMID: 32742560 PMCID: PMC7360988 DOI: 10.4252/wjsc.v12.i6.422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Disabling hearing loss is the most common sensorineural disability worldwide. It affects around 466 million people and its incidence is expected to rise to around 900 million people by 2050, according to World Health Organization estimates. Most cases of hearing impairment are due to the degeneration of hair cells (HCs) in the cochlea, mechano-receptors that transduce incoming sound information into electrical signals that are sent to the brain. Damage to these cells is mainly caused by exposure to aminoglycoside antibiotics and to some anti-cancer drugs such as cisplatin, loud sounds, age, infections and genetic mutations. Hearing deficits may also result from damage to the spiral ganglion neurons that innervate cochlear HCs. Differently from what is observed in avian and non-mammalian species, there is no regeneration of missing sensory cell types in the adult mammalian cochlea, what makes hearing loss an irreversible process. This review summarizes the research that has been conducted with the aim of developing cell-based strategies that lead to sensory cell replacement in the adult cochlea and, ultimately, to hearing restoration. Two main lines of research are discussed, one directed toward the transplantation of exogenous replacement cells into the damaged tissue, and another that aims at reactivating the regenerative potential of putative progenitor cells in the adult inner ear. Results from some of the studies that have been conducted are presented and the advantages and drawbacks of the various approaches discussed.
Collapse
|
21
|
Tang PC, Hashino E, Nelson RF. Progress in Modeling and Targeting Inner Ear Disorders with Pluripotent Stem Cells. Stem Cell Reports 2020; 14:996-1008. [PMID: 32442531 PMCID: PMC7355141 DOI: 10.1016/j.stemcr.2020.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Sensorineural hearing loss and vestibular dysfunction are caused by damage to neurons and mechanosensitive hair cells, which do not regenerate to any clinically relevant extent in humans. Several protocols have been devised to direct pluripotent stem cells (PSCs) into inner ear hair cells and neurons, which display many properties of their native counterparts. The efficiency, reproducibility, and scalability of these protocols are enhanced by incorporating knowledge of inner ear development. Modeling human diseases in vitro through genetic manipulation of PSCs is already feasible, thereby permitting the elucidation of mechanistic understandings of a wide array of disease etiologies. Early studies on transplantation of PSC-derived otic progenitors have been successful in certain animal models, yet restoration of function and long-term cell survival remain unrealized. Through further research, PSC-based approaches will continue to revolutionize our understanding of inner ear biology and contribute to the development of therapeutic treatments for inner ear disorders.
Collapse
Affiliation(s)
- Pei-Ciao Tang
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rick F Nelson
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
22
|
Pouraghaei S, Moztarzadeh F, Chen C, Ansari S, Moshaverinia A. Microenvironment Can Induce Development of Auditory Progenitor Cells from Human Gingival Mesenchymal Stem Cells. ACS Biomater Sci Eng 2020; 6:2263-2273. [PMID: 33455314 DOI: 10.1021/acsbiomaterials.9b01795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sensorineural hearing loss in mammals occurs due to irreversible damage to the sensory epithelia of the inner ear and has very limited treatment options. The ability to regenerate the auditory progenitor cells is a promising approach for the treatment of sensorineural hearing loss; therefore, finding an appropriate and easily accessible stem cell source for restoring the sense of hearing would be of great interest. Here, we proposed a novel easy-to-access source of cells with the ability to recover auditory progenitor cells. In this study, gingival mesenchymal stem cells (GMSCs) were utilized, as these cells have high self-renewal and multipotent differentiation capacity and can be obtained easily from the oral cavity or discarded tissue samples at dental clinics. To manipulate the biophysical properties of the cellular microenvironment for promoting GMSC differentiation toward the target cells, we also tried to propose a candidate biomaterial. GMSCs in combination with an appropriate scaffold material can, therefore, present advantageous therapeutic options for a number of conditions. Here, we report the potential of GMSCs to differentiate into auditory progenitor cells while supporting them with an optimized three-dimensional scaffold and certain growth factors. A hybrid hydrogel scaffold based on peptide modified alginate and Matrigel was used here in addition to the presence of fibroblast growth factor-basic (bFGF), insulin-like growth factor (IGF), and epidermal growth factor (EGF). Our in vitro and in vivo studies confirmed the auditory differentiation potential of GMSCs within the engineered microenvironment.
Collapse
Affiliation(s)
- Sevda Pouraghaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, United States
| | - Fathollah Moztarzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sahar Ansari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, United States
- California NanoSystems Institute, University of California, Los Angeles, California, United States
| |
Collapse
|
23
|
Boddy SL, Romero-Guevara R, Ji AR, Unger C, Corns L, Marcotti W, Rivolta MN. Generation of Otic Lineages from Integration-Free Human-Induced Pluripotent Stem Cells Reprogrammed by mRNAs. Stem Cells Int 2020; 2020:3692937. [PMID: 32190057 PMCID: PMC7068143 DOI: 10.1155/2020/3692937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Damage to the sensory hair cells and the spiral ganglion neurons of the cochlea leads to deafness. Induced pluripotent stem cells (iPSCs) are a promising tool to regenerate the cells in the inner ear that have been affected by pathology or have been lost. To facilitate the clinical application of iPSCs, the reprogramming process should minimize the risk of introducing undesired genetic alterations while conferring the cells the capacity to differentiate into the desired cell type. Currently, reprogramming induced by synthetic mRNAs is considered to be one of the safest ways of inducing pluripotency, as the transgenes are transiently delivered into the cells without integrating into the genome. In this study, we explore the ability of integration-free human-induced pluripotent cell lines that were reprogrammed by mRNAs, to differentiate into otic progenitors and, subsequently, into hair cell and neuronal lineages. hiPSC lines were induced to differentiate by culturing them in the presence of fibroblast growth factors 3 and 10 (FGF3 and FGF10). Progenitors were identified by quantitative microscopy, based on the coexpression of otic markers PAX8, PAX2, FOXG1, and SOX2. Otic epithelial progenitors (OEPs) and otic neuroprogenitors (ONPs) were purified and allowed to differentiate further into hair cell-like cells and neurons. Lineages were characterised by immunocytochemistry and electrophysiology. Neuronal cells showed inward Na+ (I Na) currents and outward (I k) and inward K+ (I K1) currents while hair cell-like cells had inward I K1 and outward delayed rectifier K+ currents, characteristic of developing hair cells. We conclude that human-induced pluripotent cell lines that have been reprogrammed using nonintegrating mRNAs are capable to differentiate into otic cell types.
Collapse
Affiliation(s)
- Sarah L. Boddy
- Centre for Stem Cell Biology, University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ricardo Romero-Guevara
- Centre for Stem Cell Biology, University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Ae-Ri Ji
- Centre for Stem Cell Biology, University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Christian Unger
- Centre for Stem Cell Biology, University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Laura Corns
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Walter Marcotti
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Marcelo N. Rivolta
- Centre for Stem Cell Biology, University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
24
|
Omichi R, Shibata SB, Morton CC, Smith RJH. Gene therapy for hearing loss. Hum Mol Genet 2019; 28:R65-R79. [PMID: 31227837 PMCID: PMC6796998 DOI: 10.1093/hmg/ddz129] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory disorder. Its underlying etiologies include a broad spectrum of genetic and environmental factors that can lead to hearing loss that is congenital or late onset, stable or progressive, drug related, noise induced, age related, traumatic or post-infectious. Habilitation options typically focus on amplification using wearable or implantable devices; however exciting new gene-therapy-based strategies to restore and prevent SNHL are actively under investigation. Recent proof-of-principle studies demonstrate the potential therapeutic potential of molecular agents delivered to the inner ear to ameliorate different types of SNHL. Correcting or preventing underlying genetic forms of hearing loss is poised to become a reality. Herein, we review molecular therapies for hearing loss such as gene replacement, antisense oligonucleotides, RNA interference and CRISPR-based gene editing. We discuss delivery methods, techniques and viral vectors employed for inner ear gene therapy and the advancements in this field that are paving the way for basic science research discoveries to transition to clinical trials.
Collapse
Affiliation(s)
- Ryotaro Omichi
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Seiji B Shibata
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M139NT, UK
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Nacher-Soler G, Garrido JM, Rodríguez-Serrano F. Hearing regeneration and regenerative medicine: present and future approaches. Arch Med Sci 2019; 15:957-967. [PMID: 31360190 PMCID: PMC6657260 DOI: 10.5114/aoms.2019.86062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/28/2017] [Indexed: 01/04/2023] Open
Abstract
More than 5% of the world population lives with a hearing impairment. The main factors responsible for hearing degeneration are ototoxic drugs, aging, continued exposure to excessive noise and infections. The pool of adult stem cells in the inner ear drops dramatically after birth, and therefore an endogenous cellular source for regeneration is absent. Hearing loss can emerge after the degeneration of different cochlear components, so there are multiple targets to be reached, such as hair cells (HCs), spiral ganglion neurons (SGNs), supporting cells (SCs) and ribbon synapses. Important discoveries in the hearing regeneration field have been reported regarding stem cell transplantation, migration and survival; genetic systems for cell fate monitoring; and stem cell differentiation to HCs, SGNs and SCs using adult stem cells, embryonic stem cells and induced pluripotent stem cells. Moreover, some molecular mediators that affect the establishment of functional synapses have been identified. In this review, we will focus on reporting the state of the art in the regenerative medicine field for hearing recovery. Stem cell research has enabled remarkable advances in regeneration, particularly in neuronal cells and synapses. Despite the progress achieved, there are certain issues that need a deeper development to improve the results already obtained, or to develop new approaches aiming for the clinical application.
Collapse
Affiliation(s)
- German Nacher-Soler
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
| | - José Manuel Garrido
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
- Department of Cardiovascular Surgery, Virgen de las Nieves University Hospital, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Fernando Rodríguez-Serrano
- Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
| |
Collapse
|
26
|
Eshraghi AA, Jung HD, Mittal R. Recent Advancements in Gene and Stem Cell-Based Treatment Modalities: Potential Implications in Noise-Induced Hearing Loss. Anat Rec (Hoboken) 2019; 303:516-526. [PMID: 30859735 DOI: 10.1002/ar.24107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/24/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
Abstract
Noise-induced hearing loss (NIHL) poses a significant burden on not only the economics of health care but also the quality of life of an individual, as we approach an unprecedented age of longevity. In this article, we will delineate the current landscape of management of NIHL. We discuss the most recent results from in vitro and in vivo studies that determine the effectiveness of established pharmacotherapy such as corticosteroid and potential emerging therapies like N-acetyl cysteine and neurotrophins (NTs), as well as highlight ongoing clinical trials for these therapeutic agents. We present an overview of how the recent advancements in the field of gene-based and stem cell-based therapies can help in developing effective therapeutic strategies for NIHL. Gene-based therapies have shown exciting results demonstrating cochlear cellular regeneration using Atoh1, NRF2 as well as NT gene therapy employing viral vectors. In addition, we will discuss the recent advancements in genome-editing technologies, such as CRISPR/Cas9, and its potential role in NIHL therapy. We will further discuss the current state of stem cell therapy as it pertains to treating neurodegenerative conditions including NIHL. Embryonic stem cells, adult-derived stem cells, and induced pluripotent stem cells all represent an enticing reservoir of replacing damaged cells as a result of NIHL. Finally, we will discuss the barriers that need to be overcome to translate these promising treatment modalities to the clinical practice in pursuit of improving quality of life of patients having NIHL. Anat Rec, 303:516-526, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Adrien A Eshraghi
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Hyunseo D Jung
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
27
|
Mattei C, Lim R, Drury H, Nasr B, Li Z, Tadros MA, D'Abaco GM, Stok KS, Nayagam BA, Dottori M. Generation of Vestibular Tissue-Like Organoids From Human Pluripotent Stem Cells Using the Rotary Cell Culture System. Front Cell Dev Biol 2019; 7:25. [PMID: 30891447 PMCID: PMC6413170 DOI: 10.3389/fcell.2019.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/12/2019] [Indexed: 01/17/2023] Open
Abstract
Hair cells are specialized mechanosensitive cells responsible for mediating balance and hearing within the inner ear. In mammals, hair cells are limited in number and do not regenerate. Human pluripotent stem cells (hPSCs) provide a valuable source for deriving human hair cells to study their development and design therapies to treat and/or prevent their degeneration. In this study we used a dynamic 3D Rotary Cell Culture System (RCCS) for deriving inner ear organoids from hPSCs. We show RCCS-derived organoids recapitulate stages of inner ear development and give rise to an enriched population of hair cells displaying vestibular-like morphological and physiological phenotypes, which resemble developing human fetal inner ear hair cells as well as the presence of accessory otoconia-like structures. These results show that hPSC-derived organoids can generate complex inner ear structural features and be a resource to study inner ear development.
Collapse
Affiliation(s)
- Cristiana Mattei
- Centre for Neural Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Hannah Drury
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Babak Nasr
- Centre for Neural Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence for Integrative Brain Function, The University of Melbourne, Melbourne, VIC, Australia
| | - Zihui Li
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Giovanna M D'Abaco
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Kathryn S Stok
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Bryony A Nayagam
- Departments of Audiology and Speech Pathology and Department of Medical Bionics, The University of Melbourne, Melbourne, VIC, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
28
|
Czajkowski A, Mounier A, Delacroix L, Malgrange B. Pluripotent stem cell-derived cochlear cells: a challenge in constant progress. Cell Mol Life Sci 2019; 76:627-635. [PMID: 30341460 PMCID: PMC11105202 DOI: 10.1007/s00018-018-2950-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022]
Abstract
Hearing loss is a common affection mainly resulting from irreversible loss of the sensory hair cells of the cochlea; therefore, developing therapies to replace missing hair cells is essential. Understanding the mechanisms that drive their formation will not only help to unravel the molecular basis of deafness, but also give a roadmap for recapitulating hair cells development from cultured pluripotent stem cells. In this review, we provide an overview of the molecular mechanisms involved in hair cell production from both human and mouse embryonic stem cells. We then provide insights how this knowledge has been applied to differentiate induced pluripotent stem cells into otic progenitors and hair cells. Finally, we discuss the current limitations for properly obtaining functional hair cell in a Petri dish, as well as the difficulties that have to be overcome prior to consider stem cell therapy as a potential treatment for hearing loss.
Collapse
Affiliation(s)
- Amandine Czajkowski
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Anaïs Mounier
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium.
| |
Collapse
|
29
|
Duran Alonso MB, Lopez Hernandez I, de la Fuente MA, Garcia-Sancho J, Giraldez F, Schimmang T. Transcription factor induced conversion of human fibroblasts towards the hair cell lineage. PLoS One 2018; 13:e0200210. [PMID: 29979748 PMCID: PMC6034836 DOI: 10.1371/journal.pone.0200210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022] Open
Abstract
Hearing loss is the most common sensorineural disorder, affecting over 5% of the population worldwide. Its most frequent cause is the loss of hair cells (HCs), the mechanosensory receptors of the cochlea. HCs transduce incoming sounds into electrical signals that activate auditory neurons, which in turn send this information to the brain. Although some spontaneous HC regeneration has been observed in neonatal mammals, the very small pool of putative progenitor cells that have been identified in the adult mammalian cochlea is not able to replace the damaged HCs, making any hearing impairment permanent. To date, guided differentiation of human cells to HC-like cells has only been achieved using either embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs). However, use of such cell types suffers from a number of important disadvantages, such as the risk of tumourigenicity if transplanted into the host´s tissue. We have obtained cells expressing hair cell markers from cultures of human fibroblasts by overexpression of GFI1, Pou4f3 and ATOH1 (GPA), three genes that are known to play a critical role in the development of HCs. Immunocytochemical, qPCR and RNAseq analyses demonstrate the expression of genes typically expressed by HCs in the transdifferentiated cells. Our protocol represents a much faster approach than the methods applied to ESCs and iPSCs and validates the combination of GPA as a set of genes whose activation leads to the direct conversion of human somatic cells towards the hair cell lineage. Our observations are expected to contribute to the development of future therapies aimed at the regeneration of the auditory organ and the restoration of hearing.
Collapse
Affiliation(s)
- María Beatriz Duran Alonso
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| | - Iris Lopez Hernandez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| | - Miguel Angel de la Fuente
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| | - Javier Garcia-Sancho
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| | - Fernando Giraldez
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomédica de Barcelona, Barcelona, Spain
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, C/Sanz y Forés 3, Valladolid, Spain
| |
Collapse
|
30
|
Mittal R, Nguyen D, Patel AP, Debs LH, Mittal J, Yan D, Eshraghi AA, Van De Water TR, Liu XZ. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration. Front Mol Neurosci 2017; 10:236. [PMID: 28824370 PMCID: PMC5534485 DOI: 10.3389/fnmol.2017.00236] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022] Open
Abstract
Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Amit P. Patel
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Luca H. Debs
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Adrien A. Eshraghi
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Thomas R. Van De Water
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Xue Z. Liu
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
- Department of Otolaryngology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
31
|
Revuelta M, Santaolalla F, Arteaga O, Alvarez A, Sánchez-del-Rey A, Hilario E. Recent advances in cochlear hair cell regeneration-A promising opportunity for the treatment of age-related hearing loss. Ageing Res Rev 2017; 36:149-155. [PMID: 28414155 DOI: 10.1016/j.arr.2017.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 01/22/2023]
Abstract
The objective of this paper is to review current information regarding the treatment of age-related hearing loss by using cochlear hair cell regeneration. Recent advances in the regeneration of the inner ear, including the usefulness of stem cells, are also presented. Based on the current literature, cochlear cell regeneration may well be possible in the short term and cochlear gene therapy may also be useful for the treatment of hearing loss associated with ageing. The present review provide further insight into the pathogenesis of Inner Ear senescence and aged-related hearing loss and facilitate the development of therapeutic strategies to repair hair cells damaged by ageing. More research will be needed in order to translate them into an effective treatment for deafness linked to cochlear senescence in humans.
Collapse
|
32
|
Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat Biotechnol 2017; 35:583-589. [PMID: 28459451 PMCID: PMC5462862 DOI: 10.1038/nbt.3840] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
Human inner ear tissue derived from pluripotent stem cells could provide a powerful platform for drug discovery or a source of sound- or motion-sensing cells for patients with hearing loss or balance dysfunction. Here we report a method for differentiating human pluripotent stem cells to inner ear organoids that harbor functional hair cells. Using a three-dimensional culture system, we modulate TGF, BMP, FGF, and Wnt signaling to generate multiple otic vesicle–like structures from a single stem-cell aggregate. Over two months, the vesicles develop into inner ear organoids with sensory epithelia that are innervated by sensory neurons. Additionally, using CRISPR/Cas9, we generate an ATOH1-2A-eGFP cell line to detect hair cell induction and demonstrate that derived hair cells exhibit electrophysiological properties similar to those of native sensory hair cells. Our culture system will be useful for elucidating mechanisms of human inner ear development and testing potential inner ear therapies.
Collapse
|
33
|
Lee MY, Hackelberg S, Green KL, Lunghamer KG, Kurioka T, Loomis BR, Swiderski DL, Duncan RK, Raphael Y. Survival of human embryonic stem cells implanted in the guinea pig auditory epithelium. Sci Rep 2017; 7:46058. [PMID: 28387239 PMCID: PMC5384248 DOI: 10.1038/srep46058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/10/2017] [Indexed: 01/05/2023] Open
Abstract
Hair cells in the mature cochlea cannot spontaneously regenerate. One potential approach for restoring hair cells is stem cell therapy. However, when cells are transplanted into scala media (SM) of the cochlea, they promptly die due to the high potassium concentration. We previously described a method for conditioning the SM to make it more hospitable to implanted cells and showed that HeLa cells could survive for up to a week using this method. Here, we evaluated the survival of human embryonic stem cells (hESC) constitutively expressing GFP (H9 Cre-LoxP) in deaf guinea pig cochleae that were pre-conditioned to reduce potassium levels. GFP-positive cells could be detected in the cochlea for at least 7 days after the injection. The cells appeared spherical or irregularly shaped, and some were aggregated. Flushing SM with sodium caprate prior to transplantation resulted in a lower proportion of stem cells expressing the pluripotency marker Oct3/4 and increased cell survival. The data demonstrate that conditioning procedures aimed at transiently reducing the concentration of potassium in the SM facilitate survival of hESCs for at least one week. During this time window, additional procedures can be applied to initiate the differentiation of the implanted hESCs into new hair cells.
Collapse
Affiliation(s)
- Min Young Lee
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA.,Department of Otorhinolaryngology and Head &Neck Surgery, Dankook University Hospital, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Korea
| | - Sandra Hackelberg
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Kari L Green
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Kelly G Lunghamer
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Takaomi Kurioka
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Benjamin R Loomis
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - R Keith Duncan
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| |
Collapse
|
34
|
Single-cell analysis delineates a trajectory toward the human early otic lineage. Proc Natl Acad Sci U S A 2016; 113:8508-13. [PMID: 27402757 DOI: 10.1073/pnas.1605537113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Efficient pluripotent stem cell guidance protocols for the production of human posterior cranial placodes such as the otic placode that gives rise to the inner ear do not exist. Here we use a systematic approach including defined monolayer culture, signaling modulation, and single-cell gene expression analysis to delineate a developmental trajectory for human otic lineage specification in vitro. We found that modulation of bone morphogenetic protein (BMP) and WNT signaling combined with FGF and retinoic acid treatments over the course of 18 days generates cell populations that develop chronological expression of marker genes of non-neural ectoderm, preplacodal ectoderm, and early otic lineage. Gene expression along this differentiation path is distinct from other lineages such as endoderm, mesendoderm, and neural ectoderm. Single-cell analysis exposed the heterogeneity of differentiating cells and allowed discrimination of non-neural ectoderm and otic lineage cells from off-target populations. Pseudotemporal ordering of human embryonic stem cell and induced pluripotent stem cell-derived single-cell gene expression profiles revealed an initially synchronous guidance toward non-neural ectoderm, followed by comparatively asynchronous occurrences of preplacodal and otic marker genes. Positive correlation of marker gene expression between both cell lines and resemblance to mouse embryonic day 10.5 otocyst cells implied reasonable robustness of the guidance protocol. Single-cell trajectory analysis further revealed that otic progenitor cell types are induced in monolayer cultures, but further development appears impeded, likely because of lack of a lineage-stabilizing microenvironment. Our results provide a framework for future exploration of stabilizing microenvironments for efficient differentiation of stem cell-generated human otic cell types.
Collapse
|
35
|
Abstract
Tissue engineering focuses on three primary components: stem cells, biomaterials, and growth factors. Together, the combination of these components is used to regrow and repair damaged tissues that normally do not regenerate easily on their own. Much attention has been focused on the use of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), due to their broad differentiation potential. However, ESCs and iPSCs require very detailed protocols to differentiate into target tissues, which are not always successful. Furthermore, procurement of ESCs is considered ethically controversial in some regions and procurement of iPSCs requires laborious transformation of adult tissues and characterization. However, mesenchymal stem cells are an adult stem cell population that are not ethically controversial and are readily available for procurement. Furthermore, mesenchymal stem cells exhibit the ability to differentiate into a variety of cell types arising from the mesoderm. In particular, human Wharton's jelly cells (hWJCs) are mesenchymal-type stem cells found in umbilical cords that possess remarkable differentiation potential. hWJCs are a highly desirable stem cell population due to their abundance in supply, high proliferation rates, and ability to differentiate into multiple cell types arising from all three germ layers. hWJCs are used to generate several neurological phenotypes arising from the ectoderm and are considered for engineering mechanosensory hair cells found in the auditory complex. Here, we report the methods for isolating hWJCs from human umbilical cords and non-virally transfected for use in cochlear tissue engineering studies.
Collapse
|