1
|
Konishi CT, Mulaiese N, Butola T, Zhang Q, Kagan D, Yang Q, Pressler M, Dirvin BG, Devinsky O, Basu J, Long C. Modeling and correction of protein conformational disease in iPSC-derived neurons through personalized base editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102441. [PMID: 39877004 PMCID: PMC11773622 DOI: 10.1016/j.omtn.2024.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
Altered protein conformation can cause incurable neurodegenerative disorders. Mutations in SERPINI1, the gene encoding neuroserpin, can alter protein conformation resulting in cytotoxic aggregation leading to neuronal death. Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare autosomal dominant progressive myoclonic epilepsy that progresses to dementia and premature death. We developed HEK293T and induced pluripotent stem cell (iPSC) models of FENIB, harboring a patient-specific pathogenic SERPINI1 variant or stably overexpressing mutant neuroserpin fused to GFP (MUT NS-GFP). Here, we utilized a personalized adenine base editor (ABE)-mediated approach to correct the pathogenic variant efficiently and precisely to restore neuronal dendritic morphology. ABE-treated MUT NS-GFP cells demonstrated reduced inclusion size and number. Using an inducible MUT NS-GFP neuron system, we identified early prevention of toxic protein expression allowed aggregate clearance, while late prevention halted further aggregation. To address several challenges for clinical applications of gene correction, we developed a neuron-specific engineered virus-like particle to optimize neuronal ABE delivery, resulting in higher correction efficiency. Our findings provide a targeted strategy that may treat FENIB and potentially other neurodegenerative diseases due to altered protein conformation such as Alzheimer's and Huntington's diseases.
Collapse
Affiliation(s)
- Colin T. Konishi
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Nancy Mulaiese
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Tanvi Butola
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Qinkun Zhang
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Dana Kagan
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Qiaoyan Yang
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Mariel Pressler
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Brooke G. Dirvin
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Jayeeta Basu
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 100016, USA
| | - Chengzu Long
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY 100016, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 100016, USA
- Department of Neurology, NYU Grossman School of Medicine, New York, NY 100016, USA
| |
Collapse
|
2
|
Ma K, Zhang C, Zhang H, An C, Li G, Cheng L, Li M, Ren M, Bai Y, Liu Z, Ji S, Liu X, Gao J, Zhang Z, Wu X, Chen X. High-Salt Diet Accelerates Neuron Loss and Anxiety in APP/PS1 Mice Through Serpina3n. Int J Mol Sci 2024; 25:11731. [PMID: 39519278 PMCID: PMC11546851 DOI: 10.3390/ijms252111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
High salt (HS) consumption is an independent risk factor for neurodegenerative diseases such as dementia, stroke, and cerebral small vessel disease related to cognitive decline. Recently, Alzheimer's disease-like pathology changes have been reported as consequences of a HS diet in wild-type (wt) mice. However, it has not been revealed how HS diets accelerate the progress of Alzheimer's disease (AD) in APP/PS1 mice. Here, we fed APP/PS1 mice a HS diet or normal diet (ND) for six months; the effects of the HS/ND on wt mice were also observed. The results of our behavior test reveal that the HS diet exacerbates anxiety, β-amyloid overload, neuron loss, and synapse damage in the hippocampi of APP/PS1 mice; this was not observed in HS-treated wt mice. RNA sequencing shows that nearly all serpin family members were increased in the hippocampus of HS-treated APP/PS1 mice. Gene function analysis showed that a HS diet induces neurodegeneration, including axon dysfunction and neuro-ligand-based dysfunction, and regulates serine protein inhibitor activities. The mRNA and protein levels of Serpina3n were dramatically increased. Upregulated Serpina3n may be the key for β-amyloid aggregation and neuronal loss in the hippocampus of HS-treated APP/PS1 mice. Serpina3n inhibition attenuated the anxiety and increased the number of neurons in the hippocampal CA1(cornu ammonis) region of APP/PS1 mice. Our study provides novel insights into the mechanisms by which excessive HS diet deteriorates anxiety in AD mice. Therefore, decreasing daily dietary salt consumption constitutes a pivotal public health intervention for mitigating the progression of neuropathology, especially for old patients and those with neurodegenerative disease.
Collapse
Affiliation(s)
- Kaige Ma
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chenglin Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Hanyue Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chanyuan An
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Ge Li
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Lixue Cheng
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Mai Li
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Minghe Ren
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Yudan Bai
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zichang Liu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Shengfeng Ji
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Xiyue Liu
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Jinman Gao
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Zhichao Zhang
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
| | - Xiaolin Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xinlin Chen
- Department/Institute of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (K.M.); (C.Z.); (H.Z.); (C.A.); (G.L.); (L.C.); (M.L.); (M.R.); (Y.B.); (Z.L.); (S.J.); (X.L.); (J.G.); (Z.Z.)
- Key Laboratory of Ministry of Education for Environment and Genes Related to Diseases, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
3
|
D'Acunto E, Gianfrancesco L, Serangeli I, D'Orsi M, Sabato V, Guadagno NA, Bhosale G, Caristi S, Failla AV, De Jaco A, Cacci E, Duchen MR, Lupo G, Galliciotti G, Miranda E. Polymerogenic neuroserpin causes mitochondrial alterations and activates NFκB but not the UPR in a neuronal model of neurodegeneration FENIB. Cell Mol Life Sci 2022; 79:437. [PMID: 35864382 PMCID: PMC9304071 DOI: 10.1007/s00018-022-04463-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/10/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022]
Abstract
The neurodegenerative condition FENIB (familiar encephalopathy with neuroserpin inclusion bodies) is caused by heterozygous expression of polymerogenic mutant neuroserpin (NS), with polymer deposition within the endoplasmic reticulum (ER) of neurons. We generated transgenic neural progenitor cells (NPCs) from mouse fetal cerebral cortex stably expressing either the control protein GFP or human wild type, polymerogenic G392E or truncated (delta) NS. This cellular model makes it possible to study the toxicity of polymerogenic NS in the appropriated cell type by in vitro differentiation to neurons. Our previous work showed that expression of G392E NS in differentiated NPCs induced an adaptive response through the upregulation of several genes involved in the defence against oxidative stress, and that pharmacological reduction of the antioxidant defences by drug treatments rendered G392E NS neurons more susceptible to apoptosis than control neurons. In this study, we assessed mitochondrial distribution and found a higher percentage of perinuclear localisation in G392E NS neurons, particularly in those containing polymers, a phenotype that was enhanced by glutathione chelation and rescued by antioxidant molecules. Mitochondrial membrane potential and contact sites between mitochondria and the ER were reduced in neurons expressing the G392E mutation. These alterations were associated with a pattern of ER stress that involved the ER overload response but not the unfolded protein response. Our results suggest that intracellular accumulation of NS polymers affects the interaction between the ER and mitochondria, causing mitochondrial alterations that contribute to the neuronal degeneration seen in FENIB patients.
Collapse
Affiliation(s)
- E D'Acunto
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - L Gianfrancesco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - I Serangeli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - M D'Orsi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - V Sabato
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - N A Guadagno
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - G Bhosale
- Department of Cell and Developmental Biology, University College London, London, UK
| | - S Caristi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - A V Failla
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - E Cacci
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - M R Duchen
- Department of Cell and Developmental Biology, University College London, London, UK
| | - G Lupo
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - G Galliciotti
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Disruption of the Ubiquitin-Proteasome System and Elevated Endoplasmic Reticulum Stress in Epilepsy. Biomedicines 2022; 10:biomedicines10030647. [PMID: 35327449 PMCID: PMC8945847 DOI: 10.3390/biomedicines10030647] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The epilepsies are a broad group of conditions characterized by repeated seizures, and together are one of the most common neurological disorders. Additionally, epilepsy is comorbid with many neurological disorders, including lysosomal storage diseases, syndromic intellectual disability, and autism spectrum disorder. Despite the prevalence, treatments are still unsatisfactory: approximately 30% of epileptic patients do not adequately respond to existing therapeutics, which primarily target ion channels. Therefore, new therapeutic approaches are needed. Disturbed proteostasis is an emerging mechanism in epilepsy, with profound effects on neuronal health and function. Proteostasis, the dynamic balance of protein synthesis and degradation, can be directly disrupted by epilepsy-associated mutations in various components of the ubiquitin-proteasome system (UPS), or impairments can be secondary to seizure activity or misfolded proteins. Endoplasmic reticulum (ER) stress can arise from failed proteostasis and result in neuronal death. In light of this, several treatment modalities that modify components of proteostasis have shown promise in the management of neurological disorders. These include chemical chaperones to assist proper folding of proteins, inhibitors of overly active protein degradation, and enhancers of endogenous proteolytic pathways, such as the UPS. This review summarizes recent work on the pathomechanisms of abnormal protein folding and degradation in epilepsy, as well as treatment developments targeting this area.
Collapse
|
5
|
Godinez A, Rajput R, Chitranshi N, Gupta V, Basavarajappa D, Sharma S, You Y, Pushpitha K, Dhiman K, Mirzaei M, Graham S, Gupta V. Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell-cell interactions in the pathophysiology of neurological disease. Cell Mol Life Sci 2022; 79:172. [PMID: 35244780 PMCID: PMC8897380 DOI: 10.1007/s00018-022-04185-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/31/2023]
Abstract
Neuroserpin is an axonally secreted serpin that is involved in regulating plasminogen and its enzyme activators, such as tissue plasminogen activator (tPA). The protein has been increasingly shown to play key roles in neuronal development, plasticity, maturation and synaptic refinement. The proteinase inhibitor may function both independently and through tPA-dependent mechanisms. Herein, we discuss the recent evidence regarding the role of neuroserpin in healthy and diseased conditions and highlight the participation of the serpin in various cellular signalling pathways. Several polymorphisms and mutations have also been identified in the protein that may affect the serpin conformation, leading to polymer formation and its intracellular accumulation. The current understanding of the involvement of neuroserpin in Alzheimer's disease, cancer, glaucoma, stroke, neuropsychiatric disorders and familial encephalopathy with neuroserpin inclusion bodies (FENIB) is presented. To truly understand the detrimental consequences of neuroserpin dysfunction and the effective therapeutic targeting of this molecule in pathological conditions, a cross-disciplinary understanding of neuroserpin alterations and its cellular signaling networks is essential.
Collapse
Affiliation(s)
- Angela Godinez
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Rashi Rajput
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Samridhi Sharma
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Kunal Dhiman
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
6
|
Miranda E, Galliciotti G. Elucidating the pathological mechanisms of neurodegeneration in the lethal serpinopathy FENIB. Neural Regen Res 2022; 17:1733-1734. [PMID: 35017423 PMCID: PMC8820725 DOI: 10.4103/1673-5374.332142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin' and Pasteur Institute - Cenci Bo-lognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
D'Acunto E, Fra A, Visentin C, Manno M, Ricagno S, Galliciotti G, Miranda E. Neuroserpin: structure, function, physiology and pathology. Cell Mol Life Sci 2021; 78:6409-6430. [PMID: 34405255 PMCID: PMC8558161 DOI: 10.1007/s00018-021-03907-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
Neuroserpin is a serine protease inhibitor identified in a search for proteins implicated in neuronal axon growth and synapse formation. Since its discovery over 30 years ago, it has been the focus of active research. Many efforts have concentrated in elucidating its neuroprotective role in brain ischemic lesions, the structural bases of neuroserpin conformational change and the effects of neuroserpin polymers that underlie the neurodegenerative disease FENIB (familial encephalopathy with neuroserpin inclusion bodies), but the investigation of the physiological roles of neuroserpin has increased over the last years. In this review, we present an updated and critical revision of the current literature dealing with neuroserpin, covering all aspects of research including the expression and physiological roles of neuroserpin, both inside and outside the nervous system; its inhibitory and non-inhibitory mechanisms of action; the molecular structure of the monomeric and polymeric conformations of neuroserpin, including a detailed description of the polymerisation mechanism; and the involvement of neuroserpin in human disease, with particular emphasis on FENIB. Finally, we briefly discuss the identification by genome-wide screening of novel neuroserpin variants and their possible pathogenicity.
Collapse
Affiliation(s)
- Emanuela D'Acunto
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Visentin
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Molecular and Translational Cardiology, I.R.C.C.S. Policlinico San Donato, Milan, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy.
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Higgins NR, Greenslade JE, Wu JJ, Miranda E, Galliciotti G, Monteiro MJ. Serpin neuropathology in the P497S UBQLN2 mouse model of ALS/FTD. Brain Pathol 2021; 31:e12948. [PMID: 33780087 PMCID: PMC8387369 DOI: 10.1111/bpa.12948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 01/12/2023] Open
Abstract
Accumulating evidence suggests X-linked dominant mutations in UBQLN2 cause amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD) through both loss- and gain-of-function mechanisms. However, the mechanisms by which the mutations cause disease are still unclear. The goal of the study was to uncover the possible pathomechanism(s) by which UBQLN2 mutations cause ALS/FTD. An analysis of proteomic changes in neuronal tissue was used to identify proteins with altered accumulation in the P497S UBQLN2 transgenic mouse model of ALS/FTD. We then used immunocytochemistry and biochemical techniques to confirm protein changes in the mutant P497S mice. Additionally, we used cell lines inactivated of UBQLN2 expression to determine whether its loss underlies the alteration in the proteins seen in P497S mice. The proteome screen identified a dramatic alteration of serine protease inhibitor (serpin) proteins in the mutant P497S animals. Double immunofluorescent staining of brain and spinal cord tissues of the mutant and control mice revealed an age-dependent change in accumulation of Serpin A1, C1, and I1 in puncta whose staining colocalized with UBQLN2 puncta in the mutant P497S mice. Serpin A1 aggregation in P497S animals was confirmed by biochemical extraction and filter retardation assays. A similar phenomenon of serpin protein aggregation was found in HeLa and NSC34 motor neuron cells with inactivated UBQLN2 expression. We found aberrant aggregation of serpin proteins, particularly Serpin A1, in the brain and spinal cord of the P497S UBQLN2 mouse model of ALS/FTD. Similar aggregation of serpin proteins was found in UBQLN2 knockout cells suggesting that serpin aggregation in the mutant P497S animals may stem from loss of UBQLN2 function. Because serpin aggregation is known to cause disease through both loss- and gain-of-function mechanisms, we speculate that their accumulation in the P497S mouse model of ALS/FTD may contribute to disease pathogenesis through similar mechanism(s).
Collapse
Affiliation(s)
- Nicole R. Higgins
- Program in Molecular MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
- Center for Biomedical Engineering and TechnologyDepartment of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Jessie E. Greenslade
- Center for Biomedical Engineering and TechnologyDepartment of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Josephine J. Wu
- Center for Biomedical Engineering and TechnologyDepartment of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Elena Miranda
- Department of Biology and Biotechnologies ‘Charles Darwin’Pasteur Institute – Cenci Bolognetti FoundationSapienza University of RomeRomeItaly
| | - Giovanna Galliciotti
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Mervyn J. Monteiro
- Program in Molecular MedicineUniversity of Maryland School of MedicineBaltimoreMDUSA
- Center for Biomedical Engineering and TechnologyDepartment of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
9
|
Neuroserpin Inclusion Bodies in a FENIB Yeast Model. Microorganisms 2021; 9:microorganisms9071498. [PMID: 34361933 PMCID: PMC8305157 DOI: 10.3390/microorganisms9071498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
FENIB (familial encephalopathy with neuroserpin inclusion bodies) is a human monogenic disease caused by point mutations in the SERPINI1 gene, characterized by the intracellular deposition of polymers of neuroserpin (NS), which leads to proteotoxicity and cell death. Despite the different cell and animal models developed thus far, the exact mechanism of cell toxicity elicited by NS polymers remains unclear. Here, we report that human wild-type NS and the polymerogenic variant G392E NS form protein aggregates mainly localized within the endoplasmic reticulum (ER) when expressed in the yeast S. cerevisiae. The expression of NS in yeast delayed the exit from the lag phase, suggesting that NS inclusions cause cellular stress. The cells also showed a higher resistance following mild oxidative stress treatments when compared to control cells. Furthermore, the expression of NS in a pro-apoptotic mutant strain-induced cell death during aging. Overall, these data recapitulate phenotypes observed in mammalian cells, thereby validating S. cerevisiae as a model for FENIB.
Collapse
|
10
|
Ingwersen T, Linnenberg C, D'Acunto E, Temori S, Paolucci I, Wasilewski D, Mohammadi B, Kirchmair J, Glen RC, Miranda E, Glatzel M, Galliciotti G. G392E neuroserpin causing the dementia FENIB is secreted from cells but is not synaptotoxic. Sci Rep 2021; 11:8766. [PMID: 33888787 PMCID: PMC8062559 DOI: 10.1038/s41598-021-88090-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a progressive neurodegenerative disease caused by point mutations in the gene for neuroserpin, a serine protease inhibitor of the nervous system. Different mutations are known that are responsible for mutant neuroserpin polymerization and accumulation as inclusion bodies in many cortical and subcortical neurons, thereby leading to cell death, dementia and epilepsy. Many efforts have been undertaken to elucidate the molecular pathways responsible for neuronal death. Most investigations have concentrated on analysis of intracellular mechanisms such as endoplasmic reticulum (ER) stress, ER-associated protein degradation (ERAD) and oxidative stress. We have generated a HEK-293 cell model of FENIB by overexpressing G392E-mutant neuroserpin and in this study we examine trafficking and toxicity of this polymerogenic variant. We observed that a small fraction of mutant neuroserpin is secreted via the ER-to-Golgi pathway, and that this release can be pharmacologically regulated. Overexpression of the mutant form of neuroserpin did not stimulate cell death in the HEK-293 cell model. Finally, when treating primary hippocampal neurons with G392E neuroserpin polymers, we did not detect cytotoxicity or synaptotoxicity. Altogether, we report here that a polymerogenic mutant form of neuroserpin is secreted from cells but is not toxic in the extracellular milieu.
Collapse
Affiliation(s)
- Thies Ingwersen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Linnenberg
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Emanuela D'Acunto
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Shabnam Temori
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Irene Paolucci
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - David Wasilewski
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes Kirchmair
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Robert C Glen
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
- Division of Systems Medicine, Department of Metabolism Digestion and Reproduction, Imperial College London, London, UK
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
11
|
Abstract
Folding of proteins is essential so that they can exert their functions. For proteins that transit the secretory pathway, folding occurs in the endoplasmic reticulum (ER) and various chaperone systems assist in acquiring their correct folding/subunit formation. N-glycosylation is one of the most conserved posttranslational modification for proteins, and in eukaryotes it occurs in the ER. Consequently, eukaryotic cells have developed various systems that utilize N-glycans to dictate and assist protein folding, or if they consistently fail to fold properly, to destroy proteins for quality control and the maintenance of homeostasis of proteins in the ER.
Collapse
|
12
|
Verheijen BM, Lussier C, Müller-Hübers C, Garruto RM, Oyanagi K, Braun RJ, van Leeuwen FW. Activation of the Unfolded Protein Response and Proteostasis Disturbance in Parkinsonism-Dementia of Guam. J Neuropathol Exp Neurol 2020; 79:34-45. [PMID: 31750913 DOI: 10.1093/jnen/nlz110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/15/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
Guam parkinsonism-dementia (G-PD) is a progressive and fatal neurodegenerative disorder among the native inhabitants of the Mariana Islands that manifests clinically with parkinsonism as well as dementia. Neuropathologically, G-PD is characterized by abundant neurofibrillary tangles composed of hyperphosphorylated tau, marked deposition of transactive response DNA-binding protein 43 kDa (TDP-43), and neuronal loss. The mechanisms that underlie neurodegeneration in G-PD are poorly understood. Here, we report that the unfolded protein response (UPR) is activated in G-PD brains. Specifically, we show that the endoplasmic reticulum (ER) chaperone binding immunoglobulin protein/glucose-regulated protein 78 kDa and phosphorylated (activated) ER stress sensor protein kinase RNA-like ER kinase accumulate in G-PD brains. Furthermore, proteinaceous aggregates in G-PD brains are found to contain several proteins related to the ubiquitin-proteasome system (UPS) and the autophagy pathway, two major mechanisms for intracellular protein degradation. In particular, a mutant ubiquitin (UBB+1), whose presence is a marker for UPS dysfunction, is shown to accumulate in G-PD brains. We demonstrate that UBB+1 is a potent modifier of TDP-43 aggregation and cytotoxicity in vitro. Overall, these data suggest that UPR activation and intracellular proteolytic pathways are intimately connected with the accumulation of aggregated proteins in G-PD.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Celina Lussier
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Cora Müller-Hübers
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Ralph M Garruto
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Kiyomitsu Oyanagi
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Ralf J Braun
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Fred W van Leeuwen
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| |
Collapse
|
13
|
Visentin C, Broggini L, Sala BM, Russo R, Barbiroli A, Santambrogio C, Nonnis S, Dubnovitsky A, Bolognesi M, Miranda E, Achour A, Ricagno S. Glycosylation Tunes Neuroserpin Physiological and Pathological Properties. Int J Mol Sci 2020; 21:E3235. [PMID: 32375228 PMCID: PMC7247563 DOI: 10.3390/ijms21093235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/03/2023] Open
Abstract
Neuroserpin (NS) is a member of the serine protease inhibitors superfamily. Specific point mutations are responsible for its accumulation in the endoplasmic reticulum of neurons that leads to a pathological condition named familial encephalopathy with neuroserpin inclusion bodies (FENIB). Wild-type NS presents two N-glycosylation chains and does not form polymers in vivo, while non-glycosylated NS causes aberrant polymer accumulation in cell models. To date, all in vitro studies have been conducted on bacterially expressed NS, de facto neglecting the role of glycosylation in the biochemical properties of NS. Here, we report the expression and purification of human glycosylated NS (gNS) using a novel eukaryotic expression system, LEXSY. Our results confirm the correct N-glycosylation of wild-type gNS. The fold and stability of gNS are not altered compared to bacterially expressed NS, as demonstrated by the circular dichroism and intrinsic tryptophan fluorescence assays. Intriguingly, gNS displays a remarkably reduced polymerisation propensity compared to non-glycosylated NS, in keeping with what was previously observed for wild-type NS in vivo and in cell models. Thus, our results support the relevance of gNS as a new in vitro tool to study the molecular bases of FENIB.
Collapse
Affiliation(s)
- Cristina Visentin
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
| | - Benedetta Maria Sala
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden;
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Rosaria Russo
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Via Fratelli Cervi, 93, 20090 Segrate, Italy;
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l′Ambiente, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy;
| | - Carlo Santambrogio
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milan, Italy;
| | - Simona Nonnis
- Departimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy;
| | - Anatoly Dubnovitsky
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, and Division of Rheumatology, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden;
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
| | - Elena Miranda
- Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’, and Istituto Pasteur - Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy;
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, SE-17176 Stockholm, Sweden;
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, 26, 20133 Milan, Italy; (C.V.); (L.B.); (B.M.S.); (M.B.)
| |
Collapse
|
14
|
Hermann M, Reumann R, Schostak K, Kement D, Gelderblom M, Bernreuther C, Frischknecht R, Schipanski A, Marik S, Krasemann S, Sepulveda-Falla D, Schweizer M, Magnus T, Glatzel M, Galliciotti G. Deficits in developmental neurogenesis and dendritic spine maturation in mice lacking the serine protease inhibitor neuroserpin. Mol Cell Neurosci 2020; 102:103420. [PMID: 31805346 DOI: 10.1016/j.mcn.2019.103420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Neuroserpin is a serine protease inhibitor of the nervous system required for normal synaptic plasticity and regulating cognitive, emotional and social behavior in mice. The high expression level of neuroserpin detected at late stages of nervous system formation in most regions of the brain points to a function in neurodevelopment. In order to evaluate the contribution of neuroserpin to brain development, we investigated developmental neurogenesis and neuronal differentiation in the hippocampus of neuroserpin-deficient mice. Moreover, synaptic reorganization and composition of perineuronal net were studied during maturation and stabilization of hippocampal circuits. We showed that absence of neuroserpin results in early termination of neuronal precursor proliferation and premature neuronal differentiation in the first postnatal weeks. Additionally, at the end of the critical period neuroserpin-deficient mice had changed morphology of dendritic spines towards a more mature phenotype. This was accompanied by increased protein levels and reduced proteolytic cleavage of aggrecan, a perineuronal net core protein. These data suggest a role for neuroserpin in coordinating generation and maturation of the hippocampus, which is essential for establishment of an appropriate neuronal network.
Collapse
Affiliation(s)
- Melanie Hermann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Rebecca Reumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Katrin Schostak
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Dilara Kement
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Renato Frischknecht
- Department of Biology and Animal Physiology, Friedrich Alexander University Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Angela Schipanski
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sergej Marik
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
15
|
Verheijen BM, Oyanagi K, van Leeuwen FW. Dysfunction of Protein Quality Control in Parkinsonism-Dementia Complex of Guam. Front Neurol 2018; 9:173. [PMID: 29615966 PMCID: PMC5869191 DOI: 10.3389/fneur.2018.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
Guam parkinsonism–dementia complex (G-PDC) is an enigmatic neurodegenerative disease that is endemic to the Pacific island of Guam. G-PDC patients are clinically characterized by progressive cognitive impairment and parkinsonism. Neuropathologically, G-PDC is characterized by abundant neurofibrillary tangles, which are composed of hyperphosphorylated tau, marked deposition of 43-kDa TAR DNA-binding protein, and neuronal loss. Although both genetic and environmental factors have been implicated, the etiology and pathogenesis of G-PDC remain unknown. Recent neuropathological studies have provided new clues about the pathomechanisms involved in G-PDC. For example, deposition of abnormal components of the protein quality control system in brains of G-PDC patients indicates a role for proteostasis imbalance in the disease. This opens up promising avenues for new research on G-PDC and could have important implications for the study of other neurodegenerative disorders.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Kiyomitsu Oyanagi
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Nagano, Japan.,Brain Research Laboratory, Hatsuishi Hospital, Chiba, Japan
| | - Fred W van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
16
|
Vincenz-Donnelly L, Holthusen H, Körner R, Hansen EC, Presto J, Johansson J, Sawarkar R, Hartl FU, Hipp MS. High capacity of the endoplasmic reticulum to prevent secretion and aggregation of amyloidogenic proteins. EMBO J 2018; 37:337-350. [PMID: 29247078 PMCID: PMC5793802 DOI: 10.15252/embj.201695841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023] Open
Abstract
Protein aggregation is associated with neurodegeneration and various other pathologies. How specific cellular environments modulate the aggregation of disease proteins is not well understood. Here, we investigated how the endoplasmic reticulum (ER) quality control system handles β-sheet proteins that were designed de novo to form amyloid-like fibrils. While these proteins undergo toxic aggregation in the cytosol, we find that targeting them to the ER (ER-β) strongly reduces their toxicity. ER-β is retained within the ER in a soluble, polymeric state, despite reaching very high concentrations exceeding those of ER-resident molecular chaperones. ER-β is not removed by ER-associated degradation (ERAD) but interferes with ERAD of other proteins. These findings demonstrate a remarkable capacity of the ER to prevent the formation of insoluble β-aggregates and the secretion of potentially toxic protein species. Our results also suggest a generic mechanism by which proteins with exposed β-sheet structure in the ER interfere with proteostasis.
Collapse
Affiliation(s)
- Lisa Vincenz-Donnelly
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hauke Holthusen
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Roman Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Erik C Hansen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jenny Presto
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Centre for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Centre for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
17
|
Reumann R, Vierk R, Zhou L, Gries F, Kraus V, Mienert J, Romswinkel E, Morellini F, Ferrer I, Nicolini C, Fahnestock M, Rune G, Glatzel M, Galliciotti G. The serine protease inhibitor neuroserpin is required for normal synaptic plasticity and regulates learning and social behavior. Learn Mem 2017; 24:650-659. [PMID: 29142062 PMCID: PMC5688962 DOI: 10.1101/lm.045864.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/25/2017] [Indexed: 01/22/2023]
Abstract
The serine protease inhibitor neuroserpin regulates the activity of tissue-type plasminogen activator (tPA) in the nervous system. Neuroserpin expression is particularly prominent at late stages of neuronal development in most regions of the central nervous system (CNS), whereas it is restricted to regions related to learning and memory in the adult brain. The physiological expression pattern of neuroserpin, its high degree of colocalization with tPA within the CNS, together with its dysregulation in neuropsychiatric disorders, suggest a role in formation and refinement of synapses. In fact, studies in cell culture and mice point to a role for neuroserpin in dendritic branching, spine morphology, and modulation of behavior. In this study, we investigated the physiological role of neuroserpin in the regulation of synaptic density, synaptic plasticity, and behavior in neuroserpin-deficient mice. In the absence of neuroserpin, mice show a significant decrease in spine-synapse density in the CA1 region of the hippocampus, while expression of the key postsynaptic scaffold protein PSD-95 is increased in this region. Neuroserpin-deficient mice show decreased synaptic potentiation, as indicated by reduced long-term potentiation (LTP), whereas presynaptic paired-pulse facilitation (PPF) is unaffected. Consistent with altered synaptic plasticity, neuroserpin-deficient mice exhibit cognitive and sociability deficits in behavioral assays. However, although synaptic dysfunction is implicated in neuropsychiatric disorders, we do not detect alterations in expression of neuroserpin in fusiform gyrus of autism patients or in dorsolateral prefrontal cortex of schizophrenia patients. Our results identify neuroserpin as a modulator of synaptic plasticity, and point to a role for neuroserpin in learning and memory.
Collapse
Affiliation(s)
- Rebecca Reumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ricardo Vierk
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lepu Zhou
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frederice Gries
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Vanessa Kraus
- Research Group Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Julia Mienert
- Research Group Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eva Romswinkel
- Research Group Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Fabio Morellini
- Research Group Behavioral Biology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, CIBERNED, 08907 Hospitalet de Llobregat, Spain
| | - Chiara Nicolini
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Gabriele Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
18
|
Verheijen BM, Gentier RJG, Hermes DJHP, van Leeuwen FW, Hopkins DA. Selective Transgenic Expression of Mutant Ubiquitin in Purkinje Cell Stripes in the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2017; 16:746-750. [PMID: 27966098 PMCID: PMC5427096 DOI: 10.1007/s12311-016-0838-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) is one of the major mechanisms for protein breakdown in cells, targeting proteins for degradation by enzymatically conjugating them to ubiquitin molecules. Intracellular accumulation of ubiquitin-B+1 (UBB+1), a frameshift mutant of ubiquitin-B, is indicative of a dysfunctional UPS and has been implicated in several disorders, including neurodegenerative disease. UBB+1-expressing transgenic mice display widespread labeling for UBB+1 in brain and exhibit behavioral deficits. Here, we show that UBB+1 is specifically expressed in a subset of parasagittal stripes of Purkinje cells in the cerebellar cortex of a UBB+1-expressing mouse model. This expression pattern is reminiscent of that of the constitutively expressed Purkinje cell antigen HSP25, a small heat shock protein with neuroprotective properties.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
- Lab of Experimental Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Romina J G Gentier
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Denise J H P Hermes
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Fred W van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - David A Hopkins
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
19
|
Lee TW, Tsang VWK, Loef EJ, Birch NP. Physiological and pathological functions of neuroserpin: Regulation of cellular responses through multiple mechanisms. Semin Cell Dev Biol 2017; 62:152-159. [PMID: 27639894 DOI: 10.1016/j.semcdb.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
It is 27 years since neuroserpin was first discovered in the nervous system and identified as a member of the serpin superfamily. Since that time potential roles for this serine protease inhibitor have been identified in neuronal and non-neuronal systems. Many are linked to inhibition of neuroserpin's principal enzyme target, tissue plasminogen activator (tPA), although some have been suggested to involve alternate non-inhibitory mechanisms. This review focuses mainly on the inhibitory roles of neuroserpin and discusses the evidence supporting tPA as the physiological target. While the major sites of neuroserpin expression are neural, endocrine and immune tissues, most progress on characterizing functional roles for neuroserpin have been in the brain. Roles in emotional behaviour, synaptic plasticity and neuroprotection in stroke and excitotoxicity models are discussed. Current knowledge on three neurological diseases associated with neuroserpin mutation or activity, Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), Alzheimer's disease and brain metastasis is presented. Finally, we consider mechanistic studies that have revealed a distinct inhibitory mechanism for neuroserpin and its possible implications for neuroserpin function.
Collapse
Affiliation(s)
- Tet Woo Lee
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| | - Vicky W K Tsang
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Evert Jan Loef
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand; Brain Research New Zealand, Rangahau Roro Aotearoa, Auckland, New Zealand.
| |
Collapse
|
20
|
López-González I, Pérez-Mediavilla A, Zamarbide M, Carmona M, Torrejón Escribano B, Glatzel M, Galliciotti G, Ferrer I. Limited Unfolded Protein Response and Inflammation in Neuroserpinopathy. J Neuropathol Exp Neurol 2016; 75:121-33. [PMID: 26733586 DOI: 10.1093/jnen/nlv011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare disease characterized by the deposition of multiple intracytoplasmic neuronal inclusions that contain mutated neuroserpin. Tg-Syracuse (Tg-Syr) mice express Ser49Pro mutated neuroserpin and develop clinical and neuropathological features of human FENIB. We used 8-, 34-, 45- and 80-week-old Tg-Syr mice to characterize neuroinflammation and the unfolded protein response (UPR) in a neurodegenerative disease in which abnormal protein aggregates accumulate within the endoplasmic reticulum (ER). There were scattered neuroserpin inclusions in Tg-Syr mice at 8 weeks of age; the numbers of neurons involved and the amount of neuroserpin per neuron increased with age throughout the CNS to 80 weeks of age; no similar inclusions were found in wild type (Tg-WT) mice at any age. Increases in numbers of astrocytes and microglia occurred at advanced disease stages. Among 22 markers in 80-week-old Tg-Syr mice, only II1b and II10rb mRNAs in the somatosensory cortex and CxCl10 and Il10rb mRNAs in the olfactory bulb were upregulated when compared with Tg-WT mice indicating a limited relationship between neuroserpin inclusions and inflammatory responses. The changes were accompanied by a transient increase in expression of Xbp1 spliced at 45 weeks and increased ERdJ4 mRNAs at 80 weeks. The sequestration of UPR activators GRP78 and GRP94 in neuroserpin inclusions might explain the limited UPR responses despite the accumulation of neuroserpin in the ER in this FENIB mouse model.
Collapse
|
21
|
Moriconi C, Ordoñez A, Lupo G, Gooptu B, Irving JA, Noto R, Martorana V, Manno M, Timpano V, Guadagno NA, Dalton L, Marciniak SJ, Lomas DA, Miranda E. Interactions between N-linked glycosylation and polymerisation of neuroserpin within the endoplasmic reticulum. FEBS J 2015; 282:4565-79. [PMID: 26367528 PMCID: PMC4949553 DOI: 10.1111/febs.13517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 07/26/2015] [Accepted: 09/10/2015] [Indexed: 01/04/2023]
Abstract
The neuronal serpin neuroserpin undergoes polymerisation as a consequence of point mutations that alter its conformational stability, leading to a neurodegenerative dementia called familial encephalopathy with neuroserpin inclusion bodies (FENIB). Neuroserpin is a glycoprotein with predicted glycosylation sites at asparagines 157, 321 and 401. We used site-directed mutagenesis, transient transfection, western blot, metabolic labelling and ELISA to probe the relationship between glycosylation, folding, polymerisation and degradation of neuroserpin in validated cell models of health and disease. Our data show that glycosylation at N157 and N321 plays an important role in maintaining the monomeric state of neuroserpin, and we propose this is the result of steric hindrance or effects on local conformational dynamics that can contribute to polymerisation. Asparagine residue 401 is not glycosylated in wild type neuroserpin and in several polymerogenic variants that cause FENIB, but partial glycosylation was observed in the G392E mutant of neuroserpin that causes severe, early-onset dementia. Our findings indicate that N401 glycosylation reports lability of the C-terminal end of neuroserpin in its native state. This C-terminal lability is not required for neuroserpin polymerisation in the endoplasmic reticulum, but the additional glycan facilitates degradation of the mutant protein during proteasomal impairment. In summary, our results indicate how normal and variant-specific N-linked glycosylation events relate to intracellular folding, misfolding, degradation and polymerisation of neuroserpin.
Collapse
Affiliation(s)
- Claudia Moriconi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Adriana Ordoñez
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, UK
| | - Giuseppe Lupo
- Department of Chemistry, Sapienza University of Rome, Italy
| | - Bibek Gooptu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - James A Irving
- Wolfson Institute for Biomedical Research, University College London, UK
| | - Rosina Noto
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Vincenzo Martorana
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Mauro Manno
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Valentina Timpano
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Noemi A Guadagno
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Lucy Dalton
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, UK
| | - Stefan J Marciniak
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, UK
| | - David A Lomas
- Wolfson Institute for Biomedical Research, University College London, UK
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| |
Collapse
|
22
|
Gentier RJ, van Leeuwen FW. Misframed ubiquitin and impaired protein quality control: an early event in Alzheimer's disease. Front Mol Neurosci 2015; 8:47. [PMID: 26388726 PMCID: PMC4557111 DOI: 10.3389/fnmol.2015.00047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
Amyloid β (Aβ) plaque formation is a prominent cellular hallmark of Alzheimer's disease (AD). To date, immunization trials in AD patients have not been effective in terms of curing or ameliorating dementia. In addition, γ-secretase inhibitor strategies await clinical improvements in AD. These approaches were based upon the idea that autosomal dominant mutations in amyloid precursor protein (APP) and Presenilin 1 (PS1) genes are predictive for treatment of all AD patients. However most AD patients are of the sporadic form which partly explains the failures to treat this multifactorial disease. The major risk factor for developing sporadic AD (SAD) is aging whereas the Apolipoprotein E polymorphism (ε4 variant) is the most prominent genetic risk factor. Other medium-risk factors such as triggering receptor expressed on myeloid cells 2 (TREM2) and nine low risk factors from Genome Wide Association Studies (GWAS) were associated with AD. Recently, pooled GWAS studies identified protein ubiquitination as one of the key modulators of AD. In addition, a brain site specific strategy was used to compare the proteomes of AD patients by an Ingenuity Pathway Analysis. This strategy revealed numerous proteins that strongly interact with ubiquitin (UBB) signaling, and pointing to a dysfunctional ubiquitin proteasome system (UPS) as a causal factor in AD. We reported that DNA-RNA sequence differences in several genes including ubiquitin do occur in AD, the resulting misframed protein of which accumulates in the neurofibrillary tangles (NFTs). This suggests again a functional link between neurodegeneration of the AD type and loss of protein quality control by the UPS. Progress in this field is discussed and modulating the activity of the UPS opens an attractive avenue of research towards slowing down the development of AD and ameliorating its effects by discovering prime targets for AD therapeutics.
Collapse
Affiliation(s)
- Romina J. Gentier
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastricht, Netherlands
| | - Fred W. van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht UniversityMaastricht, Netherlands
| |
Collapse
|
23
|
Gentier RJG, Verheijen BM, Zamboni M, Stroeken MMA, Hermes DJHP, Küsters B, Steinbusch HWM, Hopkins DA, Van Leeuwen FW. Localization of mutant ubiquitin in the brain of a transgenic mouse line with proteasomal inhibition and its validation at specific sites in Alzheimer's disease. Front Neuroanat 2015; 9:26. [PMID: 25852488 PMCID: PMC4362318 DOI: 10.3389/fnana.2015.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/21/2015] [Indexed: 11/13/2022] Open
Abstract
Loss of protein quality control by the ubiquitin-proteasome system (UPS) during aging is one of the processes putatively contributing to cellular stress and Alzheimer's disease (AD) pathogenesis. Recently, pooled Genome Wide Association Studies (GWAS), pathway analysis and proteomics identified protein ubiquitination as one of the key modulators of AD. Mutations in ubiquitin B mRNA that result in UBB+1 dose-dependently cause an impaired UPS, subsequent accumulation of UBB+1 and most probably depositions of other aberrant proteins present in plaques and neurofibrillary tangles. We used specific immunohistochemical probes for a comprehensive topographic mapping of the UBB+1 distribution in the brains of transgenic mouse line 3413 overexpressing UBB+1. We also mapped the expression of UBB+1 in brain areas of AD patients selected based upon the distribution of UBB+1 in line 3413. Therefore, we focused on the olfactory bulb, basal ganglia, nucleus basalis of Meynert, inferior colliculus and raphe nuclei. UBB+1 distribution was compared with established probes for pre-tangles and tangles and Aβ plaques. UBB+1 distribution found in line 3413 is partly mirrored in the AD brain. Specifically, nuclei with substantial accumulations of tangle-bearing neurons, such as the nucleus basalis of Meynert and raphe nuclei also present high densities of UBB+1 positive tangles. Line 3413 is useful for studying the contribution of proteasomal dysfunction in AD. The findings are consistent with evidence that areas outside the forebrain are also affected in AD. Line 3413 may also be predictive for other conformational diseases, including related tauopathies and polyglutamine diseases, in which UBB+1 accumulates in their cellular hallmarks.
Collapse
Affiliation(s)
- Romina J G Gentier
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| | - Bert M Verheijen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| | - Margherita Zamboni
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| | - Maartje M A Stroeken
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| | - Denise J H P Hermes
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Nijmegen Medical Center Nijmegen, Netherlands ; Department of Pathology, Maastricht University Medical Center Maastricht, Netherlands
| | - Harry W M Steinbusch
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| | - David A Hopkins
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands ; Department of Medical Neuroscience, Dalhousie University Halifax, NS, Canada
| | - Fred W Van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht, Netherlands
| |
Collapse
|
24
|
Gershenson A, Gierasch LM, Pastore A, Radford SE. Energy landscapes of functional proteins are inherently risky. Nat Chem Biol 2014; 10:884-91. [PMID: 25325699 PMCID: PMC4416114 DOI: 10.1038/nchembio.1670] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/19/2014] [Indexed: 01/08/2023]
Abstract
Evolutionary pressure for protein function leads to unavoidable sampling of conformational states that are at risk of misfolding and aggregation. The resulting tension between functional requirements and the risk of misfolding and/or aggregation in the evolution of proteins is becoming more and more apparent. One outcome of this tension is sensitivity to mutation, in which only subtle changes in sequence that may be functionally advantageous can tip the delicate balance toward protein aggregation. Similarly, increasing the concentration of aggregation-prone species by reducing the ability to control protein levels or compromising protein folding capacity engenders increased risk of aggregation and disease. In this Perspective, we describe examples that epitomize the tension between protein functional energy landscapes and aggregation risk. Each case illustrates how the energy landscapes for the at-risk proteins are sculpted to enable them to perform their functions and how the risks of aggregation are minimized under cellular conditions using a variety of compensatory mechanisms.
Collapse
Affiliation(s)
- Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Lila M Gierasch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Annalisa Pastore
- Department of Clinical Neurosciences, King’s College London, Denmark Hill Campus, London, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| |
Collapse
|