1
|
Tao H, Wang C, Zou C, Zhu H, Zhang W. Unraveling the potential of neuroinflammation and autophagy in schizophrenia. Eur J Pharmacol 2025; 997:177469. [PMID: 40054715 DOI: 10.1016/j.ejphar.2025.177469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/03/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Schizophrenia (SCZ) is a complex and chronic psychiatric disorder that affects a significant proportion of the global population. Although the precise etiology of SCZ remains uncertain, recent studies have underscored the involvement of neuroinflammation and autophagy in its pathogenesis. Neuroinflammation, characterized by hyperactivated microglia and markedly elevated pro-inflammatory cytokines, has been observed in postmortem brain tissues of SCZ patients and is closely associated with disease severity. Autophagy, a cellular process responsible for eliminating damaged components and maintaining cellular homeostasis, is believed to play a pivotal role in neuronal health and the onset of SCZ. This review explores the roles and underlying mechanisms of neuroinflammation and autophagy in SCZ, with a particular focus on their intricate interplay. Additionally, we provide an overview of potential therapeutic strategies aimed at modulating neuroinflammation and autophagy, including nutritional interventions, anti-inflammatory drugs, antipsychotics, and plant-derived natural compounds. The review also addresses the dual effects of antipsychotics on autophagy. Our objective is to translate these insights into clinical practice, expanding the therapeutic options available to improve the overall health and well-being of individuals with SCZ.
Collapse
Affiliation(s)
- Hongxia Tao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Congyin Wang
- Department of Emergency Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Chuan Zou
- Department of General Practice, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Hongru Zhu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wei Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Hornung S, Vogl DP, Naltsas D, Volta BD, Ballmann M, Marcon B, Syed MMK, Wu Y, Spanopoulou A, Feederle R, Heidrich L, Bernhagen J, Koeglsperger T, Höglinger GU, Rammes G, Lashuel HA, Kapurniotu A. Multi-Targeting Macrocyclic Peptides as Nanomolar Inhibitors of Self- and Cross-Seeded Amyloid Self-Assembly of α-Synuclein. Angew Chem Int Ed Engl 2025; 64:e202422834. [PMID: 39822034 DOI: 10.1002/anie.202422834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Amyloid self-assembly of α-synuclein (αSyn) is linked to the pathogenesis of Parkinson's disease (PD). Type 2 diabetes (T2D) has recently emerged as a risk factor for PD. Cross-interactions between their amyloidogenic proteins may act as molecular links. In fact, fibrils of islet amyloid polypeptide (IAPP) (T2D) can cross-seed αSyn amyloidogenesis and αSyn and IAPP colocalize in PD brains. Inhibition of both self- and IAPP-cross-seeded αSyn amyloidogenesis could thus interfere with PD pathogenesis. Here we show that macrocyclic peptides, designed to mimic IAPP self-/cross-interaction sites and previously found to inhibit amyloidogenesis of IAPP and/or Alzheimer's disease (AD) amyloid-β peptide Aβ40(42), are nanomolar inhibitors of both self- and IAPP-cross-seeded amyloid self-assembly of αSyn. Anti-amyloid function is mediated by nanomolar affinity interactions with αSyn via three αSyn regions which are identified as key sites of both αSyn self-assembly and its cross-interactions with IAPP. We also show that the peptides block Aβ42-mediated cross-seeding of αSyn as well. Based on their broad spectrum anti-amyloid function and additional drug-like features, these peptides are leads for multifunctional anti-amyloid drugs in PD, T2D, AD, and their comorbidities, while the identified αSyn key segments are valuable targets for novel, multi-site targeting amyloid inhibitors in PD and related synucleinopathies.
Collapse
Affiliation(s)
- Simon Hornung
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Emil-Erlenmeyer-Forum 5, D-85354, Freising, Germany
| | - Dominik P Vogl
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Emil-Erlenmeyer-Forum 5, D-85354, Freising, Germany
- Current address, Boehringer Ingelheim, Vienna, Austria
| | - Denise Naltsas
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Emil-Erlenmeyer-Forum 5, D-85354, Freising, Germany
| | - Beatrice Dalla Volta
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Emil-Erlenmeyer-Forum 5, D-85354, Freising, Germany
| | - Markus Ballmann
- Department of Anesthesiology and Intensive Care, Technische Universität München (TUM)/, Klinikum Rechts der Isar, Ismaningerstr. 22, D-81675, Munich, Germany
| | - Beatrice Marcon
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Emil-Erlenmeyer-Forum 5, D-85354, Freising, Germany
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Lausanne, Switzerland
| | - Yiyang Wu
- Department of Neurology, LMU University Hospital, Ludwig-Maximilian-University (LMU), Marchioninistr. 15, D-81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, D-81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, D-81377, Munich, Germany
| | - Anna Spanopoulou
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Emil-Erlenmeyer-Forum 5, D-85354, Freising, Germany
- Current address, ITM Isotope Technologies Munich SE, Garching/Munich, Germany
| | - Regina Feederle
- Core Facility Monoclonal Antibodies, Helmholtz Center Munich German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, D-81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, D-81377, Munich, Germany
| | - Luzia Heidrich
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Emil-Erlenmeyer-Forum 5, D-85354, Freising, Germany
- Current address, Life & Brain GmbH, Bonn, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilian-University (LMU), Feodor-Lynen-Straße 17, D-81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, D-81377, Munich, Germany
| | - Thomas Koeglsperger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilian-University (LMU), Marchioninistr. 15, D-81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, D-81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, D-81377, Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilian-University (LMU), Marchioninistr. 15, D-81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, D-81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, D-81377, Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care, Technische Universität München (TUM)/, Klinikum Rechts der Isar, Ismaningerstr. 22, D-81675, Munich, Germany
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Lausanne, Switzerland
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Emil-Erlenmeyer-Forum 5, D-85354, Freising, Germany
| |
Collapse
|
3
|
Messa L, Testa C, Carelli S, Rey F, Jacchetti E, Cereda C, Raimondi MT, Ceri S, Pinoli P. Non-Negative Matrix Tri-Factorization for Representation Learning in Multi-Omics Datasets with Applications to Drug Repurposing and Selection. Int J Mol Sci 2024; 25:9576. [PMID: 39273521 PMCID: PMC11394968 DOI: 10.3390/ijms25179576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The vast corpus of heterogeneous biomedical data stored in databases, ontologies, and terminologies presents a unique opportunity for drug design. Integrating and fusing these sources is essential to develop data representations that can be analyzed using artificial intelligence methods to generate novel drug candidates or hypotheses. Here, we propose Non-Negative Matrix Tri-Factorization as an invaluable tool for integrating and fusing data, as well as for representation learning. Additionally, we demonstrate how representations learned by Non-Negative Matrix Tri-Factorization can effectively be utilized by traditional artificial intelligence methods. While this approach is domain-agnostic and applicable to any field with vast amounts of structured and semi-structured data, we apply it specifically to computational pharmacology and drug repurposing. This field is poised to benefit significantly from artificial intelligence, particularly in personalized medicine. We conducted extensive experiments to evaluate the performance of the proposed method, yielding exciting results, particularly compared to traditional methods. Novel drug-target predictions have also been validated in the literature, further confirming their validity. Additionally, we tested our method to predict drug synergism, where constructing a classical matrix dataset is challenging. The method demonstrated great flexibility, suggesting its applicability to a wide range of tasks in drug design and discovery.
Collapse
Affiliation(s)
- Letizia Messa
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Carolina Testa
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Stephana Carelli
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, 20154 Milan, Italy
- Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Federica Rey
- Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, 20154 Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milan, Italy
| | - Stefano Ceri
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Pietro Pinoli
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
4
|
Lam I, Ndayisaba A, Lewis AJ, Fu Y, Sagredo GT, Kuzkina A, Zaccagnini L, Celikag M, Sandoe J, Sanz RL, Vahdatshoar A, Martin TD, Morshed N, Ichihashi T, Tripathi A, Ramalingam N, Oettgen-Suazo C, Bartels T, Boussouf M, Schäbinger M, Hallacli E, Jiang X, Verma A, Tea C, Wang Z, Hakozaki H, Yu X, Hyles K, Park C, Wang X, Theunissen TW, Wang H, Jaenisch R, Lindquist S, Stevens B, Stefanova N, Wenning G, van de Berg WDJ, Luk KC, Sanchez-Pernaute R, Gómez-Esteban JC, Felsky D, Kiyota Y, Sahni N, Yi SS, Chung CY, Stahlberg H, Ferrer I, Schöneberg J, Elledge SJ, Dettmer U, Halliday GM, Bartels T, Khurana V. Rapid iPSC inclusionopathy models shed light on formation, consequence, and molecular subtype of α-synuclein inclusions. Neuron 2024; 112:2886-2909.e16. [PMID: 39079530 PMCID: PMC11377155 DOI: 10.1016/j.neuron.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/26/2023] [Accepted: 06/03/2024] [Indexed: 09/07/2024]
Abstract
The heterogeneity of protein-rich inclusions and its significance in neurodegeneration is poorly understood. Standard patient-derived iPSC models develop inclusions neither reproducibly nor in a reasonable time frame. Here, we developed screenable iPSC "inclusionopathy" models utilizing piggyBac or targeted transgenes to rapidly induce CNS cells that express aggregation-prone proteins at brain-like levels. Inclusions and their effects on cell survival were trackable at single-inclusion resolution. Exemplar cortical neuron α-synuclein inclusionopathy models were engineered through transgenic expression of α-synuclein mutant forms or exogenous seeding with fibrils. We identified multiple inclusion classes, including neuroprotective p62-positive inclusions versus dynamic and neurotoxic lipid-rich inclusions, both identified in patient brains. Fusion events between these inclusion subtypes altered neuronal survival. Proteome-scale α-synuclein genetic- and physical-interaction screens pinpointed candidate RNA-processing and actin-cytoskeleton-modulator proteins like RhoA whose sequestration into inclusions could enhance toxicity. These tractable CNS models should prove useful in functional genomic analysis and drug development for proteinopathies.
Collapse
Affiliation(s)
- Isabel Lam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Amanda J Lewis
- École Polytechnique Fédérale de Lausanne and University of Lausanne, Lausanne, Switzerland
| | - YuHong Fu
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia
| | - Giselle T Sagredo
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia
| | - Anastasia Kuzkina
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Meral Celikag
- Dementia Research Institute, University College London, London, UK
| | - Jackson Sandoe
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ricardo L Sanz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aazam Vahdatshoar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Timothy D Martin
- Harvard Medical School, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nader Morshed
- Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Charlotte Oettgen-Suazo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Theresa Bartels
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Manel Boussouf
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Max Schäbinger
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Erinc Hallacli
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Xin Jiang
- Yumanity Therapeutics, Cambridge, MA, USA
| | - Amrita Verma
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Challana Tea
- University of California, San Diego, San Diego, CA, USA
| | - Zichen Wang
- University of California, San Diego, San Diego, CA, USA
| | | | - Xiao Yu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Kelly Hyles
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chansaem Park
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Xinyuan Wang
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Haoyi Wang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Beth Stevens
- Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Boston Children's Hospital, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Wenning
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Kelvin C Luk
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rosario Sanchez-Pernaute
- BioBizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - Daniel Felsky
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | - Nidhi Sahni
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA
| | - S Stephen Yi
- The University of Texas at Austin, Austin, TX, USA
| | | | - Henning Stahlberg
- École Polytechnique Fédérale de Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Isidro Ferrer
- The University of Barcelona, Institut d'Investigacio Biomedica de Bellvitge IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | - Stephen J Elledge
- Harvard Medical School, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Glenda M Halliday
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health School of Medical Science, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tim Bartels
- Dementia Research Institute, University College London, London, UK
| | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Division of Movement Disorders, American Parkinson Disease Association (APDA) Center for Advanced Research and MSA Center of Excellence, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
5
|
Angarita-Rodríguez A, Matiz-González JM, Pinzón A, Aristizabal AF, Ramírez D, Barreto GE, González J. Enzymatic Metabolic Switches of Astrocyte Response to Lipotoxicity as Potential Therapeutic Targets for Nervous System Diseases. Pharmaceuticals (Basel) 2024; 17:648. [PMID: 38794218 PMCID: PMC11124372 DOI: 10.3390/ph17050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Astrocytes play a pivotal role in maintaining brain homeostasis. Recent research has highlighted the significance of palmitic acid (PA) in triggering pro-inflammatory pathways contributing to neurotoxicity. Furthermore, Genomic-scale metabolic models and control theory have revealed that metabolic switches (MSs) are metabolic pathway regulators by potentially exacerbating neurotoxicity, thereby offering promising therapeutic targets. Herein, we characterized these enzymatic MSs in silico as potential therapeutic targets, employing protein-protein and drug-protein interaction networks alongside structural characterization techniques. Our findings indicate that five MSs (P00558, P04406, Q08426, P09110, and O76062) were functionally linked to nervous system drug targets and may be indirectly regulated by specific neurological drugs, some of which exhibit polypharmacological potential (e.g., Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol). Furthermore, four MSs (P00558, P04406, Q08426, and P09110) feature ligand-binding or allosteric cavities with druggable potential. Our results advocate for a focused exploration of P00558 (phosphoglycerate kinase 1), P04406 (glyceraldehyde-3-phosphate dehydrogenase), Q08426 (peroxisomal bifunctional enzyme, enoyl-CoA hydratase, and 3-hydroxyacyl CoA dehydrogenase), P09110 (peroxisomal 3-ketoacyl-CoA thiolase), and O76062 (Delta(14)-sterol reductase) as promising targets for the development or repurposing of pharmacological compounds, which could have the potential to modulate lipotoxic-altered metabolic pathways, offering new avenues for the treatment of related human diseases such as neurological diseases.
Collapse
Affiliation(s)
- Andrea Angarita-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - J. Manuel Matiz-González
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogotá 110121, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Andrés Felipe Aristizabal
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
6
|
Prajapat SK, Mishra L, Khera S, Owusu SD, Ahuja K, Sharma P, Choudhary E, Chhabra S, Kumar N, Singh R, Kaushal PS, Mahajan D, Banerjee A, Motiani RK, Vrati S, Kalia M. Methotrimeprazine is a neuroprotective antiviral in JEV infection via adaptive ER stress and autophagy. EMBO Mol Med 2024; 16:185-217. [PMID: 38177535 PMCID: PMC10897192 DOI: 10.1038/s44321-023-00014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Japanese encephalitis virus (JEV) pathogenesis is driven by a combination of neuronal death and neuroinflammation. We tested 42 FDA-approved drugs that were shown to induce autophagy for antiviral effects. Four drugs were tested in the JE mouse model based on in vitro protective effects on neuronal cell death, inhibition of viral replication, and anti-inflammatory effects. The antipsychotic phenothiazines Methotrimeprazine (MTP) & Trifluoperazine showed a significant survival benefit with reduced virus titers in the brain, prevention of BBB breach, and inhibition of neuroinflammation. Both drugs were potent mTOR-independent autophagy flux inducers. MTP inhibited SERCA channel functioning, and induced an adaptive ER stress response in diverse cell types. Pharmacological rescue of ER stress blocked autophagy and antiviral effect. MTP did not alter translation of viral RNA, but exerted autophagy-dependent antiviral effect by inhibiting JEV replication complexes. Drug-induced autophagy resulted in reduced NLRP3 protein levels, and attenuation of inflammatory cytokine/chemokine release from infected microglial cells. Our study suggests that MTP exerts a combined antiviral and anti-inflammatory effect in JEV infection, and has therapeutic potential for JE treatment.
Collapse
Affiliation(s)
- Surendra K Prajapat
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Laxmi Mishra
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Sakshi Khera
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Shadrack D Owusu
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
- Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 67000, Strasbourg, France
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Puja Sharma
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Eira Choudhary
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Simran Chhabra
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rajan Singh
- Advanced Technology Platform Centre, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
- Department of Life Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Dinesh Mahajan
- Chemistry and Pharmacology Lab, Centre for Drug Design and Discovery, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Arup Banerjee
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Sudhanshu Vrati
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
7
|
Otręba M, Stojko J, Rzepecka-Stojko A. The role of phenothiazine derivatives in autophagy regulation: A systematic review. J Appl Toxicol 2023; 43:474-489. [PMID: 36165981 DOI: 10.1002/jat.4397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
In this review, we summarized the current literature on the impact of phenothiazine derivatives on autophagy in vitro. Phenothiazines are antipsychotic drugs used in the treatment of schizophrenia, which is related to altered neurotransmission and dysregulation of neuronal autophagy. Thus, phenothiazine derivatives can impact autophagy. We identified 35 papers, where the use of the phenothiazines in the in vitro autophagy assays on normal and cancer cell lines, Caenorhabditis elegans, and zebrafish were discussed. Chlorpromazine, fluphenazine, mepazine, methotrimeprazine, perphenazine, prochlorperazine, promethazine, thioridazine, trifluoperazine, and novel derivatives can modulate autophagy. Stimulation of autophagy by phenothiazines may be either mammalian target of rapamycin (mTOR)-dependent or mTOR-independent. The final effect depends on the used concentration as well as the cell line. A further investigation of the mechanisms of autophagy regulation by phenothiazine derivatives is required to understand the biological actions and to increase the therapeutic potential of this class of drugs.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| | - Anna Rzepecka-Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
8
|
Höllerhage M, Wolff A, Chakroun T, Evsyukov V, Duan L, Chua OWH, Tang Q, Koeglsperger T, Höglinger GU. Binding Stability of Antibody-α-Synuclein Complexes Predicts the Protective Efficacy of Anti-α-synuclein Antibodies. Mol Neurobiol 2022; 59:3980-3995. [PMID: 35460053 PMCID: PMC9167191 DOI: 10.1007/s12035-022-02824-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/01/2022] [Indexed: 01/01/2023]
Abstract
Spreading of alpha-synuclein (αSyn) may play an important role in Parkinson's disease and related synucleinopathies. Passive immunization with anti-αSyn antibodies is a promising method to slow down the spreading process and thereby the progression of synucleinopathies. Currently, it remains elusive which specific characteristics are essential to render therapeutic antibodies efficacious. Here, we established a neuronal co-culture model, in which αSyn species are being released from αSyn-overexpressing cells and induce toxicity in a priori healthy GFP-expressing cells. In this model, we investigated the protective efficacy of three anti-αSyn antibodies. Only two of these antibodies, one C-terminal and one N-terminal, protected from αSyn-induced toxicity by inhibiting the uptake of spreading-competent αSyn from the cell culture medium. Neither the binding epitope nor the affinity of the antibodies towards recombinant αSyn could explain differences in biological efficacy. However, both protective antibodies formed more stable antibody-αSyn complexes than the non-protective antibody. These findings indicate that the stability of antibody-αSyn complexes may be more important to confer protection than the binding epitope or affinity to recombinant αSyn.
Collapse
Affiliation(s)
- Matthias Höllerhage
- Department of Neurology, Hannover Medical School, Hannover, D-30625, Germany.
| | - Andreas Wolff
- Department of Neurology, Technical University of Munich (TUM), D-81675, Munich, Germany
| | - Tasnim Chakroun
- Department of Neurology, Technical University of Munich (TUM), D-81675, Munich, Germany
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany
| | - Valentin Evsyukov
- Department of Neurology, Hannover Medical School, Hannover, D-30625, Germany
| | - Linghan Duan
- Department of Neurology, Hannover Medical School, Hannover, D-30625, Germany
| | - Oscar Wing-Ho Chua
- Department of Neurology, Hannover Medical School, Hannover, D-30625, Germany
| | - Qilin Tang
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany
| | - Thomas Koeglsperger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany
- Department of Neurology, Ludwig Maximilian University Munich, D-81377, Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, Hannover Medical School, Hannover, D-30625, Germany
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany
| |
Collapse
|
9
|
Azari A, Goodarzi A, Jafarkhani B, Eghbali M, Karimi Z, Hosseini Balef SS, Irannejad H. Novel molecular targets and mechanisms for neuroprotective modulation in neurodegenerative disorders. Cent Nerv Syst Agents Med Chem 2022; 22:88-107. [PMID: 35713146 DOI: 10.2174/1871524922666220616092132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuronal death underlies the symptoms of several human neurological disorders, including Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis that their precise pathophysiology have not yet been elucidated. According to various studies the prohibition is the best therapy with neuroprotective approaches which are advanced and safe methods. METHODS This review summarizes some of the already-known and newly emerged neuroprotective targets and strategies that their experimental effects have been reported. Accordingly, literature was studied from 2000 to 2021 and appropriate articles were searched in Google Scholar and Scopus with the keywords given in the Keywords section of the current review. RESULTS Lewy bodies are the histopathologic characteristics of neurodegenerative disorders and are protein-rich intracellular deposits in which Alpha-Synuclein is its major protein. Alpha-Synuclein's toxic potential provides a compelling rationale for therapeutic strategies aimed at decreasing its burden in neuronal cells through numerous pathways including ubiquitin-proteasome system and autophagy-lysosome Pathway, proteolytic breakdown via cathepsin D, kallikrein-6 (neurosin), calpain-1 or MMP9, heat shock proteins, and proteolysis targeting chimera which consists of a target protein ligand and an E3 ubiquitin ligase (E3) followed by target protein ubiquitination (PROTACs). Other targets that have been noticed recently are the mutant huntingtin, tau proteins and glycogen synthase kinase 3β that their accumulation proceeds extensive neuronal damage and up to the minute approach such as Proteolysis Targeting Chimera promotes its degradation in cells. As various studies demonstrated that Mendelian gene mutations can result into the neurodegenerative diseases, additional target that has gained much interest is epigenetics such as mutation, phosphodiesterase, RNA binding proteins and Nuclear respiratory factor 1. CONCLUSION The novel molecular targets and new strategies compiled and introduced here can be used by scientists to design and discover more efficient small molecule drugs against the neurodegenerative diseases. And also the genes in which their mutations can lead to the α-synuclein aggregation or accumulation are discussed and considered a valuable information of epigenetics in dementia.
Collapse
Affiliation(s)
- Aala Azari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Goodarzi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Behrouz Jafarkhani
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Eghbali
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Karimi
- Department of Obstetrics & Gynecology, Imam Khomeini hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Sajad Hosseini Balef
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Höllerhage M, Klietz M, Höglinger GU. Disease modification in Parkinsonism: obstacles and ways forward. J Neural Transm (Vienna) 2022; 129:1133-1153. [PMID: 35695938 PMCID: PMC9463344 DOI: 10.1007/s00702-022-02520-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022]
Abstract
To date, the diagnoses of Parkinson syndromes are based on clinical examination. Therefore, these specific diagnoses are made, when the neuropathological process is already advanced. However, disease modification or neuroprotection, is considered to be most effective before marked neurodegeneration has occurred. In recent years, early clinical or prodromal stages of Parkinson syndromes came into focus. Moreover, subtypes of distinct diseases will allow predictions of the individual course of the diseases more precisely. Thereby, patients will be enrolled into clinical trials with more specific disease entities and endpoints. Furthermore, novel fluid and imaging biomarkers that allow biochemical diagnoses are under development. These will lead to earlier diagnoses and earlier therapy in the future as consequence. Furthermore, therapeutic approaches will take the underlying neuropathological process of neurodegenerative Parkinson syndromes more specific into account. Specifically, future therapies will target the aggregation of aggregation-prone proteins such as alpha-synuclein and tau, the degradation of pathological aggregates, and the spreading of pathological protein aggregates throughout the brain. Many of these approaches are already in (pre)clinical development. In addition, anti-inflammatory approaches are in development. Furthermore, drug-repurposing is a feasible approach to shorten the developmental process of new drugs.
Collapse
Affiliation(s)
- M Höllerhage
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - M Klietz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - G U Höglinger
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
11
|
Höllerhage M, Stepath M, Kohl M, Pfeiffer K, Chua OWH, Duan L, Hopfner F, Eisenacher M, Marcus K, Höglinger GU. Transcriptome and Proteome Analysis in LUHMES Cells Overexpressing Alpha-Synuclein. Front Neurol 2022; 13:787059. [PMID: 35481270 PMCID: PMC9037753 DOI: 10.3389/fneur.2022.787059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/21/2022] [Indexed: 01/03/2023] Open
Abstract
LUHMES cells share many characteristics with human dopaminergic neurons in the substantia nigra, the cells, the demise of which is responsible for the motor symptoms in Parkinson's disease (PD). LUHMES cells can, therefore, be used bona fide as a model to study pathophysiological processes involved in PD. Previously, we showed that LUHMES cells degenerate after 6 days upon overexpression of wild-type alpha-synuclein. In the present study, we performed a transcriptome and proteome expression analysis in alpha-synuclein-overexpressing cells and GFP-expressing control cells in order to identify genes and proteins that are differentially regulated upon overexpression of alpha-synuclein. The analysis was performed 4 days after the initiation of alpha-synuclein or GFP overexpression, before the cells died, in order to identify processes that preceded cell death. After adjustments for multiple testing, we found 765 genes being differentially regulated (439 upregulated, 326 downregulated) and 122 proteins being differentially expressed (75 upregulated, 47 downregulated). In total, 21 genes and corresponding proteins were significantly differentially regulated in the same direction in both datasets, of these 13 were upregulated and 8 were downregulated. In total, 13 genes and 9 proteins were differentially regulated in our cell model, which had been previously associated with PD in recent genome-wide association studies (GWAS). In the gene ontology (GO) analysis of all upregulated genes, the top terms were “regulation of cell death,” “positive regulation of programmed cell death,” and “regulation of apoptotic signaling pathway,” showing a regulation of cell death-associated genes and proteins already 2 days before the cells started to die. In the GO analysis of the regulated proteins, among the strongest enriched GO terms were “vesicle,” “synapse,” and “lysosome.” In total, 33 differentially regulated proteins were associated with synapses, and 12 differentially regulated proteins were associated with the “lysosome”, suggesting that these intracellular mechanisms, which had been previously associated with PD, also play an important role in our cell model.
Collapse
Affiliation(s)
| | - Markus Stepath
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
| | - Michael Kohl
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
| | - Kathy Pfeiffer
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
| | | | - Linghan Duan
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | | | - Martin Eisenacher
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
| | - Katrin Marcus
- Medical Faculty, Medizinisches Proteom-Center, Ruhr University Bochum, Bochum, Germany
- Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr University Bochum, Bochum, Germany
| | - Günter U. Höglinger
- Department of Neurology, Hannover Medical School, Hanover, Germany
- *Correspondence: Günter U. Höglinger
| |
Collapse
|
12
|
Alpha-synuclein increases in rodent and human spinal cord injury and promotes inflammation and tissue loss. Sci Rep 2021; 11:11720. [PMID: 34083630 PMCID: PMC8175699 DOI: 10.1038/s41598-021-91116-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
Synucleinopathies are neurodegenerative diseases in which α-synuclein protein accumulates in neurons and glia. In these diseases, α-synuclein forms dense intracellular aggregates that are disease hallmarks and actively contribute to tissue pathology. Interestingly, many pathological mechanisms, including iron accumulation and lipid peroxidation, are shared between classical synucleinopathies such as Alzheimer’s disease, Parkinson’s disease and traumatic spinal cord injury (SCI). However, to date, no studies have determined if α-synuclein accumulation occurs after human SCI. To examine this, cross-sections from injured and non-injured human spinal cords were immunolabeled for α-synuclein. This showed robust α-synuclein accumulation in profiles resembling axons and astrocytes in tissue surrounding the injury, revealing that α-synuclein markedly aggregates in traumatically injured human spinal cords. We also detected significant iron deposition in the injury site, a known catalyst for α-synuclein aggregation. Next a rodent SCI model mimicking the histological features of human SCI revealed aggregates and structurally altered monomers of α-synuclein are present after SCI. To determine if α-synuclein exacerbates SCI pathology, α-synuclein knockout mice were tested. Compared to wild type mice, α-synuclein knockout mice had significantly more spared axons and neurons and lower pro-inflammatory mediators, macrophage accumulation, and iron deposition in the injured spinal cord. Interestingly, locomotor analysis revealed that α-synuclein may be essential for dopamine-mediated hindlimb function after SCI. Collectively, the marked upregulation and long-lasting accumulation of α-synuclein and iron suggests that SCI may fit within the family of synucleinopathies and offer new therapeutic targets for promoting neuron preservation and improving function after spinal trauma.
Collapse
|
13
|
Preclinical Investigation of Trifluoperazine as a Novel Therapeutic Agent for the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms22062919. [PMID: 33805714 PMCID: PMC7998101 DOI: 10.3390/ijms22062919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Trifluoperazine (TFP), an antipsychotic drug approved by the Food and Drug Administration, has been show to exhibit anti-cancer effects. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by a progressive obliteration of small pulmonary arteries (PAs) due to exaggerated proliferation and resistance to apoptosis of PA smooth muscle cells (PASMCs). However, the therapeutic potential of TFP for correcting the cancer-like phenotype of PAH-PASMCs and improving PAH in animal models remains unknown. PASMCs isolated from PAH patients were exposed to different concentrations of TFP before assessments of cell proliferation and apoptosis. The in vivo therapeutic potential of TFP was tested in two preclinical models with established PAH, namely the monocrotaline and sugen/hypoxia-induced rat models. Assessments of hemodynamics by right heart catheterization and histopathology were conducted. TFP showed strong anti-survival and anti-proliferative effects on cultured PAH-PASMCs. Exposure to TFP was associated with downregulation of AKT activity and nuclear translocation of forkhead box protein O3 (FOXO3). In both preclinical models, TFP significantly lowered the right ventricular systolic pressure and total pulmonary resistance and improved cardiac function. Consistently, TFP reduced the medial wall thickness of distal PAs. Overall, our data indicate that TFP could have beneficial effects in PAH and support the view that seeking new uses for old drugs may represent a fruitful approach.
Collapse
|
14
|
Findeiss E, Schwarz SC, Evsyukov V, Rösler TW, Höllerhage M, Chakroun T, Nykänen NP, Shen Y, Wurst W, Kohl M, Tost J, Höglinger GU. Comprehensive miRNome-Wide Profiling in a Neuronal Cell Model of Synucleinopathy Implies Involvement of Cell Cycle Genes. Front Cell Dev Biol 2021; 9:561086. [PMID: 33748099 PMCID: PMC7969723 DOI: 10.3389/fcell.2021.561086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Growing evidence suggests that epigenetic mechanisms like microRNA-mediated transcriptional regulation contribute to the pathogenesis of parkinsonism. In order to study the influence of microRNAs (miRNAs), we analyzed the miRNome 2 days prior to major cell death in α-synuclein-overexpressing Lund human mesencephalic neurons, a well-established cell model of Parkinson’s disease (PD), by next-generation sequencing. The expression levels of 23 miRNAs were significantly altered in α-synuclein-overexpressing cells, 11 were down- and 12 upregulated (P < 0.01; non-adjusted). The in silico analysis of known target genes of these miRNAs was complemented by the inclusion of a transcriptome dataset (BeadChip) of the same cellular system, revealing the G0/G1 cell cycle transition to be markedly enriched. Out of 124 KEGG-annotated cell cycle genes, 15 were present in the miRNA target gene dataset and six G0/G1 cell cycle genes were found to be significantly altered upon α-synuclein overexpression, with five genes up- (CCND1, CCND2, and CDK4 at P < 0.01; E2F3, MYC at P < 0.05) and one gene downregulated (CDKN1C at P < 0.001). Additionally, several of these altered genes are targeted by miRNAs hsa-miR-34a-5p and hsa-miR-34c-5p, which also modulate α-synuclein expression levels. Functional intervention by siRNA-mediated knockdown of the cell cycle gene cyclin D1 (CCND1) confirmed that silencing of cell cycle initiation is able to substantially reduce α-synuclein-mediated cytotoxicity. The present findings suggest that α-synuclein accumulation induces microRNA-mediated aberrant cell cycle activation in post-mitotic dopaminergic neurons. Thus, the mitotic cell cycle pathway at the level of miRNAs might offer interesting novel therapeutic targets for PD.
Collapse
Affiliation(s)
- Elisabeth Findeiss
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sigrid C Schwarz
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Valentin Evsyukov
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Thomas W Rösler
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Höllerhage
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Tasnim Chakroun
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Niko-Petteri Nykänen
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Yimin Shen
- Laboratory for Epigenetics and Environment, Center National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, Munich, Germany.,Genome Engineering, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Kohl
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Center National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
15
|
Yan J, Huang J, Liu A, Wu J, Fan H, Shen M, Lai X, Ma H, Sun W, Yang J, Xu Y. Atorvastatin improves motor function, anxiety and depression by NOX2-mediated autophagy and oxidative stress in MPTP-lesioned mice. Aging (Albany NY) 2020; 13:831-845. [PMID: 33289703 PMCID: PMC7835000 DOI: 10.18632/aging.202189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons. It is characterized by static tremors, stiffness, slow movements, and gait disturbances, but it is also accompanied by anxiety and depression. Our previous study showed that atorvastatin could reduce the risk of PD, but the mechanism is still unclear. In this paper, Our findings showed that atorvastatin increased muscle capacity and the coordination of movement and improved anxiety and depression. Atorvastatin could decrease the expression of α-synuclein Ser129 and NADPH oxidase 2 (NOX2), increase the protein expression of LC3II/I, and promote autophagy flow. To further confirm that atorvastatin protection was achieved by inhibiting NOX2, we injected at midbrain with NOX2 shRNA (M) lentivirus and found that silent NOX2 produced the same effect as atorvastatin. Further research found that atorvastatin could reduce MPTP-induced oxidative stress damage, while inhibiting NOX2 decreased the antioxidative stress effect of atorvastatin. Our results suggest that atorvastatin can improve muscle capacity, anxiety and depression by inhibiting NOX2, which may be related to NOX2-mediated oxidative stress and autophagy. Atorvastatin may be identified as a drug that can effectively improve behavioral disorders. NOX2 may be a potential gene target for new drug development in PD.
Collapse
Affiliation(s)
- Junqiang Yan
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China.,Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Jiarui Huang
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Anran Liu
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Hua Fan
- Department of Pharmacy, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Mengmeng Shen
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Xiaoyi Lai
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Hongxia Ma
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Wenjie Sun
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Jianxue Yang
- School of Nursing of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Yunqi Xu
- Department of Neurology, Nanfang Hospital of Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
16
|
Terry-Kantor E, Tripathi A, Imberdis T, LaVoie ZM, Ho GPH, Selkoe D, Fanning S, Ramalingam N, Dettmer U. Rapid Alpha-Synuclein Toxicity in a Neural Cell Model and Its Rescue by a Stearoyl-CoA Desaturase Inhibitor. Int J Mol Sci 2020; 21:E5193. [PMID: 32707907 PMCID: PMC7432784 DOI: 10.3390/ijms21155193] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/28/2023] Open
Abstract
Genetic and biochemical evidence attributes neuronal loss in Parkinson's disease (PD) and related brain diseases to dyshomeostasis of the 14 kDa protein α-synuclein (αS). There is no consensus on how αS exerts toxicity. Explanations range from disturbed vesicle biology to proteotoxicity caused by fibrillar aggregates. To probe these mechanisms further, robust cellular toxicity models are needed, but their availability is limited. We previously reported that a shift from dynamic multimers to monomers is an early event in αS dyshomeostasis, as caused by familial PD (fPD)-linked mutants such as E46K. Excess monomers accumulate in round, lipid-rich inclusions. Engineered αS '3K' (E35K+E46K+E61K) amplifies E46K, causing a PD-like, L-DOPA-responsive motor phenotype in transgenic mice. Here, we present a cellular model of αS neurotoxicity after transducing human neuroblastoma cells to express yellow fluorescent protein (YFP)-tagged αS 3K in a doxycycline-dependent manner. αS-3K::YFP induction causes pronounced growth defects that accord with cell death. We tested candidate compounds for their ability to restore growth, and stearoyl-CoA desaturase (SCD) inhibitors emerged as a molecule class with growth-restoring capacity, but the therapeutic window varied among compounds. The SCD inhibitor MF-438 fully restored growth while exerting no apparent cytotoxicity. Our αS bioassay will be useful for elucidating compound mechanisms, for pharmacokinetic studies, and for compound/genetic screens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (E.T.-K.); (A.T.); (T.I.); (Z.M.L.); (G.P.H.H.); (D.S.); (S.F.)
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (E.T.-K.); (A.T.); (T.I.); (Z.M.L.); (G.P.H.H.); (D.S.); (S.F.)
| |
Collapse
|
17
|
Harischandra DS, Rokad D, Ghaisas S, Verma S, Robertson A, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Enhanced differentiation of human dopaminergic neuronal cell model for preclinical translational research in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165533. [PMID: 31442530 PMCID: PMC7010568 DOI: 10.1016/j.bbadis.2019.165533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022]
Abstract
Human-derived neuronal cell lines are progressively being utilized in understanding neurobiology and preclinical translational research as they are biologically more relevant than rodent-derived cells lines. The Lund human mesencephalic (LUHMES) cell line comprises human neuronal cells that can be differentiated to post-mitotic neurons and is increasingly being used as an in vitro model for various neurodegenerative diseases. A previously published 2-step differentiation procedure leads to the generation of post-mitotic neurons within 5-days, but only a small proportion (10%) of the total cell population tests positive for tyrosine hydroxylase (TH). Here we report on a novel differentiation protocol that we optimized by using a cocktail of neurotrophic factors, pleiotropic cytokines, and antioxidants to effectively generate proportionately more dopaminergic neurons within the same time period. Visualization and quantification of TH-positive cells revealed that under our new protocol, 25% of the total cell population expressed markers of dopaminergic neurons with the TH-positive neuron count peaking on day 5. These neurons showed spontaneous electrical activity and responded to known Parkinsonian toxins as expected by showing decreased cell viability and dopamine uptake and a concomitant increase in apoptotic cell death. Together, our results outline an improved method for generating a higher proportion of dopaminergic neurons, thus making these cells an ideal neuronal culture model of Parkinson's disease (PD) for translational research.
Collapse
Affiliation(s)
- Dilshan S Harischandra
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Dharmin Rokad
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Shivani Ghaisas
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Saurabh Verma
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Alan Robertson
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Huajun Jin
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
18
|
Finkbeiner S. The Autophagy Lysosomal Pathway and Neurodegeneration. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033993. [PMID: 30936119 DOI: 10.1101/cshperspect.a033993] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The autophagy lysosomal pathway (ALP) is a major mechanism for degrading intracellular macromolecules. The catabolic products can then be used by the cell for energy or as building blocks to make other macromolecules. Since its discovery, a variety of cellular pathways have emerged that target components with varying specificity for lysosomal degradation. Under some circumstances, lysosomes may release their contents into the extracellular space where they may serve signaling or pathogenic functions. The ALP is active in healthy cells, and the level of activity can be regulated by nutrient-sensing and metabolic signaling pathways. The ALP is the primary pathway by which lipids and damaged organelles are degraded and may be the only pathway capable of degrading aggregated proteins. As such, there has been intense interest in understanding the role of the ALP in the accumulation of aggregated misfolded proteins characteristic of many of the major adult-onset neurodegenerative diseases. This review focuses on recent advances in our understanding of the ALP and its potential relationship to the pathogenesis and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Steven Finkbeiner
- Gladstone Institutes, San Francisco, California 94158.,Departments of Neurology and Physiology, University of California, San Francisco, California 94158
| |
Collapse
|
19
|
Chakroun T, Evsyukov V, Nykänen NP, Höllerhage M, Schmidt A, Kamp F, Ruf VC, Wurst W, Rösler TW, Höglinger GU. Alpha-synuclein fragments trigger distinct aggregation pathways. Cell Death Dis 2020; 11:84. [PMID: 32015326 PMCID: PMC6997403 DOI: 10.1038/s41419-020-2285-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/19/2023]
Abstract
Aggregation of alpha-synuclein (αSyn) is a crucial event underlying the pathophysiology of synucleinopathies. The existence of various intracellular and extracellular αSyn species, including cleaved αSyn, complicates the quest for an appropriate therapeutic target. Hence, to develop efficient disease-modifying strategies, it is fundamental to achieve a deeper understanding of the relevant spreading and toxic αSyn species. Here, we describe comparative and proof-of-principle approaches to determine the involvement of αSyn fragments in intercellular spreading. We demonstrate that two different αSyn fragments (1–95 and 61–140) fulfill the criteria of spreading species. They efficiently instigate formation of proteinase-K-resistant aggregates from cell-endogenous full-length αSyn, and drive it into different aggregation pathways. The resulting aggregates induce cellular toxicity. Strikingly, these aggregates are only detectable by specific antibodies. Our results suggest that αSyn fragments might be relevant not only for spreading, but also for aggregation-fate determination and differential strain formation.
Collapse
Affiliation(s)
- Tasnim Chakroun
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), University of Munich, 81377, Munich, Germany
| | - Valentin Evsyukov
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Niko-Petteri Nykänen
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
| | - Matthias Höllerhage
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Andreas Schmidt
- Protein Analysis Unit (ZfP), Biomedical Center (BMC), University of Munich, 82152, Planegg, Germany
| | - Frits Kamp
- Metabolic Biochemistry, Biomedical Center (BMC), University of Munich, 81733, Munich, Germany
| | - Viktoria C Ruf
- Center for Neuropathology and Prion Research, University of Munich, 81733, Munich, Germany
| | - Wolfgang Wurst
- Department of Neurology, School of Medicine, Technical University of Munich, 81675, Munich, Germany.,Institute of Developmental Genetics, Helmholtz Center Munich, 85764, Munich, Germany
| | - Thomas W Rösler
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), University of Munich, 81377, Munich, Germany.,Department of Neurology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), University of Munich, 81377, Munich, Germany. .,Department of Neurology, School of Medicine, Technical University of Munich, 81675, Munich, Germany. .,Department of Neurology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
20
|
Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease. Acta Neuropathol 2020; 139:319-345. [PMID: 31768670 DOI: 10.1007/s00401-019-02099-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the gradual appearance of α-synuclein (α-syn)-containing neuronal protein aggregates. Although the exact mechanism of α-syn-mediated cell death remains elusive, recent research suggests that α-syn-induced alterations in neuronal excitability contribute to cell death in PD. Because the fragile X mental retardation protein (FMRP) controls the expression and function of numerous neuronal genes related to neuronal excitability and synaptic function, we here investigated the role of FMRP in α-syn-associated pathological changes in cell culture and mouse models of PD as well as in post-mortem human brain tissue from PD patients. We found FMRP to be decreased in cultured DA neurons and in the mouse brain in response to α-syn overexpression. FMRP was, furthermore, lost in the SNc of PD patients and in patients with early stages of incidental Lewy body disease (iLBD). Unlike fragile X syndrome (FXS), FMR1 expression in response to α-syn was regulated by a mechanism involving Protein Kinase C (PKC) and cAMP response element-binding protein (CREB). Reminiscent of FXS neurons, α-syn-overexpressing cells exhibited an increase in membrane N-type calcium channels, increased phosphorylation of ERK1/2, eIF4E and S6, increased overall protein synthesis, and increased expression of Matrix Metalloproteinase 9 (MMP9). FMRP affected neuronal function in a PD animal model, because FMRP-KO mice were resistant to the effect of α-syn on striatal dopamine release. In summary, our results thus reveal a new role of FMRP in PD and support the examination of FMRP-regulated genes in PD disease progression.
Collapse
|
21
|
Ganjam GK, Bolte K, Matschke LA, Neitemeier S, Dolga AM, Höllerhage M, Höglinger GU, Adamczyk A, Decher N, Oertel WH, Culmsee C. Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons. Cell Death Dis 2019; 10:865. [PMID: 31727879 PMCID: PMC6856124 DOI: 10.1038/s41419-019-2091-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
Abstract
Evolving concepts on Parkinson’s disease (PD) pathology suggest that α-synuclein (aSYN) promote dopaminergic neuron dysfunction and death through accumulating in the mitochondria. However, the consequence of mitochondrial aSYN localisation on mitochondrial structure and bioenergetic functions in neuronal cells are poorly understood. Therefore, we investigated deleterious effects of mitochondria-targeted aSYN in differentiated human dopaminergic neurons in comparison with wild-type (WT) aSYN overexpression and corresponding EGFP (enhanced green fluorescent protein)-expressing controls. Mitochondria-targeted aSYN enhanced mitochondrial reactive oxygen species (ROS) formation, reduced ATP levels and showed severely disrupted structure and function of the dendritic neural network, preceding neuronal death. Transmission electron microscopy illustrated distorted cristae and many fragmented mitochondria in response to WT-aSYN overexpression, and a complete loss of cristae structure and massively swollen mitochondria in neurons expressing mitochondria-targeted aSYN. Further, the analysis of mitochondrial bioenergetics in differentiated dopaminergic neurons, expressing WT or mitochondria-targeted aSYN, elicited a pronounced impairment of mitochondrial respiration. In a pharmacological compound screening, we found that the pan-caspase inhibitors QVD and zVAD-FMK, and a specific caspase-1 inhibitor significantly prevented aSYN-induced cell death. In addition, the caspase inhibitor QVD preserved mitochondrial function and neuronal network activity in the human dopaminergic neurons overexpressing aSYN. Overall, our findings indicated therapeutic effects by caspase-1 inhibition despite aSYN-mediated alterations in mitochondrial morphology and function.
Collapse
Affiliation(s)
- Goutham K Ganjam
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany. .,Department of Neurology, University of Marburg, Marburg, Germany. .,Center for Mind, Brain and Behaviour - CMBB, Marburg, Germany.
| | - Kathrin Bolte
- Laboratory for Cell Biology I, Department of Biology, University of Marburg, Marburg, Germany
| | - Lina A Matschke
- Institute of Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | - Sandra Neitemeier
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany
| | - Amalia M Dolga
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | | | - Agata Adamczyk
- Department of Cellular Signaling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Niels Decher
- Institute of Physiology and Pathophysiology, University of Marburg, Marburg, Germany
| | - Wolfgang H Oertel
- Department of Neurology, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behaviour - CMBB, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behaviour - CMBB, Marburg, Germany.,Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Vidal M. Exosomes: Revisiting their role as "garbage bags". Traffic 2019; 20:815-828. [PMID: 31418976 DOI: 10.1111/tra.12687] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
In recent years, the term "extracellular vesicle" (EV) has been used to define different types of vesicles released by various cells. It includes plasma membrane-derived vesicles (ectosomes/microvesicles) and endosome-derived vesicles (exosomes). Although it remains difficult to evaluate the compartment of origin of the two kinds of vesicles once released, it is critical to discriminate these vesicles because their mode of biogenesis is probably directly related to their physiologic function and/or to the physio-pathologic state of the producing cell. The purpose of this review is to specifically consider exosome secretion and its consequences in terms of a material loss for producing cells, rather than on the effects of exosomes once they are taken up by recipient cells. I especially describe one putative basic function of exosomes, that is, to convey material out of cells for off-site degradation by recipient cells. As illustrated by some examples, these components could be evacuated from cells for various reasons, for example, to promote "differentiation" or enhance homeostatic responses. This basic function might explain why so many diseases have made use of the exosomal pathway during pathogenesis.
Collapse
Affiliation(s)
- Michel Vidal
- LPHI - Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
23
|
Cell models of lipid-rich α-synuclein aggregation validate known modifiers of α-synuclein biology and identify stearoyl-CoA desaturase. Proc Natl Acad Sci U S A 2019; 116:20760-20769. [PMID: 31548371 PMCID: PMC6789936 DOI: 10.1073/pnas.1903216116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Misfolding and accumulation of the protein α-synuclein (αS) inside nerve cells characterize Parkinson’s disease (PD) and related brain diseases, for which no disease-modifying therapies exist. Robust cell models are needed that recapitulate abnormal αS folding/accumulation in real time, especially for compound screening. We took advantage of the engineered αS “3K” (E35K+E46K+E61K) mutation, which amplifies the familial PD-causing E46K and readily forms round inclusions. We rescued the inclusions with known αS modulators and then screened a ∼2,000-compound library. We identified the potential therapeutic target stearoyl-CoA desaturase; its inhibition cleared αS inclusions, in accord with the effects of conditioning in saturated fatty acids. We propose a model for how fatty acids serve as key modulators of cellular αS homeostasis. Microscopy of Lewy bodies in Parkinson’s disease (PD) suggests they are not solely filamentous deposits of α-synuclein (αS) but also contain vesicles and other membranous material. We previously reported the existence of native αS tetramers/multimers and described engineered mutations of the αS KTKEGV repeat motifs that abrogate the multimers. The resultant excess monomers accumulate in lipid membrane-rich inclusions associated with neurotoxicity exceeding that of natural familial PD mutants, such as E46K. Here, we use the αS “3K” (E35K+E46K+E61K) engineered mutation to probe the mechanisms of reported small-molecule modifiers of αS biochemistry and then identify compounds via a medium-throughput automated screen. αS 3K, which forms round, vesicle-rich inclusions in cultured neurons and causes a PD-like, l-DOPA–responsive motor phenotype in transgenic mice, was fused to YFP, and fluorescent inclusions were quantified. Live-cell microscopy revealed the highly dynamic nature of the αS inclusions: for example, their rapid clearance by certain known modulators of αS toxicity, including tacrolimus (FK506), isradipine, nilotinib, nortriptyline, and trifluoperazine. Our automated 3K cellular screen identified inhibitors of stearoyl-CoA desaturase (SCD) that robustly prevent the αS inclusions, reduce αS 3K neurotoxicity, and prevent abnormal phosphorylation and insolubility of αS E46K. SCD inhibition restores the E46K αS multimer:monomer ratio in human neurons, and it actually increases this ratio for overexpressed wild-type αS. In accord, conditioning 3K cells in saturated fatty acids rescued, whereas unsaturated fatty acids worsened, the αS phenotypes. Our cellular screen allows probing the mechanisms of synucleinopathy and refining drug candidates, including SCD inhibitors and other lipid modulators.
Collapse
|
24
|
Bartels M, Weckbecker D, Kuhn PH, Ryazanov S, Leonov A, Griesinger C, Lichtenthaler SF, Bötzel K, Giese A. Iron-mediated aggregation and toxicity in a novel neuronal cell culture model with inducible alpha-synuclein expression. Sci Rep 2019; 9:9100. [PMID: 31235814 PMCID: PMC6591385 DOI: 10.1038/s41598-019-45298-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 03/11/2019] [Indexed: 01/25/2023] Open
Abstract
Parkinson's disease (PD) represents an increasing problem in society. The oligomerization of alpha-synuclein (αSyn) is a suggested key event in its pathogenesis, yet the pathological modes of action remain to be fully elucidated. To identify potential disease-modifying therapeutics and to study αSyn-mediated toxic mechanisms, we established cell lines with inducible overexpression of different αSyn constructs: αSyn, αSyn coupled to the fluorescence protein Venus (αSyn-Venus), and αSyn coupled to the N-terminal or C-terminal part of Venus (V1S and SV2, respectively) for a bimolecular fluorescence complementation assay (BiFC). Inducibility was achieved by applying modified GAL4-UAS or Cre-loxP systems and addition of tebufenozide or 4-OH-tamoxifen, respectively. Expression constructs were stably integrated into the host genome of H4 neuroglioma cells by lentiviral transduction. We here demonstrate a detailed investigation of the expression characteristics of inducible H4 cells showing low background expression and high inducibility. We observed increased protein load and aggregation of αSyn upon incubation with DMSO and FeCl3 along with an increase in cytotoxicity. In summary, we present a system for the creation of inducibly αSyn-overexpressing cell lines holding high potential for the screening for modulators of αSyn aggregation and αSyn-mediated toxicity.
Collapse
Affiliation(s)
- Martin Bartels
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany.,Department of Neurology, Klinikum der Universität München, Munich, Germany
| | | | - Peer-Hendrik Kuhn
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sergey Ryazanov
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-University Göttingen, 37073, Göttingen, Germany.,Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Andrei Leonov
- MODAG GmbH, Wendelsheim, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-University Göttingen, 37073, Göttingen, Germany.,Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Christian Griesinger
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-University Göttingen, 37073, Göttingen, Germany.,Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Science, Technical University of Munich, 81675, Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Klinikum der Universität München, Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
25
|
Marvian AT, Koss DJ, Aliakbari F, Morshedi D, Outeiro TF. In vitro models of synucleinopathies: informing on molecular mechanisms and protective strategies. J Neurochem 2019; 150:535-565. [PMID: 31004503 DOI: 10.1111/jnc.14707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Alpha-synuclein (α-Syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. The protein was first associated with PD just over 20 years ago, when it was found to (i) be a major component of Lewy bodies and (ii) to be also associated with familial forms of PD. The characterization of α-Syn pathology has been achieved through postmortem studies of human brains. However, the identification of toxic mechanisms associated with α-Syn was only achieved through the use of experimental models. In vitro models are highly accessible, enable relatively rapid studies, and have been extensively employed to address α-Syn-associated neurodegeneration. Given the diversity of models used and the outcomes of the studies, a cumulative and comprehensive perspective emerges as indispensable to pave the way for further investigations. Here, we subdivided in vitro models of α-Syn pathology into three major types: (i) models simulating α-Syn fibrillization and the formation of different aggregated structures in vitro, (ii) models based on the intracellular expression of α-Syn, reporting on pathogenic conditions and cellular dysfunctions induced, and (iii) models using extracellular treatment with α-Syn aggregated species, reporting on sites of interaction and their downstream consequences. In summary, we review the underlying molecular mechanisms discovered and categorize protective strategies, in order to pave the way for future studies and the identification of effective therapeutic strategies. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Amir Tayaranian Marvian
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
26
|
Uenaka T, Satake W, Cha PC, Hayakawa H, Baba K, Jiang S, Kobayashi K, Kanagawa M, Okada Y, Mochizuki H, Toda T. In silico drug screening by using genome-wide association study data repurposed dabrafenib, an anti-melanoma drug, for Parkinson's disease. Hum Mol Genet 2019; 27:3974-3985. [PMID: 30137437 PMCID: PMC6216208 DOI: 10.1093/hmg/ddy279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss. At present, there are no drugs that stop the progression of PD. As with other multifactorial genetic disorders, genome-wide association studies (GWASs) found multiple risk loci for PD, although their clinical significance remains uncertain. Here, we report the identification of candidate drugs for PD by a method using GWAS data and in silico databases. We identified 57 Food and Drug Administration-approved drug families as candidate neuroprotective drugs for PD. Among them, dabrafenib, which is known as a B-Raf kinase inhibitor and is approved for the treatment of malignant melanoma, showed remarkable cytoprotective effects in neurotoxin-treated SH-SY5Y cells and mice. Dabrafenib was found to inhibit apoptosis, and to enhance the phosphorylation of extracellular signal-regulated kinase (ERK), and inhibit the phosphorylation of c-Jun NH2-terminal kinase. Dabrafenib targets B-Raf, and we confirmed a protein-protein interaction between B-Raf and Rit2, which is coded by RIT2, a PD risk gene in Asians and Caucasians. In RIT2-knockout cells, the phosphorylation of ERK was reduced, and dabrafenib treatment improved the ERK phosphorylation. These data indicated that dabrafenib exerts protective effects against neurotoxicity associated with PD. By using animal model, we confirmed the effectiveness of this in silico screening method. Furthermore, our results suggest that this in silico drug screening system is useful in not only neurodegenerative diseases but also other common diseases such as diabetes mellitus and hypertension.
Collapse
Affiliation(s)
- Takeshi Uenaka
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Wataru Satake
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Pei-Chieng Cha
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hideki Hayakawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shiying Jiang
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiro Kobayashi
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|
27
|
Multiple molecular pathways stimulating macroautophagy protect from alpha-synuclein-induced toxicity in human neurons. Neuropharmacology 2019; 149:13-26. [DOI: 10.1016/j.neuropharm.2019.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
|
28
|
Shih JH, Chiu CH, Ma KH, Huang YS, Shiue CY, Yeh TY, Kao LT, Lin YY, Li IH. Autophagy inhibition plays a protective role against 3, 4-methylenedioxymethamphetamine (MDMA)-induced loss of serotonin transporters and depressive-like behaviors in rats. Pharmacol Res 2019; 142:283-293. [PMID: 30826457 DOI: 10.1016/j.phrs.2019.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/27/2018] [Accepted: 02/24/2019] [Indexed: 02/06/2023]
Abstract
The 3,4-methylenedioxymethamphetamine (MDMA) is a popular recreational drug, which ultimately leads to serotonergic (5-HT) neurotoxicity and psychiatric disorders. Previous in vitro studies have consistently demonstrated that MDMA provokes autophagic activation, as well as damage of 5-HT axons and nerve fibers. So far, whether autophagy, a well-conserved cellular process that is critical for cell fate, also participates in MDMA-induced neurotoxicity in vivo remains elusive. Here, we first examined time-course of autophagy-related changes during repeated administration of MDMA (10 mg/kg s.c. twice daily for 4 consecutive days) using immunofluorescent staining for tryptophan hydroxylase and microtubule-associated protein 1 light chain 3 beta in rats. We also evaluated the protective effects of 3-methyadanine (3-MA, an autophagy inhibitor, 15 mg/kg i.p.) against MDMA-induced acute and long-term reductions in serotonin transporters (SERT) density in various brain regions using immunohistochemical staining and positron emission tomography (PET) imaging respectively. Plasma corticosterone measurements and forced swim tests were performed to evaluate the depressive performance. The staining results showed that repeated administration of MDMA increased expression of autophagosome and caused reduction in SERT densities of striatum and frontal cortex, which was ameliorated in the presence of 3-MA. PET imaging data also revealed that 3-MA could ameliorate MDMA-induced long-term decreased SERT availability in various brain regions of rats. Furthermore, immobility time of forced swim tests and plasma corticosterone levels were less in the group of MDMA co-injected with 3-MA compared with that of MDMA group. Together, these findings suggest that autophagy inhibition may confer protection against neurobiological and behavioral changes induced by MDMA.
Collapse
Affiliation(s)
- Jui-Hu Shih
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chyng-Yann Shiue
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ting-Yin Yeh
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Li-Ting Kao
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Yang-Yi Lin
- Department of Pharmacy, Chi Mei Medical Center, Tainan, Taiwan
| | - I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
29
|
Höllerhage M, Bickle M, Höglinger GU. Unbiased Screens for Modifiers of Alpha-Synuclein Toxicity. Curr Neurol Neurosci Rep 2019; 19:8. [PMID: 30739256 DOI: 10.1007/s11910-019-0925-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW We provide an overview about unbiased screens to identify modifiers of alpha-synuclein (αSyn)-induced toxicity, present the models and the libraries that have been used for screening, and describe how hits from primary screens were selected and validated. RECENT FINDINGS Screens can be classified as either genetic or chemical compound modifier screens, but a few screens do not fit this classification. Most screens addressing αSyn-induced toxicity, including genome-wide overexpressing and deletion, were performed in yeast. More recently, newer methods such as CRISPR-Cas9 became available and were used for screening purposes. Paradoxically, given that αSyn-induced toxicity plays a role in neurological diseases, there is a shortage of human cell-based models for screening. Moreover, most screens used mutant or fluorescently tagged forms of αSyn and only very few screens investigated wild-type αSyn. Particularly, no genome-wide αSyn toxicity screen in human dopaminergic neurons has been published so far. Most unbiased screens for modifiers of αSyn toxicity were performed in yeast, and there is a lack of screens performed in human and particularly dopaminergic cells.
Collapse
Affiliation(s)
- Matthias Höllerhage
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Department of Neurology, Technical University of Munich (TUM), 81675, Munich, Germany
| | - Marc Bickle
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.
- Department of Neurology, Technical University of Munich (TUM), 81675, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilians University (LMU), 81377, Munich, Germany.
| |
Collapse
|
30
|
Vucicevic L, Misirkic-Marjanovic M, Harhaji-Trajkovic L, Maric N, Trajkovic V. Mechanisms and therapeutic significance of autophagy modulation by antipsychotic drugs. Cell Stress 2018; 2:282-291. [PMID: 31225453 PMCID: PMC6551804 DOI: 10.15698/cst2018.11.161] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review we analyze the ability of antipsychotic medications to modulate macroautophagy, a process of controlled lysosomal digestion of cellular macromolecules and organelles. We focus on its molecular mechanisms, consequences for the function/survival of neuronal and other cells, and the contribution to the beneficial and side-effects of antipsychotics in the treatment of schizophrenia, neurodegeneration, and cancer. A wide range of antipsychotics was able to induce neuronal autophagy as a part of the adaptive stress response apparently independent of mammalian target of rapamycin and dopamine receptor blockade. Autophagy induction by antipsychotics could contribute to reducing neuronal dysfunction in schizophrenia, but also to the adverse effects associated with their long-term use, such as brain volume loss and weight gain. In neurodegenerative diseases, antipsychotic-stimulated autophagy might help to increase the clearance and reduce neurotoxicity of aggregated proteotoxins. However, the possibility that some antipsychotics might block autophagic flux and potentially contribute to proteotoxin-mediated neurodegeneration must be considered. Finally, the anticancer effects of autophagy induction by antipsychotics make plausible their repurposing as adjuncts to standard cancer therapy.
Collapse
Affiliation(s)
- Ljubica Vucicevic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | | | | | - Nadja Maric
- Clinic of Psychiatry, Clinical Centre of Serbia and School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| |
Collapse
|
31
|
Pierzynowska K, Gaffke L, Cyske Z, Puchalski M, Rintz E, Bartkowski M, Osiadły M, Pierzynowski M, Mantej J, Piotrowska E, Węgrzyn G. Autophagy stimulation as a promising approach in treatment of neurodegenerative diseases. Metab Brain Dis 2018; 33:989-1008. [PMID: 29542037 PMCID: PMC6060747 DOI: 10.1007/s11011-018-0214-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/08/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is a process of degradation of macromolecules in the cytoplasm, particularly proteins of a long half-life, as well as whole organelles, in eukaryotic cells. Lysosomes play crucial roles during this degradation. Autophagy is a phylogenetically old, and evolutionarily conserved phenomenon which occurs in all eukaryotic cells. It can be found in yeast Saccharomyces cerevisiae, insect Drosophila melanogaster, and mammals, including humans. Its high importance for cell physiology has been recognized, and in fact, dysfunctions causing impaired autophagy are associated with many severe disorders, including cancer and metabolic brain diseases. The types and molecular mechanisms of autophagy have been reviewed recently by others, and in this paper they will be summarized only briefly. Regulatory networks controlling the autophagy process are usually described as negative regulations. In contrast, here, we focus on different ways by which autophagy can be stimulated. In fact, activation of this process by different factors or processes can be considered as a therapeutic strategy in metabolic neurodegenerative diseases. These aspects are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Puchalski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Bartkowski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marta Osiadły
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Pierzynowski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
32
|
Ryskalin L, Limanaqi F, Frati A, Busceti CL, Fornai F. mTOR-Related Brain Dysfunctions in Neuropsychiatric Disorders. Int J Mol Sci 2018; 19:ijms19082226. [PMID: 30061532 PMCID: PMC6121884 DOI: 10.3390/ijms19082226] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is an ubiquitously expressed serine-threonine kinase, which senses and integrates several intracellular and environmental cues to orchestrate major processes such as cell growth and metabolism. Altered mTOR signalling is associated with brain malformation and neurological disorders. Emerging evidence indicates that even subtle defects in the mTOR pathway may produce severe effects, which are evident as neurological and psychiatric disorders. On the other hand, administration of mTOR inhibitors may be beneficial for a variety of neuropsychiatric alterations encompassing neurodegeneration, brain tumors, brain ischemia, epilepsy, autism, mood disorders, drugs of abuse, and schizophrenia. mTOR has been widely implicated in synaptic plasticity and autophagy activation. This review addresses the role of mTOR-dependent autophagy dysfunction in a variety of neuropsychiatric disorders, to focus mainly on psychiatric syndromes including schizophrenia and drug addiction. For instance, amphetamines-induced addiction fairly overlaps with some neuropsychiatric disorders including neurodegeneration and schizophrenia. For this reason, in the present review, a special emphasis is placed on the role of mTOR on methamphetamine-induced brain alterations.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy.
| |
Collapse
|
33
|
Exosomal secretion of α-synuclein as protective mechanism after upstream blockage of macroautophagy. Cell Death Dis 2018; 9:757. [PMID: 29988147 PMCID: PMC6037700 DOI: 10.1038/s41419-018-0816-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 01/16/2023]
Abstract
Accumulation of pathological α-synuclein aggregates plays a major role in Parkinson’s disease. Macroautophagy is a mechanism to degrade intracellular protein aggregates by wrapping them into autophagosomes, followed by fusion with lysosomes. We had previously shown that pharmacological activation of macroautophagy protects against α-synuclein-induced toxicity in human neurons. Here, we hypothesized that inhibition of macroautophagy would aggravate α-synuclein-induced cell death. Unexpectedly, inhibition of autophagosome formation by silencing of ATG5 protected from α-synuclein-induced toxicity. Therefore, we studied alternative cellular mechanisms to compensate for the loss of macroautophagy. ATG5 silencing did not affect the ubiquitin–proteasome system, chaperone systems, chaperone-mediated autophagy, or the unfolded protein response. However, ATG5 silencing increased the secretion of α-synuclein via exosomes. Blocking exosomal secretion exacerbated α-synuclein-induced cell death. We conclude that exosomal secretion of α-synuclein is increased after impaired formation of autophagosomes to reduce the intracellular α-synuclein burden. This compensatory mechanism prevents α-synuclein-induced neuronal cell death.
Collapse
|
34
|
Ganguly U, Chakrabarti SS, Kaur U, Mukherjee A, Chakrabarti S. Alpha-synuclein, Proteotoxicity and Parkinson's Disease: Search for Neuroprotective Therapy. Curr Neuropharmacol 2018; 16:1086-1097. [PMID: 29189163 PMCID: PMC6120113 DOI: 10.2174/1570159x15666171129100944] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/11/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is a growing body of evidence in animal and cell based models of Parkinson's disease (PD) to suggest that overexpression and / or abnormal accumulation and aggregation of α-synuclein can trigger neuronal death. This important role of α-synuclein in PD pathogenesis is supported by the fact that duplication, triplication and mutations of α-synuclein gene cause familial forms of PD. METHODS A review of literature was performed by searching PubMed and Google Scholar for relevant articles highlighting the pathogenic role of α-synuclein and the potential therapeutic implications of targeting various pathways related to this protein. RESULTS The overexpression and accumulation of α-synuclein within neurons may involve both transcriptional and post-transcriptional mechanisms including a decreased degradation of the protein through proteasomal or autophagic processes. The mechanisms of monomeric α-synuclein aggregating to oligomers and fibrils have been investigated intensively, but it is still not certain which form of this natively unfolded protein is responsible for toxicity. Likewise the proteotoxic pathways induced by α- synuclein leading to neuronal death are not elucidated completely but mitochondrial dysfunction, endoplasmic reticulum (ER) stress and altered ER-golgi transport may play crucial roles in this process. At the molecular level, the ability of α-synuclein to form pores in biomembranes or to interact with specific proteins of the cell organelles and the cytosol could be determining factors in the toxicity of this protein. CONCLUSION Despite many limitations in our present knowledge of physiological and pathological functions of α-synuclein, it appears that this protein may be a target for the development of neuroprotective drugs against PD. This review has discussed many such potential drugs which prevent the expression, accumulation and aggregation of α-synuclein or its interactions with mitochondria or ER and thereby effectively abolish α-synuclein mediated toxicity in different experimental models.
Collapse
Affiliation(s)
| | | | | | | | - Sasanka Chakrabarti
- Address correspondence to this author at the Department of Biochemistry, ICARE Institute of Medical Sciences and Research, Haldia, India; Tel: +919874489805; E-mail:
| |
Collapse
|
35
|
Höllerhage M, Moebius C, Melms J, Chiu WH, Goebel JN, Chakroun T, Koeglsperger T, Oertel WH, Rösler TW, Bickle M, Höglinger GU. Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells. Sci Rep 2017; 7:11469. [PMID: 28904388 PMCID: PMC5597612 DOI: 10.1038/s41598-017-11664-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/25/2017] [Indexed: 01/09/2023] Open
Abstract
α-synuclein-induced neurotoxicity is a core pathogenic event in neurodegenerative synucleinopathies such as Parkinson’s disease, dementia with Lewy bodies, or multiple system atrophy. There is currently no disease-modifying therapy available for these diseases. We screened 1,600 FDA-approved drugs for their efficacy to protect LUHMES cells from degeneration induced by wild-type α-synuclein and identified dipyridamole, a non-selective phosphodiesterase inhibitor, as top hit. Systematic analysis of other phosphodiesterase inhibitors identified a specific phosphodiesterase 1 inhibitor as most potent to rescue from α-synuclein toxicity. Protection was mediated by an increase of cGMP and associated with the reduction of a specific α-synuclein oligomeric species. RNA interference experiments confirmed PDE1A and to a smaller extent PDE1C as molecular targets accounting for the protective efficacy. PDE1 inhibition also rescued dopaminergic neurons from wild-type α-synuclein induced degeneration in the substantia nigra of mice. In conclusion, this work identifies inhibition of PDE1A in particular as promising target for neuroprotective treatment of synucleinopathies.
Collapse
Affiliation(s)
- Matthias Höllerhage
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany.,Department of Neurology, Technical University of Munich, D-81675, Munich, Germany
| | - Claudia Moebius
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, D-01307, Dresden, Germany
| | - Johannes Melms
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany.,Department of Neurology, Technical University of Munich, D-81675, Munich, Germany
| | - Wei-Hua Chiu
- Department of Neurology, University of Marburg, D-35043, Marburg, Germany
| | - Joachim N Goebel
- Department of Neurology, University of Marburg, D-35043, Marburg, Germany
| | - Tasnim Chakroun
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), D-81337, Munich, Germany
| | - Thomas Koeglsperger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany.,Department of Neurology, Ludwig Maximilian University of Munich, D-81377, Munich, Germany
| | - Wolfgang H Oertel
- Department of Neurology, University of Marburg, D-35043, Marburg, Germany.,Institute of Neurogenomics, Helmholtz Center Munich, D-85764, Neuherberg, Germany
| | - Thomas W Rösler
- Department of Neurology, Technical University of Munich, D-81675, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), D-81337, Munich, Germany
| | - Marc Bickle
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, D-01307, Dresden, Germany
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany. .,Department of Neurology, Technical University of Munich, D-81675, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), D-81337, Munich, Germany.
| |
Collapse
|
36
|
Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core. Nat Commun 2017; 8:15462. [PMID: 28537272 PMCID: PMC5458082 DOI: 10.1038/ncomms15462] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023] Open
Abstract
Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells. Huntington's disease is caused by a polyglutamine stretch expansion in the first exon of huntingtin. Here, the authors use infrared spectroscopy and solid-state NMR and show that polymorphic huntingtin exon1 fibres differ in their flanking regions but not their core polyglutamine amyloid structures.
Collapse
|
37
|
Zhang Y, Nguyen DT, Olzomer EM, Poon GP, Cole NJ, Puvanendran A, Phillips BR, Hesselson D. Rescue of Pink1 Deficiency by Stress-Dependent Activation of Autophagy. Cell Chem Biol 2017; 24:471-480.e4. [PMID: 28366621 DOI: 10.1016/j.chembiol.2017.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/02/2017] [Accepted: 03/02/2017] [Indexed: 10/19/2022]
Abstract
Stimulating autophagy is a promising therapeutic strategy for slowing the progression of neurodegenerative disease. Neurons are insensitive to current approaches based on mTOR inhibition for activating autophagy, and instead may rely on the Parkinson's disease-associated proteins PINK1 and PARKIN to activate the autophagy-lysosomal pathway in response to mitochondrial damage. We developed a multifactorial zebrafish drug-screening platform combining Pink1 deficiency with an environmental toxin to compromise mitochondrial function and trigger dopaminergic neuron loss. Using a phenotypic screening strategy, we identified a series of piperazine phenothiazines, including trifluoperazine, which rescued Pink1 deficiency by activating autophagy selectively in stressed zebrafish and human cells. We show that trifluoperazine acts downstream of, or parallel to, PINK1/PARKIN to stimulate transcription factor EB nuclear translocation and the expression of autophagy-lysosomal target genes. These data suggest that stress-dependent pharmacological reactivation of autophagy could prevent the loss of vulnerable neurons to slow neurodegeneration.
Collapse
Affiliation(s)
- Yuxi Zhang
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - David T Nguyen
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Ellen M Olzomer
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Gin P Poon
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nicholas J Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Anita Puvanendran
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Brigitte R Phillips
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Australia, Sydney, NSW 2010, Australia.
| |
Collapse
|
38
|
Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochem Int 2017; 104:34-48. [DOI: 10.1016/j.neuint.2017.01.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/18/2016] [Accepted: 01/06/2017] [Indexed: 01/18/2023]
|
39
|
Li J, Li S, Zhang L, Ouyang L, Liu B. Deconvoluting the complexity of autophagy and Parkinson's disease for potential therapeutic purpose. Oncotarget 2016; 6:40480-95. [PMID: 26415234 PMCID: PMC4747347 DOI: 10.18632/oncotarget.5803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/12/2015] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the preferential death of dopaminergic neurons. In the past two decades, great progress has been made toward understanding the pathogenesis of PD; however, its precise pathogenesis still remains unclear. Recently, accumulating evidence has suggested that macroautophagy (herein referred to as autophagy) is tightly linked to PD. Dysregulation of autophagic pathways has been observed in the brains of PD patients and in animal models of PD. More importantly, a number of PD-associated proteins, such as α-synuclein, LRRK2, Parkin and PINK1 have been further revealed to be involved in autophagy. Thus, it is now acknowledged that constitutive autophagy is essential for neuronal survival and that dysregulation of autophagy leads to PD. In this review, we focus on summarizing the relationships amongst PD-associated proteins, autophagy and PD. Moreover, we also demonstrate some autophagy-modulating compounds and autophagic microRNAs in PD models, which may provide better promising strategies for potential PD therapy.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Sijia Li
- State Key Laboratory of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Su LY, Li H, Lv L, Feng YM, Li GD, Luo R, Zhou HJ, Lei XG, Ma L, Li JL, Xu L, Hu XT, Yao YG. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation. Autophagy 2016; 11:1745-59. [PMID: 26292069 DOI: 10.1080/15548627.2015.1082020] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autophagy is involved in the pathogenesis of neurodegenerative diseases including Parkinson disease (PD). However, little is known about the regulation of autophagy in neurodegenerative process. In this study, we characterized aberrant activation of autophagy induced by neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and demonstrated that melatonin has a protective effect on neurotoxicity. We found an excessive activation of autophagy in monkey brain tissues and C6 cells, induced by MPTP, which is mediated by CDK5 (cyclin-dependent kinase 5). MPTP treatment significantly reduced total dendritic length and dendritic complexity of cultured primary cortical neurons and melatonin could reverse this effect. Decreased TH (tyrosine hydroxylase)-positive cells and dendrites of dopaminergic neurons in the substantia nigra pars compacta (SNc) were observed in MPTP-treated monkeys and mice. Along with decreased TH protein level, we observed an upregulation of CDK5 and enhanced autophagic activity in the striatum of mice with MPTP injection. These changes could be salvaged by melatonin treatment or knockdown of CDK5. Importantly, melatonin or knockdown of CDK5 reduced MPTP-induced SNCA/α-synuclein aggregation in mice, which is widely thought to trigger the pathogenesis of PD. Finally, melatonin or knockdown of CDK5 counteracted the PD phenotype in mice induced by MPTP. Our findings uncover a potent role of CDK5-mediated autophagy in the pathogenesis of PD, and suggest that control of autophagic pathways may provide an important clue for exploring potential target for novel therapeutics of PD.
Collapse
Affiliation(s)
- Ling-Yan Su
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,b Kunming College of Life Science; University of Chinese Academy of Sciences ; Kunming, Yunnan , China
| | - Hao Li
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,b Kunming College of Life Science; University of Chinese Academy of Sciences ; Kunming, Yunnan , China
| | - Li Lv
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,b Kunming College of Life Science; University of Chinese Academy of Sciences ; Kunming, Yunnan , China
| | - Yue-Mei Feng
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China
| | - Guo-Dong Li
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,b Kunming College of Life Science; University of Chinese Academy of Sciences ; Kunming, Yunnan , China.,d School of Life Science; Anhui University ; Hefei, Anhui , China
| | - Rongcan Luo
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China
| | - He-Jiang Zhou
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China
| | - Xiao-Guang Lei
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China
| | - Liang Ma
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,b Kunming College of Life Science; University of Chinese Academy of Sciences ; Kunming, Yunnan , China
| | - Jia-Li Li
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,c Kunming Primate Research Center of the Chinese Academy of Sciences; Kunming Institute of Zoology; Chinese Academy of Sciences ; Kunming, Yunnan , China
| | - Lin Xu
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,e CAS Center for Excellence in Brain Science and Intelligence Technology; Chinese Academy of Sciences ; Shanghai , China
| | - Xin-Tian Hu
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,c Kunming Primate Research Center of the Chinese Academy of Sciences; Kunming Institute of Zoology; Chinese Academy of Sciences ; Kunming, Yunnan , China.,e CAS Center for Excellence in Brain Science and Intelligence Technology; Chinese Academy of Sciences ; Shanghai , China
| | - Yong-Gang Yao
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,b Kunming College of Life Science; University of Chinese Academy of Sciences ; Kunming, Yunnan , China.,c Kunming Primate Research Center of the Chinese Academy of Sciences; Kunming Institute of Zoology; Chinese Academy of Sciences ; Kunming, Yunnan , China.,e CAS Center for Excellence in Brain Science and Intelligence Technology; Chinese Academy of Sciences ; Shanghai , China
| |
Collapse
|
41
|
Moon J, Schwarz SC, Lee H, Kang JM, Lee Y, Kim B, Sung M, Höglinger G, Wegner F, Kim JS, Chung H, Chang SW, Cha KY, Kim K, Schwarz J. Preclinical Analysis of Fetal Human Mesencephalic Neural Progenitor Cell Lines: Characterization and Safety In Vitro and In Vivo. Stem Cells Transl Med 2016; 6:576-588. [PMID: 28191758 PMCID: PMC5442800 DOI: 10.5966/sctm.2015-0228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/16/2016] [Indexed: 12/21/2022] Open
Abstract
We have developed a good manufacturing practice for long‐term cultivation of fetal human midbrain‐derived neural progenitor cells. The generation of human dopaminergic neurons may serve as a tool of either restorative cell therapies or cellular models, particularly as a reference for phenotyping region‐specific human neural stem cell lines such as human embryonic stem cells and human inducible pluripotent stem cells. We cultivated 3 different midbrain neural progenitor lines at 10, 12, and 14 weeks of gestation for more than a year and characterized them in great detail, as well as in comparison with Lund mesencephalic cells. The whole cultivation process of tissue preparation, cultivation, and cryopreservation was developed using strict serum‐free conditions and standardized operating protocols under clean‐room conditions. Long‐term‐cultivated midbrain‐derived neural progenitor cells retained stemness, midbrain fate specificity, and floorplate markers. The potential to differentiate into authentic A9‐specific dopaminergic neurons was markedly elevated after prolonged expansion, resulting in large quantities of functional dopaminergic neurons without genetic modification. In restorative cell therapeutic approaches, midbrain‐derived neural progenitor cells reversed impaired motor function in rodents, survived well, and did not exhibit tumor formation in immunodeficient nude mice in the short or long term (8 and 30 weeks, respectively). We conclude that midbrain‐derived neural progenitor cells are a promising source for human dopaminergic neurons and suitable for long‐term expansion under good manufacturing practice, thus opening the avenue for restorative clinical applications or robust cellular models such as high‐content or high‐throughput screening. Stem Cells Translational Medicine2017;6:576–588
Collapse
Affiliation(s)
- Jisook Moon
- Department of Biotechnology, College of Life Science, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
- General Research Division, Korea Research‐Driven Hospital, Bundang CHA Medical Center, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
| | - Sigrid C. Schwarz
- German Center for Neurodegenerative Diseases, Technical University Munich, Munich, Germany
| | - Hyun‐Seob Lee
- General Research Division, Korea Research‐Driven Hospital, Bundang CHA Medical Center, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
| | - Jun Mo Kang
- General Research Division, Korea Research‐Driven Hospital, Bundang CHA Medical Center, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
| | - Young‐Eun Lee
- General Research Division, Korea Research‐Driven Hospital, Bundang CHA Medical Center, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
| | - Bona Kim
- Development Division, CHA Biotech, Seongnam‐si, Gyeonggi‐do, Korea
| | - Mi‐Young Sung
- Development Division, CHA Biotech, Seongnam‐si, Gyeonggi‐do, Korea
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases, Technical University Munich, Munich, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jin Su Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hyung‐Min Chung
- Department of Stem Cell Biology, Graduate School of Medicine, Konkuk University, Gwangjin‐gu, Seoul, Korea
| | - Sung Woon Chang
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
| | - Kwang Yul Cha
- General Research Division, Korea Research‐Driven Hospital, Bundang CHA Medical Center, CHA University, Seongnam‐si, Gyeonggi‐do, Korea
| | - Kwang‐Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA
| | - Johannes Schwarz
- German Center for Neurodegenerative Diseases, Technical University Munich, Munich, Germany
| |
Collapse
|
42
|
Wu CH, Bai LY, Tsai MH, Chu PC, Chiu CF, Chen MY, Chiu SJ, Chiang JH, Weng JR. Pharmacological exploitation of the phenothiazine antipsychotics to develop novel antitumor agents-A drug repurposing strategy. Sci Rep 2016; 6:27540. [PMID: 27277973 PMCID: PMC4899727 DOI: 10.1038/srep27540] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023] Open
Abstract
Phenothiazines (PTZs) have been used for the antipsychotic drugs for centuries. However, some of these PTZs have been reported to exhibit antitumor effects by targeting various signaling pathways in vitro and in vivo. Thus, this study was aimed at exploiting trifluoperazine, one of PTZs, to develop potent antitumor agents. This effort culminated in A4 [10-(3-(piperazin-1-yl)propyl)-2-(trifluoromethyl)-10H-phenothiazine] which exhibited multi-fold higher apoptosis-inducing activity than the parent compound in oral cancer cells. Compared to trifluoperazine, A4 demonstrated similar regulation on the phosphorylation or expression of multiple molecular targets including Akt, p38, and ERK. In addition, A4 induced autophagy, as evidenced by increased expression of the autophagy biomarkers LC3B-II and Atg5, and autophagosomes formation. The antitumor activity of A4 also related to production of reactive oxygen species and adenosine monophosphate-activated protein kinase. Importantly, the antitumor utility of A4 was extended in vivo as it, administrated at 10 and 20 mg/kg intraperitoneally, suppressed the growth of Ca922 xenograft tumors. In conclusion, the ability of A4 to target diverse aspects of cancer cell growth suggests its value in oral cancer therapy.
Collapse
Affiliation(s)
- Chia-Hsien Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Li-Yuan Bai
- College of Medicine, China Medical University, Taichung 404, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Ming-Hsui Tsai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Po-Chen Chu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chang-Fang Chiu
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan.,Cancer Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Michael Yuanchien Chen
- Department of Oral &Maxillofacial Surgery, China Medical University Hospital, Taichung 404, Taiwan.,School of Dentistry, China Medical University, Taichung 404, Taiwan
| | - Shih-Jiuan Chiu
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Jo-Hua Chiang
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Jing-Ru Weng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
43
|
Choi J, Polcher A, Joas A. Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Höllerhage M, Rösler TW, Berjas M, Luo R, Tran K, Richards KM, Sabaa-Srur AU, Maia JGS, Moraes MRD, Godoy HT, Höglinger GU, Smith RE. Neurotoxicity of Dietary Supplements from Annonaceae Species. Int J Toxicol 2015; 34:543-50. [PMID: 26405269 DOI: 10.1177/1091581815602252] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dietary supplements containing plant materials of Annonaceae species (Annona muricata L., A. squamosa L., A. mucosa JACQ., A. squamosa × cherimola Mabb.) were extracted by hot, pressurized ethyl acetate and analyzed for their effect in vitro on Lund human mesencephalic neurons. Cell viability was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and cell death was determined by lactate dehydrogenase levels. Three supplements strongly decreased the cell viability at extract concentrations of 1 µg/mL, of which 1 decreased cell viability at 0.1 µg/µL. Also, strong neuronal toxicities of these supplements were found. Cell death was observed at concentrations of 10 µg/mL. The degree of toxicity was comparable to the ones found in Annonaceous fruit extracts. Two fruit pulps of Annonaceae (A. muricata and A. squamosa) showed a reduction in cell viability at lower concentrations. The fruit pulp extract of A. muricata revealed the strongest neurotoxic effect, with 67% cell death at a concentration of 1 µg/mL. A high reduction in cell viability coupled with pronounced cell death was found at 0.1 µg/mL for an Annonaceous seed extract. These results demonstrate that the intake of dietary supplements containing plant material from Annonaceae may be hazardous to health in terms of neurotoxicity.
Collapse
Affiliation(s)
- Matthias Höllerhage
- Department of Neurology, Technical University, Munich, Germany German Center for Neurodegenerative Diseases (DZNE), Munich, Germany Both the authors contributed equally to the article
| | - Thomas W Rösler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany Both the authors contributed equally to the article
| | - Magda Berjas
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | | | | | | | | | | | | | - Günter U Höglinger
- Department of Neurology, Technical University, Munich, Germany German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | |
Collapse
|
45
|
Radad K, Moldzio R, Al-Shraim M, Kranner B, Krewenka C, Rausch WD. Recent advances in autophagy-based neuroprotection. Expert Rev Neurother 2015; 15:195-205. [PMID: 25614954 DOI: 10.1586/14737175.2015.1002087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macroautophagy is a highly regulated intracellular process that, under certain circumstances, delivers cytoplasmic components to the lysosomes for degradation. It consists of several sequential steps including initiation and nucleation, double membrane formation and elongation, formation and maturation of autophagosomes and finally autophagosomes/lysosomes fusion and degradation of intra-autophagosomal contents by lysosomal enzymes. After decades of considering autophagy as a cell death pathway, it has recently been shown to have a survival function through clearing of protein aggregates and damaged cytoplasmic organelles in response to a variety of stress conditions. Most recently, there is increasing evidence from literature revealing that autophagy induction may combat neurodegeneration. In the light of this, our current review tried to address the recent advances in the role of induced autophagy in neuroprotection with a particular focus on its contribution in the most common neurodegenerative disorders like Alzheimer's disease, Parkinson's disease and Huntington's disease.
Collapse
Affiliation(s)
- Khaled Radad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | | | | | | | | | | |
Collapse
|
46
|
Glucocerebrosidase deficiency and mitochondrial impairment in experimental Parkinson disease. J Neurol Sci 2015; 356:129-36. [DOI: 10.1016/j.jns.2015.06.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 05/22/2015] [Accepted: 06/15/2015] [Indexed: 11/21/2022]
|
47
|
Button RW, Luo S, Rubinsztein DC. Autophagic activity in neuronal cell death. Neurosci Bull 2015; 31:382-94. [PMID: 26077705 DOI: 10.1007/s12264-015-1528-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Abstract
As post-mitotic cells with great energy demands, neurons depend upon the homeostatic and waste-recycling functions provided by autophagy. In addition, autophagy also promotes survival during periods of harsh stress and targets aggregate-prone proteins associated with neurodegeneration for degradation. Despite this, autophagy has also been controversially described as a mechanism of programmed cell death. Instances of autophagic cell death are typically associated with elevated numbers of cytoplasmic autophagosomes, which have been assumed to lead to excessive degradation of cellular components. Due to the high activity and reliance on autophagy in neurons, these cells may be particularly susceptible to autophagic death. In this review, we summarize and assess current evidence in support of autophagic cell death in neurons, as well as how the dysregulation of autophagy commonly seen in neurodegeneration can contribute to neuron loss. From here, we discuss potential treatment strategies relevant to such cell-death pathways.
Collapse
Affiliation(s)
- Robert W Button
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth, PL6 8BU, UK
| | | | | |
Collapse
|