1
|
Su Y, Shang B, Hu X, Zhang Z, Wang L, Luo K, Yao H, Liu X, Lu Y, Jiang S. Association Between ABCG1/TCF7L2 and Type 2 Diabetes Mellitus: An Intervention Trial Based on a Case-Control Study. J Diabetes Res 2025; 2025:9356676. [PMID: 40225014 PMCID: PMC11986924 DOI: 10.1155/jdr/9356676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 08/06/2024] [Accepted: 12/20/2024] [Indexed: 04/15/2025] Open
Abstract
Background and Objective: Type 2 diabetes mellitus (T2DM) is the result of both genetic and environmental factors. Environmental factors may contribute to the occurrence and development of T2DM by influencing epigenetic modification. The objective of this study was to explore the potential functions of two SNP-CG sites (rs7901695 of TCF7L2 and cg06500161 of ABCG1) that are most strongly associated with T2DM. Given that Uyghur population has been less studied, we conducted an intervention trial in Uyghur people to provide evidence for personalized health management of T2DM in them. Methods: From May to July 2022, 320 patients with T2DM and 332 patients without T2DM were treated with dietary pagoda-based health education intervention. The demographic data were collected before intervention and basic physical biochemical indexes before and after intervention by questionnaire and physical biochemical examination. SNP typing was performed by the TaqMan-MGB probe method, and gene methylation was detected by the pyrosequencing method. Results: The rs7901695 genotype difference of TCF7L2 was statistically significant between the case group and the control group (p < 0.05). After adjusting for covariates (smoking, alcohol consumption, exercise, fasting blood glucose (FPG), obesity, and hypertension), the genotype of rs7901695 in the TCF7L2 gene was associated with genetic susceptibility to T2DM in additive (TC vs. TT,p = 0.047; CC vs. TT,p = 0.010), dominant (p = 0.015), and recessive (p = 0.039) models. Before intervention, there were significant differences in the intake of water between the case group and the control group (p < 0.05). After intervention, there was statistical significance in the intake of coarse grains, fruits, aquatic products, eggs, dairy products, soy products, nuts, edible oils, and water between the case group and the control group (ps < 0.05). Logistic regression analysis showed that methylation of the ABCG1 gene was correlated with T2DM susceptibility after adjustment of covariable before intervention (p = 0.015, odds ratio (OR): 1.023; 95% confidence interval (CI): 1.004~1.041) but not after intervention. Generalized multifactor dimensionality reduction (GMDR) showed that the rs7901695 locus of the TCF7L2 gene and the cg06500161 locus of the ABCG1 gene had interaction with hypertension, dyslipidemia, abdominal obesity, and obesity and also had interaction with drinking, smoking, and exercise. Conclusions: The interaction of the rs7901695 site of the TCF7L2 gene and the cg06500161 site of the ABCG1 gene with environmental factors may increase the risk of T2DM in Uyghurs. The interaction between the cg06500161 site of the ABCG1 gene and environmental factors on T2DM varied with the intervention. The cg06500161 site of ABCG1 may serve as a biomarker to evaluate the effect of T2DM interventions.
Collapse
Affiliation(s)
- Yinxia Su
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
- School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bo Shang
- School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoyuan Hu
- Department of Hospital Administration, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhihao Zhang
- School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Wang
- The Clinical Medicine Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kun Luo
- Department of Hospital Administration, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hua Yao
- School of Health Management, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiangtao Liu
- School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yaoqin Lu
- Department of Hospital Administration, Urumqi Center for Disease Control and Prevention, Urumqi, Xinjiang, China
| | - Sheng Jiang
- Department of Hospital Administration, Urumqi Center for Disease Control and Prevention, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Abd El-Emam MM, Behairy A, Mostafa M, Khamis T, Osman NMS, Alsemeh AE, Mansour MF. Chrysin-loaded PEGylated liposomes protect against alloxan-induced diabetic neuropathy in rats: the interplay between endoplasmic reticulum stress and autophagy. Biol Res 2024; 57:45. [PMID: 38982468 PMCID: PMC11232158 DOI: 10.1186/s40659-024-00521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Diabetic neuropathy (DN) is recognized as a significant complication arising from diabetes mellitus (DM). Pathogenesis of DN is accelerated by endoplasmic reticulum (ER) stress, which inhibits autophagy and contributes to disease progression. Autophagy is a highly conserved mechanism crucial in mitigating cell death induced by ER stress. Chrysin, a naturally occurring flavonoid, can be found abundantly in honey, propolis, and various plant extracts. Despite possessing advantageous attributes such as being an antioxidant, anti-allergic, anti-inflammatory, anti-fibrotic, and anticancer agent, chrysin exhibits limited bioavailability. The current study aimed to produce a more bioavailable form of chrysin and discover how administering chrysin could alter the neuropathy induced by Alloxan in male rats. METHODS Chrysin was formulated using PEGylated liposomes to boost its bioavailability and formulation. Chrysin PEGylated liposomes (Chr-PLs) were characterized for particle size diameter, zeta potential, polydispersity index, transmission electron microscopy, and in vitro drug release. Rats were divided into four groups: control, Alloxan, metformin, and Chr-PLs. In order to determine Chr- PLs' antidiabetic activity and, by extension, its capacity to ameliorate DN, several experiments were carried out. These included measuring acetylcholinesterase, fasting blood glucose, insulin, genes dependent on autophagy or stress in the endoplasmic reticulum, and histopathological analysis. RESULTS According to the results, the prepared Chr-PLs exhibited an average particle size of approximately 134 nm. They displayed even distribution of particle sizes. The maximum entrapment efficiency of 90.48 ± 7.75% was achieved. Chr-PLs effectively decreased blood glucose levels by 67.7% and elevated serum acetylcholinesterase levels by 40% compared to diabetic rats. Additionally, Chr-PLs suppressed the expression of ER stress-related genes (ATF-6, CHOP, XBP-1, BiP, JNK, PI3K, Akt, and mTOR by 33%, 39.5%, 32.2%, 44.4%, 40.4%, 39.2%, 39%, and 35.9%, respectively). They also upregulated the miR-301a-5p expression levels by 513% and downregulated miR-301a-5p expression levels by 65%. They also boosted the expression of autophagic markers (AMPK, ULK1, Beclin 1, and LC3-II by 90.3%, 181%, 109%, and 78%, respectively) in the sciatic nerve. The histopathological analysis also showed that Chr-PLs inhibited sciatic nerve degeneration. CONCLUSION The findings suggest that Chr-PLs may be helpful in the protection against DN via regulation of ER stress and autophagy.
Collapse
Affiliation(s)
| | - Amany Behairy
- Department of Physiology, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
- Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Noura M S Osman
- Department of Human Anatomy and Embryology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University Egypt, Zagazig, Egypt
| | - Mohamed Fouad Mansour
- Department of Biochemistry and Molecular Biology, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
3
|
Saab C, Stephan J, Akoury E. Structural insights into the binding mechanism of Clr4 methyltransferase to H3K9 methylated nucleosome. Sci Rep 2024; 14:5438. [PMID: 38443490 PMCID: PMC10914790 DOI: 10.1038/s41598-024-56248-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024] Open
Abstract
The establishment and maintenance of heterochromatin, a specific chromatin structure essential for genomic stability and regulation, rely on intricate interactions between chromatin-modifying enzymes and nucleosomal histone proteins. However, the precise trigger for these modifications remains unclear, thus highlighting the need for a deeper understanding of how methyltransferases facilitate histone methylation among others. Here, we investigate the molecular mechanisms underlying heterochromatin assembly by studying the interaction between the H3K9 methyltransferase Clr4 and H3K9-methylated nucleosomes. Using a combination of liquid-state nuclear magnetic resonance spectroscopy and cryo-electron microscopy, we elucidate the structural basis of Clr4 binding to H3K9-methylated nucleosomes. Our results reveal that Clr4 engages with nucleosomes through its chromodomain and disordered regions to promote de novo methylation. This study provides crucial insights into the molecular mechanisms governing heterochromatin formation by highlighting the significance of chromatin-modifying enzymes in genome regulation and disease pathology.
Collapse
Affiliation(s)
- Christopher Saab
- Department of Natural Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3AOB8, Canada
| | - Joseph Stephan
- School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Elias Akoury
- Department of Natural Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon.
| |
Collapse
|
4
|
Pereira B, Correia FP, Alves IA, Costa M, Gameiro M, Martins AP, Saraiva JA. Epigenetic reprogramming as a key to reverse ageing and increase longevity. Ageing Res Rev 2024; 95:102204. [PMID: 38272265 DOI: 10.1016/j.arr.2024.102204] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The pursuit for the fountain of youth has long been a fascination amongst scientists and humanity. Ageing is broadly characterized by a cellular decline with increased susceptibility to age-related diseases, being intimately associated with epigenetic modifications. Recently, reprogramming-induced rejuvenation strategies have begun to greatly alter longevity research not only to tackle age-related defects but also to possibly reverse the cellular ageing process. Hence, in this review, we highlight the major epigenetic changes during ageing and the state-of-art of the current emerging epigenetic reprogramming strategies leveraging on transcription factors. Notably, partial reprogramming enables the resetting of the ageing clock without erasing cellular identity. Promising chemical-based rejuvenation strategies harnessing small molecules, including DNA methyltransferase and histone deacetylase inhibitors are also discussed. Moreover, in parallel to longevity interventions, the foundations of epigenetic clocks for accurate ageing assessment and evaluation of reprogramming approaches are briefly presented. Going further, with such scientific breakthroughs, we are witnessing a rise in the longevity biotech industry aiming to extend the health span and ideally achieve human rejuvenation one day. In this context, we overview the main scenarios proposed for the future of the socio-economic and ethical challenges associated with such an emerging field. Ultimately, this review aims to inspire future research on interventions that promote healthy ageing for all.
Collapse
Affiliation(s)
- Beatriz Pereira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Inês A Alves
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Margarida Costa
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mariana Gameiro
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana P Martins
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
5
|
Liu R, Li L, Wang Z, Zhu J, Ji Y. Acetylated Histone Modifications: Intersection of Diabetes and Atherosclerosis. J Cardiovasc Pharmacol 2024; 83:207-219. [PMID: 37989137 DOI: 10.1097/fjc.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
ABSTRACT Worldwide, type 2 diabetes is predominant form of diabetes, and it is mainly affected by the environment. Furthermore, the offspring of patients with type 2 diabetes and metabolic disorder syndrome may have a higher risk of diabetes and cardiovascular disease, which indicates that the environmental impact on diabetes prevalence can be transmitted across generations. In the process of diabetes onset and intergenerational transmission, the genetic structure of the individual is not directly changed but is regulated by epigenetics. In this process, genes or histones are modified, resulting in selective expression of proteins. This modification will affect not only the onset of diabetes but also the related onset of atherosclerosis. Acetylation and deacetylation may be important regulatory factors for the above lesions. Therefore, in this review, based on the whole process of atherosclerosis evolution, we explored the possible existence of acetylation/deacetylation caused by diabetes. However, because of the lack of atherosclerosis-related acetylation studies directly based on diabetic models, we also used a small number of experiments involving nondiabetic models of related molecular mechanisms.
Collapse
Affiliation(s)
| | | | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; and
| | - Jie Zhu
- Department of Cardiology, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu' an People's Hospital, Lu'an, China
| | | |
Collapse
|
6
|
Găman MA, Cozma EC, Srichawla BS, Cozma MA, Varkaneh HK, Chen Y, Găman AM, Diaconu CC. Bioactive Vitamins and Epigenetic Modifications in Diabetes: A Perspective. Curr Diabetes Rev 2024; 20:e300323215239. [PMID: 37005542 DOI: 10.2174/1573399819666230330124035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 04/04/2023]
Abstract
Diabetes is a complex metabolic disease that has been associated with epigenetic changes. External factors such as dietary patterns can induce an imbalance in the pools of micronutrients and macronutrients in the body. Consequently, bioactive vitamins may influence epigenetic mechanisms via several pathways: involvement in the control of gene expression, and in protein synthesis, by acting as coenzymes and co-factors in the metabolism of methyl groups or methylation of DNA and histones. Herein, we present a perspective on the relevance of bioactive vitamins in the epigenetic modifications that occur in diabetes.
Collapse
Affiliation(s)
- Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, Bucharest 050474, Romania
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, 258 Fundeni Road, Bucharest 022328, Romania
| | - Elena-Codruța Cozma
- Department of Dermatology, Elias Clinical Emergency Hospital, 15 Marasti Boulevard, Bucharest 011461, Romania
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, Craiova 200349, Romania
| | - Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School. 55 Lake Ave N Worcester MA 01655, United States of America
| | - Matei-Alexandru Cozma
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, Bucharest 050474, Romania
- Department of Gastroenterology, Colentina Clinical Hospital, 19-21 Stefan cel Mare Road, Bucharest 020125, Romania
| | - Hamed Kord Varkaneh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Nutrition and Food Hygiene, Nutritional Health Research Center, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Amelia Maria Găman
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Clinic of Hematology, Filantropia City Hospital, 200143 Craiova, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, Bucharest 050474, Romania
- Internal Medicine Clinic, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| |
Collapse
|
7
|
Yuen S, Ezard THG, Sobey AJ. Epigenetic opportunities for evolutionary computation. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221256. [PMID: 37181799 PMCID: PMC10170609 DOI: 10.1098/rsos.221256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Evolutionary computation is a group of biologically inspired algorithms used to solve complex optimization problems. It can be split into evolutionary algorithms, which take inspiration from genetic inheritance, and swarm intelligence algorithms, that take inspiration from cultural inheritance. However, much of the modern evolutionary literature remains relatively unexplored. To understand which evolutionary mechanisms have been considered, and which have been overlooked, this paper breaks down successful bioinspired algorithms under a contemporary biological framework based on the extended evolutionary synthesis, an extension of the classical, genetics focused, modern synthesis. Although the idea of the extended evolutionary synthesis has not been fully accepted in evolutionary theory, it presents many interesting concepts that could provide benefits to evolutionary computation. The analysis shows that Darwinism and the modern synthesis have been incorporated into evolutionary computation but the extended evolutionary synthesis has been broadly ignored beyond: cultural inheritance, incorporated in the sub-set of swarm intelligence algorithms, evolvability, through covariance matrix adaptation evolution strategy (CMA-ES), and multilevel selection, through multilevel selection genetic algorithm (MLSGA). The framework shows a gap in epigenetic inheritance for evolutionary computation, despite being a key building block in modern interpretations of evolution. This leaves a diverse range of biologically inspired mechanisms as low hanging fruit that should be explored further within evolutionary computation and illustrates the potential of epigenetic based approaches through the recent benchmarks in the literature.
Collapse
Affiliation(s)
- Sizhe Yuen
- Maritime Engineering, University of Southampton, Southampton SO17 1BJ, UK
| | - Thomas H. G. Ezard
- Ocean and Earth Science, National Oceanography Centre Southampton, European Way, University of Southampton, Southampton SO14 3ZH, UK
| | - Adam J. Sobey
- Maritime Engineering, University of Southampton, Southampton SO17 1BJ, UK
- Marine and Maritime Group, Data-centric Engineering, The Alan Turing Institute, The British Library, London NW1 2DB, UK
| |
Collapse
|
8
|
Rajlic S, Treede H, Münzel T, Daiber A, Duerr GD. Early Detection Is the Best Prevention-Characterization of Oxidative Stress in Diabetes Mellitus and Its Consequences on the Cardiovascular System. Cells 2023; 12:583. [PMID: 36831253 PMCID: PMC9954643 DOI: 10.3390/cells12040583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Previous studies demonstrated an important role of oxidative stress in the pathogenesis of cardiovascular disease (CVD) in diabetic patients due to hyperglycemia. CVD remains the leading cause of premature death in the western world. Therefore, diabetes mellitus-associated oxidative stress and subsequent inflammation should be recognized at the earliest possible stage to start with the appropriate treatment before the onset of the cardiovascular sequelae such as arterial hypertension or coronary artery disease (CAD). The pathophysiology comprises increased reactive oxygen and nitrogen species (RONS) production by enzymatic and non-enzymatic sources, e.g., mitochondria, an uncoupled nitric oxide synthase, xanthine oxidase, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). Considering that RONS originate from different cellular mechanisms in separate cellular compartments, adequate, sensitive, and compartment-specific methods for their quantification are crucial for early detection. In this review, we provide an overview of these methods with important information for early, appropriate, and effective treatment of these patients and their cardiovascular sequelae.
Collapse
Affiliation(s)
- Sanela Rajlic
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
| | - Hendrik Treede
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
| | - Thomas Münzel
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology, Department of Cardiology, Molecular Cardiology, University Medical Center, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiothoracic and Vascular Surgery, University of Medicine Mainz, 55131 Mainz, Germany
| |
Collapse
|
9
|
Elhassan SA, Wong YH, Bhattamisra SK, Candasamy M. Epigenetic regulation of insulin: role of glucose in pancreatic beta cells. Minerva Med 2022; 113:896-897. [PMID: 32683846 DOI: 10.23736/s0026-4806.20.06611-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Safa A Elhassan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Yee H Wong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Subrat K Bhattamisra
- School of Pharmacy, Department of Life Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- School of Pharmacy, Department of Life Sciences, International Medical University, Kuala Lumpur, Malaysia -
| |
Collapse
|
10
|
Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022; 12:biom12040542. [PMID: 35454131 PMCID: PMC9030615 DOI: 10.3390/biom12040542] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Persistent hyperglycemic state in type 2 diabetes mellitus leads to the initiation and progression of non-enzymatic glycation reaction with proteins and lipids and nucleic acids. Glycation reaction leads to the generation of a heterogeneous group of chemical moieties known as advanced glycated end products (AGEs), which play a central role in the pathophysiology of diabetic complications. The engagement of AGEs with its chief cellular receptor, RAGE, activates a myriad of signaling pathways such as MAPK/ERK, TGF-β, JNK, and NF-κB, leading to enhanced oxidative stress and inflammation. The downstream consequences of the AGEs/RAGE axis involve compromised insulin signaling, perturbation of metabolic homeostasis, RAGE-induced pancreatic beta cell toxicity, and epigenetic modifications. The AGEs/RAGE signaling instigated modulation of gene transcription is profoundly associated with the progression of type 2 diabetes mellitus and pathogenesis of diabetic complications. In this review, we will summarize the exogenous and endogenous sources of AGEs, their role in metabolic dysfunction, and current understandings of AGEs/RAGE signaling cascade. The focus of this review is to recapitulate the role of the AGEs/RAGE axis in the pathogenesis of type 2 diabetes mellitus and its associated complications. Furthermore, we present an overview of future perspectives to offer new therapeutic interventions to intervene with the AGEs/RAGE signaling pathway and to slow down the progression of diabetes-related complications.
Collapse
|
11
|
Gao L, Yu W, Song P, Li Q. Non-histone methylation of SET7/9 and its biological functions. Recent Pat Anticancer Drug Discov 2021; 17:231-243. [PMID: 34856916 DOI: 10.2174/1574892816666211202160041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND (su(var)-3-9,enhancer-of-zeste,trithorax) domain-containing protein 7/9 (SET7/9) is a member of the protein lysine methyltransferases (PLMTs or PKMTs) family. It contains a SET domain. Recent studies demonstrate that SET7/9 methylates both lysine 4 of histone 3 (H3-K4) and lysine(s) of non-histone proteins, including transcription factors, tumor suppressors, and membrane-associated receptors. OBJECTIVE This article mainly reviews the non-histone methylation effects of SET7/9 and its functions in tumorigenesis and development. METHODS PubMed was screened for this information. RESULTS SET7/9 plays a key regulatory role in various biological processes such as cell proliferation, transcription regulation, cell cycle, protein stability, cardiac morphogenesis, and development. In addition, SET7/9 is involved in the pathogenesis of hair loss, breast cancer progression, human carotid plaque atherosclerosis, chronic kidney disease, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. CONCLUSION SET7/9 is an important methyltransferase, which can catalyze the methylation of a variety of proteins. Its substrates are closely related to the occurrence and development of tumors.
Collapse
Affiliation(s)
- Lili Gao
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| | - Weiping Yu
- Department of Pathophysiology, Medical school of Southeast University, Nanjing 210009, Jiangsu. China
| | - Peng Song
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| | - Qing Li
- Department of Pathology, Pudong New Area People's Hospital, Shanghai 201299. China
| |
Collapse
|
12
|
Hafez SM, Abou-youssef HES, Awad MAK, Kamel SA, Youssef RN, Elshiekh SM, Raslan H, Salah N. Insulin-like growth factor binding protein 1 DNA methylation in type 2 diabetes. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Type 2 diabetes (T2D) is a complex trait in humans. Several environmental and hereditary factors contribute to the overall pathogenesis of this disease. The association between genes, environment, and T2D was unknown for decades until epigenetics was discovered. Epigenetics affects gene transcription, which, in turn, influences organ function. One of the epigenetic regulatory mechanisms is DNA methylation. This mechanism permits modification of gene function without changes in the DNA sequence.
There are several risk factors for type 2 diabetes such as harmful intrauterine environment, obesity, poor physical activity, increasing age, a family history of the disease, and an unhealthy diet. All these factors have been proven to influence the DNA methylation sequence in target tissues for insulin resistance in humans. We aimed to evaluate insulin-like growth factor binding protein-1 (IGFBP1) gene methylation levels in T2D. In all, 100 Egyptian individuals were included in this study: 50 patients with T2D versus 50 healthy controls. Genomic DNA was extracted from peripheral blood and IGFBP1 methylation levels were analyzed using pyrosequencing.
Results
DNA methylation levels in the IGFBP1 gene at each of the six CpG sites were significantly higher in the T2D patients than in the controls at P values of 0.001, 0.002, 0.010, 0.007, 0.014, and 0.001, respectively.
Conclusion
According to this study, T2D is due to interactions between genetics, epigenetics, and lifestyle. This study also revealed that DNA methylation levels of the IGFBP-1 gene are higher in T2D patients than in healthy control.
Collapse
|
13
|
Amri IA, Mabood F, Kadim IT, Alkindi A, Al-Harrasi A, Al-Hashmi S, Abbas G, Hamaed A, Ahmed B, Al-Shuhaimi J, Khalaf S, Shaikh J. Evaluation of the solubility of 11-keto-β-boswellic acid and its histological effect on the diabetic mice liver using a novel technique. Vet World 2021; 14:1797-1803. [PMID: 34475700 PMCID: PMC8404125 DOI: 10.14202/vetworld.2021.1797-1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Background and Aim: The literature is scant on the effect of 11-keto-β-boswellic acid (KBA) on the liver of diabetes-induced mice. This study was designed to develop a rapid, sensitive, accurate, and inexpensive detection technique for evaluating the solubility of KBA obtained from the gum resin of Omani frankincense (Boswellia sacra) in the liver of streptozotocin-induced diabetic mice using Fourier transform infrared (FTIR) reflectance spectroscopy coupled with principal components analysis (PCA). It also aimed to investigate the effect of KBA on histological changes in the hepatocytes of diabetic mice. Materials and Methods: Eighteen mice were assigned to the healthy control group, the diabetic control group, or the KBA-treated diabetic group. Liver tissue samples from all groups were scanned using an FTIR reflectance spectrophotometer in reflection mode. FTIR reflectance spectra were collected in the wavenumber range of 400-4000 cm−1 using an attenuated total reflectance apparatus. Results: FTIR reflectance spectra were analyzed using PCA. The PCA score plot, which is an exploratory multivariate data set, revealed complete segregation among the three groups’ liver samples based on changes in the variation of wavenumber position in the FTIR reflectance spectra, which indicated a clear effect of KBA solubility on treatments. Histological analysis showed an improvement in the liver tissues, with normal structures of hepatocytes exhibiting mild vacuolation in their cytoplasm. Conclusion: KBA improved the morphology of liver tissues in the diabetic mice and led to complete recovery of the damage observed in the diabetic control group. FTIR reflectance spectroscopy coupled with PCA could be deployed as a rapid, low-cost, and non-destructive detection method for evaluating treatment effects in diseased liver tissue based on the solubility of KBA.
Collapse
Affiliation(s)
- Issa Al Amri
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Fazal Mabood
- Institute of Chemical Sciences, University of Swat KP, Pakistan
| | - Isam T Kadim
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Abdulaziz Alkindi
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - A Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Sulaiman Al-Hashmi
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Ghulam Abbas
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Ahmed Hamaed
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Basant Ahmed
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Jawaher Al-Shuhaimi
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Samera Khalaf
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Jamaluddin Shaikh
- School of Pharmacy, College of Pharmacy and Nursing, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| |
Collapse
|
14
|
Grega T, Vojtechova G, Gregova M, Zavoral M, Suchanek S. Pathophysiological Characteristics Linking Type 2 Diabetes Mellitus and Colorectal Neoplasia. Physiol Res 2021; 70:509-522. [PMID: 34062073 DOI: 10.33549/physiolres.934631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A substantial body of literature has provided evidence that type 2 diabetes mellitus (T2DM) and colorectal neoplasia share several common factors. Both diseases are among the leading causes of death worldwide and have an increasing incidence. In addition to usual risk factors such as sedentary lifestyle, obesity, and family history, common pathophysiological mechanisms involved in the development of these diseases have been identified. These include changes in glucose metabolism associated with adipose tissue dysfunction including insulin resistance resulting to hyperinsulinemia and chronic hyperglycemia. In addition to altered glucose metabolism, abdominal obesity has been associated with accented carcinogenesis with chronic subclinical inflammation. An increasing number of studies have recently described the role of the gut microbiota in metabolic diseases including T2DM and the development of colorectal cancer (CRC). Due to the interconnectedness of different pathophysiological processes, it is not entirely clear which factor is crucial in the development of carcinogenesis in patients with T2DM. The aim of this work is to review the current knowledge on the pathophysiological mechanisms of colorectal neoplasia development in individuals with T2DM. Here, we review the potential pathophysiological processes involved in the onset and progression of colorectal neoplasia in patients with T2DM. Uncovering common pathophysiological characteristics is essential for understanding the nature of these diseases and may lead to effective treatment and prevention.
Collapse
Affiliation(s)
- T Grega
- Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Military University Hospital in Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
15
|
The Therapeutic Potential of Epigenome-Modifying Drugs in Cardiometabolic Disease. CURRENT GENETIC MEDICINE REPORTS 2021. [DOI: 10.1007/s40142-021-00198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M. Effect of non-enzymatic glycosylation in the epigenetics of cancer. Semin Cancer Biol 2020; 83:543-555. [DOI: 10.1016/j.semcancer.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/09/2023]
|
17
|
Wang Y, Tar MT, Davies KP. Hyperglycemic memory in the rat bladder detrusor is associated with a persistent hypomethylated state. Physiol Rep 2020; 8:e14614. [PMID: 33200530 PMCID: PMC7670302 DOI: 10.14814/phy2.14614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemic memory is associated with several complications of diabetes. Although there is some physiological evidence that this phenomenon occurs with diabetic bladder dysfunction (DBD), there have been no studies in bladder that provide evidence of hyperglycemic memory at the molecular/biochemical level. In the present studies, we determined the effects of long-term diabetes on the metabolome of bladder detrusor in a rat model of streptozotocin-induced type-1-diabetes and the ability of insulin treatment to normalize metabolic changes. These studies demonstrated that although insulin reversed a majority of the metabolic changes caused by diabetes, with long-term diabetes there was a persistent decrease in the methylation index (indicated by a reduced ratio of S-adenosylmethionine to S-adenosyl homocysteine) after insulin treatment. We confirmed a "hypomethylated environment" develops in diabetic detrusor by demonstrating an overall reduction in methylated detrusor DNA that is only partially reversed with glycemic control. Furthermore, we confirmed that this hypomethylated environment is associated with epigenetic changes in the detrusor genome, which are again mostly, but not completely, reversed with glycemic control. Overall our studies provide strong molecular evidence for a mechanism by which diabetes alters methylation status and gene expression in the detrusor genome, and that these epigenetic modifications contribute to hyperglycemic memory. Our work suggests novel treatment strategies for diabetic patients who have attained glycemic control but continue to experience DBD. For example, epigenomic data can be used to identify "actionable gene targets" for its treatment and would also support a rationale for approaches that target the hypomethylation index.
Collapse
Affiliation(s)
- Yi Wang
- Department of UrologyAlbert Einstein College of MedicineBronxNYUSA
| | - Moses T. Tar
- Department of UrologyAlbert Einstein College of MedicineBronxNYUSA
| | - Kelvin P. Davies
- Department of UrologyAlbert Einstein College of MedicineBronxNYUSA
- Department of Physiology and BiophysicsAlbert Einstein College of MedicineBronxNYUSA
| |
Collapse
|
18
|
Priyadarsini S, Whelchel A, Nicholas S, Sharif R, Riaz K, Karamichos D. Diabetic keratopathy: Insights and challenges. Surv Ophthalmol 2020; 65:513-529. [PMID: 32092364 PMCID: PMC8116932 DOI: 10.1016/j.survophthal.2020.02.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Ocular complications from diabetes mellitus are common. Diabetic keratopathy, the most frequent clinical condition affecting the human cornea, is a potentially sight-threatening condition caused mostly by epithelial disturbances that are of clinical and research attention because of their severity. Diabetic keratopathy exhibits several clinical manifestations, including persistent corneal epithelial erosion, superficial punctate keratopathy, delayed epithelial regeneration, and decreased corneal sensitivity, that may lead to compromised visual acuity or permanent vision loss. The limited amount of clinical studies makes it difficult to fully understand the pathobiology of diabetic keratopathy. Effective therapeutic approaches are elusive. We summarize the clinical manifestations of diabetic keratopathy and discuss available treatments and up-to-date research studies in an attempt to provide a thorough overview of the disorder.
Collapse
Affiliation(s)
- S Priyadarsini
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - A Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - S Nicholas
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - R Sharif
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - K Riaz
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - D Karamichos
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
19
|
Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21176275. [PMID: 32872570 PMCID: PMC7503727 DOI: 10.3390/ijms21176275] [Citation(s) in RCA: 1285] [Impact Index Per Article: 257.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM), one of the most common metabolic disorders, is caused by a combination of two primary factors: defective insulin secretion by pancreatic β-cells and the inability of insulin-sensitive tissues to respond appropriately to insulin. Because insulin release and activity are essential processes for glucose homeostasis, the molecular mechanisms involved in the synthesis and release of insulin, as well as in its detection are tightly regulated. Defects in any of the mechanisms involved in these processes can lead to a metabolic imbalance responsible for the development of the disease. This review analyzes the key aspects of T2DM, as well as the molecular mechanisms and pathways implicated in insulin metabolism leading to T2DM and insulin resistance. For that purpose, we summarize the data gathered up until now, focusing especially on insulin synthesis, insulin release, insulin sensing and on the downstream effects on individual insulin-sensitive organs. The review also covers the pathological conditions perpetuating T2DM such as nutritional factors, physical activity, gut dysbiosis and metabolic memory. Additionally, because T2DM is associated with accelerated atherosclerosis development, we review here some of the molecular mechanisms that link T2DM and insulin resistance (IR) as well as cardiovascular risk as one of the most important complications in T2DM.
Collapse
|
20
|
Ahmed SAH, Ansari SA, Mensah-Brown EPK, Emerald BS. The role of DNA methylation in the pathogenesis of type 2 diabetes mellitus. Clin Epigenetics 2020; 12:104. [PMID: 32653024 PMCID: PMC7353744 DOI: 10.1186/s13148-020-00896-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic condition characterised by β cell dysfunction and persistent hyperglycaemia. The disorder can be due to the absence of adequate pancreatic insulin production or a weak cellular response to insulin signalling. Among the three types of DM, namely, type 1 DM (T1DM), type 2 DM (T2DM), and gestational DM (GDM); T2DM accounts for almost 90% of diabetes cases worldwide. Epigenetic traits are stably heritable phenotypes that result from certain changes that affect gene function without altering the gene sequence. While epigenetic traits are considered reversible modifications, they can be inherited mitotically and meiotically. In addition, epigenetic traits can randomly arise in response to environmental factors or certain genetic mutations or lesions, such as those affecting the enzymes that catalyse the epigenetic modification. In this review, we focus on the role of DNA methylation, a type of epigenetic modification, in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Sanabil Ali Hassan Ahmed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Eric P K Mensah-Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
21
|
Jaafar L, Chamseddine Z, El-Sibai M. StarD13: a potential star target for tumor therapeutics. Hum Cell 2020; 33:437-443. [PMID: 32274657 DOI: 10.1007/s13577-020-00358-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Abstract
StarD13 is a tumor suppressor and a GTPase activating protein (GAP) for Rho GTPases. Thus, StarD13 regulates cell survival pathways and induces apoptosis in a p53-dependent and independent manners. In tumors, StarD13 is either downregulated or completely inhibited, depending on the tumor type. As such, and through the dysregulation of Rho GTPases, this affects adhesion dynamics, actin dynamics, and leads to an increase or a decrease in tumor metastasis depending on the tumor grade and type. Being a key regulatory protein, StarD13 is a potential promising candidate for therapeutic approaches. This paper reviews the key characteristics of this protein and its role in tumor malignancies.
Collapse
Affiliation(s)
- Leila Jaafar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, 1102 2801, Beirut, Lebanon
| | - Zeinab Chamseddine
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, 1102 2801, Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Chouran, P.O. Box 13-5053, 1102 2801, Beirut, Lebanon.
| |
Collapse
|
22
|
Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3818196. [PMID: 32256950 PMCID: PMC7104326 DOI: 10.1155/2020/3818196] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
The advanced glycation end products (AGEs) are organic molecules formed in any living organisms with a great variety of structural and functional properties. They are considered organic markers of the glycation process. Due to their great heterogeneity, there is no specific test for their operational measurement. In this review, we have updated the most common chromatographic, colorimetric, spectroscopic, mass spectrometric, and serological methods, typically used for the determination of AGEs in biological samples. We have described their signaling and signal transduction mechanisms and cell epigenetic effects. Although mass spectrometric analysis is not widespread in the detection of AGEs at the clinical level, this technique is highly promising for the early diagnosis and therapeutics of diseases caused by AGEs. Protocols are available for high-resolution mass spectrometry of glycated proteins although they are characterized by complex machine management. Simpler procedures are available although much less precise than mass spectrometry. Among them, immunochemical tests are very common since they are able to detect AGEs in a simple and immediate way. In these years, new methodologies have been developed using an in vivo novel and noninvasive spectroscopic methods. These methods are based on the measurement of autofluorescence of AGEs. Another method consists of detecting AGEs in the human skin to detect chronic exposure, without the inconvenience of invasive methods. The aim of this review is to compare the different approaches of measuring AGEs at a clinical perspective due to their strict association with oxidative stress and inflammation.
Collapse
|
23
|
Abstract
Background Organisms can be primed by metabolic exposures to continue expressing response genes even once the metabolite is no longer available, and can affect the speed and magnitude of responsive gene expression during subsequent exposures. This “metabolic transcriptional memory” can have a profound impact on the survivability of organisms in fluctuating environments. Scope of review Here I present several examples of metabolic transcriptional memory in the microbial world and discuss what is known so far regarding the underlying mechanisms, which mainly focus on chromatin modifications, protein inheritance, and broad changes in metabolic network. From these lessons learned in microbes, some insights into the yet understudied human metabolic memory can be gained. I thus discuss the implications of metabolic memory in disease progression in humans – i.e., the memory of high blood sugar exposure and the resulting effects on diabetic complications. Major conclusions Carbon source shifts from glucose to other less preferred sugars such as lactose, galactose, and maltose for energy metabolism as well as starvation of a signal transduction precursor sugar inositol are well-studied examples of metabolic transcriptional memory in Escherichia coli and Saccharomyces cerevisiae. Although the specific factors guiding metabolic transcriptional memory are not necessarily conserved from microbes to humans, the same basic mechanisms are in play, as is observed in hyperglycemic memory. Exploration of new metabolic transcriptional memory systems as well as further detailed mechanistic analyses of known memory contexts in microbes is therefore central to understanding metabolic memory in humans, and may be of relevance for the successful treatment of the ever-growing epidemic of diabetes. Metabolic exposures can prime genes to have memory. Memory of carbon source shifts occurs in all kingdoms of life. Memory is maintained through multiple mechanisms including chromatin modifications, proteins, and metabolic network. Metabolic transcriptional memory in unicellular organisms is a part of “bet-hedging” strategies to ensure survival. Hyperglycemic memory in humans contributes to diabetes and aging.
Collapse
Affiliation(s)
- Poonam Bheda
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
24
|
Chrominski K, Tkacz M, Boryczka M. Epigenetic Modification of Genetic Algorithm. LECTURE NOTES IN COMPUTER SCIENCE 2020. [PMCID: PMC7302806 DOI: 10.1007/978-3-030-50417-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The article presents a new operation in the genetic algorithm. This operation mimics the epigenetic process of cytosine methylation. The Epigenetic processes have a huge impact on the functioning of living organisms, but have not yet been reflected in the operations of genetic algorithms. In a study on the evaluation of the operation mimics epigenetics process were used genetic algorithm for Knapsack issue.
Collapse
|
25
|
Nasrallah P, Haidar EA, Stephan JS, El Hayek L, Karnib N, Khalifeh M, Barmo N, Jabre V, Houbeika R, Ghanem A, Nasser J, Zeeni N, Bassil M, Sleiman SF. Branched-chain amino acids mediate resilience to chronic social defeat stress by activating BDNF/TRKB signaling. Neurobiol Stress 2019; 11:100170. [PMID: 31193350 PMCID: PMC6526306 DOI: 10.1016/j.ynstr.2019.100170] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
How individuals respond to chronic stress varies. Susceptible individuals ultimately develop depression; whereas resilient individuals live normally. In this study, our objective was to examine the effect of branched-chain amino acids (BCAA), commonly used by athletes, on susceptibility to stress. Male C57BL/6 mice were subjected to daily defeat sessions by a CD1 aggressor, for 10 days. On day11, the behavior of mice was assessed using the social interaction test, elevated plus maze and open field. Mice received the BCAA leucine, isoleucine or valine before each defeat session. Furthermore, we examined whether BCAA regulate brain derived neurotrophic factor (BDNF) signaling by using a brain-permeable tropomyosin receptor kinase B (TRKB) inhibitor, ANA-12. We also tested the effect of voluntary exercise and high protein diets on susceptibility to stress. Mice exposed to chronic stress displayed increased susceptibility and social avoidance. BCAA promoted resilience to chronic stress, rescued social avoidance behaviors and increased hippocampal BDNF levels and TRKB activation. Inhibition of TRKB signaling abolished the ability of BCAA to promote resilience to stress and to rescue social avoidance. Interestingly, we found that BCAA activate the exercise-regulated PGC1a/FNDC5 pathway known to induce hippocampal BDNF signaling. Although both voluntary exercise and BCAA promoted resilience to stress, combining them did not yield synergistic effects confirming that they affect similar pathways. We also discovered that high protein diets mimic the effect of BCAA by rescuing social deficits induced by chronic stress and increase Bdnf expression in the hippocampus. Our data indicate that BCAA, exercise and high protein diets rescue susceptibility to stress by activating the hippocampal BDNF/TRKB signaling.
Collapse
Affiliation(s)
- Patrick Nasrallah
- Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Edwina Abou Haidar
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Joseph S. Stephan
- School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Lauretta El Hayek
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Nabil Karnib
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Mohamad Khalifeh
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Nour Barmo
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Vanessa Jabre
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Rouba Houbeika
- Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Anthony Ghanem
- Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Jason Nasser
- Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Nadine Zeeni
- Nutrition Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Maya Bassil
- Nutrition Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Sama F. Sleiman
- Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
- Molecular Biology Program, Department of Natural Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| |
Collapse
|
26
|
Association between Diabetes and Keratoconus: A Retrospective Analysis. Sci Rep 2019; 9:13808. [PMID: 31551458 PMCID: PMC6760226 DOI: 10.1038/s41598-019-50095-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022] Open
Abstract
Keratoconus (KC) and chronic diabetes mellitus (DM) are both associated with significant defects in the human corneal structure. Studies have long suggested that DM is linked to KC, mainly via the crosslinking mechanism, but scientific evidences are lacking. The role of altered systemic metabolism is well-established in both DM and KC with studies suggesting localized altered cellular metabolism leading to the development of corneal pathologies. We have previously characterized the metabolic defects associated with both conditions using targeted metabolomics. To compare metabolic differences between KC and DM-derived corneal fibroblasts, we performed a respective study of two cohorts of the KC and DM populations using a retrospective analysis of targeted metabolomics data. The goal of this study was to identify the group of differentially regulated metabolites, in KC versus DM, so that we may unravel the link between the two devastating corneal pathologies.
Collapse
|
27
|
Oh TR, Han KD, Choi HS, Kim CS, Bae EH, Ma SK, Kim SW. Metabolic Syndrome Resolved within Two Years is Still a Risk Factor for Kidney Cancer. J Clin Med 2019; 8:jcm8091329. [PMID: 31466366 PMCID: PMC6780562 DOI: 10.3390/jcm8091329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
The prevalence of metabolic syndrome (MetS) and kidney cancer is increasing, but studies on the effects of MetS and its components on kidney cancer development have had ambiguous results. Overall, 7,613,865 patients from the Korean National Health Insurance System were analyzed and followed up until 2017. Patients with ≥3 of the necessary five components of MetS were diagnosed with MetS. Patients were divided into subgroups according to two consecutive physical examinations conducted every two years. The Cox proportional hazard regression model was used to survey the independent association between MetS and the risk of kidney cancer development. Kidney cancer risk was significantly higher in patients with MetS, and there was no difference according to sex. The hazards ratio of kidney cancer increased with increasing number of MetS components. For patients not diagnosed with MetS but with abdominal obesity and hypertension, the likelihood of developing kidney cancer was similar to that of patients diagnosed with MetS. Patients with improved MetS within two years had increased risk of kidney cancer compared with those without MetS. MetS is an independent risk factor for kidney cancer, and the obesity and hypertension components of MetS are also powerful risk factors.
Collapse
Affiliation(s)
- Tae Ryom Oh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Kyung-Do Han
- Department of Medical Statistics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea.
| |
Collapse
|
28
|
Roy NK, Parama D, Banik K, Bordoloi D, Devi AK, Thakur KK, Padmavathi G, Shakibaei M, Fan L, Sethi G, Kunnumakkara AB. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int J Mol Sci 2019; 20:ijms20174101. [PMID: 31443458 PMCID: PMC6747466 DOI: 10.3390/ijms20174101] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson’s disease, Alzheimer’s, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.
Collapse
Affiliation(s)
- Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
29
|
Xi Z, Fang L, Xu J, Li B, Zuo Z, Lv L, Wang C. Exposure to Aroclor 1254 persistently suppresses the functions of pancreatic β-cells and deteriorates glucose homeostasis in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:822-830. [PMID: 30953944 DOI: 10.1016/j.envpol.2019.03.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 05/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants that have been shown to be related to the occurrence of type 2 diabetes mellitus (T2DM). Nevertheless, it is necessary to further explore the development of T2DM caused by PCBs and its underlying mechanisms. In the present study, 21-day-old C57BL/6 male mice were orally treated with Aroclor 1254 (0.5, 5, 50 or 500 μg kg-1) once every three days. After exposure for 66 d, the mice showed impaired glucose tolerance, 13% and 14% increased fasting serum insulin levels (FSIL), and 63% and 69% increases of the pancreatic β-cell mass in the 50 and 500 μg kg-1 groups, respectively. After stopping exposure for 90 d, treated mice returned to normoglycemia and normal FSIL. After re-exposure of these recovered mice to Aroclor 1254 for 30 d, fasting plasma glucose showed 15%, 28% and 16% increase in the 5, 50 and 500 μg kg-1 treatments, FSIL exhibited 35%, 27%, 30% and 32% decrease in the 0.5, 5, 50 or 500 μg kg-1 groups respectively, and there was no change in pancreatic β-cell mass. Transcription of the pancreatic insulin gene (Ins2) was significantly down-regulated in the 50 and 500 μg kg-1 groups, while DNA-methylation levels were simultaneously increased in the Ins2 promoter during the course of exposure, recovery and re-exposure. Reduced insulin levels were initially rescued by a compensative increase in β-cell mass. However, β-cell mass eventually failed to make sufficient levels of insulin, resulting in significant increases in fasting blood glucose, and indicating the development of T2DM.
Collapse
Affiliation(s)
- Zhihui Xi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jing Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Bingshui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Liangju Lv
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
30
|
Manea SA, Antonescu ML, Fenyo IM, Raicu M, Simionescu M, Manea A. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes. Redox Biol 2018; 16:332-343. [PMID: 29587244 PMCID: PMC5953221 DOI: 10.1016/j.redox.2018.03.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/02/2018] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Reactive oxygen species (ROS) generated by up-regulated NADPH oxidase (Nox) contribute to structural-functional alterations of the vascular wall in diabetes. Epigenetic mechanisms, such as histone acetylation, emerged as important regulators of gene expression in cardiovascular disorders. Since their role in diabetes is still elusive we hypothesized that histone deacetylase (HDAC)-dependent mechanisms could mediate vascular Nox overexpression in diabetic conditions. Non-diabetic and streptozotocin-induced diabetic C57BL/6J mice were randomized to receive vehicle or suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor. In vitro studies were performed on a human aortic smooth muscle cell (SMC) line. Aortic SMCs typically express Nox1, Nox4, and Nox5 subtypes. HDAC1 and HDAC2 proteins along with Nox1, Nox2, and Nox4 levels were found significantly elevated in the aortas of diabetic mice compared to non-diabetic animals. Treatment of diabetic mice with SAHA mitigated the aortic expression of Nox1, Nox2, and Nox4 subtypes and NADPH-stimulated ROS production. High concentrations of glucose increased HDAC1 and HDAC2 protein levels in cultured SMCs. SAHA significantly reduced the high glucose-induced Nox1/4/5 expression, ROS production, and the formation malondialdehyde-protein adducts in SMCs. Overexpression of HDAC2 up-regulated the Nox1/4/5 gene promoter activities in SMCs. Physical interactions of HDAC1/2 and p300 proteins with Nox1/4/5 promoters were detected at the sites of active transcription. High glucose induced histone H3K27 acetylation enrichment at the promoters of Nox1/4/5 genes in SMCs. The novel data of this study indicate that HDACs mediate vascular Nox up-regulation in diabetes. HDAC inhibition reduces vascular ROS production in experimental diabetes, possibly by a mechanism involving negative regulation of Nox expression.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Mihaela-Loredana Antonescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Ioana Madalina Fenyo
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Monica Raicu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
31
|
Fachrul M, Utomo DH, Parikesit AA. lncRNA-based study of epigenetic regulations in diabetic peripheral neuropathy. In Silico Pharmacol 2018; 6:7. [PMID: 30607320 DOI: 10.1007/s40203-018-0042-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023] Open
Abstract
Diabetes remains one of the most prevalent non-communicable diseases in the world, affecting over 400 million of people worldwide, causing serious complications leading to amputations and even death. Over the years, researchers have found that, in addition to genomic mutations, epigenetic mechanisms also play a role in the development of diabetes-specifically type-2 diabetes. Long noncoding RNAs (lncRNAs) have been linked to mediate epigenetic mechanisms, including those in late-stage diabetes. This study attempts to assess the unexplored topic of how lncRNAs could be used to assess the epigenetic mechanisms present in diabetic peripheral neuropathy (DPN); a serious complication of the disease often leading to amputation. Differential lncRNA expression analysis was done with a dataset containing DPN and healthy patients. Standard and corrected t test, and also LIMMA was applied. Results of this study indicates the usefulness of lncRNAs as an exploratory tool to elucidate the complexity of the epigenetic mechanisms of human DPN.
Collapse
Affiliation(s)
- Muhamad Fachrul
- Bioinformatics Department, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Didik H Utomo
- 2Biology Department, Faculty of Sciences, Brawijaya University, Malang, Indonesia
- Research and Education Center for Bioinformatics, Nusantara Institute for Life Science and Technology, Jakarta, Indonesia
| | - Arli A Parikesit
- Bioinformatics Department, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| |
Collapse
|
32
|
Ding H, Lu WC, Hu JC, Liu YC, Zhang CH, Lian FL, Zhang NX, Meng FW, Luo C, Chen KX. Identification and Characterizations of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Scaffold Hopping- and 2D-Molecular Fingerprint-Based Similarity Search. Molecules 2018; 23:567. [PMID: 29498708 PMCID: PMC6017732 DOI: 10.3390/molecules23030567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
SET7, serving as the only histone methyltransferase that monomethylates 'Lys-4' of histone H3, has been proved to function as a key regulator in diverse biological processes, such as cell proliferation, transcriptional network regulation in embryonic stem cell, cell cycle control, protein stability, heart morphogenesis and development. What's more, SET7 is involved inthe pathogenesis of alopecia aerate, breast cancer, tumor and cancer progression, atherosclerosis in human carotid plaques, chronic renal diseases, diabetes, obesity, ovarian cancer, prostate cancer, hepatocellular carcinoma, and pulmonary fibrosis. Therefore, there is urgent need to develop novel SET7 inhibitors. In this paper, based on DC-S239 which has been previously reported in our group, we employed scaffold hopping- and 2D fingerprint-based similarity searches and identified DC-S285 as the new hit compound targeting SET7 (IC50 = 9.3 μM). Both radioactive tracing and NMR experiments validated the interactions between DC-S285 and SET7 followed by the second-round similarity search leading to the identification ofDC-S303 with the IC50 value of 1.1 μM. In cellular level, DC-S285 retarded tumor cell proliferation and showed selectivity against MCF7 (IC50 = 21.4 μM), Jurkat (IC50 = 2.2 μM), THP1 (IC50 = 3.5 μM), U937 (IC50 = 3.9 μM) cell lines. Docking calculations suggested that DC-S303 share similar binding mode with the parent compoundDC-S239. What's more, it presented good selectivity against other epigenetic targets, including SETD1B, SETD8, G9a, SMYD2 and EZH2. DC-S303 can serve as a drug-like scaffold which may need further optimization for drug development, and can be used as chemical probe to help the community to better understand the SET7 biology.
Collapse
Affiliation(s)
- Hong Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Wen Chao Lu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Jun Chi Hu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Yu-Chih Liu
- Shanghai ChemPartner Co., Ltd., #5 Building, 998 Halei Road, Shanghai 201203, China.
| | - Chen Hua Zhang
- Shanghai ChemPartner Co., Ltd., #5 Building, 998 Halei Road, Shanghai 201203, China.
| | - Fu Lin Lian
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Nai Xia Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Fan Wang Meng
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Cheng Luo
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Kai Xian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
33
|
Venkat S, Nannapaneni DT, Gregory C, Gan Q, McIntosh M, Fan C. Genetically encoding thioacetyl-lysine as a non-deacetylatable analog of lysine acetylation in Escherichia coli. FEBS Open Bio 2017; 7:1805-1814. [PMID: 29123988 PMCID: PMC5666399 DOI: 10.1002/2211-5463.12320] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 01/08/2023] Open
Abstract
Reversible lysine acetylation is one of the most widely distributed post-translational modifications; it is involved in a variety of biological processes and can be found in all three domains of life. Acetyltransferases and deacetylases work coordinately to control levels of protein acetylation. In this work, we applied the genetic code expansion strategy to site-specifically incorporate Nε-thioacetyl-l-lysine (TAcK) as an analog of Nε-acetyl-l-lysine (AcK) into green fluorescent protein and malate dehydrogenase in Escherichia coli. We showed that TAcK could serve as an ideal functional mimic for AcK. It could also resist the bacterial sirtuin-type deacetylase CobB. Thus, genetic incorporation of TAcK as a non-deacetylatable analog of AcK into proteins will facilitate in vivo studies of protein acetylation.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleARUSA
| | | | - Caroline Gregory
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| | - Qinglei Gan
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleARUSA
| | - Matt McIntosh
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleARUSA
| | - Chenguang Fan
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
34
|
Abstract
In mammals, caloric restriction consistently results in extended lifespan. Epigenetic information encoded by DNA methylation is tightly regulated, but shows a striking drift associated with age that includes both gains and losses of DNA methylation at various sites. Here, we report that epigenetic drift is conserved across species and the rate of drift correlates with lifespan when comparing mice, rhesus monkeys, and humans. Twenty-two to 30-year-old rhesus monkeys exposed to 30% caloric restriction since 7–14 years of age showed attenuation of age-related methylation drift compared to ad libitum-fed controls such that their blood methylation age appeared 7 years younger than their chronologic age. Even more pronounced effects were seen in 2.7–3.2-year-old mice exposed to 40% caloric restriction starting at 0.3 years of age. The effects of caloric restriction on DNA methylation were detectable across different tissues and correlated with gene expression. We propose that epigenetic drift is a determinant of lifespan in mammals. Caloric restriction has been shown to increase lifespan in mammals. Here, the authors provide evidence that age-related methylation drift correlates with lifespan and that caloric restriction in mice and rhesus monkeys results in attenuation of age-related methylation drift.
Collapse
|
35
|
Hodjat M, Rahmani S, Khan F, Niaz K, Navaei–Nigjeh M, Mohammadi Nejad S, Abdollahi M. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view. Arch Toxicol 2017; 91:2577-2597. [DOI: 10.1007/s00204-017-1979-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 01/12/2023]
|
36
|
Venkat S, Gregory C, Sturges J, Gan Q, Fan C. Studying the Lysine Acetylation of Malate Dehydrogenase. J Mol Biol 2017; 429:1396-1405. [PMID: 28366830 PMCID: PMC5479488 DOI: 10.1016/j.jmb.2017.03.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Abstract
Protein acetylation plays important roles in many biological processes. Malate dehydrogenase (MDH), a key enzyme in the tricarboxylic acid cycle, has been identified to be acetylated in bacteria by proteomic studies, but no further characterization has been reported. One challenge for studying protein acetylation is to get purely acetylated proteins at specific positions. Here, we applied the genetic code expansion strategy to site-specifically incorporate Nε-acetyllysine into MDH. The acetylation of lysine residues in MDH could enhance its enzyme activity. The Escherichia coli deacetylase CobB could deacetylate acetylated MDH, while the E. coli acetyltransferase YfiQ cannot acetylate MDH efficiently. Our results also demonstrated that acetyl-CoA or acetyl-phosphate could acetylate MDH chemically in vitro. Furthermore, the acetylation level of MDH was shown to be affected by carbon sources in the growth medium.
Collapse
Affiliation(s)
- Sumana Venkat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Caroline Gregory
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jourdan Sturges
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
37
|
Testa R, Bonfigli AR, Prattichizzo F, La Sala L, De Nigris V, Ceriello A. The "Metabolic Memory" Theory and the Early Treatment of Hyperglycemia in Prevention of Diabetic Complications. Nutrients 2017; 9:nu9050437. [PMID: 28452927 PMCID: PMC5452167 DOI: 10.3390/nu9050437] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Several epidemiological and prospective studies suggest that an early intensive control of hyperglycaemia is able to decrease the risk of diabetic micro- and macro-vascular complications. A growing body of experimental evidence supports the concept that the risk for diabetes complications may be linked to oxidative stress, non-enzymatic glycation of proteins, epigenetic changes, and chronic inflammation, laying the foundation for the “metabolic memory” theory. From a clinical point of view, this theory supports the need for a very early aggressive treatment, with the goal of normalizing metabolic control as soon as possible. It may also prove beneficial to introduce therapeutic agents that are able to reduce reactive species and glycation, in addition to presenting better control of glucose levels in patients with diabetes, in order to minimize long-term diabetes complications. In this review, we evaluate the effect of glucose intake and metabolism in the light of this theory.
Collapse
Affiliation(s)
- Roberto Testa
- Experimental Models in Clinical Pathology, INRCA-IRCCS National Institute, Ancona I-60127, Italy.
| | - Anna Rita Bonfigli
- Scientific Direction, INRCA-IRCCS National Institute, Ancona I-60127, Italy.
| | - Francesco Prattichizzo
- Department of Cardiovascular and Metabolic Diseases, IRCCS Multimedica, Sesto San Giovanni I-20099, Italy.
| | - Lucia La Sala
- Department of Cardiovascular and Metabolic Diseases, IRCCS Multimedica, Sesto San Giovanni I-20099, Italy.
| | - Valeria De Nigris
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Rosselló, 149-153, Barcelona 08036, Spain.
| | - Antonio Ceriello
- Department of Cardiovascular and Metabolic Diseases, IRCCS Multimedica, Sesto San Giovanni I-20099, Italy.
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Rosselló, 149-153, Barcelona 08036, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona 08036, Spain.
| |
Collapse
|
38
|
Gold nanoparticles, radiations and the immune system: Current insights into the physical mechanisms and the biological interactions of this new alliance towards cancer therapy. Pharmacol Ther 2017; 178:1-17. [PMID: 28322970 DOI: 10.1016/j.pharmthera.2017.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considering both cancer's serious impact on public health and the side effects of cancer treatments, strategies towards targeted cancer therapy have lately gained considerable interest. Employment of gold nanoparticles (GNPs), in combination with ionizing and non-ionizing radiations, has been shown to improve the effect of radiation treatment significantly. GNPs, as high-Z particles, possess the ability to absorb ionizing radiation and enhance the deposited dose within the targeted tumors. Furthermore, they can convert non-ionizing radiation into heat, due to plasmon resonance, leading to hyperthermic damage to cancer cells. These observations, also supported by experimental evidence both in vitro and in vivo systems, reveal the capacity of GNPs to act as radiosensitizers for different types of radiation. In addition, they can be chemically modified to selectively target tumors, which renders them suitable for future cancer treatment therapies. Herein, a current review of the latest data on the physical properties of GNPs and their effects on GNP circulation time, biodistribution and clearance, as well as their interactions with plasma proteins and the immune system, is presented. Emphasis is also given with an in depth discussion on the underlying physical and biological mechanisms of radiosensitization. Furthermore, simulation data are provided on the use of GNPs in photothermal therapy upon non-ionizing laser irradiation treatment. Finally, the results obtained from the application of GNPs at clinical trials and pre-clinical experiments in vivo are reported.
Collapse
|
39
|
Zhang J, Chen Z, Zhou Z, Yang P, Wang CY. Sumoylation Modulates the Susceptibility to Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:299-322. [DOI: 10.1007/978-3-319-50044-7_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Cave JW, Langley B, Ratan RR. Nature and nurture meet at the epigenome to modulate disorders of the nervous system. Neurosci Lett 2016; 625:1-3. [PMID: 27288562 DOI: 10.1016/j.neulet.2016.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- John W Cave
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States; The Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, United States.
| | - Brett Langley
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States; The Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, United States
| | - Rajiv R Ratan
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States; The Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, United States
| |
Collapse
|