1
|
Krengel M, Sullivan K, Zundel CG, Keating D, Orlinsky L, Bradford W, Stone C, Thompson TA, Heeren T, White RF. Toxicant Exposures and Health Symptoms in Military Pesticide Applicators From the 1991 Gulf War. J Occup Environ Med 2024; 66:e584-e592. [PMID: 39190332 DOI: 10.1097/jom.0000000000003215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
OBJECTIVE The chronic impact of acetylcholinesterase inhibitors and other toxicants on Gulf War (GW) veterans' health symptoms is unclear. METHODS Building on reports of adverse neuropsychological outcomes in GW pesticide applicators exposed to pesticides and pyridostigmine bromide, we now report on health symptoms in this group. RESULTS In adjusted analyses, applicators with high exposures/impact to pesticides reported significantly more symptoms (18/34 symptoms) than applicators with lower exposures/impact and were more likely to meet modified Kansas and CDC Gulf War Illness criteria. The high pyridostigmine bromide exposure/impact group was 3 times more likely to report irregular heart rates. With regard to specific pesticide types, fly baits, pest strips, and delousers were the most associated with increased health symptom reporting. CONCLUSIONS These results suggest that GW veterans with high acetylcholinesterase inhibitor and organochlorine exposures are most at risk for chronic health symptoms.
Collapse
Affiliation(s)
- Maxine Krengel
- VA Boston Healthcare System, Boston, Massachusetts (M.K., C.G.Z., L.O.); Department of Neurology, Boston University School of Medicine, Boston, Massachusetts (M.K., R.F.W.); Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (K.S., D.K., L.O., R.F.W.); Behavioral Neurosciences Program, Boston University School of Medicine, Boston, Massachusetts (C.G.Z., R.F.W.); Parsons Corporation (formerly), Syracuse, New York (W.B.); Reliant Medical Group, Worcester, Massachusetts (C.S.); Ibis Reproductive Health, Cambridge, Massachusetts (T.-A.T.); and Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts (T.H.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Ramirez-Sanchez I, Navarrete-Yañez V, Espinosa-Raya J, Rubio-Gayosso I, Palma-Flores C, Mendoza-Lorenzo P, Ordoñez-Razo R, Estrada-Mena J, Ceballos G, Villarreal F. Neurological Restorative Effects of (-)-Epicatechin in a Model of Gulf War Illness. J Med Food 2024; 27:1070-1079. [PMID: 39321070 DOI: 10.1089/jmf.2023.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Gulf War Illness (GWI) afflicts US military personnel who served in the Persian Gulf War. Suspect causal agents include exposure to pyridostigmine (PB), permethrin (PM) and N,N-diethyl-m-toluamide (DEET). Prominent symptoms include cognitive deficits, such as memory impairment. In aging animal models, we have documented the beneficial effect of the flavanol (-)-epicatechin (Epi) on hippocampus structure and related function. Using a rat model of GWI, we examined the effects of Epi on hippocampus inflammation, oxidative stress, mitochondrial dysfunction, cell death/survival pathways, and memory endpoints. Male Wistar rats underwent 3 weeks of exposure to either vehicles or DEET, PM, PB, and stress. Subgroups of GWI rats were then allocated to receive orally 15 days of either water (vehicle) or 1 mg/kg/day of Epi treatment. Object recognition tasks were performed to assess memory. Hippocampus samples were analyzed. Epi treatment yields significant improvements in short- and long-term memory versus GWI rats. Hippocampus oxidative stress and pro-inflammatory cytokine levels showed significant increases with GWI that were largely normalized with Epi becoming comparable to controls. Significant increases in markers of hippocampus neuroinflammation and cell death were noted with GWI and were also largely reduced with Epi. Neuronal survival signaling pathways were adversely impacted by GWI and were partially or fully restored by Epi. Markers of mitochondrial function were adversely impacted by GWI and were fully restored by Epi. In conclusion, in an animal model of GWI, Epi beneficially impacts recognized markers of hippocampus neuroinflammation, oxidative stress, cell survival, neurotoxicity and mitochondrial function leading to improved memory.
Collapse
Affiliation(s)
- Israel Ramirez-Sanchez
- School of Medicine, UCSD, La Jolla, California, USA
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Ciudad de Mexico, Mexico
| | - Viridiana Navarrete-Yañez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Ciudad de Mexico, Mexico
| | - Judith Espinosa-Raya
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Ciudad de Mexico, Mexico
| | - Ivan Rubio-Gayosso
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Ciudad de Mexico, Mexico
| | - Carlos Palma-Flores
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Ciudad de Mexico, Mexico
| | - Patricia Mendoza-Lorenzo
- Division Academica de Ciencias Basicas, Unidad Chontalpa, Universidad Juarez Autonoma de Tabasco, Villahermosa, Mexico
| | - Rosa Ordoñez-Razo
- Unidad de Investigacion Medica en Genetica Humana, Hosital de Pediatria, Centro Médico Nacional Siglo XXI, Ciudad de Mexico, México
| | | | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Ciudad de Mexico, Mexico
| | - Francisco Villarreal
- School of Medicine, UCSD, La Jolla, California, USA
- VA San Diego Health Care, San Diego, California, USA
| |
Collapse
|
3
|
Ravichandar R, Gadelkarim F, Muthaiah R, Glynos N, Murlanova K, Rai NK, Saraswat D, Polanco JJ, Dutta R, Pal D, Sim FJ. Dysregulated Cholinergic Signaling Inhibits Oligodendrocyte Maturation Following Demyelination. J Neurosci 2024; 44:e0051242024. [PMID: 38749703 PMCID: PMC11236584 DOI: 10.1523/jneurosci.0051-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand-mediated activation hindering myelin repair. Following chronic cuprizone (CPZ)-induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase-/butyrylcholinesterase (BChE)-mediated degradation. Using choline acetyltransferase (ChAT) reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and CPZ demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin-induced demyelination. In CPZ-demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following CPZ demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand-mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand-mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.
Collapse
Affiliation(s)
- Roopa Ravichandar
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Farah Gadelkarim
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Rupadevi Muthaiah
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Nicolas Glynos
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Kateryna Murlanova
- Department of Physiology and Biophysics, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Nagendra K Rai
- Department of Neuroscience, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
| | - Darpan Saraswat
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Jessie J Polanco
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| | - Ranjan Dutta
- Department of Neuroscience, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Fraser J Sim
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203
| |
Collapse
|
4
|
Moghe M, Kim SS, Guan M, Rait A, Pirollo KF, Harford JB, Chang EH. scL-2PAM: A Novel Countermeasure That Ameliorates Neuroinflammation and Neuronal Losses in Mice Exposed to an Anticholinesterase Organophosphate. Int J Mol Sci 2024; 25:7539. [PMID: 39062781 PMCID: PMC11276659 DOI: 10.3390/ijms25147539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Due to their inhibition of acetylcholinesterase, organophosphates are among the most toxic of chemicals. Pralidoxime (a.k.a 2-PAM) is the only acetylcholinesterase reactivator approved in the U.S., but 2-PAM only poorly traverses the blood-brain barrier. Previously, we have demonstrated that scL-2PAM, a nanoformulation designed to enter the brain via receptor-mediated transcytosis, is superior to unencapsulated 2-PAM for reactivating brain acetylcholinesterase, ameliorating cholinergic crisis, and improving survival rates for paraoxon-exposed mice. Here, we employ histology and transcriptome analyses to assess the ability of scL-2PAM to prevent neurological sequelae including microglial activation, expression of inflammatory cytokines, and ultimately loss of neurons in mice surviving paraoxon exposures. Levels of the mRNA encoding chemokine ligand 2 (CCL2) were significantly upregulated after paraoxon exposures, with CCL2 mRNA levels in the brain correlating well with the intensity and duration of cholinergic symptoms. Our nanoformulation of 2-PAM was found to be superior to unencapsulated 2-PAM in reducing the levels of the CCL2 transcript. Moreover, brain histology revealed that scL-2PAM was more effective than unencapsulated 2-PAM in preventing microglial activation and the subsequent loss of neurons. Thus, scL-2PAM appears to be a new and improved countermeasure for reducing neuroinflammation and mitigating brain damage in survivors of organophosphate exposures.
Collapse
Affiliation(s)
- Manish Moghe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | - Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA;
| | - Miaoyin Guan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | - Antonina Rait
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | - Kathleen F. Pirollo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | | | - Esther H. Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
5
|
Kovarik Z, Moshitzky G, Maček Hrvat N, Soreq H. Recent advances in cholinergic mechanisms as reactions to toxicity, stress, and neuroimmune insults. J Neurochem 2024; 168:355-369. [PMID: 37429600 DOI: 10.1111/jnc.15887] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
This review presents recent studies of the chemical and molecular regulators of acetylcholine (ACh) signaling and the complexity of the small molecule and RNA regulators of those mechanisms that control cholinergic functioning in health and disease. The underlying structural, neurochemical, and transcriptomic concepts, including basic and translational research and clinical studies, shed new light on how these processes inter-change under acute states, age, sex, and COVID-19 infection; all of which modulate ACh-mediated processes and inflammation in women and men and under diverse stresses. The aspect of organophosphorus (OP) compound toxicity is discussed based on the view that despite numerous studies, acetylcholinesterase (AChE) is still a vulnerable target in OP poisoning because of a lack of efficient treatment and the limitations of oxime-assisted reactivation of inhibited AChE. The over-arching purpose of this review is thus to discuss mechanisms of cholinergic signaling dysfunction caused by OP pesticides, OP nerve agents, and anti-cholinergic medications; and to highlight new therapeutic strategies to combat both the acute and chronic effects of these chemicals on the cholinergic and neuroimmune systems. Furthermore, OP toxicity was examined in view of cholinesterase inhibition and beyond in order to highlight improved small molecules and RNA therapeutic strategies and assess their predicted pitfalls to reverse the acute toxicity and long-term deleterious effects of OPs.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Gilli Moshitzky
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Golomb BA, Sanchez Baez R, Schilling JM, Dhanani M, Fannon MJ, Berg BK, Miller BJ, Taub PR, Patel HH. Mitochondrial impairment but not peripheral inflammation predicts greater Gulf War illness severity. Sci Rep 2023; 13:10739. [PMID: 37438460 DOI: 10.1038/s41598-023-35896-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/25/2023] [Indexed: 07/14/2023] Open
Abstract
Gulf War illness (GWI) is an important exemplar of environmentally-triggered chronic multisymptom illness, and a potential model for accelerated aging. Inflammation is the main hypothesized mechanism for GWI, with mitochondrial impairment also proposed. No study has directly assessed mitochondrial respiratory chain function (MRCF) on muscle biopsy in veterans with GWI (VGWI). We recruited 42 participants, half VGWI, with biopsy material successfully secured in 36. Impaired MRCF indexed by complex I and II oxidative phosphorylation with glucose as a fuel source (CI&CIIOXPHOS) related significantly or borderline significantly in the predicted direction to 17 of 20 symptoms in the combined sample. Lower CI&CIIOXPHOS significantly predicted GWI severity in the combined sample and in VGWI separately, with or without adjustment for hsCRP. Higher-hsCRP (peripheral inflammation) related strongly to lower-MRCF (particularly fatty acid oxidation (FAO) indices) in VGWI, but not in controls. Despite this, whereas greater MRCF-impairment predicted greater GWI symptoms and severity, greater inflammation did not. Surprisingly, adjusted for MRCF, higher hsCRP significantly predicted lesser symptom severity in VGWI selectively. Findings comport with a hypothesis in which the increased inflammation observed in GWI is driven by FAO-defect-induced mitochondrial apoptosis. In conclusion, impaired mitochondrial function-but not peripheral inflammation-predicts greater GWI symptoms and severity.
Collapse
Affiliation(s)
- Beatrice A Golomb
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA.
| | - Roel Sanchez Baez
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA
- San Ysidro Health Center, San Diego, CA, 92114, USA
| | - Jan M Schilling
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
| | - Mehul Dhanani
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
- Avidity Biosciences, San Diego, CA, 92121, USA
| | - McKenzie J Fannon
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
| | - Brinton K Berg
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA
| | - Bruce J Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive #0995, La Jolla, CA, 92093-0995, USA
| | - Pam R Taub
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, San Diego, CA, 92161, USA
| |
Collapse
|
7
|
Cruz-Hernandez A, Roney A, Goswami DG, Tewari-Singh N, Brown JM. A review of chemical warfare agents linked to respiratory and neurological effects experienced in Gulf War Illness. Inhal Toxicol 2022; 34:412-432. [PMID: 36394251 PMCID: PMC9832991 DOI: 10.1080/08958378.2022.2147257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Over 40% of veterans from the Persian Gulf War (GW) (1990-1991) suffer from Gulf War Illness (GWI). Thirty years since the GW, the exposure and mechanism contributing to GWI remain unclear. One possible exposure that has been attributed to GWI are chemical warfare agents (CWAs). While there are treatments for isolated symptoms of GWI, the number of respiratory and cognitive/neurological issues continues to rise with minimum treatment options. This issue does not only affect veterans of the GW, importantly these chronic multisymptom illnesses (CMIs) are also growing amongst veterans who have served in the Afghanistan-Iraq war. What both wars have in common are their regions and inhaled exposures. In this review, we will describe the CWA exposures, such as sarin, cyclosarin, and mustard gas in both wars and discuss the various respiratory and neurocognitive issues experienced by veterans. We will bridge the respiratory and neurological symptoms experienced to the various potential mechanisms described for each CWA provided with the most up-to-date models and hypotheses.
Collapse
Affiliation(s)
- Angela Cruz-Hernandez
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew Roney
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Dinesh G Goswami
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Haley RW, Kramer G, Xiao J, Dever JA, Teiber JF. Evaluation of a Gene-Environment Interaction of PON1 and Low-Level Nerve Agent Exposure with Gulf War Illness: A Prevalence Case-Control Study Drawn from the U.S. Military Health Survey's National Population Sample. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:57001. [PMID: 35543525 PMCID: PMC9093163 DOI: 10.1289/ehp9009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Consensus on the etiology of 1991 Gulf War illness (GWI) has been limited by lack of objective individual-level environmental exposure information and assumed recall bias. OBJECTIVES We investigated a prestated hypothesis of the association of GWI with a gene-environment (GxE) interaction of the paraoxonase-1 (PON1) Q192R polymorphism and low-level nerve agent exposure. METHODS A prevalence sample of 508 GWI cases and 508 nonpaired controls was drawn from the 8,020 participants in the U.S. Military Health Survey, a representative sample survey of military veterans who served during the Gulf War. The PON1 Q192R genotype was measured by real-time polymerase chain reaction (RT-PCR), and the serum Q and R isoenzyme activity levels were measured with PON1-specific substrates. Low-level nerve agent exposure was estimated by survey questions on having heard nerve agent alarms during deployment. RESULTS The GxE interaction of the Q192R genotype and hearing alarms was strongly associated with GWI on both the multiplicative [prevalence odds ratio (POR) of the interaction=3.41; 95% confidence interval (CI): 1.20, 9.72] and additive (synergy index=4.71; 95% CI: 1.82, 12.19) scales, adjusted for measured confounders. The Q192R genotype and the alarms variable were independent (adjusted POR in the controls=1.18; 95% CI: 0.81, 1.73; p=0.35), and the associations of GWI with the number of R alleles and quartiles of Q isoenzyme were monotonic. The adjusted relative excess risk due to interaction (aRERI) was 7.69 (95% CI: 2.71, 19.13). Substituting Q isoenzyme activity for the genotype in the analyses corroborated the findings. Sensitivity analyses suggested that recall bias had forced the estimate of the GxE interaction toward the null and that unmeasured confounding is unlikely to account for the findings. We found a GxE interaction involving the Q-correlated PON1 diazoxonase activity and a weak possible GxE involving the Khamisiyah plume model, but none involving the PON1 R isoenzyme activity, arylesterase activity, paraoxonase activity, butyrylcholinesterase genotypes or enzyme activity, or pyridostigmine. DISCUSSION Given gene-environment independence and monotonicity, the unconfounded aRERI>0 supports a mechanistic interaction. Together with the direct evidence of exposure to fallout from bombing of chemical weapon storage facilities and the extensive toxicologic evidence of biochemical protection from organophosphates by the Q isoenzyme, the findings provide strong evidence for an etiologic role of low-level nerve agent in GWI. https://doi.org/10.1289/EHP9009.
Collapse
Affiliation(s)
- Robert W. Haley
- Division of Epidemiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gerald Kramer
- Division of Epidemiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Junhui Xiao
- Division of Epidemiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jill A. Dever
- RTI International, Washington, District of Columbia, USA
| | - John F. Teiber
- Division of Epidemiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Iannucci J, Nizamutdinov D, Shapiro LA. Neurogenesis and chronic neurobehavioral outcomes are partially improved by vagus nerve stimulation in a mouse model of Gulf War Illness. Neurotoxicology 2022; 90:205-215. [DOI: 10.1016/j.neuro.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/22/2022]
|
10
|
Coller JK, Tuke J, Wain TJ, Quinn E, Steele L, Abreu M, Aenlle K, Klimas N, Sullivan K. Associations of Immune Genetic Variability with Gulf War Illness in 1990-1991 Gulf War Veterans from the Gulf War Illness Consortium (GWIC) Multisite Case-Control Study. Brain Sci 2021; 11:brainsci11111410. [PMID: 34827409 PMCID: PMC8615505 DOI: 10.3390/brainsci11111410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Gulf War illness (GWI) encompasses a constellation of persistent debilitating symptoms associated with significant changes in central nervous system (CNS) and immune functioning. Currently, there is no validated biomarker for GWI risk susceptibility. Given the impact of immune responses linked to GWI symptomology, genetic variability that causes persistent inflammatory/immune alterations may be key. This Boston University-based Gulf War Illness Consortium (GWIC) study investigated the impact of single nucleotide polymorphisms (SNPs) in variants of immune and pain genetic markers IL1B, IL2, IL6, IL6R, IL10, TNF, TGF, TLR2, TLR4, MD2, MYD88, BDNF, CRP, ICE, COMT and OPRM1 on GWI occurrence in a Caucasian subset of Gulf War (GW) veterans with (cases, n = 170) and without (controls, n = 34) GWI. Logistic regression modeling created a prediction model of GWI risk that associated genetic variability in TGF (rs1800469, p = 0.009), IL6R (rs8192284, p = 0.004) and TLR4 (rs4986791, p = 0.013) with GWI occurrence. This prediction model was specific and sensitive, with a receiver operator characteristic area under the curve of 71.4%. This is the first report of immune genetic variability being predictive of GWI and warrants validation in larger independent cohorts. Future reports will present interactions of these genetic risk factors with other characteristics of GW service.
Collapse
Affiliation(s)
- Janet K. Coller
- Discipline of Pharmacology, School of Biomedicine, University of Adelaide, Adelaide 5005, South Australia, Australia;
- Correspondence:
| | - Jonathan Tuke
- School of Mathematical Sciences, University of Adelaide, Adelaide 5005, South Australia, Australia;
| | - Taylor J. Wain
- Discipline of Pharmacology, School of Biomedicine, University of Adelaide, Adelaide 5005, South Australia, Australia;
| | - Emily Quinn
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA 02118, USA;
| | - Lea Steele
- Veterans Health Research Program, Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Maria Abreu
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (M.A.); (K.A.); (N.K.)
- Department of Veterans Affairs, Research Service, Miami VA Healthcare System, Miami, FL 33125, USA
| | - Kristina Aenlle
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (M.A.); (K.A.); (N.K.)
- Department of Veterans Affairs, Research Service, Miami VA Healthcare System, Miami, FL 33125, USA
| | - Nancy Klimas
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (M.A.); (K.A.); (N.K.)
- Department of Veterans Affairs, Miami VA Healthcare System Geriatric Research Education and Clinical Center Healthcare System, Miami, FL 33125, USA
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA;
| |
Collapse
|
11
|
Carpenter JM, Brown KA, Diaz AN, Dockman RL, Benbow RA, Harn DA, Norberg T, Wagner JJ, Filipov NM. Delayed treatment with the immunotherapeutic LNFPIII ameliorates multiple neurological deficits in a pesticide-nerve agent prophylactic mouse model of Gulf War Illness. Neurotoxicol Teratol 2021; 87:107012. [PMID: 34256162 DOI: 10.1016/j.ntt.2021.107012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Residual effects of the 1990-1991 Gulf War (GW) still plague veterans 30 years later as Gulf War Illness (GWI). Thought to stem mostly from deployment-related chemical overexposures, GWI is a disease with multiple neurological symptoms with likely immunological underpinnings. Currently, GWI remains untreatable, and the long-term neurological disease manifestation is not characterized fully. The present study sought to expand and evaluate the long-term implications of prior GW chemicals exposure on neurological function 6-8 months post GWI-like symptomatology induction. Additionally, the beneficial effects of delayed treatment with the glycan immunotherapeutic lacto-N-fucopentaose III (LNFPIII) were evaluated. Male C57BL/6J mice underwent a 10-day combinational exposure (i.p.) to GW chemicals, the nerve agent prophylactic pyridostigmine bromide (PB) and the insecticide permethrin (PM; 0.7 and 200 mg/kg, respectively). Beginning 4 months after PB/PM exposure, a subset of the mice were treated twice a week until study completion with LNFPIII. Evaluation of cognition/memory, motor function, and mood was performed beginning 1 month after LNFPIII treatment initiation. Prior exposure to PB/PM produced multiple locomotor, neuromuscular, and sensorimotor deficits across several motor tests. Subtle anxiety-like behavior was also present in PB/PM mice in mood tests. Further, PB/PM-exposed mice learned at a slower rate, mostly during early phases of the learning and memory tests employed. LNFPIII treatment restored or improved many of these behaviors, particularly in motor and cognition/memory domains. Electrophysiology data collected from hippocampal slices 8 months post PB/PM exposure revealed modest aberrations in basal synaptic transmission and long-term potentiation in the dorsal or ventral hippocampus that were improved by LNFPIII treatment. Immunohistochemical analysis of tyrosine hydroxylase (TH), a dopaminergic marker, did not detect major PB/PM effects along the nigrostriatal pathway, but LNFPIII increased striatal TH. Additionally, neuroinflammatory cells were increased in PB/PM mice, an effect reduced by LNFPIII. Collectively, long-term neurobehavioral and neurobiological dysfunction associated with prior PB/PM exposure was characterized; delayed LNFPIII treatment provided multiple behavioral and biological beneficial effects in the context of GWI, highlighting its potential as a GWI therapeutic.
Collapse
Affiliation(s)
- Jessica M Carpenter
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Kyle A Brown
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
| | - Alexa N Diaz
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
| | - Rachel L Dockman
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Robert A Benbow
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
| | - Donald A Harn
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States; Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Thomas Norberg
- Department of Chemistry, University of Uppsala, Uppsala, Sweden
| | - John J Wagner
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Neuroscience Program, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Neuroscience Program, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.
| |
Collapse
|
12
|
Steele L, Klimas N, Krengel M, Quinn E, Toomey R, Little D, Abreu M, Aenlle K, Killiany R, Koo BB, Janulewicz P, Heeren T, Clark AN, Ajama J, Cirillo J, Buentello G, Lerma V, Coller JK, Sullivan K. Brain-Immune Interactions as the Basis of Gulf War Illness: Clinical Assessment and Deployment Profile of 1990-1991 Gulf War Veterans in the Gulf War Illness Consortium (GWIC) Multisite Case-Control Study. Brain Sci 2021; 11:brainsci11091132. [PMID: 34573153 PMCID: PMC8467437 DOI: 10.3390/brainsci11091132] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
The Boston University-based Gulf War Illness Consortium (GWIC) is a multidisciplinary initiative developed to provide detailed understanding of brain and immune alterations that underlie Gulf War illness (GWI), the persistent multisymptom disorder associated with military service in the 1990–1991 Gulf War. The core GWIC case-control clinical study conducted in-depth brain and immune evaluation of 269 Gulf War veterans (223 GWI cases, 46 controls) at three U.S. sites that included clinical assessments, brain imaging, neuropsychological testing, and analyses of a broad range of immune and immunogenetic parameters. GWI cases were similar to controls on most demographic, military, and deployment characteristics although on average were two years younger, with a higher proportion of enlisted personnel vs. officers. Results of physical evaluation and routine clinical lab tests were largely normal, with few differences between GWI cases and healthy controls. However, veterans with GWI scored significantly worse than controls on standardized assessments of general health, pain, fatigue, and sleep quality and had higher rates of diagnosed conditions that included hypertension, respiratory and sinus conditions, gastrointestinal conditions, and current or lifetime depression and post-traumatic stress disorder. Among multiple deployment experiences/exposures reported by veterans, multivariable logistic regression identified just two significant GWI risk factors: extended use of skin pesticides in theater (adjusted OR = 3.25, p = 0.005) and experiencing mild traumatic brain injury during deployment (OR = 7.39, p = 0.009). Gulf War experiences associated with intense stress or trauma (e.g., participation in ground combat) were not associated with GWI. Data and samples from the GWIC project are now stored in a repository for use by GWI researchers. Future reports will present detailed findings on brain structure and function, immune function, and association of neuroimmune measures with characteristics of GWI and Gulf War service.
Collapse
Affiliation(s)
- Lea Steele
- Veterans Health Research Program, Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA; (G.B.); (V.L.)
- Correspondence: (L.S.); (K.S.)
| | - Nancy Klimas
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (N.K.); (M.A.); (K.A.)
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA
| | - Maxine Krengel
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Emily Quinn
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; (E.Q.); (T.H.)
| | - Rosemary Toomey
- Department of Psychological and Brain Sciences, Boston University College of Arts and Sciences, Boston, MA 02215, USA;
| | - Deborah Little
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Maria Abreu
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (N.K.); (M.A.); (K.A.)
| | - Kristina Aenlle
- Institute for Neuroimmune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (N.K.); (M.A.); (K.A.)
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA
| | - Ronald Killiany
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (R.K.); (B.-B.K.); (P.J.); (J.A.); (J.C.)
| | - Bang-Bon Koo
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (R.K.); (B.-B.K.); (P.J.); (J.A.); (J.C.)
| | - Patricia Janulewicz
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (R.K.); (B.-B.K.); (P.J.); (J.A.); (J.C.)
| | - Timothy Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; (E.Q.); (T.H.)
| | - Allison N. Clark
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Joy Ajama
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (R.K.); (B.-B.K.); (P.J.); (J.A.); (J.C.)
| | - Joanna Cirillo
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (R.K.); (B.-B.K.); (P.J.); (J.A.); (J.C.)
| | - Gerardo Buentello
- Veterans Health Research Program, Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA; (G.B.); (V.L.)
| | - Vanesa Lerma
- Veterans Health Research Program, Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA; (G.B.); (V.L.)
| | - Janet K. Coller
- Discipline of Pharmacology, School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (R.K.); (B.-B.K.); (P.J.); (J.A.); (J.C.)
- Correspondence: (L.S.); (K.S.)
| |
Collapse
|
13
|
Geretto M, Ferrari M, De Angelis R, Crociata F, Sebastiani N, Pulliero A, Au W, Izzotti A. Occupational Exposures and Environmental Health Hazards of Military Personnel. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5395. [PMID: 34070145 PMCID: PMC8158372 DOI: 10.3390/ijerph18105395] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Military personnel are frequently exposed to environmental pollutants that can cause a variety of diseases. METHODS This review analyzed publications regarding epidemiological and biomonitoring studies on occupationally-exposed military personnel. RESULTS The exposures include sulfur mustard, organ chlorines, combustion products, fuel vapors, and ionizing and exciting radiations. Important factors to be considered are the lengths and intensities of exposures, its proximity to the sources of environmental pollutants, as well as confounding factors (cigarette smoke, diet, photo-type, healthy warrior effect, etc.). Assessment of environmental and individual exposures to pollutants is crucial, although often omitted, because soldiers have often been evaluated based on reported health problems rather than on excessive exposure to pollutants. Biomarkers of exposures and effects are tools to explore relationships between exposures and diseases in military personnel. Another observation from this review is a major problem from the lack of suitable control groups. CONCLUSIONS This review indicates that only studies which analyzed epidemiological and molecular biomarkers in both exposed and control groups would provide evidence-based conclusions on exposure and disease risk in military personnel.
Collapse
Affiliation(s)
- Marta Geretto
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Marco Ferrari
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Roberta De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Filippo Crociata
- General Inspectorate of Military Health, 00184 Rome, Italy; (F.C.); (N.S.)
| | - Nicola Sebastiani
- General Inspectorate of Military Health, 00184 Rome, Italy; (F.C.); (N.S.)
| | | | - William Au
- Faculty of Medicine, Pharmacy, Science and Technology University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
14
|
The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone, ameliorates neurofunctional and neuroinflammatory abnormalities in a rat model of Gulf War Illness. PLoS One 2020; 15:e0242427. [PMID: 33186383 PMCID: PMC7665704 DOI: 10.1371/journal.pone.0242427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Gulf War (GW) Illness (GWI) is a debilitating condition with a complex constellation of immune, endocrine and neurological symptoms, including cognitive impairment, anxiety and depression. We studied a novel model of GWI based on 3 known common GW exposures (GWE): (i) intranasal lipopolysaccharide, to which personnel were exposed during desert sand storms; (ii) pyridostigmine bromide, used as prophylaxis against chemical warfare; and (iii) chronic unpredictable stress, an inescapable element of war. We used this model to evaluate prophylactic treatment with the PPARγ agonist, rosiglitazone (ROSI). Methods Rats were subjected to the three GWE for 33 days. In series 1 and 2, male and female GWE-rats were compared to naïve rats. In series 3, male rats with GWE were randomly assigned to prophylactic treatment with ROSI (GWE-ROSI) or vehicle. After the 33-day exposures, three neurofunctional domains were evaluated: cognition (novel object recognition), anxiety-like behaviors (elevated plus maze, open field) and depression-like behaviors (coat state, sucrose preference, splash test, tail suspension and forced swim). Brains were analyzed for astrocytic and microglial activation and neuroinflammation (GFAP, Iba1, tumor necrosis factor and translocator protein). Neurofunctional data from rats with similar exposures were pooled into 3 groups: naïve, GWE and GWE-ROSI. Results Compared to naïve rats, GWE-rats showed significant abnormalities in the three neurofunctional domains, along with significant neuroinflammation in amygdala and hippocampus. There were no differences between males and females with GWE. GWE-ROSI rats showed significant attenuation of neuroinflammation and of some of the neurofunctional abnormalities. Conclusion This novel GWI model recapitulates critical neurofunctional abnormalities reported by Veterans with GWI. Concurrent prophylactic treatment with ROSI was beneficial in this model.
Collapse
|
15
|
Cheng CH, Koo BB, Calderazzo S, Quinn E, Aenlle K, Steele L, Klimas N, Krengel M, Janulewicz P, Toomey R, Michalovicz LT, Kelly KA, Heeren T, Little D, O’Callaghan JP, Sullivan K. Alterations in high-order diffusion imaging in veterans with Gulf War Illness is associated with chemical weapons exposure and mild traumatic brain injury. Brain Behav Immun 2020; 89:281-290. [PMID: 32745586 PMCID: PMC7755296 DOI: 10.1016/j.bbi.2020.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/11/2020] [Accepted: 07/08/2020] [Indexed: 01/02/2023] Open
Abstract
The complex etiology behind Gulf War Illness (GWI) has been attributed to the combined exposure to neurotoxicant chemicals, brain injuries, and some combat experiences. Chronic GWI symptoms have been shown to be associated with intensified neuroinflammatory responses in animal and human studies. To investigate the neuroinflammatory responses and potential causes in Gulf War (GW) veterans, we focused on the effects of chemical/biological weapons (CBW) exposure and mild traumatic brain injury (mTBI) during the war. We applied a novel MRI diffusion processing method, Neurite density imaging (NDI), on high-order diffusion imaging to estimate microstructural alterations of brain imaging in Gulf War veterans with and without GWI, and collected plasma proinflammatory cytokine samples as well as self-reported health symptom scores. Our study identified microstructural changes specific to GWI in the frontal and limbic regions due to CBW and mTBI, and further showed distinctive microstructural patterns such that widespread changes were associated with CBW and more focal changes on diffusion imaging were observed in GW veterans with an mTBI during the war. In addition, microstructural alterations on brain imaging correlated with upregulated blood proinflammatory cytokine markers TNFRI and TNFRII and with worse outcomes on self-reported symptom measures for fatigue and sleep functioning. Taken together, these results suggest TNF signaling mediated inflammation affects frontal and limbic regions of the brain, which may contribute to the fatigue and sleep symptoms of the disease and suggest a strong neuroinflammatory component to GWI. These results also suggest exposures to chemical weapons and mTBI during the war are associated with different patterns of peripheral and central inflammation and highlight the brain regions vulnerable to further subtle microscale morphological changes and chronic signaling to nearby glia.
Collapse
Affiliation(s)
| | - Bang-Bon Koo
- School of Medicine, Boston University, Boston, MA, US
| | | | - Emily Quinn
- School of Public Health, Boston University, Boston MA USA
| | - Kristina Aenlle
- Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service, Miami, FL, USA
| | - Lea Steele
- Baylor College of Medicine, Houston, TX, USA
| | - Nancy Klimas
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Maxine Krengel
- School of Public Health, Boston University, Boston MA USA
| | | | | | - Lindsay T. Michalovicz
- Health Effects Laboratory Division, Center for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kimberly A Kelly
- Health Effects Laboratory Division, Center for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Timothy Heeren
- School of Public Health, Boston University, Boston MA USA
| | | | - James P. O’Callaghan
- Health Effects Laboratory Division, Center for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | |
Collapse
|
16
|
Yee MK, Zundel CG, Maule AL, Heeren T, Proctor SP, Sullivan KA, Krengel MH. Longitudinal Assessment of Health Symptoms in Relation to Neurotoxicant Exposures in 1991 Gulf War Veterans: The Ft. Devens Cohort. J Occup Environ Med 2020; 62:663-668. [PMID: 32890202 PMCID: PMC7478220 DOI: 10.1097/jom.0000000000001910] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This analysis examined the relationship between Gulf War (GW) exposures and health symptoms reported in three time periods over 20 years in Ft. Devens Cohort veterans. METHODS Repeated logistic regression models examined the association of exposures and health symptoms over time. Models included baseline age, active duty status, post-traumatic stress disorder status, sex, and time since deployment as covariates. RESULTS Exposure to tent heaters was associated with increased odds of crying easily and muscle twitching. Exposure to pyridostigmine bromide (PB) pills was associated with increased odds of depression and fatigue. Exposure to the Khamisiyah sarin plume was associated with increased odds of trouble concentrating and crying easily. CONCLUSION This longitudinal analysis demonstrated an association between neurotoxicant exposures and increased odds of cognitive/mood, fatigue, and neurological symptoms. In addition, most symptoms increased over time since deployment regardless of exposure.
Collapse
Affiliation(s)
- Megan K Yee
- Research Service, VA Boston Healthcare System, Boston, Massachusetts (Yee, Zundel, Dr Proctor, Dr Krengel); Behavioral Neuroscience Program, Boston University School of Medicine, Boston, Massachusetts (Zundel); Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (Drs Maule, Sullivan); Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts (Drs Maule, Proctor); Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts (Dr Heeren); and Department of Neurology, Boston University School of Medicine, Boston, Massachusetts (Dr Krengel)
| | | | | | | | | | | | | |
Collapse
|
17
|
Zundel CG, Heeren T, Grasso CM, Spiro A, Proctor SP, Sullivan K, Krengel M. Changes in Health Status in the Ft. Devens Gulf War Veterans Cohort: 1997-2017. Neurosci Insights 2020; 15:2633105520952675. [PMID: 32914090 PMCID: PMC7444112 DOI: 10.1177/2633105520952675] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Gulf War veterans (GWVs) were exposed to numerous neurotoxicants during deployment. Upon returning home, many reported a multitude of symptoms including fatigue, pain, gastrointestinal and respiratory issues, and neurological, cognitive, and mood complaints, collectively termed "Gulf War Illness (GWI)." Now, nearly 30 years post-war, many GWVs continue to suffer from these symptoms, in addition to health concerns associated with normal aging. While most research on GWVs has been cross-sectional, it is important to evaluate the progression and onset of new GWI symptoms longitudinally. The current study investigated the health of GWVs 25+ years after the war by resurveying the Ft. Devens Cohort and comparing their current health to their health reported 15 to 20 years earlier. The sample consists of 317 GWVs (~54 years old at the latest survey, 38 women) who responded to both surveys (1997-1998 and 2013-2017). Multivariable regression analyses were used to assess changes in GWI symptomatology and prevalence of medical conditions. The rates of 12 of 25 health symptoms increased significantly from the prior 1997-1998 survey. Anxiety, numbness in extremities, depressed mood, and joint pain had the greatest increase in endorsement. The rates of 7 of 16 medical conditions increased significantly from the prior 1997-1998 survey. High blood pressure, diabetes, and cancer had the greatest increase in prevalence. In summary, this study demonstrates that both symptoms and physician-diagnosed medical conditions associated with GW deployment/exposure increased in prevalence. For GWVs, focus by providers on the treatment of cognitive and mental health issues as well as cardiovascular and cerebrovascular risk factors is warranted. Targeting symptom alleviation would help improve the quality of life in these veterans until treatments addressing the entire illness become available.
Collapse
Affiliation(s)
- Clara G Zundel
- Research Service, VA Boston Healthcare System, Boston, MA, USA
- Behavioral Neuroscience Program, Boston University School of Medicine, Boston, MA, USA
| | - Timothy Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | | | - Avron Spiro
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Susan P Proctor
- Research Service, VA Boston Healthcare System, Boston, MA, USA
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Maxine Krengel
- Research Service, VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
18
|
In-vivo imaging of neuroinflammation in veterans with Gulf War illness. Brain Behav Immun 2020; 87:498-507. [PMID: 32027960 PMCID: PMC7864588 DOI: 10.1016/j.bbi.2020.01.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic disorder affecting approximately 30% of the veterans who served in the 1991 Gulf War. It is characterised by a constellation of symptoms including musculoskeletal pain, cognitive problems and fatigue. The cause of GWI is not definitively known but exposure to neurotoxicants, the prophylactic use of pyridostigmine bromide (PB) pills, and/or stressors during deployment have all been suspected to play some pathogenic role. Recent animal models of GWI have suggested that neuroinflammatory mechanisms may be implicated, including a dysregulated activation of microglia and astrocytes. However, neuroinflammation has not previously been directly observed in veterans with GWI. To measure GWI-related neuroinflammation in GW veterans, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the 18 kDa translocator protein (TSPO), a protein upregulated in activated microglia/macrophages and astrocytes. Veterans with GWI (n = 15) and healthy controls (HC, n = 33, including a subgroup of healthy GW veterans, HCVET, n = 8), were examined using integrated [11C]PBR28 PET/MRI. Standardized uptake values normalized by occipital cortex signal (SUVR) were compared across groups and against clinical variables and circulating inflammatory cytokines (TNF-α, IL-6 and IL-1β). SUVR were validated against volume of distribution ratio (n = 13). Whether compared to the whole HC group, or only the HCVET subgroup, veterans with GWI demonstrated widespread cortical elevations in [11C]PBR28 PET signal, in areas including precuneus, prefrontal, primary motor and somatosensory cortices. There were no significant group differences in the plasma levels of the inflammatory cytokines evaluated. There were also no significant correlations between [11C]PBR28 PET signal and clinical variables or circulating inflammatory cytokines. Our study provides the first direct evidence of brain upregulation of the neuroinflammatory marker TSPO in veterans with GWI and supports the exploration of neuroinflammation as a therapeutic target for this disorder.
Collapse
|
19
|
Chambers JE, Dail MB, Meek EC. Oxime-mediated reactivation of organophosphate-inhibited acetylcholinesterase with emphasis on centrally-active oximes. Neuropharmacology 2020; 175:108201. [PMID: 32544483 DOI: 10.1016/j.neuropharm.2020.108201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 01/25/2023]
Abstract
This review provides an overview of the global research leading to the large number of compounds developed as reactivators of acetylcholinesterase inhibited by a variety of organophosphate compounds, most of which are nerve agents but also some insecticides. A number of these organophosphates are highly toxic and effective therapy by reactivators contributes to saving lives. Two major challenges for more effective therapy with reactivators are identification of a broad spectrum reactivator efficacious against a variety of organophosphate structures, and a reactivator that can cross the blood-brain barrier to protect the brain. The most effective of the reactivators developed are the nucleophilic pyridinium oximes, which bear a permanent positive charge from the quaternary nitrogen in the pyridinium ring. The permanent positive charge retards the oximes from crossing the blood-brain barrier and therefore restoration of normal cholinergic function in the brain is unlikely. A number of laboratories have developed nucleophiles, mostly oximes, that are theorized to cross the blood-brain barrier by several strategies. At the present time, no reactivator is optimally broad spectrum across the wide group of organophosphate chemistries. Some oximes, including the substituted phenoxyalkyl pyridinium oximes invented by our laboratories, have the potential to provide neuroprotection in the brain and show evidence of efficacy against both nerve agent and insecticidal chemistries, so these novel oximes have promise for future development. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Janice E Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762-6100, USA.
| | - Mary B Dail
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762-6100, USA
| | - Edward C Meek
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762-6100, USA
| |
Collapse
|
20
|
Bouknight KD, Jurkouich KM, Compton JR, Khavrutskii IV, Guelta MA, Harvey SP, Legler PM. Structural and kinetic evidence of aging after organophosphate inhibition of human Cathepsin A. Biochem Pharmacol 2020; 177:113980. [PMID: 32305437 DOI: 10.1016/j.bcp.2020.113980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022]
Abstract
Human Cathepsin A (CatA) is a lysosomal serine carboxypeptidase of the renin-angiotensin system (RAS) and is structurally similar to acetylcholinesterase (AChE). CatA can remove the C-terminal amino acids of endothelin I, angiotensin I, Substance P, oxytocin, and bradykinin, and can deamidate neurokinin A. Proteomic studies identified CatA and its homologue, SCPEP1, as potential targets of organophosphates (OP). CatA could be stably inhibited by low µM to high nM concentrations of racemic sarin (GB), soman (GD), cyclosarin (GF), VX, and VR within minutes to hours at pH 7. Cyclosarin was the most potent with a kinetically measured dissociation constant (KI) of 2 µM followed by VR (KI = 2.8 µM). Bimolecular rate constants for inhibition by cyclosarin and VR were 1.3 × 103 M-1sec-1 and 1.2 × 103 M-1sec-1, respectively, and were approximately 3-orders of magnitude lower than those of human AChE indicating slower reactivity. Notably, both AChE and CatA bound diisopropylfluorophosphate (DFP) comparably and had KIDFP = 13 µM and 11 µM, respectively. At low pH, greater than 85% of the enzyme spontaneously reactivated after OP inhibition, conditions under which OP-adducts of cholinesterases irreversibly age. At pH 6.5 CatA remained stably inhibited by GB and GF and <10% of the enzyme spontaneously reactivated after 200 h. A crystal structure of DFP-inhibited CatA was determined and contained an aged adduct. Similar to AChE, CatA appears to have a "backdoor" for product release. CatA has not been shown previously to age. These results may have implications for: OP-associated inflammation; cardiovascular effects; and the dysregulation of RAS enzymes by OP.
Collapse
Affiliation(s)
- Kayla D Bouknight
- Hampton University, 100 E Queen St, Hampton, VA 23668, United States
| | - Kayla M Jurkouich
- Case Western Reserve University, Dept. of Biomedical Engineering, Cleveland, 10900 Euclid Avenue, OH 44106, United States
| | - Jaimee R Compton
- U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, United States
| | - Ilja V Khavrutskii
- Uniformed Services University, Armed Forces Radiobiology Research Institute, 4301 Jones Bridge Rd., Bethesda, MD 20889-5648, United States
| | - Mark A Guelta
- U.S. Army Combat Capabilities and Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010, United States
| | - Steven P Harvey
- U.S. Army Combat Capabilities and Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010, United States
| | - Patricia M Legler
- U.S. Naval Research Laboratory, 4555 Overlook Ave., Washington, DC 20375, United States.
| |
Collapse
|
21
|
Michalovicz LT, Kelly KA, Sullivan K, O'Callaghan JP. Acetylcholinesterase inhibitor exposures as an initiating factor in the development of Gulf War Illness, a chronic neuroimmune disorder in deployed veterans. Neuropharmacology 2020; 171:108073. [PMID: 32247728 PMCID: PMC7398580 DOI: 10.1016/j.neuropharm.2020.108073] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom disorder, characterized by symptoms such as fatigue, pain, cognitive and memory impairment, respiratory, skin and gastrointestinal problems, that is experienced by approximately one-third of 1991 Gulf War veterans. Over the nearly three decades since the end of the war, investigators have worked to elucidate the initiating factors and underlying causes of GWI. A significant portion of this research has indicated a strong correlation between GWI and exposure to a number of different acetycholinesterase inhibitors (AChEIs) in theater, such as sarin and cyclosarin nerve agents, chlorpyrifos and dichlorvos pesticides, and the anti-nerve agent prophylactic pyridostigmine bromide. Through studying these exposures and their relationship to the symptoms presented by ill veterans, it has become increasingly apparent that GWI is the likely result of an underlying neuroimmune disorder. While evidence indicates that AChEIs are a key exposure in the development of GWI, particularly organophosphate AChEIs, the mechanism(s) by which these chemicals instigate illness appears to be related to "off-target", non-cholinergic effects. In this review, we will discuss the role of AChEI exposure in the development and persistence of GWI; in particular, how these chemicals, combined with other exposures, have led to a chronic neuroimmune disorder. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Lindsay T Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kimberly A Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|
22
|
Brown KA, Filipov NM, Wagner JJ. Dorsoventral-Specific Effects of Nerve Agent Surrogate Diisopropylfluorophosphate on Synaptic Transmission in the Mouse Hippocampus. J Pharmacol Exp Ther 2020; 373:10-23. [PMID: 31907304 DOI: 10.1124/jpet.119.263053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 03/08/2025] Open
Abstract
Although there has been an increasing appreciation for functional differences between the dorsal (dH) and ventral (vH) hippocampal sectors, there is a lack of information characterizing the cholinergic and noncholinergic mechanisms of acetylcholinesterase inhibitors on synaptic transmission along the hippocampal dorsoventral axis. Diisopropylfluorophosphate (DFP) is an organophosphate (OP) that is commonly employed as a nerve agent surrogate in vitro as well as in rodent models of disease states, such as Gulf War Illness. The present study investigated the cholinergic and noncholinergic mechanisms responsible for the effects of acute DFP exposure on dH and vH synaptic transmission in a hippocampal slice preparation. A paired-pulse extracellular recording protocol was used to monitor the population spike (PS) amplitude as well as the PS paired-pulse ratio (PS-PPR) in the CA1 subfield of the dH and the vH. We observed that DFP-induced PS1 inhibition was produced by a cholinergic mechanism in the dH, whereas a noncholinergic mechanism was indispensable in mediating the inhibitory effect of DFP on the PS1 in the vH. PS-PPR in both dH and vH sectors was increased by acute DFP exposure, an effect that was blocked by an N-methyl-D-aspartate receptor antagonist but not by cholinergic antagonists. Clinical reports have indicated dorsoventral-specific hippocampal abnormalities in cases of OP intoxications. Therefore, the observed dorsoventral-specific noncholinergic mechanisms underlying the effects of DFP on hippocampal synaptic transmission may have important implications for the treatment of OP overexposures. SIGNIFICANCE STATEMENT: It is unknown if acetylcholinesterase inhibitors differentially impact dorsal and ventral hippocampal synaptic transmission. The data in the present study show that an organophosphate, diisopropylfluorophosphate, impacts glutamatergic transmission along the dorsoventral axis in a hippocampal slice preparation via distinct cholinergic and noncholinergic mechanisms. These findings may provide insight into investigations of therapeutic agents that target noncholinergic mechanisms in cases of organophosphate overexposures.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Physiology and Pharmacology and Interdisciplinary Toxicology Program, University of Georgia, Athens, GA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology and Interdisciplinary Toxicology Program, University of Georgia, Athens, GA
| | - John J Wagner
- Department of Physiology and Pharmacology and Interdisciplinary Toxicology Program, University of Georgia, Athens, GA
| |
Collapse
|
23
|
Neuron-oligodendroglia interactions: Activity-dependent regulation of cellular signaling. Neurosci Lett 2020; 727:134916. [PMID: 32194135 DOI: 10.1016/j.neulet.2020.134916] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/31/2022]
Abstract
Oligodendrocyte lineage cells (oligodendroglia) and neurons engage in bidirectional communication throughout life to support healthy brain function. Recent work shows that changes in neuronal activity can modulate proliferation, differentiation, and myelination to support the formation and function of neural circuits. While oligodendroglia express a diverse collection of receptors for growth factors, signaling molecules, neurotransmitters and neuromodulators, our knowledge of the intracellular signaling pathways that are regulated by neuronal activity remains largely incomplete. Many of the pathways that modulate oligodendroglia behavior are driven by changes in intracellular calcium signaling, which may differentially affect cytoskeletal dynamics, gene expression, maturation, integration, and axonal support. Additionally, activity-dependent neuron-oligodendroglia communication plays an integral role in the recovery from demyelinating injuries. In this review, we summarize the modalities of communication between neurons and oligodendroglia and explore possible roles of activity-dependent calcium signaling in mediating cellular behavior and myelination.
Collapse
|
24
|
Karjabad KD, Mohajeri S, Shamel A, Khodadadi-Moghaddam M, Rajaei GE. Boron nitride nanoclusters as a sensor for Cyclosarin nerve agent: DFT and thermodynamics studies. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2411-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Zhang Y, Avery T, Vakhtin AA, Mathersul DC, Tranvinh E, Wintermark M, Massaband P, Ashford JW, Bayley PJ, Furst AJ. Brainstem atrophy in Gulf War Illness. Neurotoxicology 2020; 78:71-79. [PMID: 32081703 DOI: 10.1016/j.neuro.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Gulf War Illness (GWI) is a condition that affects about 30 % of veterans who served in the 1990-91 Persian Gulf War. Given its broad symptomatic manifestation, including chronic pain, fatigue, neurological, gastrointestinal, respiratory, and skin problems, it is of interest to examine whether GWI is associated with changes in the brain. Existing neuroimaging studies, however, have been limited by small sample sizes, inconsistent GWI diagnosis criteria, and potential comorbidity confounds. OBJECTIVES Using a large cohort of US veterans with GWI, we assessed regional brain volumes for their associations with GWI, and quantified the relationships between any regional volumetric changes and GWI symptoms. METHODS Structural magnetic resonance imaging (MRI) scans from 111 veterans with GWI (Age = 49 ± 6, 88 % Male) and 59 healthy controls (age = 51 ± 9, 78 % male) were collected at the California War Related Illness and Injury Study Center (WRIISC-CA) and from a multicenter study of the Parkinson's Progression Marker Initiative (PPMI), respectively. Individual MRI volumes were segmented and parcellated using FreeSurfer. Regional volumes of 19 subcortical, 68 cortical, and 3 brainstem structures were evaluated in the GWI cohort relative to healthy controls. The relationships between regional volumes and GWI symptoms were also assessed. RESULTS We found significant subcortical atrophy, but no cortical differences, in the GWI group relative to controls, with the largest effect detected in the brainstem, followed by the ventral diencephalon and the thalamus. In a subsample of 58 veterans with GWI who completed the Chronic Fatigue Scale (CFS) inventory of Centers for Disease Control and Prevention (CDC), smaller brainstem volumes were significantly correlated with increased severities of fatigue and depressive symptoms. CONCLUSION The findings suggest that brainstem volume may be selectively affected by GWI, and that the resulting atrophy could in turn mediate or moderate GWI-related symptoms such as fatigue and depression. Consequently, the brain stem should be carefully considered in future research focusing on GWI pathology.
Collapse
Affiliation(s)
- Yu Zhang
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA.
| | - Timothy Avery
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Andrei A Vakhtin
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Danielle C Mathersul
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Eric Tranvinh
- Neuroradiology, Stanford University School of Medicine, USA
| | - Max Wintermark
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Neuroradiology, Stanford University School of Medicine, USA
| | - Payam Massaband
- Radiology, VA Palo Alto Health Care System, USA; Radiology, Stanford University School of Medicine, USA
| | - J Wesson Ashford
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Peter J Bayley
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA
| | - Ansgar J Furst
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, USA; Neurology and Neurological Sciences, Stanford University, USA; Polytrauma System of Care (PSC), VA Palo Alto Health Care System, USA
| |
Collapse
|
26
|
Kerr K, Morse G, Graves D, Zuo F, Lipowicz A, Carpenter DO. A Detoxification Intervention for Gulf War Illness: A Pilot Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4143. [PMID: 31661809 PMCID: PMC6862571 DOI: 10.3390/ijerph16214143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/17/2023]
Abstract
Approximately 30% of the 700,000 US veterans of the 1990-1991 Persian Gulf War developed multiple persistent symptoms called Gulf War illness. While the etiology is uncertain, several toxic exposures including pesticides and chemical warfare agents have shown associations. There is no effective medical treatment. An intervention to enhance detoxification developed by Hubbard has improved quality of life and/or reduced body burdens in other cohorts. We evaluated its feasibility and efficacy in ill Gulf War (GW) veterans in a randomized, waitlist-controlled, pilot study at a community-based rehabilitation facility in the United States. Eligible participants (n = 32) were randomly assigned to the intervention (n = 22) or a four-week waitlist control (n = 10). The daily 4-6 week intervention consisted of exercise, sauna-induced sweating, crystalline nicotinic acid and other supplements. Primary outcomes included recruitment, retention and safety; and efficacy was measured via Veteran's Short Form-36 (SF-36) quality of life, McGill pain, multidimensional fatigue inventory questionnaires and neuropsychological batteries. Scoring of outcomes was blinded. All 32 completed the trial and 21 completed 3-month follow-up. Mean SF-36 physical component summary score after the intervention was 6.9 (95% CI; -0.3, 14.2) points higher compared to waitlist control and 11 of 16 quality of life, pain and fatigue measures improved, with no serious adverse events. Most improvements were retained after 3 months. The Hubbard regimen was feasible, safe and might offer relief for symptoms of GW illness.
Collapse
Affiliation(s)
- Kathleen Kerr
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada.
| | - Gayle Morse
- Department of Psychology, The Sage Colleges, Troy, NY 12180, USA.
- Institute for Health and the Environment, University at Albany, Albany, NY 12144, USA.
| | - Donald Graves
- Department of Psychology, The Sage Colleges, Troy, NY 12180, USA.
| | - Fei Zuo
- Applied Health Research Centre, St. Michael's Hospital, Toronto, ON M5G 1B1, Canada.
| | - Alain Lipowicz
- Trillium Gift of Life Network, Ministry of Health and Long-Term Care, Toronto, ON M5G 2C9, Canada.
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Albany, NY 12144, USA.
| |
Collapse
|
27
|
Naviaux RK, Naviaux JC, Li K, Wang L, Monk JM, Bright AT, Koslik HJ, Ritchie JB, Golomb BA. Metabolic features of Gulf War illness. PLoS One 2019; 14:e0219531. [PMID: 31348786 PMCID: PMC6660083 DOI: 10.1371/journal.pone.0219531] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND More than 230,000 veterans-about 1/3 of US personnel deployed in the 1990-1991 Persian Gulf War-developed chronic, multi-symptom health problems now called "Gulf War illness" (GWI), for which mechanisms and objective diagnostic signatures continue to be sought. METHODS Targeted, broad-spectrum serum metabolomics was used to gain insights into the biology of GWI. 40 male participants, included 20 veterans who met both Kansas and CDC diagnostic criteria for GWI and 20 nonveteran controls without similar symptoms that were 1:1 matched to GWI cases by age, sex, and ethnicity. Serum samples were collected and archived at -80° C prior to testing. 358 metabolites from 46 biochemical pathways were measured by hydrophilic interaction liquid chromatography and tandem mass spectrometry. RESULTS Veterans with GWI, compared to healthy controls, had abnormalities in 8 of 46 biochemical pathways interrogated. Lipid abnormalities accounted for 78% of the metabolic impact. Fifteen ceramides and sphingomyelins, and four phosphatidylcholine lipids were increased. Five of the 8 pathways were shared with the previously reported metabolic phenotype of males with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). However, 4 of the 5 shared pathways were regulated in opposite directions; key pathways that were up-regulated in GWI were down-regulated in ME/CFS. The single pathway regulated in the same direction was purines, which were decreased. CONCLUSIONS Our data show that despite heterogeneous exposure histories, a metabolic phenotype of GWI was clearly distinguished from controls. Metabolomic differences between GWI and ME/CFS show that common clinical symptoms like fatigue can have different chemical mechanisms and different diagnostic implications. Larger studies will be needed to validate these findings.
Collapse
Affiliation(s)
- Robert K. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, California, United States of America
- Department of Medicine, Division of Medical Genetics, University of California San Diego School of Medicine, San Diego, California, United States of America
- Department of Pediatrics, Division of Genetics, University of California San Diego School of Medicine, San Diego, California, United States of America
- Department of Pathology, Division of Comparative Pathology, University of California San Diego School of Medicine, San Diego, California, United States of America
| | - Jane C. Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, California, United States of America
- Department of Neurosciences, Division of Pediatric Neurology, University of California San Diego School of Medicine, San Diego, California, United States of America
| | - Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, California, United States of America
- Department of Medicine, Division of Medical Genetics, University of California San Diego School of Medicine, San Diego, California, United States of America
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, California, United States of America
- Department of Medicine, Division of Medical Genetics, University of California San Diego School of Medicine, San Diego, California, United States of America
| | - Jonathan M. Monk
- The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, California, United States of America
- Department of Medicine, Division of Medical Genetics, University of California San Diego School of Medicine, San Diego, California, United States of America
| | - A. Taylor Bright
- The Mitochondrial and Metabolic Disease Center, University of California San Diego School of Medicine, San Diego, California, United States of America
- Department of Medicine, Division of Medical Genetics, University of California San Diego School of Medicine, San Diego, California, United States of America
| | - Hayley J. Koslik
- Department of Medicine, Division of General Internal Medicine, University of California San Diego School of Medicine, San Diego, California, United States of America
| | - Janis B. Ritchie
- Department of Medicine, Division of General Internal Medicine, University of California San Diego School of Medicine, San Diego, California, United States of America
| | - Beatrice A. Golomb
- Department of Medicine, Division of General Internal Medicine, University of California San Diego School of Medicine, San Diego, California, United States of America
| |
Collapse
|
28
|
Belgrad J, Dutta DJ, Bromley-Coolidge S, Kelly KA, Michalovicz LT, Sullivan KA, O'Callaghan JP, Fields RD. Oligodendrocyte involvement in Gulf War Illness. Glia 2019; 67:2107-2124. [PMID: 31339622 PMCID: PMC6899710 DOI: 10.1002/glia.23668] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 11/25/2022]
Abstract
Low level sarin nerve gas and other anti‐cholinesterase agents have been implicated in Gulf War illness (GWI), a chronic multi‐symptom disorder characterized by cognitive, pain and fatigue symptoms that continues to afflict roughly 32% of veterans from the 1990–1991 Gulf War. How disrupting cholinergic synaptic transmission could produce chronic illness is unclear, but recent research indicates that acetylcholine also mediates communication between axons and oligodendrocytes. Here we investigated the hypothesis that oligodendrocyte development is disrupted by Gulf War agents, by experiments using the sarin‐surrogate acetylcholinesterase inhibitor, diisopropyl fluorophosphate (DFP). The effects of corticosterone, which is used in some GWI animal models, were also investigated. The data show that DFP decreased both the number of mature and dividing oligodendrocytes in the rat prefrontal cortex (PFC), but differences were found between PFC and corpus callosum. The differences seen between the PFC and corpus callosum likely reflect the higher percentage of proliferating oligodendroglia in the adult PFC. In cell culture, DFP also decreased oligodendrocyte survival through a non‐cholinergic mechanism. Corticosterone promoted maturation of oligodendrocytes, and when used in combination with DFP it had protective effects by increasing the pool of mature oligodendrocytes and decreasing proliferation. Cell culture studies indicate direct effects of both DFP and corticosterone on OPCs, and by comparison with in vivo results, we conclude that in addition to direct effects, systemic effects and interruption of neuron–glia interactions contribute to the detrimental effects of GW agents on oligodendrocytes. Our results demonstrate that oligodendrocytes are an important component of the pathophysiology of GWI.
Collapse
Affiliation(s)
- Jillian Belgrad
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Dipankar J Dutta
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Samantha Bromley-Coolidge
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Kimberly A Kelly
- Centers for Disease Control and Prevention, Morgantown, West Virginia
| | | | - Kimberly A Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | | | - Richard Douglas Fields
- Section on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
29
|
Zundel CG, Krengel MH, Heeren T, Yee MK, Grasso CM, Janulewicz Lloyd PA, Coughlin SS, Sullivan K. Rates of Chronic Medical Conditions in 1991 Gulf War Veterans Compared to the General Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16060949. [PMID: 30884809 PMCID: PMC6466358 DOI: 10.3390/ijerph16060949] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
Prevalence of nine chronic medical conditions in the population-based Ft. Devens Cohort (FDC) of GW veterans were compared with the population-based 2013–2014 National Health and Nutrition Examination Survey (NHANES) cohort. Excess prevalence was calculated as the difference in prevalence estimates from the Ft. Devens and NHANES cohorts; and confidence intervals and p-values are based on the standard errors for the two prevalence estimates. FDC males were at increased risk for reporting seven chronic medical conditions compared with NHANES males. FDC females were at decreased risk for high blood pressure and increased risk for diabetes when compared with NHANES females. FDC veterans reporting war-related chemical weapons exposure showed higher risk of high blood pressure; diabetes; arthritis and chronic bronchitis while those reporting taking anti-nerve gas pills had increased risk of heart attack and diabetes. GW veterans are at higher risk of chronic conditions than the general population and these risks are associated with self-reported toxicant exposures.
Collapse
Affiliation(s)
- Clara G Zundel
- Research Service, VA Boston Healthcare System, Boston, MA 02130, USA.
- Division of Graduate Medical Sciences, Behavioral Neuroscience, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Maxine H Krengel
- Research Service, VA Boston Healthcare System, Boston, MA 02130, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Timothy Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA.
| | - Megan K Yee
- Research Service, VA Boston Healthcare System, Boston, MA 02130, USA.
| | - Claudia M Grasso
- Research Service, VA Boston Healthcare System, Boston, MA 02130, USA.
| | | | - Steven S Coughlin
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA.
| |
Collapse
|
30
|
Tillman GD, Spence JS, Briggs RW, Haley RW, Hart J, Kraut MA. Gulf War illness associated with abnormal auditory P1 event-related potential: Evidence of impaired cholinergic processing replicated in a national sample. Psychiatry Res Neuroimaging 2019; 283:7-15. [PMID: 30453127 DOI: 10.1016/j.pscychresns.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/05/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Our team previously reported event-related potential (ERP) and hyperarousal patterns from a study of one construction battalion of the U.S. Naval Reserve who served during the 1991 Persian Gulf War. We sought to replicate these findings in a sample that was more representative of the entire Gulf War-era veteran population, including male and female participants from four branches of the military. We collected ERP data from 40 veterans meeting Haley criteria for Gulf War syndromes 1-3 and from 22 matched Gulf War veteran controls while they performed an auditory oddball task. Reports of hyperarousal from the ill veterans were significantly greater than those from the control veterans, and P1 amplitudes in Syndromes 2 and 3 were significantly higher than P1 amplitudes in Syndrome 1, replicating our previous findings. Many of the contributors to the generation of the P1 potential are also involved in the regulation of arousal and are modulated by cholinergic and dopaminergic systems-two systems whose dysfunction has been implicated in Gulf War illness. These differences among the three syndrome groups where their means were on either side of controls is a replication of our previous ERP study and is consistent with previous imaging studies of this population.
Collapse
Affiliation(s)
- Gail D Tillman
- Center for BrainHealth, The University of Texas at Dallas
| | - Jeffrey S Spence
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Richard W Briggs
- Departments of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Robert W Haley
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John Hart
- Center for BrainHealth, The University of Texas at Dallas; Departments of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Michael A Kraut
- Center for BrainHealth, The University of Texas at Dallas; Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
31
|
Addition of ketamine to standard-of-care countermeasures for acute organophosphate poisoning improves neurobiological outcomes. Neurotoxicology 2018; 69:37-46. [PMID: 30172622 DOI: 10.1016/j.neuro.2018.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/26/2018] [Accepted: 08/23/2018] [Indexed: 01/20/2023]
Abstract
Rats poisoned with sarin enter into ahyper-cholinergic crisis characterized by excessive salivation, respiratory distress, tremors, seizures, and death. Through the use of rescue medications and an anticonvulsant, death can be avoided in many animals, with the long-term consequences of poisoning partly ameliorated, especially when countermeasures are made available immediately after exposure. However, when anticonvulsant measures are delayed by as little as 30 min, clinical, neurological, cognitive, and psychiatric abnormalities may persist long after the initial exposure. This study sought to determine if the addition of the NMDA receptor antagonist Ketamine to human standard-of-care countermeasures consisting of two rescue medications (2-PAM and atropine) and an anti-convulsant (Midazolam), would afford protection against persistent neurobiological compromise. Rats were exposed to sarin (105 μg/kg via subcutaneous injection), and treated 1 min later with 2-PAM and Atropine Methyl Nitrate (IM) to minimize mortality. One of four anti-convulsant protocols was then initiated at 50 min postsarin:Midazolam alone (MDZ, a single injection (IM) at 0.66 mg/kg); Ketamine alone (KET, a series of five injections (IM) of Ketamine at 7.5 mg/kg, 90 min apart); Midazolam + low dose Ketamine (MDZ + lowKET, a single injection of Midazolam (IM) at 0.66 mg/kg, plus five sequential doses of ketamine (IM) at 2.5 mg/kg, starting at the time of Midazolam dosing and then 90 min apart); Midazolam + high dose Ketamine (MDZ + highKET, a single injection of Midazolam (IM) at 0.66 mg/kg, plus five sequential injections of 7.5 mg/kg Ketamine (IM), starting at the time of Midazolam dosing and then 90 min apart). Animals were preassigned to groups culled at post-exposure Days 1, 7 or 30, for histopathology. For all surviving animals, EEG activity was monitored through skull electrodes for 24-h beginning immediately after sarin exposure. Surviving animals also underwent 24-h EEG monitoring on Days 6, 13, and/or 29, post-sarin. Memory assessment using the Morris Water Maze was performed on Days 1, 4, 7, 14 and 30. Following sarin exposure, 85% of surviving animals demonstrated status epilepticus within 20 min. Each of the anti-convulsant protocols was sufficient to stop convulsions within 1 h of anti-convulsant administration, but all of the animals still showed signs of electrographic status for an additional 2-12 h, without substantial differentiation between treatment groups. However, for post-sarin hours 13-24, the MDZ + highKET group showed significantly less severe EEG abnormalities than the MDZ and KET groups (Mood's Median Test, p < 0.005). At one month post-exposure, 90% of animals that had received Midazolam alone still showed evidence of some epileptiform activity. In contrast, 90% of animals that had received Midazolam + high dose Ketamine combination therapy had EEG profiles that were within normal limits. This difference in EEG outcomes was highly significant (Mood's Median Test, p < 0.001). Likewise, on the water maze, the majority of animals that had received Midazolam combined with either high or low dose Ketamine therapy returned to near baseline levels of mnemonic performance within 2 weeks, whereas the majority of the animals that had received midazolam alone or ketamine alone demonstrated persistent and significant memory impairments even at one month postexposure (Mood's Median Test, p < 0.005). With respect to neuronal necrosis, animals in the MDZ + highKET group showed significantly less overall damage than animals in other treatment groups (Mood's Median Test, p < 0.001). Of special note were findings in the hippocampus, where only 12% of animals in the MDZ + highKET group showed evidence of necrosis on H&E staining, whereas 100% of animals in the KET group, 70% of animals in the MDZ group, and 40% of animals in the MDZ + lowKET group showed evidence of hippocampal necrosis. Overall, the data demonstrate that Ketamine augmentation of an atropine, 2PAM, and Midazolam standard-ofcare for sarin exposure provides clinically-relevant additional protection against the negative neurobiological consequences of sarin, even when initiation of the anti-convulsant countermeasures is delayed by 50 min.
Collapse
|
32
|
Effects of low-level sarin and cyclosarin exposure on hippocampal microstructure in Gulf War Veterans. Neurotoxicol Teratol 2018; 68:36-46. [PMID: 29733897 DOI: 10.1016/j.ntt.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
In early March 1991, shortly after the end of the Gulf War (GW), a munitions dump was destroyed at Khamisiyah, Iraq. Later, in 1996, the dump was found to have contained the organophosphorus (OP) nerve agents sarin and cyclosarin. We previously reported evidence of smaller hippocampal volumes in GW veterans with predicted exposure to the Khamisiyah plume compared to unexposed GW veterans. To investigate whether these macroscopic hippocampal volume changes are accompanied by microstructural alterations in the hippocampus, the current study acquired diffusion-tensor imaging (DTI), T1-, and T2-weighted images from 170 GW veterans (mean age: 53 ± 7 years), 81 of whom had predicted exposure to the Khamisiyah plume according to Department of Defense (DOD) plume modeling. We examined fractional anisotropy (FA), mean diffusivity (MD), and grey matter (GM) density from a hippocampal region of interest (ROI). Results indicate that, even after accounting for total hippocampal GM density (or hippocampal volume), age, sex, apolipoprotein ε4 genotype, and potential confounding OP pesticide exposures, hippocampal MD significantly predicted Khamisiyah exposure status (model p = 0.005, R2 = 0.215, standardized coefficient β = 0.26, t = 2.85). Hippocampal MD was also inversely correlated with verbal memory learning performance in the entire study sample (p = 0.001). There were no differences in hippocampal FA or GM density; however, veterans with predicted Khamisiyah exposure had smaller hippocampal volumes compared to unexposed veterans. Because MD is sensitive to general microstructural disruptions that lead to increased extracellular spaces due to neuronal death, inflammation and gliosis, and/or to axonal loss or demyelination, these findings suggest that low-level exposure to the Khamisiyah plume has a detrimental, lasting effects on both macro- and micro-structure of the hippocampus.
Collapse
|
33
|
Ashbrook DG, Hing B, Michalovicz LT, Kelly KA, Miller JV, de Vega WC, Miller DB, Broderick G, O'Callaghan JP, McGowan PO. Epigenetic impacts of stress priming of the neuroinflammatory response to sarin surrogate in mice: a model of Gulf War illness. J Neuroinflammation 2018; 15:86. [PMID: 29549885 PMCID: PMC5857314 DOI: 10.1186/s12974-018-1113-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Gulf War illness (GWI) is an archetypal, medically unexplained, chronic condition characterised by persistent sickness behaviour and neuroimmune and neuroinflammatory components. An estimated 25–32% of the over 900,000 veterans of the 1991 Gulf War fulfil the requirements of a GWI diagnosis. It has been hypothesised that the high physical and psychological stress of combat may have increased vulnerability to irreversible acetylcholinesterase (AChE) inhibitors leading to a priming of the neuroimmune system. A number of studies have linked high levels of psychophysiological stress and toxicant exposures to epigenetic modifications that regulate gene expression. Recent research in a mouse model of GWI has shown that pre-exposure with the stress hormone corticosterone (CORT) causes an increase in expression of specific chemokines and cytokines in response to diisopropyl fluorophosphate (DFP), a sarin surrogate and irreversible AChE inhibitor. Methods C57BL/6J mice were exposed to CORT for 4 days, and exposed to DFP on day 5, before sacrifice 6 h later. The transcriptome was examined using RNA-seq, and the epigenome was examined using reduced representation bisulfite sequencing and H3K27ac ChIP-seq. Results We show transcriptional, histone modification (H3K27ac) and DNA methylation changes in genes related to the immune and neuronal system, potentially relevant to neuroinflammatory and cognitive symptoms of GWI. Further evidence suggests altered proportions of myelinating oligodendrocytes in the frontal cortex, perhaps connected to white matter deficits seen in GWI sufferers. Conclusions Our findings may reflect the early changes which occurred in GWI veterans, and we observe alterations in several pathways altered in GWI sufferers. These close links to changes seen in veterans with GWI indicates that this model reflects the environmental exposures related to GWI and may provide a model for biomarker development and testing future treatments. Electronic supplementary material The online version of this article (10.1186/s12974-018-1113-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David G Ashbrook
- Department of Biological Sciences and Center for Environmental Epigenetics and Development and Department of Cell and Systems Biology, University of Toronto, Scarborough campus, Toronto, ON, Canada.,Present address: Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Benjamin Hing
- Department of Biological Sciences and Center for Environmental Epigenetics and Development and Department of Cell and Systems Biology, University of Toronto, Scarborough campus, Toronto, ON, Canada.,Present address: Department of Psychiatry, Medical Laboratories, The University of Iowa, Iowa City, Iowa, 52246, USA
| | | | | | - Julie V Miller
- CDC-NIOSH, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Wilfred C de Vega
- Department of Biological Sciences and Center for Environmental Epigenetics and Development and Department of Cell and Systems Biology, University of Toronto, Scarborough campus, Toronto, ON, Canada
| | - Diane B Miller
- CDC-NIOSH, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital Research Institute, Rochester, NY, USA
| | | | - Patrick O McGowan
- Department of Biological Sciences and Center for Environmental Epigenetics and Development and Department of Cell and Systems Biology, University of Toronto, Scarborough campus, Toronto, ON, Canada. .,Department of Psychology, University of Toronto, Toronto, ON, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
34
|
Assessment of brain oxygenation imbalance following soman exposure in rats. Neurotoxicology 2018; 65:28-37. [PMID: 29378300 DOI: 10.1016/j.neuro.2018.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 10/18/2022]
Abstract
Nerve agents (NAs) are potent organophosphorus (OP) compounds with applications in chemical warfare. OP compounds act by inhibiting acetylcholinesterase (AChE). Soman (O-pinacolyl methylphosphonofluoridate) is one of the most potent NAs. It is well known that small doses of NAs can be lethal, and that even non-lethal exposure leads to long-term mental debilitation/neurological damage. However, the neuropathology following exposure to sub-lethal nerve agents is not well understood. In this study, we examined changes in tissue oxygenation (pO2) in the cortex and hippocampus after a sub-lethal dose of soman [80-90 μg/kg; subcutaneous]. pO2 changes can provide information regarding oxygen delivery and utilization and may be indicative of a disruption in cerebral blood flow and/or metabolism. Changes in oxygenation were measured with chronically implanted oxygen sensors in awake and freely moving rats. Measurements were taken before, during, and after soman-induced convulsive seizures. Soman exposure resulted in an immediate increase in pO2 in the cortex, followed by an even greater increase that precedes the onset of soman-induced convulsive seizures. The rise in hippocampus pO2 was delayed relative to the cortex, although the general pattern of brain oxygenation between these two regions was similar. After convulsive seizures began, pO2 levels declined but usually remained hyperoxygenated. Following the decline in pO2, low frequency cycles of large amplitude changes were observed in both the cortex and hippocampus. This pattern is consistent with recurring seizures. Measuring real-time changes in brain pO2 provides new information on the physiological status of the brain following soman exposure. These results highlight that the measurement of brain oxygenation could provide a sensitive marker of nerve agent exposure and serve as a biomarker for treatment studies.
Collapse
|
35
|
Koo BB, Michalovicz LT, Calderazzo S, Kelly KA, Sullivan K, Killiany RJ, O’Callaghan JP. Corticosterone potentiates DFP-induced neuroinflammation and affects high-order diffusion imaging in a rat model of Gulf War Illness. Brain Behav Immun 2018; 67:42-46. [PMID: 28782715 PMCID: PMC6380894 DOI: 10.1016/j.bbi.2017.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/30/2022] Open
Abstract
Veterans of the 1991 Gulf War were potentially exposed to a variety of toxic chemicals, including sarin nerve agent and pesticides, which have been suspected to be involved in the development of Gulf War Illness (GWI). Several of these exposures cause a neuroinflammatory response in mice, which may serve as a basis for the sickness behavior-like symptoms seen in veterans with GWI. Furthermore, conditions mimicking the physiological stress experienced during the war can exacerbate this effect. While neuroinflammation has been observed post-exposure using animal models, it remains a challenge to evaluate neuroinflammation and its associated cellular and molecular changes in vivo in veterans with GWI. Here, we evaluated neuroimmune-associated alterations in intact brains, applying our existing GWI mouse model to rats, by exposing them to 4days of corticosterone (CORT; 200mg/L in the drinking water), to mimic high physiological stress, followed by a single injection of the sarin nerve agent surrogate, diisopropyl fluorophosphate (DFP; 1.5mg/kg, i.p.). Then, we evaluated the neuroinflammatory responses using qPCR of cytokine mRNA and also examined brain structure with a novel high-order diffusion MRI. We found a CORT-enhancement of DFP-induced neuroinflammation, extending our mouse GWI model to the rat. High order diffusion MRI revealed different patterns among the different treatment groups. Particularly, while the CORT+DFP rats had more restricted spatial patterns in the hippocampus and the hypothalamus, the highest and most wide-spread differences were shown in DFP-treated rats compared to the controls in the thalamus, the amygdala, the piriform cortex and the ventral tegmental area. The association of these diffusion changes with neuroinflammatory cytokine expression indicates the potential for GW-relevant exposures to result in connectivity changes in the brain. By transferring this high order diffusion MRI into in vivo imaging in veterans with GWI, we can achieve further insights on the trajectories of the neuroimmune response over time and its impacts on behavior and potential neurological damage.
Collapse
Affiliation(s)
- Bang-Bon Koo
- School of Medicine, Boston University, Boston, MA, USA.
| | - Lindsay T. Michalovicz
- Health Effects Laboratory Division, Center for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Kimberly A. Kelly
- Health Effects Laboratory Division, Center for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | | | - James P. O’Callaghan
- Health Effects Laboratory Division, Center for Disease Control and Prevention – National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
36
|
Barth SK, Dursa EK, Bossarte RM, Schneiderman AI. Trends in brain cancer mortality among U.S. Gulf War veterans: 21 year follow-up. Cancer Epidemiol 2017; 50:22-29. [PMID: 28780478 DOI: 10.1016/j.canep.2017.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Previous mortality studies of U.S. Gulf War veterans through 2000 and 2004 have shown an increased risk of brain cancer mortality among some deployed individuals. When veterans possibly exposed to environmental contaminants associated with demolition of the Khamisiyah Ammunition Storage Facility at Khamisiyah, Iraq, have been compared to contemporaneously deployed unexposed veterans, the results have suggested increased risk for mortality from brain cancer among the exposed. Brain cancer mortality risk in this cohort has not been updated since 2004. METHODS This study analyzes the risk for brain cancer mortality between 1991-2011 through two series of comparisons: U.S. Gulf War deployed and non-deployed veterans from the same era; and veterans possibly exposed to environmental contaminants at Khamisiyah compared to contemporaneously deployed but unexposed U.S. Gulf War veterans. Risk of brain cancer mortality was determined using logistic regression. Life test hazard models were created to plot comparisons of annual hazard rates. Joinpoint regression models were applied to assess trends in hazard rates for brain cancer mortality. RESULTS U.S. Army veterans possibly exposed at Khamisiyah had similar rates of brain cancer mortality compared to those not possibly exposed; however, veterans possibly exposed had a higher risk of brain cancer in the time period immediately following the Gulf War. CONCLUSION Results from these analyses suggest that veterans possibly exposed at Khamisiyah experienced different patterns of brain cancer mortality risk compared to the other groups.
Collapse
Affiliation(s)
- Shannon K Barth
- VISN 2 Center of Excellence for Suicide Prevention, Canandaigua VA Medical Center, Canandaigua, NY, USA; West Virginia University Injury Control Research Center, Morgantown, WV, USA.
| | - Erin K Dursa
- Post Deployment Health Epidemiology Program, Office of Patient Care Services, Veterans Health Administration, Department of Veterans Affairs, USA
| | - Robert M Bossarte
- VISN 2 Center of Excellence for Suicide Prevention, Canandaigua VA Medical Center, Canandaigua, NY, USA; West Virginia University Injury Control Research Center and Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Aaron I Schneiderman
- Post Deployment Health Epidemiology Program, Office of Patient Care Services, Veterans Health Administration, Department of Veterans Affairs, USA
| |
Collapse
|
37
|
|
38
|
Rao AN, Patil A, Brodnik ZD, Qiang L, España RA, Sullivan KA, Black MM, Baas PW. Pharmacologically increasing microtubule acetylation corrects stress-exacerbated effects of organophosphates on neurons. Traffic 2017; 18:433-441. [PMID: 28471062 DOI: 10.1111/tra.12489] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 12/18/2022]
Abstract
Many veterans of the 1990-1991 Gulf War contracted Gulf War Illness (GWI), a multisymptom disease that primarily affects the nervous system. Here, we treated cultures of human or rat neurons with diisopropyl fluorophosphate (DFP), an analog of sarin, one of the organophosphate (OP) toxicants to which the military veterans were exposed. All observed cellular defects produced by DFP were exacerbated by pretreatment with corticosterone or cortisol, which, in rat and human neurons, respectively, serves in our experiments to mimic the physical stress endured by soldiers during the war. To best mimic the disease, DFP was used below the level needed to inhibit acetylcholinesterase. We observed a diminution in the ratio of acetylated to total tubulin that was correctable by treatment with tubacin, a drug that inhibits HDAC6, the tubulin deacetylase. The reduction in microtubule acetylation was coupled with deficits in microtubule dynamics, which were correctable by HDAC6 inhibition. Deficits in mitochondrial transport and dopamine release were also improved by tubacin. Thus, various negative effects of the toxicant/stress exposures were at least partially correctable by restoring microtubule acetylation to a more normal status. Such an approach may have therapeutic benefit for individuals suffering from GWI or other neurological disorders linked to OP exposure.
Collapse
Affiliation(s)
- Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Ankita Patil
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Zachary D Brodnik
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | - Mark M Black
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, Pennsylvania
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
39
|
Janulewicz PA, Krengel MH, Maule A, White RF, Cirillo J, Sisson E, Heeren T, Sullivan K. Neuropsychological characteristics of Gulf War illness: A meta-analysis. PLoS One 2017; 12:e0177121. [PMID: 28520755 PMCID: PMC5435307 DOI: 10.1371/journal.pone.0177121] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/21/2017] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Gulf War illness (GWI) is a disorder related to military service in the 1991 GW. Prominent symptoms include fatigue, pain and cognitive problems. These symptoms were reported by GW Veterans (GWV) immediately after the war and were eventually incorporated into case definitions of GWI. Neuropsychological function in GW veterans has been studied both among deployed GWV and in GWV diagnosed with GWI. Results have been inconsistent between and across GW populations. The purpose of the present investigation was to better characterize neuropsychological function in this veteran population. METHODS Meta-analysis techniques were applied to published studies on neuropsychological performance in GWV to identify domains of dysfunction in deployed vs. non-deployed GW-era veterans and symptomatic vs. non-symptomatic GWVs. RESULTS Significantly decreased performance was found in three functional domains: attention and executive function, visuospatial skills and learning/memory. CONCLUSIONS These findings document the cognitive decrements associated with GW service, validate current GWI case definitions using cognitive criteria, and identify test measures for use in GWI research assessing GWI treatment trial efficacy.
Collapse
Affiliation(s)
- Patricia A. Janulewicz
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Maxine H. Krengel
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alexis Maule
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Environmental Health, Harvard Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Joanna Cirillo
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Emily Sisson
- Data Coordinating Center, Boston University, Boston, Massachusetts, United States of America
| | - Timothy Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
40
|
Qiang L, Rao AN, Mostoslavsky G, James MF, Comfort N, Sullivan K, Baas PW. Reprogramming cells from Gulf War veterans into neurons to study Gulf War illness. Neurology 2017; 88:1968-1975. [PMID: 28507260 PMCID: PMC5444312 DOI: 10.1212/wnl.0000000000003938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/23/2017] [Indexed: 12/28/2022] Open
Abstract
Gulf War illness (GWI), which afflicts at least 25% of veterans who served in the 1990-1991 war in the Persian Gulf, is thought to be caused by deployment exposures to various neurotoxicants, including pesticides, anti-nerve gas pills, and low-level nerve agents including sarin/cyclosarin. GWI is a multisymptom disorder characterized by fatigue, joint pain, cognitive problems, and gastrointestinal complaints. The most prominent symptoms of GWI (memory problems, poor attention/concentration, chronic headaches, mood alterations, and impaired sleep) suggest that the disease primarily affects the CNS. Development of urgently needed treatments depends on experimental models appropriate for testing mechanistic hypotheses and for screening therapeutic compounds. Rodent models have been useful thus far, but are limited by their inability to assess the contribution of genetic or epigenetic background to the disease, and because disease-vulnerable proteins and pathways may be different in humans relative to rodents. As of yet, no postmortem tissue from the veterans has become available for research. We are moving forward with a paradigm shift in the study of GWI, which utilizes contemporary stem cell technology to convert somatic cells from Gulf War veterans into pluripotent cell lines that can be differentiated into various cell types, including neurons, glia, muscle, or other relevant cell types. Such cell lines are immortal and will be a resource for GWI researchers to pursue mechanistic hypotheses and therapeutics.
Collapse
Affiliation(s)
- Liang Qiang
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA
| | - Anand N Rao
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA
| | - Gustavo Mostoslavsky
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA
| | - Marianne F James
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA
| | - Nicole Comfort
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA
| | - Kimberly Sullivan
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA
| | - Peter W Baas
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA.
| |
Collapse
|
41
|
Abou-Donia MB, Conboy LA, Kokkotou E, Jacobson E, Elmasry EM, Elkafrawy P, Neely M, Bass CR'D, Sullivan K. Screening for novel central nervous system biomarkers in veterans with Gulf War Illness. Neurotoxicol Teratol 2017; 61:36-46. [PMID: 28286177 DOI: 10.1016/j.ntt.2017.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022]
Abstract
Gulf War illness (GWI) is primarily diagnosed by symptom report; objective biomarkers are needed that distinguish those with GWI. Prior chemical exposures during deployment have been associated in epidemiologic studies with altered central nervous system functioning in veterans with GWI. Previous studies from our group have demonstrated the presence of autoantibodies to essential neuronal and glial proteins in patients with brain injury and autoantibodies have been identified as candidate objective markers that may distinguish GWI. Here, we screened the serum of 20 veterans with GWI and 10 non-veteran symptomatic (low back pain) controls for the presence of such autoantibodies using Western blot analysis against the following proteins: neurofilament triplet proteins (NFP), tubulin, microtubule associated tau proteins (Tau), microtubule associated protein-2 (MAP-2), myelin basic protein (MBP), myelin associated glycoprotein (MAG), glial fibrillary acidic protein (GFAP), calcium-calmodulin kinase II (CaMKII) and glial S-100B protein. Serum reactivity was measured as arbitrary chemiluminescence units. As a group, veterans with GWI had statistically significantly higher levels of autoantibody reactivity in all proteins examined except S-100B. Fold increase of the cases relative to controls in descending order were: CaMKII 9.27, GFAP 6.60, Tau 4.83, Tubulin 4.41, MAG 3.60, MBP 2.50, NFP 2.45, MAP-2 2.30, S-100B 1.03. These results confirm the continuing presence of neuronal injury/gliosis in these veterans and are in agreement with the recent reports indicating that 25years after the war, the health of veterans with GWI is not improving and may be getting worse. Such serum autoantibodies may prove useful as biomarkers of GWI, upon validation of the findings using larger cohorts.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States.
| | - Lisa A Conboy
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Efi Kokkotou
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Eric Jacobson
- Department of Global Health and Social Development, Harvard Medical School, United States; Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Eman M Elmasry
- Department of Microbiology, Zagazig University, Zagazig, Egypt
| | - Passent Elkafrawy
- Department of Math and Computer Science, Menoufia University, Shebin ElKom, Egypt
| | - Megan Neely
- Department of Biostatistics & Bioinformatics, Duke University Medical Center, United States
| | | | | |
Collapse
|
42
|
Abou-Donia MB, Siracuse B, Gupta N, Sobel Sokol A. Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: critical review. Crit Rev Toxicol 2016; 46:845-875. [PMID: 27705071 PMCID: PMC5764759 DOI: 10.1080/10408444.2016.1220916] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sarin (GB, O-isopropyl methylphosphonofluoridate) is a potent organophosphorus (OP) nerve agent that inhibits acetylcholinesterase (AChE) irreversibly. The subsequent build-up of acetylcholine (ACh) in the central nervous system (CNS) provokes seizures and, at sufficient doses, centrally-mediated respiratory arrest. Accumulation of ACh at peripheral autonomic synapses leads to peripheral signs of intoxication and overstimulation of the muscarinic and nicotinic receptors, which is described as "cholinergic crisis" (i.e. diarrhea, sweating, salivation, miosis, bronchoconstriction). Exposure to high doses of sarin can result in tremors, seizures, and hypothermia. More seriously, build-up of ACh at neuromuscular junctions also can cause paralysis and ultimately peripherally-mediated respiratory arrest which can lead to death via respiratory failure. In addition to its primary action on the cholinergic system, sarin possesses other indirect effects. These involve the activation of several neurotransmitters including gamma-amino-butyric acid (GABA) and the alteration of other signaling systems such as ion channels, cell adhesion molecules, and inflammatory regulators. Sarin exposure is associated with symptoms of organophosphate-induced delayed neurotoxicity (OPIDN) and organophosphate-induced chronic neurotoxicity (OPICN). Moreover, sarin has been involved in toxic and immunotoxic effects as well as organophosphate-induced endocrine disruption (OPIED). The standard treatment for sarin-like nerve agent exposure is post-exposure injection of atropine, a muscarinic receptor antagonist, accompanied by an oxime, an AChE reactivator, and diazepam.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Briana Siracuse
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Natasha Gupta
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Ashly Sobel Sokol
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| |
Collapse
|
43
|
Barth SK, Kang HK, Bullman T. All-Cause Mortality Among US Veterans of the Persian Gulf War: 13-Year Follow-up. Public Health Rep 2016; 131:822-830. [PMID: 28123229 DOI: 10.1177/0033354916676278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE We determined cause-specific mortality prevalence and risks of Gulf War deployed and nondeployed veterans to determine if deployed veterans were at greater risk than nondeployed veterans for death overall or because of certain diseases or conditions up to 13 years after conflict subsided. METHODS Follow-up began when the veteran left the Gulf War theater or May 1, 1991, and ended on the date of death or December 31, 2004. We studied 621 901 veterans who served in the 1990-1991 Persian Gulf War and 746 247 veterans who served but were not deployed during the Gulf War. We used Cox proportional hazard models to calculate rate ratios adjusted for age at entry to follow-up, length of follow-up, race, sex, branch of service, and military unit. We compared the mortality of (1) Gulf War veterans with non-Gulf War veterans and (2) Gulf War army veterans potentially exposed to nerve agents at Khamisiyah in March 1991 with those not exposed. We compared standardized mortality ratios of deployed and nondeployed Gulf War veterans with the US population. RESULTS Male Gulf War veterans had a lower risk of mortality than male non-Gulf War veterans (adjusted rate ratio [aRR] = 0.97; 95% confidence interval [CI], 0.95-0.99), and female Gulf War veterans had a higher risk of mortality than female non-Gulf War veterans (aRR = 1.15; 95% CI, 1.03-1.28). Khamisiyah-exposed Gulf War army veterans had >3 times the risk of mortality from cirrhosis of the liver than nonexposed army Gulf War veterans (aRR = 3.73; 95% CI, 1.64-8.48). Compared with the US population, female Gulf War veterans had a 60% higher risk of suicide and male Gulf War veterans had a lower risk of suicide (standardized mortality ratio = 0.84; 95% CI, 0.80-0.88). CONCLUSION The vital status and mortality risk of Gulf War and non-Gulf War veterans should continue to be investigated.
Collapse
Affiliation(s)
- Shannon K Barth
- Epidemiology Program, Post-Deployment Health Services, Office of Patient Care Services, Veterans Health Administration, US Department of Veterans Affairs, Washington, DC, USA
| | - Han K Kang
- Epidemiology Program, Post-Deployment Health Services, Office of Patient Care Services, Veterans Health Administration, US Department of Veterans Affairs, Washington, DC, USA
| | - Tim Bullman
- Epidemiology Program, Post-Deployment Health Services, Office of Patient Care Services, Veterans Health Administration, US Department of Veterans Affairs, Washington, DC, USA
| |
Collapse
|
44
|
Turner MP, Hubbard NA, Himes LM, Faghihahmadabadi S, Hutchison JL, Bennett IJ, Motes MA, Haley RW, Rypma B. Cognitive Slowing in Gulf War Illness Predicts Executive Network Hyperconnectivity: Study in a Population-Representative Sample. Neuroimage Clin 2016; 12:535-541. [PMID: 27672557 PMCID: PMC5030369 DOI: 10.1016/j.nicl.2016.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 06/06/2016] [Accepted: 08/24/2016] [Indexed: 12/30/2022]
Abstract
Cognitive slowing is a prevalent symptom observed in Gulf War Illness (GWI). The present study assessed the extent to which functional connectivity between dorsolateral prefrontal cortex (DLPFC) and other task-relevant brain regions was predictive of GWI-related cognitive slowing. GWI patients (n = 54) and healthy veteran controls (n = 29) were assessed on performance of a processing speed task (the Digit Symbol Substitution Task; DSST) while undergoing functional magnetic resonance imaging (fMRI). GWI patients were slower on the DSST relative to controls. Bilateral DLPFC connectivity with task-relevant nodes was altered in GWI patients compared to healthy controls during DSST performance. Moreover, hyperconnectivity in these networks predicted GWI-related increases in reaction time on the DSST, whereas hypoconnectivity did not. These results suggest that GWI-related cognitive slowing reflects reduced efficiency in cortical networks.
Collapse
Affiliation(s)
- Monroe P. Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nicholas A. Hubbard
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Lyndahl M. Himes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | | | - Joanna L. Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ilana J. Bennett
- Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA, USA
| | - Michael A. Motes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Robert W. Haley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
45
|
Smith C, Lee R, Moran A, Sipos M. Repeated low-dose exposures to sarin, soman, or VX affect acoustic startle in guinea pigs. Neurotoxicol Teratol 2016; 54:36-45. [DOI: 10.1016/j.ntt.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
46
|
Chao LL, Reeb R, Esparza IL, Abadjian LR. Associations between the self-reported frequency of hearing chemical alarms in theater and regional brain volume in Gulf War Veterans. Neurotoxicology 2016; 53:246-256. [PMID: 26920621 DOI: 10.1016/j.neuro.2016.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/01/2016] [Accepted: 02/21/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND We previously reported evidence of reduced cortical gray matter (GM), white matter (WM), and hippocampal volume in Gulf War (GW) veterans with predicted exposure to low-levels of nerve agent according to the 2000 Khamisiyah plume model analysis. Because there is suggestive evidence that other nerve agent exposures may have occurred during the Gulf War, we examined the association between the self-reported frequency of hearing chemical alarms sound during deployment in the Gulf War and regional brain volume in GW veterans. METHODS Ninety consecutive GW veterans (15 female, mean age: 52±8years) participating in a VA-funded study underwent structural magnetic resonance imaging (MRI) on a 3T scanner. Freesurfer (version 5.1) was used to obtain regional measures of cortical GM, WM, hippocampal, and insula volume. Multiple linear regression was used to determine the association between the self-reported frequencies of hearing chemical alarms during the Gulf War and regional brain volume. RESULTS There was an inverse association between the self-reported frequency of hearing chemical alarms sound and total cortical GM (adjusted p=0.007), even after accounting for potentially confounding demographic and clinical variables, the veterans' current health status, and other concurrent deployment-related exposures that were correlated with hearing chemical alarms. Post-hoc analyses extended the inverse relationship between the frequency of hearing chemical alarms to GM volume in the frontal (adjusted p=0.02), parietal (adjusted p=0.01), and occipital (adjusted p=0.001) lobes. In contrast, regional brain volumes were not significantly associated with predicted exposure to the Khamisiyah plume or with Gulf War Illness status defined by the Kansas or Centers for Disease Control and Prevention criteria. CONCLUSIONS Many veterans reported hearing chemical alarms sound during the Gulf War. The current findings suggest that exposure to substances that triggered those chemical alarms during the Gulf War likely had adverse neuroanatomical effects.
Collapse
Affiliation(s)
- Linda L Chao
- Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, 114M, San Francisco, CA 94121, United States; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; Department of Psychiatry, University of California San Francisco, San Francisco, CA, United States.
| | - Rosemary Reeb
- Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, 114M, San Francisco, CA 94121, United States; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Iva L Esparza
- Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, 114M, San Francisco, CA 94121, United States
| | - Linda R Abadjian
- Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, 114M, San Francisco, CA 94121, United States
| |
Collapse
|
47
|
Occupation and the risk of chronic toxic leukoencephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:73-91. [PMID: 26563784 DOI: 10.1016/b978-0-444-62627-1.00006-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among the hundreds of environmental insults capable of inducing nervous system injury, a small number can produce clinically significant damage to the brain white matter. The use of magnetic resonance imaging (MRI) in affected individuals has greatly illuminated this previously obscure area of neurotoxicology. Toxic leukoencephalopathy has acute and chronic forms, in both of which cognitive dysfunction is the major clinical manifestation. Chronic toxic leukoencephalopathy (CTL) has been most thoroughly described in individuals with intense and prolonged exposure to leukotoxins, but the consequences of lesser degrees of exposure are not well understood. Rare cases of CTL have been reported in workers exposed to culpable leukotoxins, but study of this syndrome is hindered by many confounds such as uncertain level of toxin exposure, the presence of multiple toxins, vague dose-response relationship, comorbid medical or neurologic disorders, psychiatric illness, and legal issues. The risk of CTL in workers is low, although it is not possible to determine quantitative risk estimates. More knowledge can be expected with the application of advanced MRI techniques to the assessment of workers who may have been exposed to known or potential leukotoxins. Preventive measures for avoiding workplace CTL will be informed by clinical assessment involving the use of advanced neuroimaging and neuropsychologic evaluation in combination with accurate measurement of leukotoxin exposure.
Collapse
|
48
|
Piermartiri T, Pan H, Figueiredo TH, Marini AM. α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology. Molecules 2015; 20:20355-80. [PMID: 26569216 PMCID: PMC6332275 DOI: 10.3390/molecules201119698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 01/23/2023] Open
Abstract
α-Linolenic acid (ALA) is a nutraceutical found in vegetable products such as flax and walnuts. The pleiotropic properties of ALA target endogenous neuroprotective and neurorestorative pathways in brain and involve the transcription factor nuclear factor kappa B (NF-κB), brain-derived neurotrophic factor (BDNF), a major neuroprotective protein in brain, and downstream signaling pathways likely mediated via activation of TrkB, the cognate receptor of BDNF. In this review, we discuss possible mechanisms of ALA efficacy against the highly toxic OP nerve agent soman. Organophosphate (OP) nerve agents are highly toxic chemical warfare agents and a threat to military and civilian populations. Once considered only for battlefield use, these agents are now used by terrorists to inflict mass casualties. OP nerve agents inhibit the critical enzyme acetylcholinesterase (AChE) that rapidly leads to a cholinergic crisis involving multiple organs. Status epilepticus results from the excessive accumulation of synaptic acetylcholine which in turn leads to the overactivation of muscarinic receptors; prolonged seizures cause the neuropathology and long-term consequences in survivors. Current countermeasures mitigate symptoms and signs as well as reduce brain damage, but must be given within minutes after exposure to OP nerve agents supporting interest in newer and more effective therapies. The pleiotropic properties of ALA result in a coordinated molecular and cellular program to restore neuronal networks and improve cognitive function in soman-exposed animals. Collectively, ALA should be brought to the clinic to treat the long-term consequences of nerve agents in survivors. ALA may be an effective therapy for other acute and chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- Tetsade Piermartiri
- Molecular and Cellular Biology Graduate School Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Hongna Pan
- Department of Neurology and Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Ann M Marini
- Department of Neurology and Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
49
|
White RF, Steele L, O'Callaghan JP, Sullivan K, Binns JH, Golomb BA, Bloom FE, Bunker JA, Crawford F, Graves JC, Hardie A, Klimas N, Knox M, Meggs WJ, Melling J, Philbert MA, Grashow R. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex 2015; 74:449-75. [PMID: 26493934 PMCID: PMC4724528 DOI: 10.1016/j.cortex.2015.08.022] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/19/2015] [Accepted: 08/28/2015] [Indexed: 11/01/2022]
Abstract
Veterans of Operation Desert Storm/Desert Shield - the 1991 Gulf War (GW) - are a unique population who returned from theater with multiple health complaints and disorders. Studies in the U.S. and elsewhere have consistently concluded that approximately 25-32% of this population suffers from a disorder characterized by symptoms that vary somewhat among individuals and include fatigue, headaches, cognitive dysfunction, musculoskeletal pain, and respiratory, gastrointestinal and dermatologic complaints. Gulf War illness (GWI) is the term used to describe this disorder. In addition, brain cancer occurs at increased rates in subgroups of GW veterans, as do neuropsychological and brain imaging abnormalities. Chemical exposures have become the focus of etiologic GWI research because nervous system symptoms are prominent and many neurotoxicants were present in theater, including organophosphates (OPs), carbamates, and other pesticides; sarin/cyclosarin nerve agents, and pyridostigmine bromide (PB) medications used as prophylaxis against chemical warfare attacks. Psychiatric etiologies have been ruled out. This paper reviews the recent literature on the health of 1991 GW veterans, focusing particularly on the central nervous system and on effects of toxicant exposures. In addition, it emphasizes research published since 2008, following on an exhaustive review that was published in that year that summarizes the prior literature (RACGWI, 2008). We conclude that exposure to pesticides and/or to PB are causally associated with GWI and the neurological dysfunction in GW veterans. Exposure to sarin and cyclosarin and to oil well fire emissions are also associated with neurologically based health effects, though their contribution to development of the disorder known as GWI is less clear. Gene-environment interactions are likely to have contributed to development of GWI in deployed veterans. The health consequences of chemical exposures in the GW and other conflicts have been called "toxic wounds" by veterans. This type of injury requires further study and concentrated treatment research efforts that may also benefit other occupational groups with similar exposure-related illnesses.
Collapse
Affiliation(s)
- Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States.
| | - Lea Steele
- Baylor University Institute of Biomedical Studies, Waco, TX, United States.
| | - James P O'Callaghan
- Molecular Neurotoxicology, Toxicology & Molecular Biology Branch (MS-3014), Health Effects Laboratory Division, Centers for Disease Control and Prevention - NIOSH, Morgantown, WV, United States.
| | - Kimberly Sullivan
- Boston University School of Public Health, Department of Environmental Health, Boston, MA, United States.
| | - James H Binns
- Research Advisory Committee on Gulf War Veterans' Illnesses, Phoenix, AZ, United States.
| | | | - Floyd E Bloom
- Molecular & Integrative Neuroscience Department, The Scripps Research Institute, La Jolla, CA, United States.
| | - James A Bunker
- National Gulf War Resource Center, Topeka, KS, United States.
| | - Fiona Crawford
- Director, TBI Research Program, Roskamp Institute, Sarasota, FL, United States.
| | - Joel C Graves
- Captain, U.S. Army, Retired, Crestview, FL, United States.
| | - Anthony Hardie
- Veterans for Common Sense, Bradenton, FL, United States.
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Miami, FL, United States.
| | - Marguerite Knox
- McEntire Joint National Guard Base, Eastover, SC, United States.
| | - William J Meggs
- Department of Emergency Medicine, 3ED311, The Brody School of Medicine, East Carolina University School of Medicine, Greenville, NC, United States.
| | - Jack Melling
- U.S. Government Accountability Office, Salisbury, Wiltshire, UK.
| | | | - Rachel Grashow
- Northeastern University, Department of Civil and Environmental Engineering, Boston, MA, United States.
| |
Collapse
|
50
|
Chao LL, Zhang Y, Buckley S. Effects of low-level sarin and cyclosarin exposure on white matter integrity in Gulf War Veterans. Neurotoxicology 2015; 48:239-48. [PMID: 25929683 DOI: 10.1016/j.neuro.2015.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/18/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND We previously found evidence of reduced gray and white matter volume in Gulf War (GW) veterans with predicted low-level exposure to sarin (GB) and cyclosarin (GF). Because loss of white matter tissue integrity has been linked to both gray and white matter atrophy, the current study sought to test the hypothesis that GW veterans with predicted GB/GF exposure have evidence of disrupted white matter microstructural integrity. METHODS Measures of fractional anisotropy and directional (i.e., axial and radial) diffusivity were assessed from the 4T diffusion tensor images (DTI) of 59 GW veterans with predicted GB/GF exposure and 59 "matched" unexposed GW veterans (mean age: 48 ± 7 years). The DTI data were analyzed using regions of interest (ROI) analyses that accounted for age, sex, total brain gray and white matter volume, trauma exposure, posttraumatic stress disorder, current major depression, and chronic multisymptom illness status. RESULTS There were no significant group differences in fractional anisotropy or radial diffusivity. However, there was increased axial diffusivity in GW veterans with predicted GB/GF exposure compared to matched, unexposed veterans throughout the brain, including the temporal stem, corona radiata, superior and inferior (hippocampal) cingulum, inferior and superior fronto-occipital fasciculus, internal and external capsule, and superficial cortical white matter blades. Post hoc analysis revealed significant correlations between higher fractional anisotropy and lower radial diffusivity with better neurobehavioral performance in unexposed GW veterans. In contrast, only increased axial diffusivity in posterior limb of the internal capsule was associated with better psychomotor function in GW veterans with predicted GB/GF exposure. CONCLUSIONS The finding that increased axial diffusivity in a region of the brain that contains descending corticospinal fibers was associated with better psychomotor function and the lack of significant neurobehavioral deficits in veterans with predicted GB/GF exposure hint at the possibility that the widespread increases in axial diffusivity that we observed in GW veterans with predicted GB/GF exposure relative to unexposed controls may reflect white matter reorganization after brain injury (i.e., exposure to GB/GF).
Collapse
Affiliation(s)
- Linda L Chao
- Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, 114M, San Francisco, CA 94121, United States; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; Department of Psychiatry, University of California San Francisco, San Francisco, CA, United States.
| | - Yu Zhang
- Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, 114M, San Francisco, CA 94121, United States; Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Shannon Buckley
- Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, 114M, San Francisco, CA 94121, United States
| |
Collapse
|