1
|
Noda T, Wakizono T, Manabe T, Aoyagi K, Kubota M, Yasui T, Nakagawa T, Nakashima K, Meno C. Sustained Wnt signaling in the mouse inner ear after morphogenesis: In hair cells, supporting cells, and spiral ganglion neurons. Hear Res 2025; 462:109282. [PMID: 40267597 DOI: 10.1016/j.heares.2025.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
The regenerative capacity of inner ear hair cells in mammals varies between the cochlea and the vestibular system. Hair cells in the cochlea lack regenerative ability, whereas those in the vestibular system exhibit limited regenerative potential. However, supporting cells in the cochlea retain proliferative capacity, making them a key focus in auditory regeneration research. Similarly, spiral ganglion neurons actively proliferate until birth but lose this ability within a week postnatally, sharing the regenerative limitations of hair cells. This study investigated the role of the canonical Wnt signaling pathway as a potential regulator of these cells. Wnt signaling plays a crucial role in otic development and inner ear morphogenesis. Using reporter mice, we analyzed the activity of the Wnt canonical pathway in the inner ear at the cellular stages from embryonic to adult stages, assessing fluorescence intensities as an indicator of signaling activity. Our findings demonstrate that Wnt signaling remains active in the vestibular hair cells and in the supporting cells of both the cochlea and vestibule throughout development and into adulthood. In addition, Wnt activity was observed in spiral ganglion neurons up to 7 days after birth, coinciding with their period of proliferative potential. These findings suggest that Wnt signaling is integral to cell proliferation in the inner ear both before and after birth.
Collapse
Affiliation(s)
- Teppei Noda
- Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan.
| | - Takahiro Wakizono
- Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan; Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| | - Takahiro Manabe
- Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan; Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| | - Kei Aoyagi
- Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan; Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| | - Marie Kubota
- Department of Otolaryngology-Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tetsuro Yasui
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| | - Takashi Nakagawa
- Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 8128582, Japan
| |
Collapse
|
2
|
Drury HR, Tadros MA, Callister RJ, Brichta AM, Eisenberg R, Lim R. Anatomical and functional studies of vestibular neuroepithelia from patients with Ménière's disease. Dis Model Mech 2025; 18:dmm052224. [PMID: 40123419 PMCID: PMC12032548 DOI: 10.1242/dmm.052224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 03/16/2025] [Indexed: 03/25/2025] Open
Abstract
Surgical removal of vestibular end organs is a final treatment option for people with intractable Ménière's disease (MD). Here, we used surgically excised vestibular neuroepithelium from patients with MD for (1) anatomical investigation of hair cell and nerve fibre markers using immunohistochemistry, and (2) functional studies using electrophysiological recordings of voltage-activated currents. Our data show considerable reduction in and disorganisation of vestibular hair cells in the cristae ampullares. Nerve fibres maintain contact with remaining sensory receptors but appear thin in regions in which hair cells are absent. Electrophysiological recordings of voltage-activated potassium currents from surviving hair cells demonstrated normal activity in both type I and type II vestibular hair cells. Current-voltage plots from type I vestibular hair cells are consistent with the presence of a surrounding calyx afferent terminal. These data indicate that the surviving hair cells that were sampled in patients with MD remain functional and capable of transmitting sensory information to the central nervous system. Determining functionality of vestibular receptors and nerves is critical for vestibular implant research to restore balance in people with MD.
Collapse
Affiliation(s)
- Hannah R. Drury
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Brain Neuromodulation Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Melissa A. Tadros
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Robert J. Callister
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Alan M. Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Brain Neuromodulation Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Robert Eisenberg
- Brain Neuromodulation Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
- Brain Neuromodulation Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
3
|
Mohamed N, Al-Amin M, Meredith FL, Kalmanson O, Dondzillo A, Cass S, Gubbels S, Rennie KJ. Electrophysiological properties of vestibular hair cells isolated from human crista. Front Neurol 2025; 15:1501914. [PMID: 39911744 PMCID: PMC11794080 DOI: 10.3389/fneur.2024.1501914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction The vast majority of cellular studies on mammalian vestibular hair cells have been carried out in rodent models due in part to the inaccessibility of human inner ear organs and reports describing electrophysiological recordings from human inner ear sensory hair cells are scarce. Here, we obtained freshly harvested vestibular neuroepithelia from adult translabyrinthine surgical patients to obtain electrophysiological recordings from human hair cells. Methods Whole cell patch clamp recordings were performed on hair cells mechanically isolated from human cristae to characterize voltage-dependent and pharmacological properties of membrane currents. Hair cells were classified as type I or type II according to morphological characteristics and/or their electrophysiological properties. Results Type I hair cells exhibited low voltage-activated K+ currents (IKLV) at membrane potentials around the mean resting membrane potential (-63 mV) and large slowly activating outward K+ currents in response to depolarizing voltage steps. Recordings from type II hair cells revealed delayed rectifier type outward K+ currents that activated above the average resting potential of -55 mV and often showed some inactivation at more depolarized potentials. Perfusion with the K+ channel blocker 4-aminopyridine (1 mM) substantially reduced outward current in both hair cell types. Additionally, extracellular application of 8-bromo-cGMP inhibited IKLV in human crista type I hair cells suggesting modulation via a nitric oxide/cGMP mechanism. A slow hyperpolarization-activated current (Ih) was observed in some hair cells in response to membrane hyperpolarization below -100 mV. Discussion In summary, whole cell recordings from isolated human hair cells revealed ionic currents that strongly resemble mature current phenotypes previously described in hair cells from rodent vestibular epithelia. Rapid access to surgically obtained adult human vestibular neuroepithelia allows translational studies crucial for improved understanding of human peripheral vestibular function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Katherine J. Rennie
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
4
|
Wang T, Yang T, Kedaigle A, Pregernig G, McCarthy R, Holmes B, Wu X, Becker L, Pan N, So K, Chen L, He J, Mahmoudi A, Negi S, Kowalczyk M, Gibson T, Druckenbrod N, Cheng AG, Burns J. Precise genetic control of ATOH1 enhances maturation of regenerated hair cells in the mature mouse utricle. Nat Commun 2024; 15:9166. [PMID: 39448563 PMCID: PMC11502789 DOI: 10.1038/s41467-024-53153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Vestibular hair cells are mechanoreceptors critical for detecting head position and motion. In mammals, hair cell loss causes vestibular dysfunction as spontaneous regeneration is nearly absent. Constitutive expression of exogenous ATOH1, a hair cell transcription factor, increases hair cell regeneration, however, these cells fail to fully mature. Here, we profiled mouse utricles at 14 time points, and defined transcriptomes of developing and mature vestibular hair cells. To mimic native hair cells which downregulate endogenous ATOH1 as they mature, we engineered viral vectors carrying the supporting cell promoters GFAP and RLBP1. In utricles damaged ex vivo, both CMV-ATOH1 and GFAP-ATOH1 increased regeneration more effectively than RLBP1-ATOH1, while GFAP-ATOH1 and RLBP1-ATOH1 induced hair cells with more mature transcriptomes. In utricles damaged in vivo, GFAP-ATOH1 induced regeneration of hair cells expressing genes indicative of maturing type II hair cells, and more hair cells with bundles and synapses than untreated organs. Together our results demonstrate the efficacy of spatiotemporal control of ATOH1 overexpression in inner ear hair cell regeneration.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tian Yang
- Decibel Therapeutics, Boston, MA, 02215, USA
| | | | - Gabriela Pregernig
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Ryan McCarthy
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Ben Holmes
- Decibel Therapeutics, Boston, MA, 02215, USA
| | - Xudong Wu
- Decibel Therapeutics, Boston, MA, 02215, USA
| | - Lars Becker
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Ning Pan
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Kathy So
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Leon Chen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Jun He
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ahmad Mahmoudi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Soumya Negi
- Decibel Therapeutics, Boston, MA, 02215, USA
| | | | | | | | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA.
| | | |
Collapse
|
5
|
Lipovsek M. Comparative biology of the amniote vestibular utricle. Hear Res 2024; 448:109035. [PMID: 38763033 DOI: 10.1016/j.heares.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The sensory epithelia of the auditory and vestibular systems of vertebrates have shared developmental and evolutionary histories. However, while the auditory epithelia show great variation across vertebrates, the vestibular sensory epithelia appear seemingly more conserved. An exploration of the current knowledge of the comparative biology of the amniote utricle, a vestibular sensory epithelium that senses linear acceleration, shows interesting instances of variability between birds and mammals. The distribution of sensory hair cell types, the position of the line of hair bundle polarity reversal and the properties of supporting cells show marked differences, likely impacting vestibular function and hair cell regeneration potential.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, UK.
| |
Collapse
|
6
|
Wang T, Ling AH, Billings SE, Hosseini DK, Vaisbuch Y, Kim GS, Atkinson PJ, Sayyid ZN, Aaron KA, Wagh D, Pham N, Scheibinger M, Zhou R, Ishiyama A, Moore LS, Maria PS, Blevins NH, Jackler RK, Alyono JC, Kveton J, Navaratnam D, Heller S, Lopez IA, Grillet N, Jan TA, Cheng AG. Single-cell transcriptomic atlas reveals increased regeneration in diseased human inner ear balance organs. Nat Commun 2024; 15:4833. [PMID: 38844821 PMCID: PMC11156867 DOI: 10.1038/s41467-024-48491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mammalian inner ear hair cell loss leads to permanent hearing and balance dysfunction. In contrast to the cochlea, vestibular hair cells of the murine utricle have some regenerative capacity. Whether human utricular hair cells regenerate in vivo remains unknown. Here we procured live, mature utricles from organ donors and vestibular schwannoma patients, and present a validated single-cell transcriptomic atlas at unprecedented resolution. We describe markers of 13 sensory and non-sensory cell types, with partial overlap and correlation between transcriptomes of human and mouse hair cells and supporting cells. We further uncover transcriptomes unique to hair cell precursors, which are unexpectedly 14-fold more abundant in vestibular schwannoma utricles, demonstrating the existence of ongoing regeneration in humans. Lastly, supporting cell-to-hair cell trajectory analysis revealed 5 distinct patterns of dynamic gene expression and associated pathways, including Wnt and IGF-1 signaling. Our dataset constitutes a foundational resource, accessible via a web-based interface, serving to advance knowledge of the normal and diseased human inner ear.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, PR China
| | - Angela H Ling
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sara E Billings
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Davood K Hosseini
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yona Vaisbuch
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Grace S Kim
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zahra N Sayyid
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ksenia A Aaron
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dhananjay Wagh
- Stanford Genomics Facility, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nicole Pham
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mirko Scheibinger
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruiqi Zhou
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Akira Ishiyama
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lindsay S Moore
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peter Santa Maria
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nikolas H Blevins
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Robert K Jackler
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jennifer C Alyono
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - John Kveton
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Dhasakumar Navaratnam
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ivan A Lopez
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nicolas Grillet
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taha A Jan
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
7
|
Shah JJ, Jimenez-Jaramillo CA, Lybrand ZR, Yuan TT, Erbele ID. Modern In Vitro Techniques for Modeling Hearing Loss. Bioengineering (Basel) 2024; 11:425. [PMID: 38790292 PMCID: PMC11118046 DOI: 10.3390/bioengineering11050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is a prevalent and growing global health concern, especially within operational medicine, with limited therapeutic options available. This review article explores the emerging field of in vitro otic organoids as a promising platform for modeling hearing loss and developing novel therapeutic strategies. SNHL primarily results from the irreversible loss or dysfunction of cochlear mechanosensory hair cells (HCs) and spiral ganglion neurons (SGNs), emphasizing the need for innovative solutions. Current interventions offer symptomatic relief but do not address the root causes. Otic organoids, three-dimensional multicellular constructs that mimic the inner ear's architecture, have shown immense potential in several critical areas. They enable the testing of gene therapies, drug discovery for sensory cell regeneration, and the study of inner ear development and pathology. Unlike traditional animal models, otic organoids closely replicate human inner ear pathophysiology, making them invaluable for translational research. This review discusses methodological advances in otic organoid generation, emphasizing the use of human pluripotent stem cells (hPSCs) to replicate inner ear development. Cellular and molecular characterization efforts have identified key markers and pathways essential for otic organoid development, shedding light on their potential in modeling inner ear disorders. Technological innovations, such as 3D bioprinting and microfluidics, have further enhanced the fidelity of these models. Despite challenges and limitations, including the need for standardized protocols and ethical considerations, otic organoids offer a transformative approach to understanding and treating auditory dysfunctions. As this field matures, it holds the potential to revolutionize the treatment landscape for hearing and balance disorders, moving us closer to personalized medicine for inner ear conditions.
Collapse
Affiliation(s)
- Jamie J. Shah
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Couger A. Jimenez-Jaramillo
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Zane R. Lybrand
- Division of Biology, Texas Woman’s University, Denton, TX 76204, USA;
| | - Tony T. Yuan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
| | - Isaac D. Erbele
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
- Department of Otolaryngology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
8
|
Zhu H, Qu S, Deng Y, Gong M, Xiang Y, Teng Y, Ye D. Application of organoids in otolaryngology: head and neck surgery. Eur Arch Otorhinolaryngol 2024; 281:1643-1649. [PMID: 38091101 PMCID: PMC10942880 DOI: 10.1007/s00405-023-08348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 03/16/2024]
Abstract
PURPOSE The purpose of this review is to systematically summarize the application of organoids in the field of otolaryngology and head and neck surgery. It aims to shed light on the current advancements and future potential of organoid technology in these areas, particularly in addressing challenges like hearing loss, cancer research, and organ regeneration. METHODS Review of current literature regrading organoids in the field of otolaryngology and head and neck surgery. RESULTS The review highlights several advancements in the field. In otology, the development of organoid replacement therapies offers new avenues for treating hearing loss. In nasal science, the creation of specific organoid models aids in studying nasopharyngeal carcinoma and respiratory viruses. In head and neck surgery, innovative approaches for squamous cell carcinoma prediction and thyroid regeneration using organoids have been developed. CONCLUSION Organoid research in otolaryngology-head and neck surgery is still at an early stage. This review underscores the potential of this technology in advancing our understanding and treatment of various conditions, predicting a transformative impact on future medical practices in these fields.
Collapse
Affiliation(s)
- Hai Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Siyuan Qu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yaoshu Teng
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
9
|
Jáuregui EJ, Scheinman KL, Bibriesca Mejia IK, Pruett L, Zaini H, Finkbeiner C, Phillips JA, Gantz JA, Nguyen TB, Phillips JO, Stone JS. Sensorineural correlates of failed functional recovery after natural regeneration of vestibular hair cells in adult mice. Front Neurol 2024; 15:1322647. [PMID: 38523617 PMCID: PMC10960365 DOI: 10.3389/fneur.2024.1322647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
Vestibular hair cells (HCs) are mechanoreceptors that sense head motions by modulating the firing rate of vestibular ganglion neurons (VGNs), whose central processes project to vestibular nucleus neurons (VNNs) and cerebellar neurons. We explored vestibular function after HC destruction in adult Pou4f3+/DTR (DTR) mice, in which injections of high-dose (50 ng/g) diphtheria toxin (DT) destroyed most vestibular HCs within 2 weeks. At that time, DTR mice had lost the horizontal vestibulo-ocular reflex (aVORH), and their VNNs failed to upregulate nuclear cFos expression in response to a vestibular stimulus (centrifugation). Five months later, 21 and 14% of HCs were regenerated in utricles and horizontal ampullae, respectively. The vast majority of HCs present were type II. This degree of HC regeneration did not restore the aVORH or centrifugation-evoked cFos expression in VNNs. The failure to regain vestibular pathway function was not due to degeneration of VGNs or VNNs because normal neuron numbers were maintained after HC destruction. Furthermore, sinusoidal galvanic stimulation at the mastoid process evoked cFos protein expression in VNNs, indicating that VGNs were able to regulate VNN activity after HC loss. aVORH and cFos responses in VNNs were robust after low-dose (25 ng/g) DT, which compared to high-dose DT resulted in a similar degree of type II HC death and regeneration but spared more type I HCs in both organs. These findings demonstrate that having more type I HCs is correlated with stronger responses to vestibular stimulation and suggest that regenerating type I HCs may improve vestibular function after HC loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jennifer S. Stone
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Doda D, Alonso Jimenez S, Rehrauer H, Carreño JF, Valsamides V, Di Santo S, Widmer HR, Edge A, Locher H, van der Valk WH, Zhang J, Koehler KR, Roccio M. Human pluripotent stem cell-derived inner ear organoids recapitulate otic development in vitro. Development 2023; 150:dev201865. [PMID: 37791525 PMCID: PMC10565253 DOI: 10.1242/dev.201865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023]
Abstract
Our molecular understanding of the early stages of human inner ear development has been limited by the difficulty in accessing fetal samples at early gestational stages. As an alternative, previous studies have shown that inner ear morphogenesis can be partially recapitulated using induced pluripotent stem cells directed to differentiate into inner ear organoids (IEOs). Once validated and benchmarked, these systems could represent unique tools to complement and refine our understanding of human otic differentiation and model developmental defects. Here, we provide the first direct comparisons of the early human embryonic otocyst and fetal sensory organs with human IEOs. We use multiplexed immunostaining and single-cell RNA-sequencing to characterize IEOs at three key developmental steps, providing a new and unique signature of in vitro-derived otic placode, epithelium, neuroblasts and sensory epithelia. In parallel, we evaluate the expression and localization of crucial markers at these equivalent stages in human embryos. Together, our data indicate that the current state-of-the-art protocol enables the specification of bona fide otic tissue, supporting the further application of IEOs to inform inner ear biology and disease.
Collapse
Affiliation(s)
- Daniela Doda
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Sara Alonso Jimenez
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Hubert Rehrauer
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
- Functional Genomics Center Zurich (ETH Zurich and University of Zurich), 8092 Zurich, Switzerland
| | - Jose F. Carreño
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
- Functional Genomics Center Zurich (ETH Zurich and University of Zurich), 8092 Zurich, Switzerland
| | - Victoria Valsamides
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Stefano Di Santo
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Hans R. Widmer
- Program for Regenerative Neuroscience, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Albert Edge
- Eaton Peabody Laboratory, Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Heiko Locher
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Wouter H. van der Valk
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital,Boston, MA 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital,Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marta Roccio
- Inner Ear Stem Cell Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), 8091 Zurich,Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Zurich (UZH), 8006 Zurich, Switzerland
| |
Collapse
|
11
|
Steinhart MR, van der Valk WH, Osorio D, Serdy SA, Zhang J, Nist-Lund C, Kim J, Moncada-Reid C, Sun L, Lee J, Koehler KR. Mapping oto-pharyngeal development in a human inner ear organoid model. Development 2023; 150:dev201871. [PMID: 37796037 PMCID: PMC10698753 DOI: 10.1242/dev.201871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Inner ear development requires the coordination of cell types from distinct epithelial, mesenchymal and neuronal lineages. Although we have learned much from animal models, many details about human inner ear development remain elusive. We recently developed an in vitro model of human inner ear organogenesis using pluripotent stem cells in a 3D culture, fostering the growth of a sensorineural circuit, including hair cells and neurons. Despite previously characterizing some cell types, many remain undefined. This study aimed to chart the in vitro development timeline of the inner ear organoid to understand the mechanisms at play. Using single-cell RNA sequencing at ten stages during the first 36 days of differentiation, we tracked the evolution from pluripotency to various ear cell types after exposure to specific signaling modulators. Our findings showcase gene expression that influences differentiation, identifying a plethora of ectodermal and mesenchymal cell types. We also discern aspects of the organoid model consistent with in vivo development, while highlighting potential discrepancies. Our study establishes the Inner Ear Organoid Developmental Atlas (IODA), offering deeper insights into human biology and improving inner ear tissue differentiation.
Collapse
Affiliation(s)
- Matthew R. Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wouter H. van der Valk
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery; Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW); Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - Daniel Osorio
- Research Computing, Department of Information Technology; Boston Children's Hospital, Boston, MA 02115, USA
| | - Sara A. Serdy
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Carl Nist-Lund
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Kim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cynthia Moncada-Reid
- Speech and Hearing Bioscience and Technology (SHBT) Graduate Program, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology; Boston Children's Hospital, Boston, MA 02115, USA
| | - Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
12
|
Doda D, Jimenez SA, Rehrauer H, Carre O JF, Valsamides V, Santo SD, Widmer HR, Edge A, Locher H, van der Valk W, Zhang J, Koehler KR, Roccio M. Human pluripotent stem cells-derived inner ear organoids recapitulate otic development in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536448. [PMID: 37090562 PMCID: PMC10120641 DOI: 10.1101/2023.04.11.536448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Our molecular understanding of the early stages of human inner ear development has been limited by the difficulty in accessing fetal samples at early gestational stages. As an alternative, previous studies have shown that inner ear morphogenesis can be partially recapitulated using induced pluripotent stem cells (iPSCs) directed to differentiate into Inner Ear Organoids (IEOs). Once validated and benchmarked, these systems could represent unique tools to complement and refine our understanding of human otic differentiation and model developmental defects. Here, we provide the first direct comparisons of the early human embryonic otocyst and human iPSC-derived IEOs. We use multiplexed immunostaining, and single-cell RNA sequencing to characterize IEOs at three key developmental steps, providing a new and unique signature of in vitro derived otic -placode, -epithelium, -neuroblasts, and -sensory epithelia. In parallel, we evaluate the expression and localization of critical markers at these equivalent stages in human embryos. We show that the placode derived in vitro (days 8-12) has similar marker expression to the developing otic placode of Carnegie Stage (CS) 11 embryos and subsequently (days 20-40) this gives rise to otic epithelia and neuroblasts comparable to the CS13 embryonic stage. Differentiation of sensory epithelia, including supporting cells and hair cells starts in vitro at days 50-60 of culture. The maturity of these cells is equivalent to vestibular sensory epithelia at week 10 or cochlear tissue at week 12 of development, before functional onset. Together, our data indicate that the current state-of-the-art protocol enables the specification of bona fide otic tissue, supporting the further application of IEOs to inform inner ear biology and disease.
Collapse
|
13
|
Wijesinghe P, Sastry A, Hui E, Cogan TA, Zheng B, Ho G, Kakal J, Nunez DA. Adult porcine (Sus scrofa) derived inner ear cells: Characteristics in in-vitro cultures. Anat Rec (Hoboken) 2023. [PMID: 36598271 DOI: 10.1002/ar.25149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 01/05/2023]
Abstract
There is a need for an animal model that closely parallels human cochlea gestational development. This study aims to document porcine inner ear anatomy, and in vitro porcine derived inner ear cell culture characteristics. Twenty-four temporal bone were harvested from 12 adult pigs (Sus scrofa). Six were formalin fixed and their maximal diameters were measured. The cochlea duct length was determined by the insertion length of a Nucleus 22 cochlear implant in two bones. Four formalin fixed bones were sectioned for histology. Cochlear and vestibular tissues were harvested from non-fixed bones, cultured and characterized at different passages (P). Gene and protein expression of multipotent stem/progenitor (Nestin and Sox2), inner ear hair (Myosin VIIa, Prestin) and supporting (Cytokeratin 18 and Vimentin) cell markers were determined. The porcine cochlea was a 3.5 turn spiral. There was a separate vestibular compartment. The cochlear mean maximal diameter and height was 7.99 and 3.77 mm, respectively. Sphere forming cells were identified on phase-contrast microscopy. The relative mRNA expression levels of KRT18, MYO7A and SLC26A5 were significantly positively correlated in cochlear cultures; and MYO7A and SLC26A5; SOX2 and KRT18; NES and SLC26A5 genes were positively correlated in vestibular cultures (p = .037, Spearman correlation [τ] = .900). Inner ear sensory and stem cell characteristics persist in passaged porcine inner ear cells. Further work is required to establish the usefulness of porcine inner ear cell cultures to the study of human inner ear disorders.
Collapse
Affiliation(s)
- Printha Wijesinghe
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Anand Sastry
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Elizabeth Hui
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Tristan A Cogan
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Boyuan Zheng
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Germain Ho
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Juzer Kakal
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Desmond A Nunez
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Ciani Berlingeri AN, Pujol R, Cox BC, Stone JS. Sox2 is required in supporting cells for normal levels of vestibular hair cell regeneration in adult mice. Hear Res 2022; 426:108642. [PMID: 36334348 DOI: 10.1016/j.heares.2022.108642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/16/2022] [Accepted: 10/19/2022] [Indexed: 11/04/2022]
Abstract
Sox2 is a transcription factor that is necessary in the mammalian inner ear for development of sensory hair cells and supporting cells. Sox2 is expressed in supporting cells of adult mammals, but its function in this context is poorly understood. Given its role in the developing inner ear, we hypothesized that Sox2 is required in vestibular supporting cells for regeneration of type II hair cells after damage. Using adult mice, we deleted Sox2 from Sox9-CreER-expressing supporting cells prior to diphtheria toxin-mediated hair cell destruction and used fate-mapping to assess regeneration. In utricles of control mice with normal Sox2 expression, supporting cells regenerated nearly 200 hair cells by 3 weeks post-damage, which doubled by 12 weeks. In contrast, mice with Sox2 deletion from supporting cells had approximately 20 fate-mapped hair cells at 3 weeks post-damage, and this number did not change significantly by 12 weeks, indicating regeneration was dramatically curtailed. We made similar observations for saccules and ampullae. We found no evidence that supporting cells lacking Sox2 had altered cellular density, morphology, or ultrastructure. However, some Sox2-negative supporting cell nuclei appeared to migrate apically but did not turn on hair cell markers, and type I hair cell survival was higher. Sox2 heterozygotes also had reduced regeneration in utricles, but more hair cells were replaced than mice with Sox2 deletion. Our study determined that Sox2 is required in supporting cells for normal levels of vestibular hair cell regeneration but found no other major requirements for Sox2 in adult supporting cells.
Collapse
Affiliation(s)
- Amanda N Ciani Berlingeri
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington, United States; Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Research Center, University of Washington School of Medicine, Seattle, Washington, United States
| | - Rémy Pujol
- University of Montpellier, INM-INSERM Unit 1298, Montpellier, France
| | - Brandon C Cox
- Departments of Pharmacology and Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois, United States
| | - Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery and the Virginia Merrill Bloedel Research Center, University of Washington School of Medicine, Seattle, Washington, United States.
| |
Collapse
|
15
|
You D, Guo J, Zhang Y, Guo L, Lu X, Huang X, Sun S, Li H. The heterogeneity of mammalian utricular cells over the course of development. Clin Transl Med 2022; 12:e1052. [PMID: 36178017 PMCID: PMC9523683 DOI: 10.1002/ctm2.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The inner ear organ is a delicate tissue consisting of hair cells (HCs) and supporting cells (SCs).The mammalian inner ear HCs are terminally differentiated cells that cannot spontaneously regenerate in adults. Epithelial non-hair cells (ENHCs) in the utricle include HC progenitors and SCs, and the progenitors share similar characteristics with SCs in the neonatal inner ear. METHODS We applied single-cell sequencing to whole mouse utricles from the neonatal period to adulthood, including samples from postnatal day (P)2, P7 and P30 mice. Furthermore, using transgenic mice and immunostaining, we traced the source of new HC generation. RESULTS We identified several sensory epithelial cell clusters and further found that new HCs arose mainly through differentiation from Sox9+ progenitor cells and that only a few cells were produced by mitotic proliferation in both neonatal and adult mouse utricles. In addition, we identified the proliferative cells using the marker UbcH10 and demonstrated that in adulthood the mitotically generated HCs were primarily found in the extrastriola. Moreover, we observed that not only Type II, but also Type I HCs could be regenerated by either mitotic cell proliferation or progenitor cell differentiation. CONCLUSIONS Overall, our findings expand our understanding of ENHC cell fate and the characteristics of the vestibular organs in mammals over the course of development.
Collapse
Affiliation(s)
- Dan You
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina,Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Jin Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Yunzhong Zhang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Xinsheng Huang
- Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Shan Sun
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina,Institutes of Biomedical SciencesFudan UniversityShanghaiChina,NHC Key Laboratory of Hearing Medicine, Fudan UniversityShanghaiChina,The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
16
|
Vaisbuch Y, Hosseini DK, Wagner A, Hirt B, Mueller M, Ponnusamy R, Heller S, Cheng AG, Löwenheim H, Aaron KA. Surgical Approach for Rapid and Minimally Traumatic Recovery of Human Inner Ear Tissues From Deceased Organ Donors. Otol Neurotol 2022; 43:e519-e525. [PMID: 35239617 DOI: 10.1097/mao.0000000000003500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To develop a surgical approach for rapid and minimally traumatic recovery of inner ear tissue from human organ and tissue donors to provide fresh tissue for use in inner ear research. STUDY DESIGN Exploration of novel surgical methodology and evaluation of the steps necessary for obtaining specimens from donors during the procurement of organs for transplantation. SETTING Donor procurement locations across multiple local hospitals and tissue processing at the microsurgical temporal bone laboratory. PATIENTS TISSUE SOURCE Human organ and tissue donors. INTERVENTIONS Dissection and procurement of the inner ear tissue. MAIN OUTCOME MEASURES Development of rapid and minimally traumatic inner ear tissue recovery. Primarily, establishing an efficient process which includes collaboration with transplant network, implementing a consent protocol, developing and training an on-call recovery team, and designing a portable surgical kit suitable for use in a variety of settings. RESULTS The extraction procedure is described in three consecutive steps: the trans-canal exposure, the approach to the vestibule with extraction of the vestibular organs; and the approach to extract inner ear tissues from the cochlear duct. CONCLUSIONS Organ and tissue donors are a promising and underutilized resource of inner ear organs for purposes of research and future translational studies. Using our modified technique through the trans-canal/trans-otic approach, we were able to extract tissues of the vestibular and auditory end organs in a timely manner.
Collapse
Affiliation(s)
- Yona Vaisbuch
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, California, USA
- Department of Otolaryngology - Head and Neck Surgery, Rambam Medical Center, Haifa, Israel
| | - Davood K Hosseini
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, California, USA
- Department of Internal Medicine, Hackensack University Medical Center, Hackensack. New Jersey, USA
| | - Andreas Wagner
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen
| | - Marcus Mueller
- Department of Otolaryngology - Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | | | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Hubert Löwenheim
- Department of Otolaryngology - Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Ksenia A Aaron
- Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
17
|
Aaron KA, Hosseini DK, Vaisbuch Y, Scheibinger M, Grillet N, Heller S, Wang T, Cheng AG. Selection Criteria Optimal for Recovery of Inner Ear Tissues From Deceased Organ Donors. Otol Neurotol 2022; 43:e507-e514. [PMID: 35120078 PMCID: PMC9527037 DOI: 10.1097/mao.0000000000003496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To identify optimal conditions for recovering viable inner ear tissues from deceased organ donors. SETTING Tertiary recovery hospitals and Donor Network West Organ Recovery Center. INTERVENTIONS Recovering bilateral inner ear tissues and immunohistological analysis. MAIN OUTCOME MEASURES Immunohistochemical analysis of utricles from human organ donors after brain death (DBD) or donors after cardiac death (DCD). RESULTS Vestibular tissues from 21 organ donors (39 ears) were recovered. Of these, 18 donors (33 utricles) were examined by immunofluorescence. The sensory epithelium was present in seven utricles (two from DBD and five from DCD). Relative to DBD utricles, DCD organs more commonly displayed dense populations of hair cells and supporting cells. Relative to DBD, DCD had significantly shorter postmortem interval time to tissue recovery (<48 h). Compared to donors with no sensory epithelium, donors with intact and viable sensory epithelium (both DCD and DBD) had significantly shorter lag time to resuscitation prior to hospital admission (6.4 ± 9.2 vs 35.6 ± 23.7 min, respectively) as well as a shorter time between pronouncements of death to organ recovery (22.6 ± 30.4 vs 64.8 ± 22.8 h, respectively). CONCLUSIONS Organ donors are a novel resource for bilateral inner ear organs. Selecting tissue donors within defined parameters can optimize the quality of recovered inner ear tissues, thereby facilitating future research investigating sensory and nonsensory cells.
Collapse
Affiliation(s)
- Ksenia A. Aaron
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Davood K. Hosseini
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Internal Medicine, Hackensack University Medical Center, Hackensack. New Jersey, USA
| | - Yona Vaisbuch
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Otolaryngology-Head and Neck Surgery, Rambam Medical Center, Haifa, Israel
| | - Mirko Scheibinger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
18
|
Huang Y, Mao H, Chen Y. Regeneration of Hair Cells in the Human Vestibular System. Front Mol Neurosci 2022; 15:854635. [PMID: 35401109 PMCID: PMC8987309 DOI: 10.3389/fnmol.2022.854635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The vestibular system is a critical part of the human balance system, malfunction of this system will lead to balance disorders, such as vertigo. Mammalian vestibular hair cells, the mechanical receptors for vestibular function, are sensitive to ototoxic drugs and virus infection, and have a limited restorative capacity after damage. Considering that no artificial device can be used to replace vestibular hair cells, promoting vestibular hair cell regeneration is an ideal way for vestibular function recovery. In this manuscript, the development of human vestibular hair cells during the whole embryonic stage and the latest research on human vestibular hair cell regeneration is summarized. The limitations of current studies are emphasized and future directions are discussed.
Collapse
Affiliation(s)
- Yikang Huang
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Huanyu Mao
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yan Chen
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- *Correspondence: Yan Chen,
| |
Collapse
|
19
|
Neurotransmitter and Neurotransmitter Receptor Expression in the Saccule of the Human Vestibular System. Prog Neurobiol 2022; 212:102238. [DOI: 10.1016/j.pneurobio.2022.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
|
20
|
González-Garrido A, Pujol R, López-Ramírez O, Finkbeiner C, Eatock RA, Stone JS. The Differentiation Status of Hair Cells That Regenerate Naturally in the Vestibular Inner Ear of the Adult Mouse. J Neurosci 2021; 41:7779-7796. [PMID: 34301830 PMCID: PMC8445055 DOI: 10.1523/jneurosci.3127-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Aging, disease, and trauma can lead to loss of vestibular hair cells and permanent vestibular dysfunction. Previous work showed that, following acute destruction of ∼95% of vestibular hair cells in adult mice, ∼20% regenerate naturally (without exogenous factors) through supporting cell transdifferentiation. There is, however, no evidence for the recovery of vestibular function. To gain insight into the lack of functional recovery, we assessed functional differentiation in regenerated hair cells for up to 15 months, focusing on key stages in stimulus transduction and transmission: hair bundles, voltage-gated conductances, and synaptic contacts. Regenerated hair cells had many features of mature type II vestibular hair cells, including polarized mechanosensitive hair bundles with zone-appropriate stereocilia heights, large voltage-gated potassium currents, basolateral processes, and afferent and efferent synapses. Regeneration failed, however, to recapture the full range of properties of normal populations, and many regenerated hair cells had some properties of immature hair cells, including small transduction currents, voltage-gated sodium currents, and small or absent HCN (hyperpolarization-activated cyclic nucleotide-gated) currents. Furthermore, although mouse vestibular epithelia normally have slightly more type I hair cells than type II hair cells, regenerated hair cells acquired neither the low-voltage-activated potassium channels nor the afferent synaptic calyces that distinguish mature type I hair cells from type II hair cells and confer distinctive physiology. Thus, natural regeneration of vestibular hair cells in adult mice is limited in total cell number, cell type diversity, and extent of cellular differentiation, suggesting that manipulations are needed to promote full regeneration with the potential for recovery of vestibular function.SIGNIFICANCE STATEMENT Death of inner ear hair cells in adult mammals causes permanent loss of hearing and balance. In adult mice, the sudden death of most vestibular hair cells stimulates the production of new hair cells but does not restore balance. We investigated whether the lack of systems-level function reflects functional deficiencies in the regenerated hair cells. The regenerated population acquired mechanosensitivity, voltage-gated channels, and afferent synapses, but did not reproduce the full range of hair cell types. Notably, no regenerated cells acquired the distinctive properties of type I hair cells, a major functional class in amniote vestibular organs. To recover vestibular system function in adults, we may need to solve how to regenerate the normal variety of mature hair cells.
Collapse
Affiliation(s)
| | - Rémy Pujol
- The Virginia Merrill Bloedel Hearing Research Center and the Department of Otolaryngology Head and Neck Surgery, University of Washington, Seattle, Washington 98195
- Institute for Neurosciences of Montpellier-Institut National de la Santé et de la Recherche Médicale Unit 1052, University of Montpellier, 34091 Montpellier, France
| | - Omar López-Ramírez
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Connor Finkbeiner
- The Virginia Merrill Bloedel Hearing Research Center and the Department of Otolaryngology Head and Neck Surgery, University of Washington, Seattle, Washington 98195
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Jennifer S Stone
- The Virginia Merrill Bloedel Hearing Research Center and the Department of Otolaryngology Head and Neck Surgery, University of Washington, Seattle, Washington 98195
| |
Collapse
|
21
|
Roccio M. Directed differentiation and direct reprogramming: Applying stem cell technologies to hearing research. Stem Cells 2020; 39:375-388. [PMID: 33378797 DOI: 10.1002/stem.3315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Hearing loss is the most widely spread sensory disorder in our society. In the majority of cases, it is caused by the loss or malfunctioning of cells in the cochlea: the mechanosensory hair cells, which act as primary sound receptors, and the connecting auditory neurons of the spiral ganglion, which relay the signal to upper brain centers. In contrast to other vertebrates, where damage to the hearing organ can be repaired through the activity of resident cells, acting as tissue progenitors, in mammals, sensory cell damage or loss is irreversible. The understanding of gene and cellular functions, through analysis of different animal models, has helped to identify causes of disease and possible targets for hearing restoration. Translation of these findings to novel therapeutics is, however, hindered by the lack of cellular assays, based on human sensory cells, to evaluate the conservation of molecular pathways across species and the efficacy of novel therapeutic strategies. In the last decade, stem cell technologies enabled to generate human sensory cell types in vitro, providing novel tools to study human inner ear biology, model disease, and validate therapeutics. This review focuses specifically on two technologies: directed differentiation of pluripotent stem cells and direct reprogramming of somatic cell types to sensory hair cells and neurons. Recent development in the field are discussed as well as how these tools could be implemented to become routinely adopted experimental models for hearing research.
Collapse
Affiliation(s)
- Marta Roccio
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
22
|
van der Valk WH, Steinhart MR, Zhang J, Koehler KR. Building inner ears: recent advances and future challenges for in vitro organoid systems. Cell Death Differ 2020; 28:24-34. [PMID: 33318601 PMCID: PMC7853146 DOI: 10.1038/s41418-020-00678-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
While inner ear disorders are common, our ability to intervene and recover their sensory function is limited. In vitro models of the inner ear, like the organoid system, could aid in identifying new regenerative drugs and gene therapies. Here, we provide a perspective on the status of in vitro inner ear models and guidance on how to improve their applicability in translational research. We highlight the generation of inner ear cell types from pluripotent stem cells as a particularly promising focus of research. Several exciting recent studies have shown how the developmental signaling cues of embryonic and fetal development can be mimicked to differentiate stem cells into “inner ear organoids” containing otic progenitor cells, hair cells, and neurons. However, current differentiation protocols and our knowledge of embryonic and fetal inner ear development in general, have a bias toward the sensory epithelia of the inner ear. We propose that a more holistic view is needed to better model the inner ear in vitro. Moving forward, attention should be made to the broader diversity of neuroglial and mesenchymal cell types of the inner ear, and how they interact in space or time during development. With improved control of epithelial, neuroglial, and mesenchymal cell fate specification, inner ear organoids would have the ability to truly recapitulate neurosensory function and dysfunction. We conclude by discussing how single-cell atlases of the developing inner ear and technical innovations will be critical tools to advance inner ear organoid platforms for future pre-clinical applications.
Collapse
Affiliation(s)
- Wouter H van der Valk
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Matthew R Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, 02115, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, 02115, USA. .,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Agrawal Y, Merfeld DM, Horak FB, Redfern MS, Manor B, Westlake KP, Holstein GR, Smith PF, Bhatt T, Bohnen NI, Lipsitz LA. Aging, Vestibular Function, and Balance: Proceedings of a National Institute on Aging/National Institute on Deafness and Other Communication Disorders Workshop. J Gerontol A Biol Sci Med Sci 2020; 75:2471-2480. [PMID: 32617555 PMCID: PMC7662183 DOI: 10.1093/gerona/glaa097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 12/27/2022] Open
Abstract
Balance impairment and falls are among the most prevalent and morbid conditions affecting older adults. A critical contributor to balance and gait function is the vestibular system; however, there remain substantial knowledge gaps regarding age-related vestibular loss and its contribution to balance impairment and falls in older adults. Given these knowledge gaps, the National Institute on Aging and the National Institute on Deafness and Other Communication Disorders convened a multidisciplinary workshop in April 2019 that brought together experts from a wide array of disciplines, such as vestibular physiology, neuroscience, movement science, rehabilitation, and geriatrics. The goal of the workshop was to identify key knowledge gaps on vestibular function and balance control in older adults and develop a research agenda to make substantial advancements in the field. This article provides a report of the proceedings of this workshop. Three key questions emerged from the workshop, specifically: (i) How does aging impact vestibular function?; (ii) How do we know what is the contribution of age-related vestibular impairment to an older adult's balance problem?; and more broadly, (iii) Can we develop a nosology of balance impairments in older adults that can guide clinical practice? For each of these key questions, the current knowledge is reviewed, and the critical knowledge gaps and research strategies to address them are discussed. This document outlines an ambitious 5- to 10-year research agenda for increasing knowledge related to vestibular impairment and balance control in older adults, with the ultimate goal of linking this knowledge to more effective treatment.
Collapse
Affiliation(s)
- Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel M Merfeld
- Department of Otolaryngology-Head and Neck Surgery, Ohio State University, Columbus
| | - Fay B Horak
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland
| | - Mark S Redfern
- Department of Bioengineering, University of Pittsburgh, Pennsylvania
- Department of Otolaryngology, University of Pittsburgh, Pennsylvania
| | - Brad Manor
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Dunedin, New Zealand
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor
- Department of Radiology, University of Michigan, Ann Arbor
| | - Lewis A Lipsitz
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Shibata SB, West MB, Du X, Iwasa Y, Raphael Y, Kopke RD. Gene therapy for hair cell regeneration: Review and new data. Hear Res 2020; 394:107981. [DOI: 10.1016/j.heares.2020.107981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
|
25
|
Forge A, Jagger DJ, Gale JE. Restoring the balance: regeneration of hair cells in the vestibular system of the inner ear. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res 2019; 397:107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is the most common sensory deficit in humans. Despite the global scale of the problem, only limited treatment options are available today. The mammalian inner ear is a highly specialized postmitotic organ, which lacks proliferative or regenerative capacity. Since the discovery of hair cell regeneration in non-mammalian species however, much attention has been placed on identifying possible strategies to reactivate similar responses in humans. The development of successful regenerative approaches for hearing loss strongly depends on a detailed understanding of the mechanisms that control human inner ear cellular specification, differentiation and function, as well as on the development of robust in vitro cellular assays, based on human inner ear cells, to study these processes and optimize therapeutic interventions. We summarize here some aspects of inner ear development and strategies to induce regeneration that have been investigated in rodents. Moreover, we discuss recent findings in human inner ear development and compare the results with findings from animal models. Finally, we provide an overview of strategies for in vitro generation of human sensory cells from pluripotent and somatic progenitors that may provide a platform for drug development and validation of therapeutic strategies in vitro.
Collapse
|
27
|
Bullen A, Forge A, Wright A, Richardson GP, Goodyear RJ, Taylor R. Ultrastructural defects in stereocilia and tectorial membrane in aging mouse and human cochleae. J Neurosci Res 2019; 98:1745-1763. [DOI: 10.1002/jnr.24556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Anwen Bullen
- UCL Ear Institute University College London London UK
| | - Andrew Forge
- UCL Ear Institute University College London London UK
| | | | - Guy P. Richardson
- Sussex Neuroscience School of Life Sciences University of Sussex Falmer, Brighton UK
| | - Richard J. Goodyear
- Sussex Neuroscience School of Life Sciences University of Sussex Falmer, Brighton UK
| | - Ruth Taylor
- UCL Ear Institute University College London London UK
| |
Collapse
|
28
|
Atoh1 is required in supporting cells for regeneration of vestibular hair cells in adult mice. Hear Res 2019; 385:107838. [PMID: 31751832 DOI: 10.1016/j.heares.2019.107838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 11/20/2022]
Abstract
In amniotes, head movements are encoded by two types of vestibular hair cells (type I and type II) with unique morphology, physiology, and innervation. After hair cell destruction in mature rodents, supporting cells regenerate some type II hair cells, but no type I hair cells are replaced. The transcription factor Atoh1 is required for hair cell development, and Atoh1 is upregulated in supporting cells, the hair cell progenitors, in mature chickens and mice following hair cell damage. We investigated whether Atoh1 is required for type II hair cell regeneration in adult mice after genetic ablation of hair cells. First, we used a knock-in Atoh1 reporter to demonstrate that supporting cells in the utricle, a vestibular organ that detects linear acceleration of the head, upregulate Atoh1 expression by 7 days after hair cell destruction was initiated. Next, we labeled supporting cells prior to damage and fate-mapped them over time to test whether conditional deletion of Atoh1 from supporting cells prevented them from converting into hair cells after damage. In mice with normal Atoh1 expression, fate-mapped supporting cells in the adult utricle gave rise to hundreds of type II hair cells after hair cell destruction, but they did not form new type I hair cells. By contrast, mice with Atoh1 deletion prior to hair cell damage had only 10-20 fate-mapped type II hair cells per utricle at 3 weeks post-damage, and numbers did not change at 12 weeks after hair cell destruction. Supporting cells had normal cell shape and nuclear density up to 12 weeks after Atoh1 deletion. Similar observations were made in two other vestibular organs, the saccule and the lateral ampulla. Our findings demonstrate that Atoh1 is necessary in adult mouse supporting cells for regeneration of type II vestibular hair cells and that deletion of Atoh1 from supporting cells prior to damage does not appear to induce supporting cells to die or to proliferate.
Collapse
|
29
|
Early phase trials of novel hearing therapeutics: Avenues and opportunities. Hear Res 2019; 380:175-186. [DOI: 10.1016/j.heares.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022]
|
30
|
Jen HI, Hill MC, Tao L, Sheng K, Cao W, Zhang H, Yu HV, Llamas J, Zong C, Martin JF, Segil N, Groves AK. Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. eLife 2019; 8:e44328. [PMID: 31033441 PMCID: PMC6504235 DOI: 10.7554/elife.44328] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/28/2019] [Indexed: 12/30/2022] Open
Abstract
The mammalian cochlea loses its ability to regenerate new hair cells prior to the onset of hearing. In contrast, the adult vestibular system can produce new hair cells in response to damage, or by reprogramming of supporting cells with the hair cell transcription factor Atoh1. We used RNA-seq and ATAC-seq to probe the transcriptional and epigenetic responses of utricle supporting cells to damage and Atoh1 transduction. We show that the regenerative response of the utricle correlates with a more accessible chromatin structure in utricle supporting cells compared to their cochlear counterparts. We also provide evidence that Atoh1 transduction of supporting cells is able to promote increased transcriptional accessibility of some hair cell genes. Our study offers a possible explanation for regenerative differences between sensory organs of the inner ear, but shows that additional factors to Atoh1 may be required for optimal reprogramming of hair cell fate.
Collapse
Affiliation(s)
- Hsin-I Jen
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
| | - Matthew C Hill
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
| | - Litao Tao
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Kuanwei Sheng
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonUnited States
| | - Wenjian Cao
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Hongyuan Zhang
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| | - Haoze V Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Juan Llamas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Chenghang Zong
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - James F Martin
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
- Department of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonUnited States
- The Texas Heart InstituteHoustonUnited States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Andrew K Groves
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| |
Collapse
|
31
|
Alberts BBGT, Selen LPJ, Medendorp WP. Age-related reweighting of visual and vestibular cues for vertical perception. J Neurophysiol 2019; 121:1279-1288. [PMID: 30699005 DOI: 10.1152/jn.00481.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As we age, the acuity of our sensory organs declines, which may affect our lifestyle. Sensory deterioration in the vestibular system is typically bilateral and gradual, and could lead to problems with balance and spatial orientation. To compensate for the sensory deterioration, it has been suggested that the brain reweights the sensory information sources according to their relative noise characteristics. For rehabilitation and training programs, it is important to understand the consequences of this reweighting, preferably at the individual subject level. We psychometrically examined the age-dependent reweighting of visual and vestibular cues used in spatial orientation in a group of 32 subjects (age range: 19-76 yr). We asked subjects to indicate the orientation of a line (clockwise or counterclockwise relative to the gravitational vertical) presented within an oriented square visual frame when seated upright or with their head tilted 30° relative to the body. Results show that subjects' vertical perception is biased by the orientation of the visual frame. Both the magnitude of this bias and response variability become larger with increasing age. Deducing the underlying sensory noise characteristics, using Bayesian inference, suggests an age-dependent reweighting of sensory information, with an increasing weight of the visual contextual information. Further scrutiny of the model suggests that this shift in sensory weights is the result of an increase in the noise of the vestibular signal. Our approach quantifies how noise properties of visual and vestibular systems change over the life span, which helps to understand the aging process at the neurocomputational level. NEW & NOTEWORTHY Perception of visual vertical involves a weighted fusion of visual and vestibular tilt cues. Using a Bayesian approach and experimental psychophysics, we quantify how this fusion process changes with age. We show that, with age, the vestibular information is down-weighted whereas the visual weight is increased. This shift in sensory reweighting is primarily due to an age-related increase of the noise of vestibular signals.
Collapse
Affiliation(s)
- Bart B G T Alberts
- Radboud University , Donders Institute for Brain, Cognition and Behaviour, Nijmegen , The Netherlands
| | - Luc P J Selen
- Radboud University , Donders Institute for Brain, Cognition and Behaviour, Nijmegen , The Netherlands
| | - W Pieter Medendorp
- Radboud University , Donders Institute for Brain, Cognition and Behaviour, Nijmegen , The Netherlands
| |
Collapse
|
32
|
Carvalho RL, Gomes MM, Franco LFDR, Abreu DCCD. Postural responses of galvanic vestibular stimulation: comparison between groups of older adults and young people. REVISTA BRASILEIRA DE GERIATRIA E GERONTOLOGIA 2019. [DOI: 10.1590/1981-22562019022.190091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Objective: To evaluate the effect of vestibular manipulation on the postural sway and muscle activation of younger and older adults. Methods: The study analyzed the effects of three intensity levels of galvanic vestibular stimulation (GVS) (0.3; 0.6 and 1m) on the pattern of muscle activity and center of pressure (CP) displacements of 12 older adults (EG) and 12 young adults (CG) while maintaining their balance on a stable surface, with no vision. Results: The EG showed a positive correlation between CP displacement and muscle activity and GVS intensity. On the other hand, the magnitude of postural response in the EG was not modulated in accordance with GVS intensities. Additionally, during the highest GVS intensity level (1 mA) greater muscle activity was used to increase stiffness, decrease the amplitude of oscillation and ensure stability. This unusual response characterizes a pattern of co-activation and is perhaps a safety mechanism to ensure stability. Conclusion: The EG individuals were not able to select the appropriate motor strategy to efficiently compensate the effects of GVS. This unusual strategy reflects deficits in the vestibular system of older adults, a fact which negatively interferes with their ability to reevaluate sensory information.
Collapse
|
33
|
Calyx junction dismantlement and synaptic uncoupling precede hair cell extrusion in the vestibular sensory epithelium during sub-chronic 3,3'-iminodipropionitrile ototoxicity in the mouse. Arch Toxicol 2018; 93:417-434. [PMID: 30377733 DOI: 10.1007/s00204-018-2339-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
Abstract
The cellular and molecular events that precede hair cell (HC) loss in the vestibular epithelium during chronic ototoxic exposure have not been widely studied. To select a study model, we compared the effects of sub-chronic exposure to different concentrations of 3,3'-iminodipropionitrile (IDPN) in the drinking water of two strains of mice and of both sexes. In subsequent experiments, male 129S1/SvImJ mice were exposed to 30 mM IDPN for 5 or 8 weeks; animals were euthanized at the end of the exposure or after a washout period of 13 weeks. In behavioral tests, IDPN mice showed progressive vestibular dysfunction followed by recovery during washout. In severely affected animals, light and electron microscopy observations of the vestibular epithelia revealed HC extrusion towards the endolymphatic cavity. Comparison of functional and ultrastructural data indicated that animals with fully reversible dysfunction did not have significant HC loss or stereociliary damage, but reversible dismantlement of the calyceal junctions that characterize the contact between type I HCs (HCI) and their calyx afferents. Immunofluorescent analysis revealed the loss of calyx junction proteins, Caspr1 and Tenascin-C, during exposure and their recovery during washout. Synaptic uncoupling was also recorded, with loss of pre-synaptic Ribeye and post-synaptic GluA2 puncta, and differential reversibility among the three different kinds of synaptic contacts existing in the epithelium. qRT-PCR analyses demonstrated that some of these changes are at least in part explained by gene expression modifications. We concluded that calyx junction dismantlement and synaptic uncoupling are early events in the mouse vestibular sensory epithelium during sub-chronic IDPN ototoxicity.
Collapse
|
34
|
Taylor RR, Filia A, Paredes U, Asai Y, Holt JR, Lovett M, Forge A. Regenerating hair cells in vestibular sensory epithelia from humans. eLife 2018; 7:34817. [PMID: 30019672 PMCID: PMC6078492 DOI: 10.7554/elife.34817] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/16/2018] [Indexed: 01/28/2023] Open
Abstract
Human vestibular sensory epithelia in explant culture were incubated in gentamicin to ablate hair cells. Subsequent transduction of supporting cells with ATOH1 using an Ad-2 viral vector resulted in generation of highly significant numbers of cells expressing the hair cell marker protein myosin VIIa. Cells expressing myosin VIIa were also generated after blocking the Notch signalling pathway with TAPI-1 but less efficiently. Transcriptomic analysis following ATOH1 transduction confirmed up-regulation of 335 putative hair cell marker genes, including several downstream targets of ATOH1. Morphological analysis revealed numerous cells bearing dense clusters of microvilli at the apical surfaces which showed some hair cell-like characteristics confirming a degree of conversion of supporting cells. However, no cells bore organised hair bundles and several expected hair cell markers genes were not expressed suggesting incomplete differentiation. Nevertheless, the results show a potential to induce conversion of supporting cells in the vestibular sensory tissues of humans. The inner ear contains our balance system (the vestibular system) and our hearing organ (the cochlea). Their sensing units, the hair cells, detect movement or sound waves. A loss of hair cells is a major cause of inner ear disorders, such as dizziness, imbalance and deafness. When hair cells die, supporting cells that surround them close the ‘wound’ to repair the tissue. In fish, amphibians, reptiles and birds, the supporting cells can replace lost hair cells, but in mammals – including humans – hair cells are unable to regenerate in the cochlea, so hearing loss is permanent. However, previous research has shown that in certain mammals, spontaneous replacement of lost hair cells in the vestibular system can occur, but not enough to lead to a full recovery. Scientists have been able to convert supporting cells in the vestibular system of mice into hair cells by using either certain chemicals, or by introducing a specific gene into the supporting cells. In the mouse embryo, this gene, called Atoh1, switches on a signalling pathway in the inner ear, through which a non-specialised precursor cell becomes a hair cell. Inducing hair cell regeneration could be a therapy for inner ear disorders. Therefore, Taylor et al. wanted to find out if such procedures would work in inner ear tissue from humans. The researchers collected intact tissue samples from the vestibular system of patients who had undergone surgery to have a tumour removed, which would normally destroy the inner ear. All existing hair cells were removed so that mainly supporting cells remained. Then, the tissue was either treated with chemicals that increased the production of hair cells or received the gene ATOH1. The results showed that the cells containing the gene were able to develop many features characteristic of hair cells. And a smaller number of hair cells treated with the chemicals also started to develop hair cell-like features. A gene analysis after the ATOH1 transfer revealed a number of active genes known to be markers of hair cells, but also several inactive ones. This suggests that additional factors are necessary for generating fully functional hair cells. Dizziness and balance disorders present a major health care burden, particularly in the elderly population. Yet, they are often disregarded and overlooked. This study suggests that hair cell regeneration could be a feasible therapy for some forms of balance disorders linked to loss of vestibular hair cells. More research is needed to identify the other factors at play to test if hair cell regeneration in the cochlea could be used to treat hearing impairment.
Collapse
Affiliation(s)
| | - Anastasia Filia
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ursula Paredes
- UCL Ear Institute, University College London, London, United Kingdom
| | - Yukako Asai
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Jeffrey R Holt
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Michael Lovett
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew Forge
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
35
|
Requena T, Gallego-Martinez A, Lopez-Escamez JA. Bioinformatic Integration of Molecular Networks and Major Pathways Involved in Mice Cochlear and Vestibular Supporting Cells. Front Mol Neurosci 2018; 11:108. [PMID: 29674954 PMCID: PMC5895758 DOI: 10.3389/fnmol.2018.00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Cochlear and vestibular epithelial non-hair cells (ENHCs) are the supporting elements of the cellular architecture in the organ of Corti and the vestibular neuroepithelium in the inner ear. Intercellular and cell-extracellular matrix interactions are essential to prevent an abnormal ion redistribution leading to hearing and vestibular loss. The aim of this study is to define the main pathways and molecular networks in the mouse ENHCs. Methods: We retrieved microarray and RNA-seq datasets from mouse epithelial sensory and non-sensory cells from gEAR portal (http://umgear.org/index.html) and obtained gene expression fold-change between ENHCs and non-epithelial cells (NECs) against HCs for each gene. Differentially expressed genes (DEG) with a log2 fold change between 1 and -1 were discarded. The remaining genes were selected to search for interactions using Ingenuity Pathway Analysis and STRING platform. Specific molecular networks for ENHCs in the cochlea and the vestibular organs were generated and significant pathways were identified. Results: Between 1723 and 1559 DEG were found in the mouse cochlear and vestibular tissues, respectively. Six main pathways showed enrichment in the supporting cells in both tissues: (1) "Inhibition of Matrix Metalloproteases"; (2) "Calcium Transport I"; (3) "Calcium Signaling"; (4) "Leukocyte Extravasation Signaling"; (5) "Signaling by Rho Family GTPases"; and (6) "Axonal Guidance Si". In the mouse cochlea, ENHCs showed a significant enrichment in 18 pathways highlighting "axonal guidance signaling (AGS)" (p = 4.37 × 10-8) and "RhoGDI Signaling" (p = 3.31 × 10-8). In the vestibular dataset, there were 20 enriched pathways in ENHCs, the most significant being "Leukocyte Extravasation Signaling" (p = 8.71 × 10-6), "Signaling by Rho Family GTPases" (p = 1.20 × 10-5) and "Calcium Signaling" (p = 1.20 × 10-5). Among the top ranked networks, the most biologically significant network contained the "auditory and vestibular system development and function" terms. We also found 108 genes showing tonotopic gene expression in the cochlear ENHCs. Conclusions: We have predicted the main pathways and molecular networks for ENHCs in the organ of Corti and vestibular neuroepithelium. These pathways will facilitate the design of molecular maps to select novel candidate genes for hearing or vestibular loss to conduct functional studies.
Collapse
Affiliation(s)
- Teresa Requena
- Otology & Neurotology Group CTS495, Department of Genomic Medicine-Centro de Genómica e Investigación Oncológica-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine-Centro de Genómica e Investigación Oncológica-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine-Centro de Genómica e Investigación Oncológica-Pfizer/Universidad de Granada/Junta de Andalucía (GENYO), Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.GRANADA, Hospital Virgen de las Nieves, Universidad de Granada, Granada, Spain.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
36
|
Massucci-Bissoli M, Lezirovitz K, Oiticica J, Bento RF. Evidence of progenitor cells in the adult human cochlea: sphere formation and identification of ABCG2. Clinics (Sao Paulo) 2017; 72:714-717. [PMID: 29236919 PMCID: PMC5707191 DOI: 10.6061/clinics/2017(11)11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The aim of this study was to search for evidence of stem or progenitor cells in the adult human cochlea by testing for sphere formation capacity and the presence of the stem cell marker ABCG2. METHODS Cochleas removed from patients undergoing vestibular schwannoma resection (n=2) and from brain-dead organ donors (n=4) were dissociated for either flow cytometry analysis for the stem cell marker ABCG2 or a sphere formation assay that is widely used to test the sphere-forming capacity of cells from mouse inner ear tissue. RESULTS Spheres were identified after 2-5 days in vitro, and the stem cell marker ABCG2 was detected using flow cytometric analysis after cochlear dissociation. CONCLUSIONS Evidence suggests that there may be progenitor cells in the adult human cochlea, although further studies are required.
Collapse
Affiliation(s)
- Milene Massucci-Bissoli
- Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding authors. E-mails: /
| | - Karina Lezirovitz
- Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding authors. E-mails: /
| | - Jeanne Oiticica
- Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Ricardo Ferreira Bento
- Departamento de Otorrinolaringologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
37
|
Burns JC, Stone JS. Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 2017; 65:96-105. [PMID: 27864084 PMCID: PMC5423856 DOI: 10.1016/j.semcdb.2016.11.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened.
Collapse
Affiliation(s)
- Joseph C Burns
- Decibel Therapeutics, 215 First St., Suite 430, Cambridge, MA 02142, USA.
| | - Jennifer S Stone
- Department of Otolaryngology/Head and Neck Surgery and The Virginia Merrill Bloedel Hearing Research Center, University of Washington School of Medicine, Box 357923, Seattle, WA 98195-7923, USA.
| |
Collapse
|
38
|
Forge A, Taylor RR, Dawson SJ, Lovett M, Jagger DJ. Disruption of SorCS2 reveals differences in the regulation of stereociliary bundle formation between hair cell types in the inner ear. PLoS Genet 2017; 13:e1006692. [PMID: 28346477 PMCID: PMC5386298 DOI: 10.1371/journal.pgen.1006692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/10/2017] [Accepted: 03/14/2017] [Indexed: 12/24/2022] Open
Abstract
Behavioural anomalies suggesting an inner ear disorder were observed in a colony of transgenic mice. Affected animals were profoundly deaf. Severe hair bundle defects were identified in all outer and inner hair cells (OHC, IHC) in the cochlea and in hair cells of vestibular macular organs, but hair cells in cristae were essentially unaffected. Evidence suggested the disorder was likely due to gene disruption by a randomly inserted transgene construct. Whole-genome sequencing identified interruption of the SorCS2 (Sortilin-related VPS-10 domain containing protein) locus. Real-time-qPCR demonstrated disrupted expression of SorCS2 RNA in cochlear tissue from affected mice and this was confirmed by SorCS2 immuno-labelling. In all affected hair cells, stereocilia were shorter than normal, but abnormalities of bundle morphology and organisation differed between hair cell types. Bundles on OHC were grossly misshapen with significantly fewer stereocilia than normal. However, stereocilia were organised in rows of increasing height. Bundles on IHC contained significantly more stereocilia than normal with some longer stereocilia towards the centre, or with minimal height differentials. In early postnatal mice, kinocilia (primary cilia) of IHC and of OHC were initially located towards the lateral edge of the hair cell surface but often became surrounded by stereocilia as bundle shape and apical surface contour changed. In macular organs the kinocilium was positioned in the centre of the cell surface throughout maturation. There was disruption of the signalling pathway controlling intrinsic hair cell apical asymmetry. LGN and Gαi3 were largely absent, and atypical Protein Kinase C (aPKC) lost its asymmetric distribution. The results suggest that SorCS2 plays a role upstream of the intrinsic polarity pathway and that there are differences between hair cell types in the deployment of the machinery that generates a precisely organised hair bundle.
Collapse
MESH Headings
- Age Factors
- Animals
- Gene Expression Regulation
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hearing Loss/genetics
- Hearing Loss/metabolism
- Hearing Loss/physiopathology
- Immunohistochemistry
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Organ of Corti/metabolism
- Organ of Corti/physiopathology
- Organ of Corti/ultrastructure
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stereocilia/genetics
- Stereocilia/metabolism
- Stereocilia/pathology
Collapse
Affiliation(s)
- Andrew Forge
- UCL Ear Institute, University College London, London, United Kingdom
- * E-mail:
| | - Ruth R. Taylor
- UCL Ear Institute, University College London, London, United Kingdom
| | - Sally J. Dawson
- UCL Ear Institute, University College London, London, United Kingdom
| | - Michael Lovett
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Daniel J. Jagger
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
39
|
Rask-Andersen H, Li H, Löwenheim H, Müller M, Pfaller K, Schrott-Fischer A, Glueckert R. Supernumerary human hair cells-signs of regeneration or impaired development? A field emission scanning electron microscopy study. Ups J Med Sci 2017; 122:11-19. [PMID: 28145795 PMCID: PMC5361427 DOI: 10.1080/03009734.2016.1271843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Current attempts to regenerate cochlear sensorineural structures motivate further inspection of the human organ of hearing. Here, we analyzed the supernumerary inner hair cell (sIHC), a possible sign of regeneration and cell replacement. METHODS Human cochleae were studied using field emission scanning electron microscopy (FESEM; maximum resolution 2 nm) obtained from individuals aged 44, 48, and 58 years with normal sensorineural pure-tone average (PTA) thresholds (PTA <20 dB). The wasted tissue was harvested during trans-cochlear approaches and immediately fixed for ultrastructural analysis. RESULTS All specimens exhibited sIHCs at all turns except at the extreme lower basal turn. In one specimen, it was possible to image and count the inner hair cells (IHCs) along the cochlea representing the 0.2 kHz-8 kHz region according to the Greenwood place/frequency scale. In a region with 2,321 IHCs, there were 120 scattered one-cell losses or 'gaps' (5%). Forty-two sIHCs were present facing the modiolus. Thirty-eight percent of the sIHCs were located near a 'gap' in the IHC row (±6 IHCs). CONCLUSIONS The prevalence of ectopic inner hair cells was higher than expected. The morphology and placement could reflect a certain ongoing regeneration. Further molecular studies are needed to verify if the regenerative capacity of the human auditory periphery might have been underestimated.
Collapse
Affiliation(s)
- Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- CONTACT Helge Rask-Andersen Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Hao Li
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - Hubert Löwenheim
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
- Medical Campus University of Oldenburg School of Medicine and Health Sciences, European Medical School, Oldenburg, Germany
- Research Center of Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Marcus Müller
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
- Medical Campus University of Oldenburg School of Medicine and Health Sciences, European Medical School, Oldenburg, Germany
- Research Center of Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Kristian Pfaller
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| | - Annelies Schrott-Fischer
- Department of Histology and Molecular Cell Biology, Institute of Anatomy and Histology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rudolf Glueckert
- Department of Histology and Molecular Cell Biology, Institute of Anatomy and Histology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
40
|
Kelley MW, Stone JS. Development and Regeneration of Sensory Hair Cells. AUDITORY DEVELOPMENT AND PLASTICITY 2017. [DOI: 10.1007/978-3-319-21530-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Bucks SA, Cox BC, Vlosich BA, Manning JP, Nguyen TB, Stone JS. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. eLife 2017; 6:e18128. [PMID: 28263708 PMCID: PMC5338920 DOI: 10.7554/elife.18128] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 01/20/2017] [Indexed: 01/20/2023] Open
Abstract
Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury.
Collapse
Affiliation(s)
- Stephanie A Bucks
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, United States,Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, United States
| | - Brittany A Vlosich
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - James P Manning
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - Tot B Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States,
| |
Collapse
|
42
|
Abstract
In this review, we provide a description of the recent methods used for immunohistochemical staining of the human inner ear using formalin-fixed frozen, paraffin and celloidin-embedded sections. We also show the application of these immunohistochemical methods in auditory and vestibular endorgans microdissected from the human temporal bone. We compare the advantages and disadvantages of immunohistochemistry (IHC) in the different types of embedding media. IHC in frozen and paraffin-embedded sections yields a robust immunoreactive signal. Both frozen and paraffin sections would be the best alternative in the case where celloidin-embedding technique is not available. IHC in whole endorgans yields excellent results and can be used when desiring to detect regional variations of protein expression in the sensory epithelia. One advantage of microdissection is that the tissue is processed immediately and IHC can be made within 1 week of temporal bone collection. A second advantage of microdissection is the excellent preservation of both morphology and antigenicity. Using celloidin-embedded inner ear sections, we were able to detect several antigens by IHC and immunofluorescence using antigen retrieval methods. These techniques, previously applied only in animal models, allow for the study of numerous important proteins expressed in the human temporal bone potentially opening up a new field for future human inner ear research.
Collapse
|
43
|
Anson ER, Bigelow RT, Carey JP, Xue QL, Studenski S, Schubert MC, Weber KP, Agrawal Y. Aging Increases Compensatory Saccade Amplitude in the Video Head Impulse Test. Front Neurol 2016; 7:113. [PMID: 27486430 PMCID: PMC4947583 DOI: 10.3389/fneur.2016.00113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/05/2016] [Indexed: 11/16/2022] Open
Abstract
Objective Rotational vestibular function declines with age resulting in saccades as a compensatory mechanism to improve impaired gaze stability. Small reductions in rotational vestibulo-ocular reflex (VOR) gain that would be considered clinically normal have been associated with compensatory saccades. We evaluated whether compensatory saccade characteristics varied as a function of age, independent of semicircular canal function as quantified by VOR gain. Methods Horizontal VOR gain was measured in 243 participants age 27–93 from the Baltimore Longitudinal Study of Aging using video head impulse testing. Latency and amplitude of the first saccade (either covert – occurring during head impulse, or overt – occurring following head impulse) were measured for head impulses with compensatory saccades (n = 2230 head impulses). The relationship between age and saccade latency, as well as the relationship between age and saccade amplitude, were evaluated using regression analyses adjusting for VOR gain, gender, and race. Results Older adults (mean age 75.9) made significantly larger compensatory saccades relative to younger adults (mean age 45.0). In analyses adjusted for VOR gain, there was a significant association between age and amplitude of the first compensatory covert saccade (β = 0.015, p = 0.008). In analyses adjusted for VOR gain, there was a significant association between age and amplitude of the first compensatory overt saccade (β = 0.02, p < 0.001). Compensatory saccade latencies did not vary significantly by age. Conclusion We observed that aging increases the compensatory catch-up saccade amplitude in healthy adults after controlling for VOR gain. Size of compensatory saccades may be useful in addition to VOR gain for characterizing vestibular function in aging adults.
Collapse
Affiliation(s)
- Eric R Anson
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Robin T Bigelow
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - John P Carey
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Quan-Li Xue
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center on Aging and Health, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Stephanie Studenski
- Longitudinal Studies Section, National Institute on Aging , Baltimore, MD , USA
| | - Michael C Schubert
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Konrad P Weber
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
44
|
Smith PF. Age-Related Neurochemical Changes in the Vestibular Nuclei. Front Neurol 2016; 7:20. [PMID: 26973593 PMCID: PMC4776078 DOI: 10.3389/fneur.2016.00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
There is evidence that the normal aging process is associated with impaired vestibulo-ocular reflexes (VOR) and vestibulo-spinal reflexes, causing reduced visual acuity and postural instability. Nonetheless, the available evidence is not entirely consistent, especially with respect to the VOR. Some recent studies have reported that VOR gain can be intact even above 80 years of age. Similarly, although there is evidence for age-related hair cell loss and neuronal loss in Scarpa's ganglion and the vestibular nucleus complex (VNC), it is not entirely consistent. Whatever structural and functional changes occur in the VNC as a result of aging, either to cause vestibular impairment or to compensate for it, neurochemical changes must underlie them. However, the neurochemical changes that occur in the VNC with aging are poorly understood because the available literature is very limited. This review summarizes and critically evaluates the available evidence relating to the noradrenaline, serotonin, dopamine, glutamate, GABA, glycine, and nitric oxide neurotransmitter systems in the aging VNC. It is concluded that, at present, it is difficult, if not impossible, to relate the neurochemical changes observed to the function of specific VNC neurons and whether the observed changes are the cause of a functional deficit in the VNC or an effect of it. A better understanding of the neurochemical changes that occur during aging may be important for the development of potential drug treatments for age-related vestibular disorders. However, this will require the use of more sophisticated methodology such as in vivo microdialysis with single neuron recording and perhaps new technologies such as optogenetics.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences and Brain Health Research Centre, University of Otago , Dunedin , New Zealand
| |
Collapse
|
45
|
Lim R, Brichta AM. Anatomical and physiological development of the human inner ear. Hear Res 2016; 338:9-21. [PMID: 26900072 DOI: 10.1016/j.heares.2016.02.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/20/2016] [Accepted: 02/12/2016] [Indexed: 01/05/2023]
Abstract
We describe the development of the human inner ear with the invagination of the otic vesicle at 4 weeks gestation (WG), the growth of the semicircular canals from 5 WG, and the elongation and coiling of the cochlea at 10 WG. As the membranous labyrinth takes shape, there is a concomitant development of the sensory neuroepithelia and their associated structures within. This review details the growth and differentiation of the vestibular and auditory neuroepithelia, including synaptogenesis, the expression of stereocilia and kinocilia, and innervation of hair cells by afferent and efferent nerve fibres. Along with development of essential sensory structures we outline the formation of crucial accessory structures of the vestibular system - the cupula and otolithic membrane and otoconia as well as the three cochlea compartments and the tectorial membrane. Recent molecular studies have elaborated on classical anatomical studies to characterize the development of prosensory and sensory regions of the fetal human cochlea using the transcription factors, PAX2, MAF-B, SOX2, and SOX9. Further advances are being made with recent physiological studies that are beginning to describe when hair cells become functionally active during human gestation. This article is part of a Special Issue entitled <Annual Reviews 2016>.
Collapse
Affiliation(s)
- Rebecca Lim
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, NSW, Australia.
| | - Alan M Brichta
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, NSW, Australia
| |
Collapse
|
46
|
Chiarovano E, Vidal PP, Magnani C, Lamas G, Curthoys IS, de Waele C. Absence of Rotation Perception during Warm Water Caloric Irrigation in Some Seniors with Postural Instability. Front Neurol 2016; 7:4. [PMID: 26834699 PMCID: PMC4725157 DOI: 10.3389/fneur.2016.00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/11/2016] [Indexed: 01/14/2023] Open
Abstract
Falls in seniors are a major public health problem. Falls lead to fear of falling, reduced mobility, and decreased quality of life. Vestibular dysfunction is one of the fall risk factors. The relationship between objective measures of vestibular responses and age has been studied. However, the effects of age on vestibular perception during caloric stimulation have not been studied. Twenty senior subjects were included in the study, and separated in two groups: 10 seniors reporting postural instability (PI) and exhibiting absence of vestibular perception when they tested with caloric stimulation and 10 sex- and age-matched seniors with no such problems (controls). We assessed vestibular perception on a binary rating scale during the warm irrigation of the caloric test. The function of the various vestibular receptors was assessed using video head impulse test (vHIT), caloric tests, and cervical and ocular vestibular-evoked myogenic potentials. The Equitest was used to evaluate balance. No horizontal canal dysfunction assessed using both caloric test and vHIT was detected in either group. No significant difference was detected between PI and control groups for the peak SPV of caloric-induced ocular nystagmus or for the HVOR gain. All the controls perceived rotation when the maximal SPV during warm irrigation was equal to or ≥15°/s. None of the subjects in the PI group perceived rotation even while the peak SPV exceeded 15°/s, providing objective evidence of normal peripheral horizontal canal function. All the PI group had abnormal Equitest results, particularly in the two last conditions. These investigations show for the first time that vestibular perception can be absent during a caloric test despite normal horizontal canal function. We call this as dissociation vestibular neglect. Patients with poor vestibular perception may not be aware of postural perturbations and so will not correct for them. Thus, falls in the elderly may result, among other factors, from a vestibular neglect due to an inappropriate central processing of normal vestibular peripheral inputs. That is, failure to perceive rotation during caloric testing when the SPV is >15°/s, should prompt the clinician to envisage preventive actions to avoid future falls such as rehabilitation.
Collapse
Affiliation(s)
- Elodie Chiarovano
- CNRS UMR 8257, Cognition and Action Group, Centre Universitaire des Saints-Pères, Université Paris Descartes, Paris, France; ENT Department, Salpetriere Hospital, Paris, France
| | - Pierre-Paul Vidal
- CNRS UMR 8257, Cognition and Action Group, Centre Universitaire des Saints-Pères, Université Paris Descartes , Paris , France
| | - Christophe Magnani
- CNRS UMR 8257, Cognition and Action Group, Centre Universitaire des Saints-Pères, Université Paris Descartes , Paris , France
| | - Georges Lamas
- ENT Department, Salpetriere Hospital , Paris , France
| | - Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, University of Sydney , Sydney, NSW , Australia
| | - Catherine de Waele
- CNRS UMR 8257, Cognition and Action Group, Centre Universitaire des Saints-Pères, Université Paris Descartes, Paris, France; ENT Department, Salpetriere Hospital, Paris, France
| |
Collapse
|
47
|
Anson E, Jeka J. Perspectives on Aging Vestibular Function. Front Neurol 2016; 6:269. [PMID: 26779116 PMCID: PMC4701938 DOI: 10.3389/fneur.2015.00269] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/14/2015] [Indexed: 01/10/2023] Open
Abstract
Much is known about age-related anatomical changes in the vestibular system. Knowledge regarding how vestibular anatomical changes impact behavior for older adults continues to grow, in line with advancements in diagnostic testing. However, despite advancements in clinical diagnostics, much remains unknown about the functional impact that an aging vestibular system has on daily life activities such as standing and walking. Modern diagnostic tests are very good at characterizing neural activity of the isolated vestibular system, but the tests themselves are artificial and do not reflect the multisensory aspects of natural human behavior. Also, the majority of clinical diagnostic tests are passively applied because active behavior can enhance performance. In this perspective paper, we review anatomical and behavioral changes associated with an aging vestibular system and highlight several areas where a more functionally relevant perspective can be taken. For postural control, a multisensory perturbation approach could be used to bring balance rehabilitation into the arena of precision medicine. For walking and complex gaze stability, this may result in less physiologically specific impairments, but the trade-off would be a greater understanding of how the aging vestibular system truly impacts the daily life of older adults.
Collapse
Affiliation(s)
- Eric Anson
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins Medical Institutes , Baltimore, MD , USA
| | - John Jeka
- Department of Kinesiology, Temple University, Philadelphia, PA, USA; Department of Bioengineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|