1
|
Luders E, Gaser C, Spencer D, Thankamony A, Hughes I, Simpson H, Srirangalingam U, Gleeson H, Hines M, Kurth F. Cortical gyrification in women and men and the (missing) link to prenatal androgens. Eur J Neurosci 2024; 60:3995-4003. [PMID: 38733283 PMCID: PMC11260240 DOI: 10.1111/ejn.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Previous studies have reported sex differences in cortical gyrification. Since most cortical folding is principally defined in utero, sex chromosomes as well as gonadal hormones are likely to influence sex-specific aspects of local gyrification. Classic congenital adrenal hyperplasia (CAH) causes high levels of androgens during gestation in females, whereas levels in males are largely within the typical male range. Therefore, CAH provides an opportunity to study the possible effects of prenatal androgens on cortical gyrification. Here, we examined the vertex-wise absolute mean curvature-a common estimate for cortical gyrification-in individuals with CAH (33 women and 20 men) and pair-wise matched controls (33 women and 20 men). There was no significant main effect of CAH and no significant CAH-by-sex interaction. However, there was a significant main effect of sex in five cortical regions, where gyrification was increased in women compared to men. These regions were located on the lateral surface of the brain, specifically left middle frontal (rostral and caudal), right inferior frontal, left inferior parietal, and right occipital. There was no cortical region where gyrification was increased in men compared to women. Our findings do not only confirm prior reports of increased cortical gyrification in female brains but also suggest that cortical gyrification is not significantly affected by prenatal androgen exposure. Instead, cortical gyrification might be determined by sex chromosomes either directly or indirectly-the latter potentially by affecting the underlying architecture of the cortex or the size of the intracranial cavity, which is smaller in women.
Collapse
Affiliation(s)
- Eileen Luders
- Department of Women’s and Children’s Health, Uppsala University, Uppsala 75237, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala 75238, Sweden
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, Jena 07747, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07747, Germany
- German Center for Mental Health (DZPG), Germany
| | - Debra Spencer
- Department of Psychology, University of Cambridge, Cambridge CB23RQ, UK
| | - Ajay Thankamony
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB20QQ, UK
- Weston Centre for Paediatric Endocrinology & Diabetes, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - Ieuan Hughes
- Department of Paediatrics, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - Helen Simpson
- Department of Endocrinology and Diabetes, University College Hospital London, London NW12BU, UK
| | | | | | - Melissa Hines
- Department of Psychology, University of Cambridge, Cambridge CB23RQ, UK
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Departments of Neuroradiology and Radiology, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
2
|
Crisóstomo J, Duarte JV, Canário N, Moreno C, Gomes L, Castelo-Branco M. The longitudinal impact of type 2 diabetes on brain gyrification. Eur J Neurosci 2023; 58:4384-4392. [PMID: 37927099 DOI: 10.1111/ejn.16177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Type 2 diabetes has an effect on brain structure, including cortical gyrification. The significance of these changes is better understood if assessed over time. However, there is a lack of studies assessing longitudinally the effect of this disease with complex aethology in gyrification. While changes in this feature have been associated mainly with genetic legacy, our study allowed to shed light on the effect of the variation of glycaemic profile over time in gyrification in this metabolic disease. In this longitudinal study, we analysed brain anatomical magnetic resonance images of 15 participants with type 2 diabetes and 13 healthy control participants to investigate the impact of this metabolic disease on the gyrification index over a 7-year period. We observed a significant interaction between time and group in six regions, four of which (left precentral gyrus, left gyrus rectus, left subcentral gyrus and sulci and right inferior temporal gyrus) showed an increase in gyrification in type 2 diabetes and a decrease in the control group and the two others (left pericallosal sulcus and right inferior frontal sulcus) the opposite pattern. The variation of the gyrification was correlated with the variation of the glycaemic profile. Following the interaction, the simple main effect of time in each group separately has shown that in the group with diabetes, there were more regions susceptible to alterations of gyrification. In sum, our results raise credit for the possibility that glycaemic control also might influence gyrification in type 2 diabetes.
Collapse
Affiliation(s)
- Joana Crisóstomo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - João V Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Carolina Moreno
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Department of Endocrinology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Leonor Gomes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Department of Endocrinology, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Huang W, Zeng J, Jia L, Zhu D, O’Brien J, Ritchie C, Shu N, Su L. Genetic risks of Alzheimer's by APOE and MAPT on cortical morphology in young healthy adults. Brain Commun 2023; 5:fcad234. [PMID: 37693814 PMCID: PMC10489122 DOI: 10.1093/braincomms/fcad234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/29/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023] Open
Abstract
Genetic risk factors such as APOE ε4 and MAPT (rs242557) A allele are associated with amyloid and tau pathways and grey matter changes at both early and established stages of Alzheimer's disease, but their effects on cortical morphology in young healthy adults remain unclear. A total of 144 participants aged from 18 to 24 underwent 3T MRI and genotyping for APOE and MAPT to investigate unique impacts of these genetic risk factors in a cohort without significant comorbid conditions such as metabolic and cardiovascular diseases. We segmented the cerebral cortex into 68 regions and calculated the cortical area, thickness, curvature and folding index for each region. Then, we trained machine learning models to classify APOE and MAPT genotypes using these morphological features. In addition, we applied a growing hierarchical self-organizing maps algorithm, which clustered the 68 regions into 4 subgroups representing different morphological patterns. Then, we performed general linear model analyses to estimate the interaction between APOE and MAPT on cortical patterns. We found that the classifiers using all cortical features could accurately classify individuals carrying genetic risks of dementia outperforming each individual feature alone. APOE ε4 carriers had a more convoluted and thinner cortex across the cerebral cortex. A similar pattern was found in MAPT A allele carriers only in the regions that are vulnerable for early tau pathology. With the clustering analysis, we found a synergetic effect between APOE ε4 and MAPT A allele, i.e. carriers of both risk factors showed the most deviation of cortical pattern from the typical pattern of that cluster. Genetic risk factors of dementia by APOE ε4 and MAPT (rs242557) A allele were associated with variations of cortical morphology, which can be observed in young healthy adults more than 30 years before Alzheimer's pathology is likely to occur and 50 years before dementia symptoms may begin.
Collapse
Affiliation(s)
- Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Department of Neuroscience, Neuroscience Institute, Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield S10 2HQ, UK
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Jianmin Zeng
- Faculty of Psychology, Sino-Britain Centre for Cognition and Ageing Research, Southwest University, Chongqing 400715, China
| | - Lina Jia
- Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Dajiang Zhu
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - John O’Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Craig Ritchie
- Edinburgh Dementia Prevention and Centre for Clinical Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH4 2XU, UK
- Scottish Brain Sciences, Edinburgh EH12 9DQ, UK
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Li Su
- Department of Neuroscience, Neuroscience Institute, Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield S10 2HQ, UK
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
| |
Collapse
|
4
|
Chester SC, Ogawa T, Terao M, Nakai R, Abe N, De Brito SA. Cortical and subcortical grey matter correlates of psychopathic traits in a Japanese community sample of young adults: sex and configurations of factors' level matter! Cereb Cortex 2023; 33:5043-5054. [PMID: 36300595 PMCID: PMC10151884 DOI: 10.1093/cercor/bhac397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/14/2022] Open
Abstract
While neuroimaging research has examined the structural brain correlates of psychopathy predominantly in clinical/forensic male samples from western countries, much less is known about those correlates in non-western community samples. Here, structural magnetic resonance imaging data were analyzed using voxel- and surface-based morphometry to investigate the neuroanatomical correlates of psychopathic traits in a mixed-sex sample of 97 well-functioning Japanese adults (45 males, 21-39 years; M = 27, SD = 5.3). Psychopathic traits were assessed using the Self-Report Psychopathy Scale (SRP-SF; 4th Edition). Multiple regression analysis showed greater Factor 1 scores were associated with higher gyrification in the lingual gyrus, and gray matter volume in the anterior cingulate cortex and amygdala/hippocampus border. Total psychopathy and Factor 1 scores interacted with sex to, respectively, predict cortical thickness in the precuneus and gyrification in the superior temporal gyrus. Finally, Factor 1 and Factor 2 traits interacted to predict gyrification in the posterior cingulate cortex. These preliminary data suggest that, while there may be commonalities in the loci of structural brain correlates of psychopathic traits in clinical/forensic and community samples, the nature of that association might be different (i.e. positive) and may vary according to sex and configurations of factors' level.
Collapse
Affiliation(s)
- Sally C Chester
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Tatsuyoshi Ogawa
- Division of Transdisciplinary Sciences, Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Maki Terao
- Institute for the Future of Human Society, Kyoto University, Sakyo-ku, Kyoto, Kyoto, Japan
| | - Ryusuke Nakai
- Institute for the Future of Human Society, Kyoto University, Sakyo-ku, Kyoto, Kyoto, Japan
| | - Nobuhito Abe
- Institute for the Future of Human Society, Kyoto University, Sakyo-ku, Kyoto, Kyoto, Japan
| | - Stephane A De Brito
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Du X, Wei L, Yang B, Long S, Wang J, Sun A, Jiang Y, Qiao Z, Wang H, Wang Y. Cortical and subcortical morphological alteration in Angelman syndrome. J Neurodev Disord 2023; 15:7. [PMID: 36788499 PMCID: PMC9930225 DOI: 10.1186/s11689-022-09469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/28/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a neurodevelopmental disorder with serious seizures. We aim to explore the brain morphometry of patients with AS and figure out whether the seizure is associated with brain development. METHODS Seventy-three patients and 26 healthy controls (HC) underwent high-resolution structural brain MRI. Group differences between the HC group and the AS group and also between AS patients with seizure (AS-Se) and age-matched AS patients with non-seizure (AS-NSe) were compared. The voxel-based and surface-based morphometry analyses were used in our study. Gray matter volume, cortical thickness (CTH), and local gyrification index (LGI) were assessed to analyze the cortical and subcortical structure alteration in the AS brain. RESULTS Firstly, compared with the HC group, children with AS were found to have a significant decrease in gray matter volume in the subcortical nucleus, cortical, and cerebellum. However, the gray matter volume of AS patients in the inferior precuneus was significantly increased. Secondly, patients with AS had significantly increased LGI in the whole brain as compared with HC. Thirdly, the comparison of AS-Se and the AS-NSe groups revealed a significant decrease in caudate volume in the AS-Se group. Lastly, we further selected the caudate and the precuneus as ROIs for volumetric analysis, the AS group showed significantly increased LGI in the precuneus and reduced CTH in the right precuneus. Between the AS-Se and the AS-NSe groups, the AS-Se group exhibited significantly lower density in the caudate, while only the CTH in the left precuneus showed a significant difference. CONCLUSIONS These results revealed cortical and subcortical morphological alterations in patients with AS, including globally the decreased brain volume in the subcortical nucleus, the increased gray matter volume of precuneus, and the whole-brain increase of LGI and reduction of CTH. The abnormal brain pattern was more serious in patients with seizures, suggesting that the occurrence of seizures may be related to abnormal brain changes.
Collapse
Affiliation(s)
- Xiaonan Du
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Lei Wei
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Baofeng Yang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Shasha Long
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ji Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Aiqi Sun
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yonghui Jiang
- Department of Genetics and Paediatrics, Yale School of Medicine, CT, New Haven, China
| | - Zhongwei Qiao
- Department of Radiology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and BrainInspired Intelligence (Fudan University), Ministry of Education, Shanghai, USA.
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
6
|
Crisóstomo J, Duarte JV, Moreno C, Gomes L, Castelo‐Branco M. A novel morphometric signature of brain alterations in type 2 diabetes: Patterns of changed cortical gyrification. Eur J Neurosci 2021; 54:6322-6333. [PMID: 34390585 PMCID: PMC9291170 DOI: 10.1111/ejn.15424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/11/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
Type 2 diabetes is a chronic disease that creates atrophic signatures in the brain, including decreases of total and regional volume of grey matter, white matter and cortical thickness. However, there is a lack of studies assessing cortical gyrification in type 2 diabetes. Changes in this emerging feature have been associated mainly with genetic legacy, but environmental factors may also play a role. Here, we investigated alterations of the gyrification index and classical morphometric measures in type 2 diabetes, a late acquired disease with complex aetiology with both underlying genetic and more preponderant environmental factors. In this cross-sectional study, we analysed brain anatomical magnetic resonance images of 86 participants with type 2 diabetes and 40 healthy control participants, to investigate structural alterations in type 2 diabetes, including whole-brain volumetric measures, local alterations of grey matter volume, cortical thickness and the gyrification index. We found concordant significant decrements in total and regional grey matter volume, and cortical thickness. Surprisingly, the cortical gyrification index was found to be mainly increased and mainly located in cortical sensory areas in type 2 diabetes. Moreover, alterations in gyrification correlated with clinical data, suggesting an influence of metabolic profile in alterations of gyrification in type 2 diabetes. Further studies should address causal influences of genetic and/or environmental factors in patterns of cortical gyrification in type 2 diabetes.
Collapse
Affiliation(s)
- Joana Crisóstomo
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Faculty of Medicine (FMUC)University of CoimbraCoimbraPortugal
| | - João V. Duarte
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Faculty of Medicine (FMUC)University of CoimbraCoimbraPortugal
| | - Carolina Moreno
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Department of EndocrinologyCentro Hospitalar e Universitário de Coimbra (CHUC)CoimbraPortugal
| | - Leonor Gomes
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Department of EndocrinologyCentro Hospitalar e Universitário de Coimbra (CHUC)CoimbraPortugal
| | - Miguel Castelo‐Branco
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)University of CoimbraCoimbraPortugal
- Faculty of Medicine (FMUC)University of CoimbraCoimbraPortugal
| |
Collapse
|
7
|
Shishegar R, Pizzagalli F, Georgiou-Karistianis N, Egan GF, Jahanshad N, Johnston LA. A gyrification analysis approach based on Laplace Beltrami eigenfunction level sets. Neuroimage 2021; 229:117751. [PMID: 33460799 DOI: 10.1016/j.neuroimage.2021.117751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022] Open
Abstract
An accurate measure of the complexity of patterns of cortical folding or gyrification is necessary for understanding normal brain development and neurodevelopmental disorders. Conventional gyrification indices (GIs) are calculated based on surface curvature (curvature-based GI) or an outer hull surface of the cortex (outer surface-based GI). The latter is dependent on the definition of the outer hull surface and a corresponding function between surfaces. In the present study, we propose the Laplace Beltrami-based gyrification index (LB-GI). This is a new curvature-based local GI computed using the first three Laplace Beltrami eigenfunction level sets. As with outer surface-based GI methods, this method is based on the hypothesis that gyrification stems from a flat surface during development. However, instead of quantifying gyrification with reference to corresponding points on an outer hull surface, LB-GI quantifies the gyrification at each point on the cortical surface with reference to their surrounding gyral points, overcoming several shortcomings of existing methods. The LB-GI was applied to investigate the cortical maturation profile of the human brain from preschool to early adulthood using the PING database. The results revealed more detail in patterns of cortical folding than conventional curvature-based methods, especially on frontal and posterior tips of the brain, such as the frontal pole, lateral occipital, lateral cuneus, and lingual. Negative associations of cortical folding with age were observed at cortical regions, including bilateral lingual, lateral occipital, precentral gyrus, postcentral gyrus, and superior frontal gyrus. The results also indicated positive significant associations between age and the LB-GI of bilateral insula, the medial orbitofrontal, frontal pole and rostral anterior cingulate regions. It is anticipated that the LB-GI will be advantageous in providing further insights in the understanding of brain development and degeneration in large clinical neuroimaging studies.
Collapse
Affiliation(s)
- Rosita Shishegar
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia; Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia; The Australian e-Health Research Centre, CSIRO, Melbourne, Australia.
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA; Department of Neurosciences, University of Turin, Italy
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Gary F Egan
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Leigh A Johnston
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia; Melbourne Brain Centre Imaging Unit, University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Yun HJ, Perez JDR, Sosa P, Valdés JA, Madan N, Kitano R, Akiyama S, Skotko BG, Feldman HA, Bianchi DW, Grant PE, Tarui T, Im K. Regional Alterations in Cortical Sulcal Depth in Living Fetuses with Down Syndrome. Cereb Cortex 2021; 31:757-767. [PMID: 32940649 PMCID: PMC7786357 DOI: 10.1093/cercor/bhaa255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of developmental disabilities. Advanced analysis of brain magnetic resonance imaging (MRI) has been used to find brain abnormalities and their relationship to neurocognitive impairments in children and adolescents with DS. Because genetic factors affect brain development in early fetal life, there is a growing interest in analyzing brains from living fetuses with DS. In this study, we investigated regional sulcal folding depth as well as global cortical gyrification from fetal brain MRIs. Nine fetuses with DS (29.1 ± 4.24 gestational weeks [mean ± standard deviation]) were compared with 17 typically developing [TD] fetuses (28.4 ± 3.44). Fetuses with DS showed lower whole-brain average sulcal depths and gyrification index than TD fetuses. Significant decreases in sulcal depth were found in bilateral Sylvian fissures and right central and parieto-occipital sulci. On the other hand, significantly increased sulcal depth was shown in the left superior temporal sulcus, which is related to atypical hemispheric asymmetry of cortical folding. Moreover, these group differences increased as gestation progressed. This study demonstrates that regional sulcal depth is a sensitive marker for detecting alterations of cortical development in DS during fetal life, which may be associated with later neurocognitive impairment.
Collapse
Affiliation(s)
- Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juan David Ruiz Perez
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Sosa
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - J Alejandro Valdés
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Neel Madan
- Department of Radiology, Tufts Medical Center, Boston, MA 02111, USA
| | - Rie Kitano
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Shizuko Akiyama
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Brian G Skotko
- Down Syndrome Program, Genetics, Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Henry A Feldman
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Diana W Bianchi
- Prenatal Genomics and Fetal Therapy Section, Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Tomo Tarui
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Schmitt JE, Raznahan A, Liu S, Neale MC. The Heritability of Cortical Folding: Evidence from the Human Connectome Project. Cereb Cortex 2020; 31:702-715. [PMID: 32959043 DOI: 10.1093/cercor/bhaa254] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying cortical folding are incompletely understood. Prior studies have suggested that individual differences in sulcal depth are genetically mediated, with deeper and ontologically older sulci more heritable than others. In this study, we examine FreeSurfer-derived estimates of average convexity and mean curvature as proxy measures of cortical folding patterns using a large (N = 1096) genetically informative young adult subsample of the Human Connectome Project. Both measures were significantly heritable near major sulci and primary fissures, where approximately half of individual differences could be attributed to genetic factors. Genetic influences near higher order gyri and sulci were substantially lower and largely nonsignificant. Spatial permutation analysis found that heritability patterns were significantly anticorrelated to maps of evolutionary and neurodevelopmental expansion. We also found strong phenotypic correlations between average convexity, curvature, and several common surface metrics (cortical thickness, surface area, and cortical myelination). However, quantitative genetic models suggest that correlations between these metrics are largely driven by nongenetic factors. These findings not only further our understanding of the neurobiology of gyrification, but have pragmatic implications for the interpretation of heritability maps based on automated surface-based measurements.
Collapse
Affiliation(s)
- J Eric Schmitt
- Departments of Radiology and Psychiatry, Division of Neuroradiology, Brain Behavior Laboratory, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Siyuan Liu
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Michael C Neale
- Departments of Psychiatry and Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298-980126, USA
| |
Collapse
|
10
|
Lyu I, Kang H, Woodward ND, Styner MA, Landman BA. Hierarchical spherical deformation for cortical surface registration. Med Image Anal 2019; 57:72-88. [PMID: 31280090 PMCID: PMC6733638 DOI: 10.1016/j.media.2019.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 11/30/2022]
Abstract
We present hierarchical spherical deformation for a group-wise shape correspondence to address template selection bias and to minimize registration distortion. In this work, we aim at a continuous and smooth deformation field to guide accurate cortical surface registration. In conventional spherical registration methods, a global rigid alignment and local deformation are independently performed. Motivated by the composition of precession and intrinsic rotation, we simultaneously optimize global rigid rotation and non-rigid local deformation by utilizing spherical harmonics interpolation of local composite rotations in a single framework. To this end, we indirectly encode local displacements by such local composite rotations as functions of spherical locations. Furthermore, we introduce an additional regularization term to the spherical deformation, which maximizes its rigidity while reducing registration distortion. To improve surface registration performance, we employ the second order approximation of the energy function that enables fast convergence of the optimization. In the experiments, we validate our method on healthy normal subjects with manual cortical surface parcellation in registration accuracy and distortion. We show an improved shape correspondence with high accuracy in cortical surface parcellation and significantly low registration distortion in surface area and edge length. In addition to validation, we discuss parameter tuning, optimization, and implementation design with potential acceleration.
Collapse
Affiliation(s)
- Ilwoo Lyu
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA.
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Martin A Styner
- Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Bennett A Landman
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
11
|
Cortical neurodevelopment in pre-manifest Huntington's disease. NEUROIMAGE-CLINICAL 2019; 23:101913. [PMID: 31491822 PMCID: PMC6627026 DOI: 10.1016/j.nicl.2019.101913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022]
Abstract
Background The expression of the HTT CAG repeat expansion mutation causes neurodegeneration in Huntington's disease (HD). Objectives: In light of the – mainly in-vitro – evidence suggesting an additional role of huntingtin in neurodevelopment we used 3T MRI to test the hypothesis that in CAG-expanded individuals without clinical signs of HD (preHD) there is evidence for neurodevelopmental abnormalities. Methods We specifically investigated the complexity of cortical folding, a measure of cortical neurodevelopment, employing a novel method to quantify local fractal dimension (FD) measures that uses spherical harmonic reconstructions. Results The complexity of cortical folding differed at a group level between preHD (n = 57) and healthy volunteers (n = 57) in areas of the motor and visual system as well as temporal cortical areas. However, there was no association between the complexity of cortical folding and the loss in putamen volume that was clearly evident in preHD. Conclusions Our results suggest that HTT CAG repeat length may have an influence on cortical folding without evidence that this leads to developmental pathology or was clinically meaningful. This suggests that the HTT CAG-repeat expansion mutation may influence the processes governing cortical neurodevelopment; however, that influence seems independent of the events that lead to neurodegeneration. Measures of cortical neurodevelopment in preclinical Huntington's disease (HD) gene carriers differ from healthy volunteers The influence on cortical folding of the HD gene was not associated with developmental pathology or clinically meaningful The influence of the HD gene on cortical neurodevelopment may differ from that on neurodegeneration
Collapse
|
12
|
Hedderich DM, Bäuml JG, Berndt MT, Menegaux A, Scheef L, Daamen M, Zimmer C, Bartmann P, Boecker H, Wolke D, Gaser C, Sorg C. Aberrant gyrification contributes to the link between gestational age and adult IQ after premature birth. Brain 2019; 142:1255-1269. [DOI: 10.1093/brain/awz071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Dennis M Hedderich
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Josef G Bäuml
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maria T Berndt
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Aurore Menegaux
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lukas Scheef
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Christian Gaser
- Department of Psychiatry and Neurology, University Hospital Jena, Jena, Germany
| | - Christian Sorg
- TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Psychiatry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
13
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
14
|
Yun HJ, Chung AW, Vasung L, Yang E, Tarui T, Rollins CK, Ortinau CM, Grant PE, Im K. Automatic labeling of cortical sulci for the human fetal brain based on spatio-temporal information of gyrification. Neuroimage 2019; 188:473-482. [PMID: 30553042 PMCID: PMC6452886 DOI: 10.1016/j.neuroimage.2018.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022] Open
Abstract
Accurate parcellation and labeling of primary cortical sulci in the human fetal brain is useful for regional analysis of brain development. However, human fetal brains show large spatio-temporal changes in brain size, cortical folding patterns, and relative position/size of cortical regions, making accurate automatic sulcal labeling challenging. Here, we introduce a novel sulcal labeling method for the fetal brain using spatio-temporal gyrification information from multiple fetal templates. First, spatial probability maps of primary sulci are generated on the templates from 23 to 33 gestational weeks and registered to an individual brain. Second, temporal weights, which determine the level of contribution to the labeling for each template, are defined by similarity of gyrification between the individual and the template brains. We combine the weighted sulcal probability maps from the multiple templates and adopt sulcal basin-wise approach to assign sulcal labels to each basin. Our labeling method was applied to 25 fetuses (22.9-29.6 gestational weeks), and the labeling accuracy was compared to manually assigned sulcal labels using the Dice coefficient. Moreover, our multi-template basin-wise approach was compared to a single-template approach, which does not consider the temporal dynamics of gyrification, and a fully-vertex-wise approach. The mean accuracy of our approach was 0.958 across subjects, significantly higher than the accuracies of the other approaches. This novel approach shows highly accurate sulcal labeling and provides a reliable means to examine characteristics of cortical regions in the fetal brain.
Collapse
Affiliation(s)
- Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ai Wern Chung
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lana Vasung
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tomo Tarui
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Mother Infant Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA; Department of Pediatrics, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cynthia M Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Spalthoff R, Gaser C, Nenadić I. Altered gyrification in schizophrenia and its relation to other morphometric markers. Schizophr Res 2018; 202:195-202. [PMID: 30049600 DOI: 10.1016/j.schres.2018.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/10/2018] [Accepted: 07/03/2018] [Indexed: 01/04/2023]
Abstract
Schizophrenia is modelled as a neurodevelopmental disease with high heritability. However, established markers like cortical thickness and grey matter volume are heavily influenced by post-onset changes and thus provide limited possibility of accessing early pathologies. Gyrification on the other side is assumed to be more specifically determined by genetic and early developmental factors. Here, we compare T1 weighted 3 Tesla MRI scans of 51 schizophrenia patients and 102 healthy controls (matched for age and gender) using a unified processing pipeline with the CAT12 toolbox. Our study provides a direct comparison between 3D gyrification, cortical thickness, and grey matter volume. We demonstrate that significant (p < 0.05, FWE corrected) results only partially overlap between modalities. Gyrification is altered in bilateral insula, temporal pole and left orbitofrontal cortex, while cortical thickness is additionally reduced in the prefrontal cortex, precuneus, and occipital cortex. Grey matter volume (VBM) was reduced in bilateral medial temporal lobes including the amygdala as well as medial and dorsolateral prefrontal cortices and cerebellum. Our results lend further support for altered gyrification as a marker of early neurodevelopmental disturbance in schizophrenia and show its relation to other morphological markers.
Collapse
Affiliation(s)
- Robert Spalthoff
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Neurology, Jena University Hospital, Jena, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Psychiatry and Psychotherapy, Phillips University Marburg/Marburg University Hospital UKGM, Marburg, Germany.
| |
Collapse
|
16
|
Bernardoni F, King JA, Geisler D, Birkenstock J, Tam FI, Weidner K, Roessner V, White T, Ehrlich S. Nutritional Status Affects Cortical Folding: Lessons Learned From Anorexia Nervosa. Biol Psychiatry 2018; 84:692-701. [PMID: 29910027 DOI: 10.1016/j.biopsych.2018.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/11/2018] [Accepted: 05/01/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cortical folding is thought to remain relatively invariant after birth. Therefore, differences seen in psychiatric disorders have been proposed as early biomarkers or used as intermediate phenotypes in imaging genetics studies. Anorexia nervosa (AN) is associated with drastic and rapid structural brain alterations and thus may be an ideal model disorder to study environmental influences on cortical folding. METHODS To date, the only two studies in AN applied different methods (local gyrification index and mean curvature) and found seemingly discordant results. We computed both vertexwise measures in a sizable sample of acutely underweight female AN patients (n = 87, mean age 16.5 years), long-term recovered patients (n = 58, mean age 22 years), and healthy control participants (n = 141, mean age 19.5 years). The majority of acutely ill patients were scanned longitudinally (n = 57) again after partial weight normalization (>14% body mass index increase). RESULTS While gyrification was broadly reduced in acutely ill patients, normal values were restored in most brain regions after partial weight restoration (≈3 months), and after full recovery no significant differences were evident relative to control participants. Increased gyrification was largely predicted by weight restoration alone. Results for absolute mean curvature analyses complemented those obtained using the local gyrification index. CONCLUSIONS Together, these findings indicate that nutritional status affects cortical folding and suggest that gyrification studies may need to better control for environmental factors. Moreover, they provide novel support for the likelihood that macroscopic changes in the cortical organization in AN are more reflective of nutritional state than premorbid trait markers or permanent scars.
Collapse
Affiliation(s)
- Fabio Bernardoni
- Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph A King
- Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Daniel Geisler
- Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Julian Birkenstock
- Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Friederike I Tam
- Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Kerstin Weidner
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Tonya White
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Translational Developmental Neuroscience Section, Eating Disorder Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
17
|
Lyu I, Kim SH, Girault JB, Gilmore JH, Styner MA. A cortical shape-adaptive approach to local gyrification index. Med Image Anal 2018; 48:244-258. [PMID: 29990689 DOI: 10.1016/j.media.2018.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022]
Abstract
The amount of cortical folding, or gyrification, is typically measured within local cortical regions covered by an equidistant geodesic or nearest neighborhood-ring kernel. However, without careful design, such a kernel can easily cover multiple sulcal and gyral regions that may not be functionally related. Furthermore, this can result in smoothing out details of cortical folding, which consequently blurs local gyrification measurements. In this paper, we propose a novel kernel shape to locally quantify cortical gyrification within sulcal and gyral regions. We adapt wavefront propagation to generate a spatially varying kernel shape that encodes cortical folding patterns: neighboring gyral crowns, sulcal fundi, and sulcal banks. For this purpose, we perform anisotropic wavefront propagation that runs fast along gyral crowns and sulcal fundi by solving a static Hamilton-Jacobi partial differential equation. The resulting kernel adaptively elongates along gyral crowns and sulcal fundi, while keeping a uniform shape over flat regions like sulcal banks. We then measure local gyrification within the proposed spatially varying kernel. The experimental results show that the proposed kernel-based gyrification measure achieves a higher reproducibility than the conventional method in a multi-scan dataset. We further apply the proposed kernel to a brain development study in the early postnatal phase from neonate to 2 years of age. In this study we find that our kernel yields both positive and negative associations of gyrification with age, whereas the conventional method only captures positive associations. In general, our method yields sharper and more detailed statistical maps that associate cortical folding with sex and gestational age.
Collapse
Affiliation(s)
- Ilwoo Lyu
- Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sun Hyung Kim
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica B Girault
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John H Gilmore
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martin A Styner
- Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Abnormalities in early visual processes are linked to hypersociability and atypical evaluation of facial trustworthiness: An ERP study with Williams syndrome. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 17:1002-1017. [PMID: 28685402 PMCID: PMC5608800 DOI: 10.3758/s13415-017-0528-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accurate assessment of trustworthiness is fundamental to successful and adaptive social behavior. Initially, people assess trustworthiness from facial appearance alone. These assessments then inform critical approach or avoid decisions. Individuals with Williams syndrome (WS) exhibit a heightened social drive, especially toward strangers. This study investigated the temporal dynamics of facial trustworthiness evaluation in neurotypic adults (TD) and individuals with WS. We examined whether differences in neural activity during trustworthiness evaluation may explain increased approach motivation in WS compared to TD individuals. Event-related potentials were recorded while participants appraised faces previously rated as trustworthy or untrustworthy. TD participants showed increased sensitivity to untrustworthy faces within the first 65-90 ms, indexed by the negative-going rise of the P1 onset (oP1). The amplitude of the oP1 difference to untrustworthy minus trustworthy faces was correlated with lower approachability scores. In contrast, participants with WS showed increased N170 amplitudes to trustworthy faces. The N170 difference to low-high-trust faces was correlated with low approachability in TD and high approachability in WS. The findings suggest that hypersociability associated with WS may arise from abnormalities in the timing and organization of early visual brain activity during trustworthiness evaluation. More generally, the study provides support for the hypothesis that impairments in low-level perceptual processes can have a cascading effect on social cognition.
Collapse
|
19
|
Fan CC, Schork AJ, Brown TT, Spencer BE, Akshoomoff N, Chen CH, Kuperman JM, Hagler DJ, Steen VM, Le Hellard S, Håberg AK, Espeseth T, Andreassen OA, Dale AM, Jernigan TL, Halgren E. Williams Syndrome neuroanatomical score associates with GTF2IRD1 in large-scale magnetic resonance imaging cohorts: a proof of concept for multivariate endophenotypes. Transl Psychiatry 2018; 8:114. [PMID: 29884845 PMCID: PMC5993783 DOI: 10.1038/s41398-018-0166-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/11/2018] [Accepted: 04/22/2018] [Indexed: 12/15/2022] Open
Abstract
Despite great interest in using magnetic resonance imaging (MRI) for studying the effects of genes on brain structure in humans, current approaches have focused almost entirely on predefined regions of interest and had limited success. Here, we used multivariate methods to define a single neuroanatomical score of how William's Syndrome (WS) brains deviate structurally from controls. The score is trained and validated on measures of T1 structural brain imaging in two WS cohorts (training, n = 38; validating, n = 60). We then associated this score with single nucleotide polymorphisms (SNPs) in the WS hemi-deleted region in five cohorts of neurologically and psychiatrically typical individuals (healthy European descendants, n = 1863). Among 110 SNPs within the 7q11.23 WS chromosomal region, we found one associated locus (p = 5e-5) located at GTF2IRD1, which has been implicated in animal models of WS. Furthermore, the genetic signals of neuroanatomical scores are highly enriched locally in the 7q11.23 compared with summary statistics based on regions of interest, such as hippocampal volumes (n = 12,596), and also globally (SNP-heritability = 0.82, se = 0.25, p = 5e-4). The role of genetic variability in GTF2IRD1 during neurodevelopment extends to healthy subjects. Our approach of learning MRI-derived phenotypes from clinical populations with well-established brain abnormalities characterized by known genetic lesions may be a powerful alternative to traditional region of interest-based studies for identifying genetic variants regulating typical brain development.
Collapse
Affiliation(s)
- Chun Chieh Fan
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92093, USA
| | - Andrew J Schork
- Institute for Biological Psychiatry, Mental Health Center Sct. Hans, Capital Region of Denmark, Roskilde, Denmark
| | - Timothy T Brown
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92093, USA
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
- Center for Human Development, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Barbara E Spencer
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Natacha Akshoomoff
- Center for Human Development, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Joshua M Kuperman
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92093, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Vidar M Steen
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. E. Martens Research Group of Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stephanie Le Hellard
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. E. Martens Research Group of Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Asta Kristine Håberg
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Radiology, St. Olav University Hospital, Trondheim, Norway
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92093, USA
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
- Department of Radiology, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Terry L Jernigan
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Center for Human Development, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92037, USA
- Department of Psychiatry, University of California San Diego, La Jolla, School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Eric Halgren
- Department of Neurosciences, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA.
- Center for Human Brain Activity Mapping, University of California San Diego, School of Medicine, 3510 Dunhill Street, San Diego, CA, 92121, USA.
| |
Collapse
|
20
|
Nwosu EC, Robertson FC, Holmes MJ, Cotton MF, Dobbels E, Little F, Laughton B, van der Kouwe A, Meintjes EM. Altered brain morphometry in 7-year old HIV-infected children on early ART. Metab Brain Dis 2018; 33:523-535. [PMID: 29209922 PMCID: PMC5866746 DOI: 10.1007/s11011-017-0162-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Even with the increased roll out of combination antiretroviral therapy (cART), paediatric HIV infection is associated with neurodevelopmental delays and neurocognitive deficits that may be accompanied by alterations in brain structure. Few neuroimaging studies have been done in children initiating ART before 2 years of age, and even fewer in children within the critical stage of brain development between 5 and 11 years. We hypothesized that early ART would limit HIV-related brain morphometric deficits at age 7. Study participants were 7-year old HIV-infected (HIV+) children from the Children with HIV Early Antiretroviral Therapy (CHER) trial whose viral loads were supressed at a young age, and age-matched uninfected controls. We used structural magnetic resonance imaging (MRI) and FreeSurfer ( http://www.freesurfer.net/ ) software to investigate effects of HIV and age at ART initiation on cortical thickness, gyrification and regional brain volumes. HIV+ children showed reduced gyrification compared to controls in bilateral medial parietal regions, as well as reduced volumes of the right putamen, left hippocampus, and global white and gray matter and thicker cortex in small lateral occipital region. Earlier ART initiation was associated with lower gyrification and thicker cortex in medial frontal regions. Although early ART appears to preserve cortical thickness and volumes of certain brain structures, HIV infection is nevertheless associated with reduced gyrification in the parietal cortex, and lower putamen and hippocampus volumes. Our results indicate that in early childhood gyrification is more sensitive than cortical thickness to timing of ART initiation. Future work will clarify the implications of these morphometric effects for neuropsychological function.
Collapse
Affiliation(s)
- Emmanuel C Nwosu
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Frances C Robertson
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Martha J Holmes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark F Cotton
- Family Clinical Research Unit, Department of Paediatrics & Child Health, Tygerberg Children's Hospital and Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Els Dobbels
- Family Clinical Research Unit, Department of Paediatrics & Child Health, Tygerberg Children's Hospital and Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Paediatrics & Child Health, Tygerberg Children's Hospital and Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- A.A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Ernesta M Meintjes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Sampaio A, Moreira PS, Osório A, Magalhães R, Vasconcelos C, Férnandez M, Carracedo A, Alegria J, Gonçalves ÓF, Soares JM. Altered functional connectivity of the default mode network in Williams syndrome: a multimodal approach. Dev Sci 2018; 19:686-95. [PMID: 27412230 DOI: 10.1111/desc.12443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 03/24/2016] [Indexed: 11/30/2022]
Abstract
Resting state brain networks are implicated in a variety of relevant brain functions. Importantly, abnormal patterns of functional connectivity (FC) have been reported in several neurodevelopmental disorders. In particular, the Default Mode Network (DMN) has been found to be associated with social cognition. We hypothesize that the DMN may be altered in Williams syndrome (WS), a neurodevelopmental genetic disorder characterized by an unique cognitive and behavioral phenotype. In this study, we assessed the architecture of the DMN using fMRI in WS patients and typically developing matched controls (sex and age) in terms of FC and volumetry of the DMN. Moreover, we complemented the analysis with a functional connectome approach. After excluding participants due to movement artifacts (n = 3), seven participants with WS and their respective matched controls were included in the analyses. A decreased FC between the DMN regions was observed in the WS group when compared with the typically developing group. Specifically, we found a decreased FC in a posterior hub of the DMN including the precuneus, calcarine and the posterior cingulate of the left hemisphere. The functional connectome approach showed a focalized and global increased FC connectome in the WS group. The reduced FC of the posterior hub of the DMN in the WS group is consistent with immaturity of the brain FC patterns and may be associated with the singularity of their visual spatial phenotype.
Collapse
Affiliation(s)
- Adriana Sampaio
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Osório
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Portugal.,Social and Cognitive Neuroscience Lab, Post-Graduate Program on Developmental Disorders - Center for Biological and Health Sciences, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Montse Férnandez
- Genetic Molecular Unit, Galician Public Foundation of Genomic Medicine, University of Santiago de Compostela, Spain
| | - Angel Carracedo
- Genetic Molecular Unit, Galician Public Foundation of Genomic Medicine, University of Santiago de Compostela, Spain
| | - Joana Alegria
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Portugal
| | - Óscar F Gonçalves
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Portugal.,Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, USA.,Department of Applied Psychology, Bouvé College of Health Sciences, Northeastern University, USA
| | - José Miguel Soares
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Jiang L, Zhang T, Lv F, Li S, Liu H, Zhang Z, Luo T. Structural Covariance Network of Cortical Gyrification in Benign Childhood Epilepsy with Centrotemporal Spikes. Front Neurol 2018; 9:10. [PMID: 29467710 PMCID: PMC5807981 DOI: 10.3389/fneur.2018.00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/08/2018] [Indexed: 11/13/2022] Open
Abstract
Benign childhood epilepsy with centrotemporal spikes (BECTS) is associated with cognitive and language problems. According to recent studies, disruptions in brain structure and function in children with BECTS are beyond a Rolandic focus, suggesting atypical cortical development. However, previous studies utilizing surface-based metrics (e.g., cortical gyrification) and their structural covariance networks at high resolution in children with BECTS are limited. Twenty-six children with BECTS (15 males/11 females; 10.35 ± 2.91 years) and 26 demographically matched controls (15 males/11 females; 11.35 ± 2.51 years) were included in this study and subjected to high-resolution structural brain MRI scans. The gyrification index was calculated, and structural brain networks were reconstructed based on the covariance of the cortical folding. In the BECTS group, significantly increased gyrification was observed in the bilateral Sylvain fissures and the left pars triangularis, temporal, rostral middle frontal, lateral orbitofrontal, and supramarginal areas (cluster-corrected p < 0.05). Global brain network measures were not significantly different between the groups; however, the nodal alterations were most pronounced in the insular, frontal, temporal, and occipital lobes (FDR corrected, p < 0.05). In children with BECTS, brain hubs increased in number and tended to shift to sensorimotor and temporal areas. Furthermore, we observed significantly positive relationships between the gyrification index and age (vertex p < 0.001, cluster-level correction) as well as duration of epilepsy (vertex p < 0.001, cluster-level correction). Our results suggest that BECTS may be a condition that features abnormal over-folding of the Sylvian fissures and uncoordinated development of structural wiring, disrupted nodal profiles of centrality, and shifted hub distribution, which potentially represents a neuroanatomical hallmark of BECTS in the developing brain.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Radiology, The Third Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Tijiang Zhang
- Department of Radiology, Affiliated Hospital of Zunyi Medical College, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiguang Li
- Department of Radiology, The Third Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical College, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Zhiwei Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Sampaio A, Belsky J, Soares I, Mesquita A, Osório A, Gonçalves ÓF. Insights on Social Behavior From Studying Williams Syndrome. CHILD DEVELOPMENT PERSPECTIVES 2017. [DOI: 10.1111/cdep.12263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
High levels of neuroticism are associated with decreased cortical folding of the dorsolateral prefrontal cortex. Eur Arch Psychiatry Clin Neurosci 2017; 267:579-584. [PMID: 28386766 DOI: 10.1007/s00406-017-0795-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
Abstract
The personality trait neuroticism has been identified as a vulnerability factor for common psychiatric diseases and defining potential neuroanatomical markers for early recognition and prevention strategies is mandatory. Because both personality traits and cortical folding patterns are early imprinted and timely stable there is reason to hypothesize an association between neuroticism and cortical folding. Thus, to identify a putative linkage, we tested whether the degree of neuroticism is associated with local cortical folding in a sample of 109 healthy individuals using a surface-based MRI approach. Based on previous findings we additionally tested for a potential association with cortical thickness. We found a highly significant negative correlation between the degree of neuroticism and local cortical folding of the left dorsolateral prefrontal cortex (DLPFC), i.e., high levels of neuroticism were associated with low cortical folding of the left DLPFC. No association was found with cortical thickness. The present study is the first to describe a linkage between the extent of local cortical folding and the individual degree of neuroticism in healthy subjects. Because neuroticism is a vulnerability factor for common psychiatric diseases such as depression our finding indicates that alterations of DLPFC might constitute a neurobiological marker elevating risk for psychiatric burden.
Collapse
|
25
|
Fan CC, Brown TT, Bartsch H, Kuperman JM, Hagler DJ, Schork A, Searcy Y, Bellugi U, Halgren E, Dale AM. Williams syndrome-specific neuroanatomical profile and its associations with behavioral features. NEUROIMAGE-CLINICAL 2017; 15:343-347. [PMID: 28560159 PMCID: PMC5443907 DOI: 10.1016/j.nicl.2017.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/26/2022]
Abstract
Williams Syndrome (WS) is a rare genetic disorder with unique behavioral features. Yet the rareness of WS has limited the number and type of studies that can be conducted in which inferences are made about how neuroanatomical abnormalities mediate behaviors. In this study, we extracted a WS-specific neuroanatomical profile from structural magnetic resonance imaging (MRI) measurements and tested its association with behavioral features of WS. Using a WS adult cohort (22 WS, 16 healthy controls), we modeled a sparse representation of a WS-specific neuroanatomical profile. The predictive performances are robust within the training cohort (10-fold cross-validation, AUC = 1.0) and accurately identify all WS individuals in an independent child WS cohort (seven WS, 59 children with diverse developmental status, AUC = 1.0). The WS-specific neuroanatomical profile includes measurements in the orbitofrontal cortex, superior parietal cortex, Sylvian fissures, and basal ganglia, and variability within these areas related to the underlying size of hemizygous deletion in patients with partial deletions. The profile intensity mediated the overall cognitive impairment as well as personality features related to hypersociability. Our results imply that the unique behaviors in WS were mediated through the constellation of abnormalities in cortical-subcortical circuitry consistent in child WS and adult WS. The robustness of the derived WS-specific neuroanatomical profile also demonstrates the potential utility of our approach in both clinical and research applications.
Collapse
Affiliation(s)
- Chun Chieh Fan
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Multimodal Imaging and Genetics, University of California San Diego, School of Medicine, 9452 Medical Center Drive, La Jolla, CA 92093, USA
| | - Timothy T Brown
- Center for Multimodal Imaging and Genetics, University of California San Diego, School of Medicine, 9452 Medical Center Drive, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Center for Human Development, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Hauke Bartsch
- Center for Multimodal Imaging and Genetics, University of California San Diego, School of Medicine, 9452 Medical Center Drive, La Jolla, CA 92093, USA
| | - Joshua M Kuperman
- Center for Multimodal Imaging and Genetics, University of California San Diego, School of Medicine, 9452 Medical Center Drive, La Jolla, CA 92093, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California San Diego, School of Medicine, 9452 Medical Center Drive, La Jolla, CA 92093, USA; Department of Radiology, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Andrew Schork
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Multimodal Imaging and Genetics, University of California San Diego, School of Medicine, 9452 Medical Center Drive, La Jolla, CA 92093, USA
| | - Yvonne Searcy
- Laboratory for Cognitive Neuroscience, Salk Institute, La Jolla, CA 92037, USA
| | - Ursula Bellugi
- Laboratory for Cognitive Neuroscience, Salk Institute, La Jolla, CA 92037, USA
| | - Eric Halgren
- Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Department of Radiology, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Center for Human Brain Activity Mapping, University of California San Diego, School of Medicine, 3510 Dunhill Street, San Diego, CA 92121, USA.
| | - Anders M Dale
- Department of Cognitive Science, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Multimodal Imaging and Genetics, University of California San Diego, School of Medicine, 9452 Medical Center Drive, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Department of Radiology, University of California San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Schultz CC, Wagner G, Schachtzabel C, Reichenbach JR, Schlösser RGM, Sauer H, Koch K. Increased white matter radial diffusivity is associated with prefrontal cortical folding deficits in schizophrenia. Psychiatry Res Neuroimaging 2017; 261:91-95. [PMID: 28171781 DOI: 10.1016/j.pscychresns.2017.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/06/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The neuronal underpinnings of cortical folding alterations in schizophrenia remain unclear. Theories on the physiological development of cortical folds stress the importance of white matter fibers for this process and disturbances of fiber tracts might be relevant for cortical folding alterations in schizophrenia. Nine-teen patients with schizophrenia and 19 healthy subjects underwent T1-weighted MRI and DTI. Cortical folding was computed using a surface based approach. DTI was analyzed using FSL and SPM 5. Radial diffusivity and cortical folding were correlated covering the entire cortex in schizophrenia. Significantly increased radial diffusivity of the superior longitudinal fasciculus (SLF) in the left superior temporal region was negatively correlated with cortical folding of the left dorsolateral prefrontal cortex (DLPFC) in patients, i.e. higher radial diffusivity, as an indicator for disturbed white matter fiber myelination, was associated with lower cortical folding of the left DLPFC. Patients with pronounced alterations of the SLF showed significantly reduced cortical folding in the left DLPFC. Our study provides novel evidence for a linkage between prefrontal cortical folding alterations and deficits in connecting white matter fiber tracts in schizophrenia and supports the notion that the integrity of white matter tracts is crucial for intact morphogenesis of the cortical folds.
Collapse
Affiliation(s)
- C Christoph Schultz
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Claudia Schachtzabel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Ralf G M Schlösser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Kathrin Koch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Neuroradiology & TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
27
|
Schultz CC, Wagner G, de la Cruz F, Berger S, Reichenbach JR, Sauer H, Bär KJ. Evidence for alterations of cortical folding in anorexia nervosa. Eur Arch Psychiatry Clin Neurosci 2017; 267:41-49. [PMID: 26678081 DOI: 10.1007/s00406-015-0666-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/06/2015] [Indexed: 12/13/2022]
Abstract
Anorexia nervosa (AN) is highly heritable, and the perspective on the etiology of AN has changed from a behavioral to a neurobiological and neurodevelopmental view. However, cortical folding as an important marker for deviations in brain development has yet rarely been explored in AN. Hence, in order to determine potential cortical folding alterations, we investigated fine-grained cortical folding in a cohort of 26 patients with AN, of whom 6 patients were recovered regarding their weight at the time point of MRI measurement. MRI-derived cortical folding was computed and compared between patients and healthy controls at about 150,000 points per hemisphere using a surface-based technique (FreeSurfer). Patients with AN exhibited highly significant increased cortical folding in a right dorsolateral prefrontal cortex region (DLPFC). Furthermore, a statistical trend in the same direction was found in the right visual cortex. We did not find a correlation of local cortical folding and current symptoms of the disease. In conclusion, our analyses provide first evidence that altered DLPFC cortical folding plays a role in the etiology of AN. The absence of correlations with clinical parameters implicates a relatively independence of cortical folding alterations from the current symptomatology and might thus be regarded as a trait characteristic of the disease potentially related to other neurobiological features of AN.
Collapse
Affiliation(s)
- C Christoph Schultz
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07740, Jena, Germany.
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07740, Jena, Germany.,Psychiatric Brain & Body Research Group Jena, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Feliberto de la Cruz
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07740, Jena, Germany.,Psychiatric Brain & Body Research Group Jena, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Sandy Berger
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07740, Jena, Germany.,Psychiatric Brain & Body Research Group Jena, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07740, Jena, Germany
| | - Karl J Bär
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07740, Jena, Germany.,Psychiatric Brain & Body Research Group Jena, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
28
|
Lough E, Rodgers J, Janes E, Little K, Riby DM. Parent insights into atypicalities of social approach behaviour in Williams syndrome. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2016; 60:1097-1108. [PMID: 27109005 DOI: 10.1111/jir.12279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/13/2015] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Individuals with Williams syndrome have been reported to show high levels of social interest and a desire to interact with others irrespective of their familiarity. This high social motivation, when combined with reduced intellectual capacity and a profile of atypical social behaviour, is important in terms of social vulnerability of individuals with the disorder. Therefore, social approach to unfamiliar people and the role of this behaviour within the Williams syndrome (WS) social phenotype warrant further research to inform social skills' intervention design. METHODS The current study used parent interviews (n = 21) to probe aspects of social behaviour and interactions with strangers, as well as the impact of such behaviour on the family. Using thematic analysis, it was possible to explore themes that emerged from the interviews, offering qualitatively rich insight into the variability of social approach behaviour in WS. RESULTS Thematic analysis confirmed a significant desire to interact with strangers as well as a lack of awareness of appropriate social boundaries. However, parental reports about their child's social approach behaviour varied considerably. The within-syndrome variability of the sample was emphasised in parental reports of their child's personality characteristics (e.g. levels of impulsiveness), as well as the level of parental supervision employed. CONCLUSIONS These in-depth parent insights can help target the needs of individuals with WS and emphasise that an individual approach to intervention will be essential because of the heterogeneity of the WS social profile.
Collapse
Affiliation(s)
- E Lough
- Department of Psychology, Durham University, Durham, UK
| | - J Rodgers
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - E Janes
- Northumberland, Tyne and Wear NHS Trust, Newcastle upon Tyne, UK
| | - K Little
- School of Psychology, Newcastle University, Newcastle upon Tyne, UK
| | - D M Riby
- Department of Psychology, Durham University, Durham, UK.
| |
Collapse
|
29
|
Ferrara K, Hoffman JE, O’Hearn K, Landau B. Constraints on Multiple Object Tracking in Williams Syndrome: How Atypical Development Can Inform Theories of Visual Processing. JOURNAL OF COGNITION AND DEVELOPMENT 2016. [DOI: 10.1080/15248372.2016.1195389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Kim SH, Lyu I, Fonov VS, Vachet C, Hazlett HC, Smith RG, Piven J, Dager SR, Mckinstry RC, Pruett JR, Evans AC, Collins DL, Botteron KN, Schultz RT, Gerig G, Styner MA. Development of cortical shape in the human brain from 6 to 24months of age via a novel measure of shape complexity. Neuroimage 2016; 135:163-76. [PMID: 27150231 DOI: 10.1016/j.neuroimage.2016.04.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/01/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022] Open
Abstract
The quantification of local surface morphology in the human cortex is important for examining population differences as well as developmental changes in neurodegenerative or neurodevelopmental disorders. We propose a novel cortical shape measure, referred to as the 'shape complexity index' (SCI), that represents localized shape complexity as the difference between the observed distributions of local surface topology, as quantified by the shape index (SI) measure, to its best fitting simple topological model within a given neighborhood. We apply a relatively small, adaptive geodesic kernel to calculate the SCI. Due to the small size of the kernel, the proposed SCI measure captures fine differences of cortical shape. With this novel cortical feature, we aim to capture comparatively small local surface changes that capture a) the widening versus deepening of sulcal and gyral regions, as well as b) the emergence and development of secondary and tertiary sulci. Current cortical shape measures, such as the gyrification index (GI) or intrinsic curvature measures, investigate the cortical surface at a different scale and are less well suited to capture these particular cortical surface changes. In our experiments, the proposed SCI demonstrates higher complexity in the gyral/sulcal wall regions, lower complexity in wider gyral ridges and lowest complexity in wider sulcal fundus regions. In early postnatal brain development, our experiments show that SCI reveals a pattern of increased cortical shape complexity with age, as well as sexual dimorphisms in the insula, middle cingulate, parieto-occipital sulcal and Broca's regions. Overall, sex differences were greatest at 6months of age and were reduced at 24months, with the difference pattern switching from higher complexity in males at 6months to higher complexity in females at 24months. This is the first study of longitudinal, cortical complexity maturation and sex differences, in the early postnatal period from 6 to 24months of age with fine scale, cortical shape measures. These results provide information that complement previous studies of gyrification index in early brain development.
Collapse
Affiliation(s)
- Sun Hyung Kim
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA.
| | - Ilwoo Lyu
- Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA
| | - Vladimir S Fonov
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Clement Vachet
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Heather C Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, USA
| | - Rachel G Smith
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, USA
| | - Stephen R Dager
- Department of Radiology, University of Washington, Seattle, USA
| | | | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, USA
| | - Alan C Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - D Louis Collins
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, USA
| | - Robert T Schultz
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Gerig
- Tandon School of Engineering, Department of Computer Science and Engineering, NYU, New York, USA
| | - Martin A Styner
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
31
|
Nicita F, Garone G, Spalice A, Savasta S, Striano P, Pantaleoni C, Spartà MV, Kluger G, Capovilla G, Pruna D, Freri E, D'Arrigo S, Verrotti A. Epilepsy is a possible feature in Williams-Beuren syndrome patients harboring typical deletions of the 7q11.23 critical region. Am J Med Genet A 2015; 170A:148-55. [PMID: 26437767 DOI: 10.1002/ajmg.a.37410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/17/2015] [Indexed: 11/11/2022]
Abstract
Seizures are rarely reported in Williams-Beuren syndrome (WBS)--a contiguous-gene-deletion disorder caused by a 7q11.23 heterozygous deletion of 1.5-1.8 Mb--and no previous study evaluated electro-clinical features of epilepsy in this syndrome. Furthermore, it has been hypothesized that atypical deletion (e.g., larger than 1.8 Mb) may be responsible for a more pronounced neurological phenotypes, especially including seizures. Our objectives are to describe the electro-clinical features in WBS and to correlate the epileptic phenotype with deletion of the 7q11.23 critical region. We evaluate the electro-clinical features in one case of distal 7q11.23 deletion syndrome and in eight epileptic WBS (eWBS) patients. Additionally, we compare the deletion size-and deleted genes-of four epileptic WBS (eWBS) with that of four non-epileptic WBS (neWBS) patients. Infantile spasms, focal (e.g., motor and dyscognitive with autonomic features) and generalized (e.g., tonic-clonic, tonic, clonic, myoclonic) seizures were encountered. Drug-resistance was observed in one patient. Neuroimaging discovered one case of focal cortical dysplasia, one case of fronto-temporal cortical atrophy and one case of periventricular nodular heterotopia. Comparison of deletion size between eWBS and neWBS patients did not reveal candidate genes potentially underlying epilepsy. This is the largest series describing electro-clinical features of epilepsy in WBS. In WBS, epilepsy should be considered both in case of typical and atypical deletions, which do not involve HIP1, YWHAG or MAGI2.
Collapse
Affiliation(s)
- Francesco Nicita
- Child Neurology Division, Department of Pediatrics, Umberto I Hospital, Sapienza University, Roma, Italy
| | - Giacomo Garone
- Child Neurology Division, Department of Pediatrics, Umberto I Hospital, Sapienza University, Roma, Italy
| | - Alberto Spalice
- Child Neurology Division, Department of Pediatrics, Umberto I Hospital, Sapienza University, Roma, Italy
| | - Salvatore Savasta
- Department of Pediatrics, University of Pavia, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 'G. Gaslini' Institute, Italy
| | - Chiara Pantaleoni
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - Maria Valentina Spartà
- Department of Pediatrics, University of Pavia, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gerhard Kluger
- Sch, ö, n Klinik Vogtareuth, Hospital for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, Vogtareuth, Germany
| | - Giuseppe Capovilla
- Epilepsy Center, Department of Child Neuropsychiatry, C Poma Hospital, Mantova, Italy
| | - Dario Pruna
- Epilepsy Unit, Child Neuropsychiatry Department, University Hospital, Cagliari, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | | |
Collapse
|
32
|
Nenadic I, Maitra R, Dietzek M, Langbein K, Smesny S, Sauer H, Gaser C. Prefrontal gyrification in psychotic bipolar I disorder vs. schizophrenia. J Affect Disord 2015; 185:104-7. [PMID: 26160154 DOI: 10.1016/j.jad.2015.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023]
Abstract
Bipolar disorder and schizophrenia share phenotypic and genotypic features, but might differ in aspects of abnormal neurodevelopmental trajectories. We studied gyrification, a marker of early developmental pathology, in high-resolution MRI scans of 34 patients with schizophrenia, 17 euthymic bipolar I disorder patients with previous psychotic symptoms, and 34 matched healthy controls in order to test the hypothesis of overlapping and diverging prefrontal gyrification abnormalities. We applied a novel, validated method for measuring local gyrification in each vertex point of the reconstructed cortical surface. Psychotic bipolar I patients had higher gyrification in dorsal anterior and infragenual cingulate cortex compared to either schizophrenia or healthy controls, while schizophrenia patients had higher gyrification than controls in anterior medial (BA 10) and orbitofrontal areas, altogether indicating disease-specific alterations in the prefrontal cortex. Our findings indicate gyrification changes in a specific subgroup of bipolar I disorder to affect an area relevant to emotion regulation, and distinct from changes seen in schizophrenia.
Collapse
Affiliation(s)
- Igor Nenadic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Raka Maitra
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Maren Dietzek
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
33
|
Borralleras C, Sahun I, Pérez-Jurado LA, Campuzano V. Intracisternal Gtf2i Gene Therapy Ameliorates Deficits in Cognition and Synaptic Plasticity of a Mouse Model of Williams-Beuren Syndrome. Mol Ther 2015. [PMID: 26216516 DOI: 10.1038/mt.2015.130] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of 26-28 genes at chromosome band 7q11.23. Haploinsufficiency at GTF2I has been shown to play a major role in the neurobehavioral phenotype. By characterizing the neuronal architecture in four animal models with intragenic, partial, and complete deletions of the WBS critical interval (ΔGtf2i(+/-), ΔGtf2i( -/-), PD, and CD), we clarify the involvement of Gtf2i in neurocognitive features. All mutant mice showed hypersociability, impaired motor learning and coordination, and altered anxiety-like behavior. Dendritic length was decreased in the CA1 of ΔGtf2i(+/-), ΔGtf2i ( -/-), and CD mice. Spine density was reduced, and spines were shorter in ΔGtf2i ( -/-), PD, and CD mice. Overexpression of Pik3r1 and downregulation of Bdnf were observed in ΔGtf2i(+/-), PD, and CD mice. Intracisternal Gtf2i-gene therapy in CD mice using adeno-associated virus resulted in increased mGtf2i expression and normalization of Bdnf levels, along with beneficial effects in motor coordination, sociability, and anxiety, despite no significant changes in neuronal architecture. Our findings further indicate that Gtf2i haploinsufficiency plays an important role in the neurodevelopmental and cognitive abnormalities of WBS and that it is possible to rescue part of this neurocognitive phenotype by restoring Gtf2i expression levels in specific brain areas.
Collapse
Affiliation(s)
- Cristina Borralleras
- Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unitat de Genètica, Barcelona, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain
| | - Ignasi Sahun
- PCB-PRBB Animal Facility Alliance, Barcelona, Spain
| | - Luis A Pérez-Jurado
- Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unitat de Genètica, Barcelona, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain
| | - Victoria Campuzano
- Neurosciences Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unitat de Genètica, Barcelona, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain.
| |
Collapse
|
34
|
Kim SH, Fonov V, Collins DL, Gerig G, Styner MA. Shape index distribution based local surface complexity applied to the human cortex. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 9413. [PMID: 26028803 DOI: 10.1117/12.2081560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The quantification of local surface complexity in the human cortex has shown to be of interest in investigating population differences as well as developmental changes in neurodegenerative or neurodevelopment diseases. We propose a novel assessment method that represents local complexity as the difference between the observed distributions of local surface topology to its best-fit basic topology model within a given local neighborhood. This distribution difference is estimated via Earth Move Distance (EMD) over the histogram within the local neighborhood of the surface topology quantified via the Shape Index (SI) measure. The EMD scores have a range from simple complexity (0.0), which indicates a consistent local surface topology, up to high complexity (1.0), which indicates a highly variable local surface topology. The basic topology models are categorized as 9 geometric situation modeling situations such as crowns, ridges and fundi of cortical gyro and sulci. We apply a geodesic kernel to calculate the local SI histrogram distribution within a given region. In our experiments, we obtained the results of local complexity that shows generally higher complexity in the gyral/sulcal wall regions and lower complexity in some gyral ridges and lowest complexity in sulcal fundus areas. In addition, we show expected, preliminary results of increased surface complexity across most of the cortical surface within the first years of postnatal life, hypothesized to be due to the changes such as development of sulcal pits.
Collapse
Affiliation(s)
- Sun Hyung Kim
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Vladimir Fonov
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - D Louis Collins
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Guido Gerig
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| | | | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA ; McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| |
Collapse
|
35
|
Chung MK, Qiu A, Seo S, Vorperian HK. Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images. Med Image Anal 2015; 22:63-76. [PMID: 25791435 PMCID: PMC4405438 DOI: 10.1016/j.media.2015.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 02/15/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template.
Collapse
Affiliation(s)
- Moo K Chung
- Department of Biostatistics and Medical Informatics, USA; Vocal Tract Development Laboratory, Waisman Center, University of Wisconsin, Madison, USA.
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Seongho Seo
- Department of Brain and Cognitive Sciences, Seoul National University, Republic of Korea
| | - Houri K Vorperian
- Vocal Tract Development Laboratory, Waisman Center, University of Wisconsin, Madison, USA
| |
Collapse
|
36
|
Simplified gyral pattern in severe developmental microcephalies? New insights from allometric modeling for spatial and spectral analysis of gyrification. Neuroimage 2014; 102 Pt 2:317-31. [PMID: 25107856 DOI: 10.1016/j.neuroimage.2014.07.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 01/13/2023] Open
Abstract
The strong positive-allometric relationship between brain size, cortical extension and gyrification complexity, recently highlighted in the general population, could be modified by brain developmental disorders. Indeed, in case of brain growth insufficiency, the pathophysiological relevance of the "simplified gyral pattern" phenotype is strongly disputed since almost no genotype-phenotype correlations have been found in primary microcephalies. Using surface scaling analysis and newly-developed spectral analysis of gyrification (Spangy), we tested whether the gyral simplification in groups of severe microcephalies related to ASPM, PQBP1 or fetal-alcohol-syndrome could be fully explained by brain size reduction according to the allometric scaling law established in typically-developing control groups, or whether an additional disease effect was to be suspected. We found the surface area reductions to be fully explained by scaling effect, leading to predictable folding intensities measured by gyrification indices. As for folding pattern assessed by spectral analysis, scaling effect also accounted for the majority of the variations, but an additional negative or positive disease effect was found in the case of ASPM and PQBP1-linked microcephalies, respectively. Our results point out the necessity of taking allometric scaling into account when studying the gyrification variability in pathological conditions. They also show that the quantitative analysis of gyrification complexity through spectral analysis can enable distinguishing between even (predictable, non-specific) and uneven (unpredictable, maybe disease-specific) gyral simplifications.
Collapse
|
37
|
Dennis EL, Thompson PM. Typical and atypical brain development: a review of neuroimaging studies. DIALOGUES IN CLINICAL NEUROSCIENCE 2014. [PMID: 24174907 PMCID: PMC3811107 DOI: 10.31887/dcns.2013.15.3/edennis] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the course of development, the brain undergoes a remarkable process of restructuring as it adapts to the environment and becomes more efficient in processing information. A variety of brain imaging methods can be used to probe how anatomy, connectivity, and function change in the developing brain. Here we review recent discoveries regarding these brain changes in both typically developing individuals and individuals with neurodevelopmental disorders. We begin with typical development, summarizing research on changes in regional brain volume and tissue density, cortical thickness, white matter integrity, and functional connectivity. Space limits preclude the coverage of all neurodevelopmental disorders; instead, we cover a representative selection of studies examining neural correlates of autism, attention deficit/hyperactivity disorder, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Down syndrome, and Turner syndrome. Where possible, we focus on studies that identify an age by diagnosis interaction, suggesting an altered developmental trajectory. The studies we review generally cover the developmental period from infancy to early adulthood. Great progress has been made over the last 20 years in mapping how the brain matures with MR technology. With ever-improving technology, we expect this progress to accelerate, offering a deeper understanding of brain development, and more effective interventions for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Emily L Dennis
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept of Neurology & Psychiatry, UCLA School of Medicine, Los Angeles, California, USA
| | | |
Collapse
|
38
|
Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J Neurosci 2014; 34:4228-38. [PMID: 24647943 DOI: 10.1523/jneurosci.3976-13.2014] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human cortical folding is believed to correlate with cognitive functions. This likely correlation may have something to do with why abnormalities of cortical folding have been found in many neurodevelopmental disorders. However, little is known about how cortical gyrification, the cortical folding process, develops in the first 2 years of life, a period of dynamic and regionally heterogeneous cortex growth. In this article, we show how we developed a novel infant-specific method for mapping longitudinal development of local cortical gyrification in infants. By using this method, via 219 longitudinal 3T magnetic resonance imaging scans from 73 healthy infants, we systemically and quantitatively characterized for the first time the longitudinal cortical global gyrification index (GI) and local GI (LGI) development in the first 2 years of life. We found that the cortical GI had age-related and marked development, with 16.1% increase in the first year and 6.6% increase in the second year. We also found marked and regionally heterogeneous cortical LGI development in the first 2 years of life, with the high-growth regions located in the association cortex, whereas the low-growth regions located in sensorimotor, auditory, and visual cortices. Meanwhile, we also showed that LGI growth in most cortical regions was positively correlated with the brain volume growth, which is particularly significant in the prefrontal cortex in the first year. In addition, we observed gender differences in both cortical GIs and LGIs in the first 2 years, with the males having larger GIs than females at 2 years of age. This study provides valuable information on normal cortical folding development in infancy and early childhood.
Collapse
|
39
|
Schultz CC, Nenadic I, Riley B, Vladimirov VI, Wagner G, Koch K, Schachtzabel C, Mühleisen TW, Basmanav B, Nöthen MM, Deufel T, Kiehntopf M, Rietschel M, Reichenbach JR, Cichon S, Schlösser RGM, Sauer H. ZNF804A and cortical structure in schizophrenia: in vivo and postmortem studies. Schizophr Bull 2014; 40:532-41. [PMID: 24078172 PMCID: PMC3984519 DOI: 10.1093/schbul/sbt123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent evidence indicated that the ZNF804A (rs1344706) risk allele A is associated with better cognitive performance in patients with schizophrenia. Moreover, it has been demonstrated that ZNF804A may also be related to relatively intact gray matter volume in patients. To further explore these putatively protective effects, the impact of ZNF804A on cortical thickness and folding was examined in this study. To elucidate potential molecular mechanisms, an allelic-specific gene expression study was also carried out. Magnetic resonance imaging cortical thickness and folding were computed in 55 genotyped patients with schizophrenia and 40 healthy controls. Homozygous risk allele carriers (AA) were compared with AC/CC carriers. ZNF804A gene expression was analyzed in a prefrontal region using postmortem tissue from another cohort of 35 patients. In patients, AA carriers exhibited significantly thicker cortex in prefrontal and temporal regions and less disturbed superior temporal cortical folding, whereas the opposite effect was observed in controls, ie, AA carrier status was associated with thinner cortex and more severe altered cortical folding. Along with this, our expression analysis revealed that the risk allele is associated with lower prefrontal ZNF804A expression in patients, whereas the opposite effect in controls has been observed by prior analyses. In conclusion, our analyses provide convergent support for the hypothesis that the schizophrenia-associated ZNF804A variant mediates protective effects on cortex structure in patients. In particular, the allele-specific expression profile in patients might constitute a molecular mechanism for the observed protective influence of ZNF804A on cortical thickness and folding and potentially other intermediate phenotypes.
Collapse
Affiliation(s)
- Carl Christoph Schultz
- *To whom correspondence should be addressed; Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07740 Jena, Germany; tel: +49-3641-9-35665, fax: +49-3641-9-35444, e-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Platt SR, Holmes SP, Howerth EW, Duberstein KJJ, Dove CR, Kinder HA, Wyatt EL, Linville AV, Lau VW, Stice SL, Hill WD, Hess DC, West FD. Development and characterization of a Yucatan miniature biomedical pig permanent middle cerebral artery occlusion stroke model. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2014; 6:5. [PMID: 24655785 PMCID: PMC3977938 DOI: 10.1186/2040-7378-6-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/19/2014] [Indexed: 04/30/2023]
Abstract
BACKGROUND Efforts to develop stroke treatments have met with limited success despite an intense need to produce novel treatments. The failed translation of many of these therapies in clinical trials has lead to a close examination of the therapeutic development process. One of the major factors believed to be limiting effective screening of these treatments is the absence of an animal model more predictive of human responses to treatments. The pig may potentially fill this gap with a gyrencephalic brain that is larger in size with a more similar gray-white matter composition to humans than traditional stroke animal models. In this study we develop and characterize a novel pig middle cerebral artery occlusion (MCAO) ischemic stroke model. METHODS Eleven male pigs underwent MCAO surgery with the first 4 landrace pigs utilized to optimize stroke procedure and 7 additional Yucatan stroked pigs studied over a 90 day period. MRI analysis was done at 24 hrs and 90 days and included T2w, T2w FLAIR, T1w FLAIR and DWI sequences and associated ADC maps. Pigs were sacrificed at 90 days and underwent gross and microscopic histological evaluation. Significance in quantitative changes was determined by two-way analysis of variance and post-hoc Tukey's Pair-Wise comparisons. RESULTS MRI analysis of animals that underwent MCAO surgery at 24 hrs had hyperintense regions in T2w and DWI images with corresponding ADC maps having hypointense regions indicating cytotoxic edema consistent with an ischemic stroke. At 90 days, region of interest analysis of T1 FLAIR and ADC maps had an average lesion size of 59.17 cc, a loss of 8% brain matter. Histological examination of pig brains showed atrophy and loss of tissue, consistent with MRI, as well as glial scar formation and macrophage infiltration. CONCLUSIONS The MCAO procedure led to significant and consistent strokes with high survivability. These results suggest that the pig model is potentially a robust system for the study of stroke pathophysiology and potential diagnostics and therapeutics.
Collapse
Affiliation(s)
- Simon R Platt
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Department of Small Animal and Surgery, University of Georgia, Athens, GA 30602, USA
| | - Shannon P Holmes
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Department of Veterinary Biosciences & Diagnostic Imaging, University of Georgia, Athens, GA 30602, USA
| | - Elizabeth W Howerth
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | - Kylee Jo J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - C Robert Dove
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Emily L Wyatt
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Amie V Linville
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Vivian W Lau
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - William D Hill
- Department of Neurology, Georgia Regents University, Augusta, GA 30912, USA
- Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - David C Hess
- Department of Neurology, Georgia Regents University, Augusta, GA 30912, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
41
|
Schultz CC, Mühleisen TW, Nenadic I, Koch K, Wagner G, Schachtzabel C, Siedek F, Nöthen MM, Rietschel M, Deufel T, Kiehntopf M, Cichon S, Reichenbach JR, Sauer H, Schlösser RGM. Common variation in NCAN, a risk factor for bipolar disorder and schizophrenia, influences local cortical folding in schizophrenia. Psychol Med 2014; 44:811-820. [PMID: 23795679 DOI: 10.1017/s0033291713001414] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Recent studies have provided strong evidence that variation in the gene neurocan (NCAN, rs1064395) is a common risk factor for bipolar disorder (BD) and schizophrenia. However, the possible relevance of NCAN variation to disease mechanisms in the human brain has not yet been explored. Thus, to identify a putative pathomechanism, we tested whether the risk allele has an influence on cortical thickness and folding in a well-characterized sample of patients with schizophrenia and healthy controls. METHOD Sixty-three patients and 65 controls underwent T1-weighted magnetic resonance imaging (MRI) and were genotyped for the single nucleotide polymorphism (SNP) rs1064395. Folding and thickness were analysed on a node-by-node basis using a surface-based approach (FreeSurfer). RESULTS In patients, NCAN risk status (defined by AA and AG carriers) was found to be associated with higher folding in the right lateral occipital region and at a trend level for the left dorsolateral prefrontal cortex. Controls did not show any association (p > 0.05). For cortical thickness, there was no significant effect in either patients or controls. CONCLUSIONS This study is the first to describe an effect of the NCAN risk variant on brain structure. Our data show that the NCAN risk allele influences cortical folding in the occipital and prefrontal cortex, which may establish disease susceptibility during neurodevelopment. The findings suggest that NCAN is involved in visual processing and top-down cognitive functioning. Both major cognitive processes are known to be disturbed in schizophrenia. Moreover, our study reveals new evidence for a specific genetic influence on local cortical folding in schizophrenia.
Collapse
Affiliation(s)
- C C Schultz
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany
| | - T W Mühleisen
- Institute of Human Genetics, University of Bonn, Germany
| | - I Nenadic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany
| | - K Koch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany
| | - G Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany
| | - C Schachtzabel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany
| | - F Siedek
- Institute of Human Genetics, University of Bonn, Germany
| | - M M Nöthen
- Institute of Human Genetics, University of Bonn, Germany
| | - M Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - T Deufel
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Germany
| | - M Kiehntopf
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Germany
| | - S Cichon
- Institute of Human Genetics, University of Bonn, Germany
| | - J R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology I, Jena University Hospital, Germany
| | - H Sauer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany
| | - R G M Schlösser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Germany
| |
Collapse
|
42
|
Abstract
Recently, there has been a wealth of research into structural and functional brain connectivity, and how they change over development. While we are far from a complete understanding, these studies have yielded important insights into human brain development. There is an ever growing variety of methods for assessing connectivity, each with its own advantages. Here we review research on the development of structural and/or functional brain connectivity in both typically developing subjects and subjects with neurodevelopmental disorders. Space limitations preclude an exhaustive review of brain connectivity across all developmental disorders, so we review a representative selection of recent findings on brain connectivity in autism, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Turner syndrome, and ADHD. Major strides have been made in understanding the developmental trajectory of the human connectome, offering insight into characteristic features of brain development and biological processes involved in developmental brain disorders. We also discuss some common themes, including hemispheric specialization - or asymmetry - and sex differences. We conclude by discussing some promising future directions in connectomics, including the merger of imaging and genetics, and a deeper investigation of the relationships between structural and functional connectivity.
Collapse
Affiliation(s)
- Emily L Dennis
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, 635 Charles Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA.
| | - Paul M Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, 635 Charles Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA
| |
Collapse
|
43
|
Dennis M, Spiegler BJ, Juranek JJ, Bigler ED, Snead OC, Fletcher JM. Age, plasticity, and homeostasis in childhood brain disorders. Neurosci Biobehav Rev 2013; 37:2760-73. [PMID: 24096190 PMCID: PMC3859812 DOI: 10.1016/j.neubiorev.2013.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/29/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022]
Abstract
It has been widely accepted that the younger the age and/or immaturity of the organism, the greater the brain plasticity, the young age plasticity privilege. This paper examines the relation of a young age to plasticity, reviewing human pediatric brain disorders, as well as selected animal models, human developmental and adult brain disorder studies. As well, we review developmental and childhood acquired disorders that involve a failure of regulatory homeostasis. Our core arguments are as follows:
Collapse
Affiliation(s)
- Maureen Dennis
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
44
|
Dennis EL, Thompson PM. Mapping connectivity in the developing brain. Int J Dev Neurosci 2013; 31:525-42. [PMID: 23722009 PMCID: PMC3800504 DOI: 10.1016/j.ijdevneu.2013.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 05/14/2013] [Indexed: 02/07/2023] Open
Abstract
Recently, there has been a wealth of research into structural and functional brain connectivity, and how they change over development. While we are far from a complete understanding, these studies have yielded important insights into human brain development. There is an ever growing variety of methods for assessing connectivity, each with its own advantages. Here we review research on the development of structural and/or functional brain connectivity in both typically developing subjects and subjects with neurodevelopmental disorders. Space limitations preclude an exhaustive review of brain connectivity across all developmental disorders, so we review a representative selection of recent findings on brain connectivity in autism, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Turner syndrome, and ADHD. Major strides have been made in understanding the developmental trajectory of the human connectome, offering insight into characteristic features of brain development and biological processes involved in developmental brain disorders. We also discuss some common themes, including hemispheric specialization - or asymmetry - and sex differences. We conclude by discussing some promising future directions in connectomics, including the merger of imaging and genetics, and a deeper investigation of the relationships between structural and functional connectivity.
Collapse
Affiliation(s)
- Emily L Dennis
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, 635 Charles Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA.
| | | |
Collapse
|
45
|
Lewitus E, Kelava I, Huttner WB. Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development. Front Hum Neurosci 2013; 7:424. [PMID: 23914167 PMCID: PMC3729979 DOI: 10.3389/fnhum.2013.00424] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/14/2013] [Indexed: 12/01/2022] Open
Abstract
THERE IS A BASIC RULE TO MAMMALIAN NEOCORTICAL EXPANSION as it expands, so does it fold. The degree to which it folds, however, cannot strictly be attributed to its expansion. Across species, cortical volume does not keep pace with cortical surface area, but rather folds appear more rapidly than expected. As a result, larger brains quickly become disproportionately more convoluted than smaller brains. Both the absence (lissencephaly) and presence (gyrencephaly) of cortical folds is observed in all mammalian orders and, while there is likely some phylogenetic signature to the evolutionary appearance of gyri and sulci, there are undoubtedly universal trends to the acquisition of folds in an expanding neocortex. Whether these trends are governed by conical expansion of neocortical germinal zones, the distribution of cortical connectivity, or a combination of growth- and connectivity-driven forces remains an open question. But the importance of cortical folding for evolution of the uniquely mammalian neocortex, as well as for the incidence of neuropathologies in humans, is undisputed. In this hypothesis and theory article, we will summarize the development of cortical folds in the neocortex, consider the relative influence of growth- vs. connectivity-driven forces for the acquisition of cortical folds between and within species, assess the genetic, cell-biological, and mechanistic implications for neocortical expansion, and discuss the significance of these implications for human evolution, development, and disease. We will argue that evolutionary increases in the density of neuron production, achieved via maintenance of a basal proliferative niche in the neocortical germinal zones, drive the conical migration of neurons toward the cortical surface and ultimately lead to the establishment of cortical folds in large-brained mammal species.
Collapse
Affiliation(s)
| | | | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresden, Germany
| |
Collapse
|
46
|
Gonçalves ÓF, Pinheiro AP, Sampaio A, Sousa N, Férnandez M, Henriques M. The Narrative Profile in Williams Syndrome: There is more to Storytelling than Just Telling a Story. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/096979510799102943] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
47
|
Dennis EL, Thompson PM. WITHDRAWN: Mapping Connectivity in the Developing Brain. Int J Dev Neurosci 2013:S0736-5748(13)00069-5. [PMID: 23702184 DOI: 10.1016/j.ijdevneu.2013.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 03/27/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.ijdevneu.2013.05.007. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Emily L Dennis
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|
48
|
Godbee K, Porter MA. Attribution of negative intention in Williams syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:1602-1612. [PMID: 23475010 DOI: 10.1016/j.ridd.2013.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/25/2013] [Accepted: 01/26/2013] [Indexed: 06/01/2023]
Abstract
People with Williams syndrome (WS) are said to have sociable and extremely trusting personalities, approaching strangers without hesitation. This study investigated whether people with WS are less likely than controls to attribute negative intent to others when interpreting a series of ambiguous pictures. This may, at least partially, explain their hypersociability toward strangers. Twenty-seven individuals with WS and 54 typically developing controls (27 matched to WS participants on sex and chronological age and 27 matched on sex and mental age) viewed 10 ambiguous pictures, where one person in the picture may be seen as having a negative objective. Participants were asked to describe what was happening in the picture. Responses were scored for negative intention attribution (NIA). NIA was reduced in WS individuals relative to typically developing controls of the same chronological age, but was similar to typically developing controls of the same mental age. Findings are discussed in relation to possible underlying neurological and cognitive mechanisms and practical implications for understanding and teaching stranger danger to people with WS.
Collapse
Affiliation(s)
- Kali Godbee
- Psychology Department, Macquarie University, Sydney, NSW 2109, Australia
| | | |
Collapse
|
49
|
Yang JJ, Yoon U, Yun HJ, Im K, Choi YY, Lee KH, Park H, Hough MG, Lee JM. Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis. Neuroscience 2013; 246:351-61. [PMID: 23643979 DOI: 10.1016/j.neuroscience.2013.04.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/17/2022]
Abstract
A number of imaging studies have reported neuroanatomical correlates of human intelligence with various morphological characteristics of the cerebral cortex. However, it is not yet clear whether these morphological properties of the cerebral cortex account for human intelligence. We assumed that the complex structure of the cerebral cortex could be explained effectively considering cortical thickness, surface area, sulcal depth and absolute mean curvature together. In 78 young healthy adults (age range: 17-27, male/female: 39/39), we used the full-scale intelligence quotient (FSIQ) and the cortical measurements calculated in native space from each subject to determine how much combining various cortical measures explained human intelligence. Since each cortical measure is thought to be not independent but highly inter-related, we applied partial least square (PLS) regression, which is one of the most promising multivariate analysis approaches, to overcome multicollinearity among cortical measures. Our results showed that 30% of FSIQ was explained by the first latent variable extracted from PLS regression analysis. Although it is difficult to relate the first derived latent variable with specific anatomy, we found that cortical thickness measures had a substantial impact on the PLS model supporting the most significant factor accounting for FSIQ. Our results presented here strongly suggest that the new predictor combining different morphometric properties of complex cortical structure is well suited for predicting human intelligence.
Collapse
Affiliation(s)
- J-J Yang
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lebed E, Jacova C, Wang L, Beg MF. Novel surface-smoothing based local gyrification index. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:660-669. [PMID: 23212343 DOI: 10.1109/tmi.2012.2230640] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The quantication of cortical surface folding is important in identifying and classifying many neurodegenerative diseases. Much work has been done to identify regional and global brain folding, and in this paper we review some of these methods, as well as propose a new method that has advantages over the existing state of art. Using our novel proposed method, we mapped the local gyrification index on the cortical surface for subjects with mild Alzheimer's dementia (n=20) , very mild dementia (n=23) and age-matched healthy subjects (n=52). In our experiments we find a consistent pattern of gyrification changes in the dementia subjects, with regions generally affected early on in the progression of Alzheimer pathology, including medial temporal lobe, and cingulate gyrus, having decreased gyrification. At the same time we observe increased gyrification in dementia subjects, in frontal, anterior temporal and posteriorly located regions. We speculate that in neurodegenerative diseases including Alzheimer Disease, the folding of the entire cortical mantle undergoes dynamic changes as regional atrophy begins and expands, with both decreases and increases in gyrification.
Collapse
Affiliation(s)
- Evgeniy Lebed
- School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada.
| | | | | | | |
Collapse
|