1
|
Lai H, Zhuo J, Treisman G, Gerstenblith G, Celentano DD, Yang Y, Salmeron BJ, Gu H, Leucker TM, Liang X, Mandler RN, Khalsa J, Peña-Nogales Ó, Chen S, Lai S, Rosenthal E, Goodkin K, Magnotta VA. HIV and Low Omega-3 Levels May Heighten Hippocampal Volume Differences Between Men and Women With Substance Use. Brain Behav Immun Health 2025; 45:100988. [PMID: 40248088 PMCID: PMC12005316 DOI: 10.1016/j.bbih.2025.100988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/12/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
Background Sex differences in hippocampal volumes are well-documented, but their interaction with HIV status and omega-3 fatty acids-particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-remains unclear, especially in underserved populations. This study examines how HIV and omega-3 fatty acids influence sex differences in hippocampal volume and explores whether cognitive performance related to episodic memory modifies the association of omega-3 levels with hippocampal volume, considering both HIV status and sex. Methods We enrolled 166 participants aged over 45 years from a Baltimore, Maryland cohort. Brain MRIs were performed using a 3.0-T Siemens scanner, and volumetric segmentation was conducted with FreeSurfer (version 6.0), adjusting for intracranial volume (ICV). Results Our study found that: (1) Among HIV-negative participants, females had significantly lower hippocampal volumes than males in 1 of 26 regions, whereas HIV-positive females had lower volumes in 13 of 26 regions (p < 0.006 for HIV-negative vs. HIV-positive females), (2) In HIV-positive individuals with EPA levels ≤0.40 %, females exhibited lower volumes in 11 of 26 regions, compared to no differences in those with EPA levels >0.40 % (p = 0.0003 for ≤0.40 % vs. >0.40 %), (3) Across all participants, lower EPA and DHA levels were associated with greater sex differences in hippocampal volumes, which diminished or disappeared at higher EPA and DHA levels (p < 0.00001 for EPA ≤0.40 % vs. >0.40 %; p = 0.004 for DHA ≤2.0 % vs. >2.0 %), and (4) Among Adults with lower episodic memory, higher log-scaled EPA levels were independently associated with greater hippocampal volume. Conclusions HIV may amplify sex differences in hippocampal volumes, disproportionately affecting females. Higher EPA and DHA levels may mitigate these effects, suggesting a protective role against hippocampal atrophy. Further studies are warranted to confirm these findings and explore whether the benefits extend to males with HIV or individuals without HIV.
Collapse
Affiliation(s)
- Hong Lai
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Glenn Treisman
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gary Gerstenblith
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - David D. Celentano
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yihong Yang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Betty Jo Salmeron
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Hong Gu
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Thorsten M. Leucker
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xiao Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raul N. Mandler
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Jag Khalsa
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Shaoguang Chen
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shenghan Lai
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elana Rosenthal
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Karl Goodkin
- Department of Psychiatry, University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA
| | - Vincent A. Magnotta
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
2
|
Peitz K, Bittner N, Heim S, Caspers S. Bilingualism and "brain reserve" in subregions of the hippocampal formation. GeroScience 2025:10.1007/s11357-025-01639-0. [PMID: 40199796 DOI: 10.1007/s11357-025-01639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/30/2025] [Indexed: 04/10/2025] Open
Abstract
With aging, the hippocampal formation shows variable structural atrophy, which is associated with a decline in cognitive performance. Bilingualism is related to higher hippocampal gray matter volume (GMV), potentially representing a form of brain reserve in aging. However, the differential influence of bilingualism on hippocampal subregions remains unclear. Thus, we investigated GMV differences and differences in age-GMV relationships between mono- and bilinguals in the hippocampal formation and its subregions, hippocampus proper and subicular complex. We included 661 adults aged 19 to 85 years (257 monolinguals, 404 sequential bilinguals, predominantly native German speakers with variable second language background) from the population-based 1000BRAINS cohort. GMV differences in mono- vs. bilinguals were assessed for six regions of interest (hippocampal formation, hippocampus proper, and subicular complex; each left and right) using analyses of covariance. Effects of bilingualism on age-GMV relationships were investigated via moderation analyses. We found higher GMV in bilinguals in the bilateral subicular complex, while only a trend towards this effect existed for the hippocampal formation. Moderation analyses revealed similar age-GMV relationships between mono- and bilinguals for all regions of interest. Higher GMV in bilinguals' hippocampal formation seems specifically attributable to the subicular complex rather than the hippocampus proper. With similar age-GMV relationships for mono- and bilinguals, bilingual brain reserve in the subicular complex may persist over time. This may be particularly beneficial since subicular atrophy has previously been associated with higher risk for dementia. Altogether, a differential impact of bilingualism on hippocampal subregions has been demonstrated.
Collapse
Affiliation(s)
- Katharina Peitz
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Nora Bittner
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
3
|
Asuku AO, Adebayo PO, Ogungbangbe GO. Stress and gender differences in brain development. PROGRESS IN BRAIN RESEARCH 2025; 291:319-337. [PMID: 40222785 DOI: 10.1016/bs.pbr.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
This chapter investigates the ways in which male and female brains are differently affected by stress during early development, which in turn affects how susceptible each group is to stress-related illnesses. When examining the structure and function of the brain, gender differences and stress must be taken into account. Male and female brain development differs in response to the prenatal testis's secretion of androgen. It appears that when it comes to responding to stress, encoding memories, feeling emotions, solving specific issues, and making decisions, men and women use distinct areas of the brain. Findings revealed that stress led to specific changes in brain structure and function, with gender-specific differences observed. The prefrontal cortex, the hippocampus, and the amygdala are among the brain regions connected to the stress response. The stress response has been linked to the presentation of numerous mental and psychosomatic conditions. The way men and women respond to stress varies on a biological and psychological level. To gain more insight into the gender differences seen throughout brain development, these disparities must also be investigated. This chapter implies that gender-specific vulnerabilities should be addressed and healthy brain development should be promoted by stress-related interventions.
Collapse
Affiliation(s)
- Abraham Olufemi Asuku
- Bioresources Development Centre, National Biotechnology Research and Development Agency, Ogbomoso, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| | - Priscilla Omobonke Adebayo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Gbonjubola Oyinlola Ogungbangbe
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
4
|
Eliot L. "Precision Medicine" and the Failed Search for Binary Brain Sex Differences to Address Gender Behavioral Health Disparities. Am J Hum Biol 2025; 37:e70041. [PMID: 40207611 PMCID: PMC11983668 DOI: 10.1002/ajhb.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Human brain imaging took off in the 1980s and has since flooded the zone in the analysis of gender differences in behavior and mental health. Couched in the aims of "precision medicine," the vast majority of this research has taken a binary approach, dividing participants according to the M/F box at intake and asserting that the sex differences found in neuroimaging will lead to important advances for treating neuropsychiatric disorders. However, the actual findings from this 40-year project have not lived up to its promise, in part because of the over-binarization of sex and general ignorance of gender as a complex variable influencing human behavior and brain function. This paper reviews the history of failed claims about male-female brain difference in the modern era, illuminates the deep-pocketed incentives driving such research, and examines the limitations of this binary approach for understanding gender-related behavior and health disparities. It then considers more recent efforts to "break the binary" by using measures of "gender" in addition to "sex" as an independent variable in brain imaging studies. Given the multidimensional nature of gender-as identity, expression, roles and relations-this is challenging to implement, with initial efforts producing little of substance. Better approaches to addressing male-female disparities in brain health will require focusing on specific behaviors (e.g., anxiety, risk-taking, verbal memory, spatial navigation) and specific components of sex and gender (e.g., body size, hormone levels, gene expression, caregiver role, financial independence, discrimination) when seeking brain-behavior correlates in a diverse population.
Collapse
Affiliation(s)
- Lise Eliot
- Chicago Medical School, Stanson Toshok Center for Brain Function and RepairRosalind Franklin University of Medicine & ScienceNorth ChicagoIllinoisUSA
| |
Collapse
|
5
|
Wang Y, Chen L, Wu Z, Hung SC, Smith JK, Wang L, Li T, Lin W, Li G. Surface Expansion Regionalization of the Hippocampus in Early Brain Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.22.639699. [PMID: 40060560 PMCID: PMC11888342 DOI: 10.1101/2025.02.22.639699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The hippocampal formation is implicated in a myriad of crucial functions, particularly centered around memory and emotion, with distinct subdivisions fulfilling specific roles. However, there is no consensus on the spatial organization of these subdivisions, given that the functional connectivity and gene expression-based parcellation along its longitudinal axis differs from the histology-based parcellation along its medial-lateral axis. The dynamic nonuniform surface expansion of the hippocampus during early development reflects the underlying changes of microstructure and functional connectivity, providing important clues on hippocampal subdivisions. Moreover, the thin and convoluted properties bring out the hippocampal maturity largely in the form of expanding surface area. We thus unprecedentedly explore the development-based surface area regionalization and patterns of the hippocampus by leveraging 513 high-quality longitudinal MRI scans during the first two postnatal years. Our findings imply two discrete hippocampal developmental patterns, featuring one pattern of subdivisions along the anterior-posterior axis (head, regions 1 and 5; body, regions 2, 4, 6, and 7; tail, region 3) and the other one along the medial-lateral axis (subiculum, regions 4, 5, and 6; CA fields, regions 1, 2, and 7). Most of the resulting 7 subdivisions exhibit region-specific and nonlinear spatiotemporal surface area expansion patterns with an initial high growth, followed by a transition to low increase. Each subregion displays bilaterally symmetric pattern. The medial portion of the hippocampal head experiences the most rapid surface area expansion. These results provide important references for exploring the fine-grained organization and development of the hippocampus and its intricate cognitions.
Collapse
Affiliation(s)
- Ya Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Liangjun Chen
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Sheng-Che Hung
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - J Keith Smith
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Tengfei Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, 27599, USA
| |
Collapse
|
6
|
Schwartz A, Macalli M, Navarro MC, Jean FAM, Crivello F, Galera C, Tzourio C. Adverse childhood experiences and left hippocampal volumetric reductions: A structural magnetic resonance imaging study. J Psychiatr Res 2024; 180:183-189. [PMID: 39427447 DOI: 10.1016/j.jpsychires.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/10/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Adverse childhood experiences (ACEs) have been associated with volume alterations of stress-related brain structures among aging and clinical populations, however, existing studies have predominantly assessed only one type of ACE, with small sample sizes, and it is less clear if these associations exist among a general population of young adults. OBJECTIVE The aims were to describe structural hippocampal volumetric differences by ACEs exposure and investigate the association between ACEs exposure and left and right hippocampal volume in a student sample of young adults. METHODS 959 young adult students (18-24 years old) completed an online questionnaire on ACEs, mental health conditions, and sociodemographic characteristics. Magnetic resonance imaging (MRI) was used to measure left and right hippocampal volume (mm3). We used linear regression to explore the differences of hippocampal volumes in university students with and without ACEs. RESULTS Two thirds of students (65.9%) reported ACEs exposure. As ACEs exposure increased there were significant volumetric reductions in left (p < 0.0001) and right hippocampal volume (p = 0.001) and left (p = 0.0023) and right (p = 0.0013) amygdala volume. After adjusting for intracranial brain volume, sex, age, and depression diagnosis there was a negative association between ACEs exposure and left (β = -22.6, CI = -44.5, -0.7, p = 0.0412) but not right hippocampal volume (β = -18.3, CI = -39.2, 2.6, p = 0.0792). After adjusting for intracranial volume there were no associations between ACEs exposure and left (β = -9.2, CI = -26.2, 7.9 p = 0.2926) or right (β = -5.6, CI = -19.9,8.8 p = 0.4466) amygdala volume. CONCLUSIONS Hippocampal volume varied by ACEs exposure in young adult students. ACEs appear to contribute to neuroanatomic differences in young adults from the general population.
Collapse
Affiliation(s)
- Ashlyn Schwartz
- Trinity College, Department of Public Health & Primary Care, D24 DH74, Dublin, Ireland.
| | - Mélissa Macalli
- Inserm, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, F-33000, Bordeaux, France.
| | - Marie C Navarro
- Inserm, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, F-33000, Bordeaux, France.
| | - François A M Jean
- Dr Jean Eric Techer Hospital, Department of Psychiatry, Calais, France.
| | - Fabrice Crivello
- Univ. Bordeaux, CEA, CNRS, IMN UMR 5293, Bordeaux, F-33000, France.
| | | | - Christophe Tzourio
- Inserm, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, F-33000, Bordeaux, France.
| |
Collapse
|
7
|
Caillaud M, Gallagher I, Foret J, Haley AP. Structural and functional sex differences in medial temporal lobe subregions at midlife. BMC Neurosci 2024; 25:55. [PMID: 39455948 PMCID: PMC11515403 DOI: 10.1186/s12868-024-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Research has increasingly recognized sex differences in aging and Alzheimer's Disease (AD) susceptibility. However, sex effects on the medial temporal lobe (MTL), a crucial region affected by aging and AD, remain poorly understood when it comes to the intricacies of morphology and functional connectivity. This study aimed to systematically analyze structural and functional connectivity among MTL subregions, which are known to exhibit documented morphological sex differences, during midlife, occurring before the putative pivotal age of cerebral decline. The study sought to explore the hypothesis that these differences in MTL subregion volumes would manifest in sex-related functional distinctions within the broader brain network. METHODS 201 cognitively unimpaired adults were included and stratified into four groups according to age and sex (i.e., Women and Men aged 40-50 and 50-60). These participants underwent comprehensive high-resolution structural MRI as well as resting-state functional MRI (rsfMRI). Utilizing established automated segmentation, we delineated MTL subregions and assessed morphological differences through an ANOVA. Subsequently, the CONN toolbox was employed for conducting ROI-to-ROI and Fractional Amplitude of Low-Frequency Fluctuations (fALFF) analyses to investigate functional connectivity within the specific MTL subregions among these distinct groups. RESULTS Significant differences in volumetric measurements were found primarily between women aged 40-50 and men of all ages, in the posterior hippocampus (pHPC) and the parahippocampal (PHC) cortex (p < 0.001), and, to a lesser extent, between women aged 50-60 and men of all ages (p < 0.05). Other distinctions were observed, but no significant differences in connectivity patterns or fALFF scores were detected between these groups. DISCUSSION Despite notable sex-related morphological differences in the posterior HPC and PHC regions, women and men appear to share a common pattern of brain connectivity at midlife. Longitudinal analyses are necessary to assess if midlife morphological sex differences in the MTL produce functional changes over time and thus, their potential role in cerebral decline. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
| | | | - Janelle Foret
- University of California San Diego, San Diego, CA, USA
| | | |
Collapse
|
8
|
Saker Z, Rizk M, Merie D, Nabha RH, Pariseau NJ, Nabha SM, Makki MI. Insight into brain sex differences of typically developed infants and brain pathologies: A systematic review. Eur J Neurosci 2024; 60:3491-3504. [PMID: 38693604 DOI: 10.1111/ejn.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
The continually advancing landscape of neuroscientific and imaging research has broadened our comprehension of sex differences encoded in the human brain, expanding from the hypothalamus and sexual behaviour to encompass the entire brain, including its diverse lobes, structures, and functions. However, less is known about sex differences in the brains of neonates and infants, despite their relevance to various sex-linked diseases that develop early in life. In this review, we provide a synopsis of the literature evidence on sex differences in the brains of neonates and infants at the morphological, structural and network levels. We also briefly overview the present evidence on the sex bias in some brain disorders affecting infants and neonates.
Collapse
Affiliation(s)
- Zahraa Saker
- Research Department, Al-Rassoul Al-Aazam Hospital, Beirut, Lebanon
| | - Mahdi Rizk
- School of Health Sciences, Modern University for Business and Science, Beirut, Lebanon
| | - Diana Merie
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | | | - Nicole J Pariseau
- Department of Pediatrics-Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sanaa M Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Malek I Makki
- Laboratory of Functional Neurosciences and Pathologies, University of Picardy Jules Verne, Amiens, France
| |
Collapse
|
9
|
Torgerson C, Ahmadi H, Choupan J, Fan CC, Blosnich JR, Herting MM. Sex, gender diversity, and brain structure in early adolescence. Hum Brain Mapp 2024; 45:e26671. [PMID: 38590252 PMCID: PMC11002534 DOI: 10.1002/hbm.26671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
There remains little consensus about the relationship between sex and brain structure, particularly in early adolescence. Moreover, few pediatric neuroimaging studies have analyzed both sex and gender as variables of interest-many of which included small sample sizes and relied on binary definitions of gender. The current study examined gender diversity with a continuous felt-gender score and categorized sex based on X and Y allele frequency in a large sample of children ages 9-11 years old (N = 7195). Then, a statistical model-building approach was employed to determine whether gender diversity and sex independently or jointly relate to brain morphology, including subcortical volume, cortical thickness, gyrification, and white matter microstructure. Additional sensitivity analyses found that male versus female differences in gyrification and white matter were largely accounted for by total brain volume, rather than sex per se. The model with sex, but not gender diversity, was the best-fitting model in 60.1% of gray matter regions and 61.9% of white matter regions after adjusting for brain volume. The proportion of variance accounted for by sex was negligible to small in all cases. While models including felt-gender explained a greater amount of variance in a few regions, the felt-gender score alone was not a significant predictor on its own for any white or gray matter regions examined. Overall, these findings demonstrate that at ages 9-11 years old, sex accounts for a small proportion of variance in brain structure, while gender diversity is not directly associated with neurostructural diversity.
Collapse
Affiliation(s)
- Carinna Torgerson
- Department of Population and Public Health SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hedyeh Ahmadi
- Department of Population and Public Health SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jeiran Choupan
- Mark and Mary Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Chun Chieh Fan
- Center for Population Neuroscience and GeneticsLaureate Institute for Brain ResearchTulsaOklahomaUSA
- Department of Radiology, School of MedicineUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - John R. Blosnich
- Suzanne Dworak‐Peck School of Social WorkUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Megan M. Herting
- Department of Population and Public Health SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
10
|
Anger JT, Case LK, Baranowski AP, Berger A, Craft RM, Damitz LA, Gabriel R, Harrison T, Kaptein K, Lee S, Murphy AZ, Said E, Smith SA, Thomas DA, Valdés Hernández MDC, Trasvina V, Wesselmann U, Yaksh TL. Pain mechanisms in the transgender individual: a review. FRONTIERS IN PAIN RESEARCH 2024; 5:1241015. [PMID: 38601924 PMCID: PMC11004280 DOI: 10.3389/fpain.2024.1241015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/25/2024] [Indexed: 04/12/2024] Open
Abstract
Specific Aim Provide an overview of the literature addressing major areas pertinent to pain in transgender persons and to identify areas of primary relevance for future research. Methods A team of scholars that have previously published on different areas of related research met periodically though zoom conferencing between April 2021 and February 2023 to discuss relevant literature with the goal of providing an overview on the incidence, phenotype, and mechanisms of pain in transgender patients. Review sections were written after gathering information from systematic literature searches of published or publicly available electronic literature to be compiled for publication as part of a topical series on gender and pain in the Frontiers in Pain Research. Results While transgender individuals represent a significant and increasingly visible component of the population, many researchers and clinicians are not well informed about the diversity in gender identity, physiology, hormonal status, and gender-affirming medical procedures utilized by transgender and other gender diverse patients. Transgender and cisgender people present with many of the same medical concerns, but research and treatment of these medical needs must reflect an appreciation of how differences in sex, gender, gender-affirming medical procedures, and minoritized status impact pain. Conclusions While significant advances have occurred in our appreciation of pain, the review indicates the need to support more targeted research on treatment and prevention of pain in transgender individuals. This is particularly relevant both for gender-affirming medical interventions and related medical care. Of particular importance is the need for large long-term follow-up studies to ascertain best practices for such procedures. A multi-disciplinary approach with personalized interventions is of particular importance to move forward.
Collapse
Affiliation(s)
- Jennifer T. Anger
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Laura K. Case
- Department of Anesthesiology, University of California San Diego, San Diego, CA, United States
| | - Andrew P. Baranowski
- Pelvic Pain Medicine and Neuromodulation, University College Hospital Foundation Trust, University College London, London, United Kingdom
| | - Ardin Berger
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Rebecca M. Craft
- Department of Psychology, Washington State University, Pullman, WA, United States
| | - Lyn Ann Damitz
- Division of Plastic and Reconstructive Surgery, University of North Carolina, Chapel Hill, NC, United States
| | - Rodney Gabriel
- Division of Regional Anesthesia, University of California San Diego, San Diego, CA, United States
| | - Tracy Harrison
- Department of OB/GYN & Reproductive Sciences, University of California San Diego, San Diego, CA, United States
| | - Kirsten Kaptein
- Division of Plastic Surgery, University of California San Diego, San Diego, CA, United States
| | - Sanghee Lee
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Anne Z. Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Engy Said
- Division of Regional Anesthesia, University of California San Diego, San Diego, CA, United States
| | - Stacey Abigail Smith
- Division of Infection Disease, The Hope Clinic of Emory University, Atlanta, GA, United States
| | - David A. Thomas
- Office of Research on Women's Health, National Institutes of Health, Bethesda, MD, United States
| | - Maria del C. Valdés Hernández
- Department of Neuroimaging Sciences, Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Victor Trasvina
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Ursula Wesselmann
- Departments of Anesthesiology and Perioperative Medicine/Division of Pain Medicine, Neurology and Psychology, and Consortium for Neuroengineering and Brain-Computer Interfaces, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Melgar-Locatelli S, Mañas-Padilla MC, Gavito AL, Rivera P, Rodríguez-Pérez C, Castilla-Ortega E, Castro-Zavala A. Sex-specific variations in spatial reference memory acquisition: Insights from a comprehensive behavioral test battery in C57BL/6JRj mice. Behav Brain Res 2024; 459:114806. [PMID: 38086456 DOI: 10.1016/j.bbr.2023.114806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
Sex differences in declarative memory are described in humans, revealing a female or a male advantage depending on the task. Specifically, spatial memory (i.e., spatial navigation) is typically most efficient in men. This sexual dimorphism has been replicated in male rats but not clearly in mice. In this study, sex differences in spatial memory were assessed in thirty-six C57BL/6 J mice (Janvier Labs; i.e., C57BL/6JRj mice), a widely used mouse substrain. Both male and female mice (12 weeks-old) were subjected to standard behavioral paradigms: the elevated plus maze, the open field test, the novel object and place tests, the forced swimming test, and the water maze test for spatial navigation. Across assessment, no sex differences were found in measures of locomotor activity, emotional and behavioral responses, and object and place recognition memories. In the water maze, male mice were faster in learning the platform location in the reference memory training and used more spatial strategies during the first training days. However, both sexes reached a similar asymptotic performance and performed similarly in the probe trial for long-term memory consolidation. No sex differences were found in the cued training, platform inversion sessions, or spatial working memory sessions. Hippocampal expression of the brain-derived neurotrophic factor was similar in both sexes, either in basal conditions or after performing the behavioral training battery. Importantly, female mice were not more variable than males in any measure analyzed. This outcome encourages the investigation of sex differences in animal models and the usefulness of including female mice in behavioral research.
Collapse
Affiliation(s)
- Sonia Melgar-Locatelli
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain
| | - M Carmen Mañas-Padilla
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain
| | - Ana L Gavito
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Spain
| | - Celia Rodríguez-Pérez
- Departamento de Nutrición y Bromatología, Universidad de Granada, Campus Universitario de Cartuja, Spain; Instituto de Nutrición y Tecnología de los Alimentos 'José Mataix', Universidad de Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain.
| | - Adriana Castro-Zavala
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Spain; Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Spain.
| |
Collapse
|
12
|
Lafta MS, Mwinyi J, Affatato O, Rukh G, Dang J, Andersson G, Schiöth HB. Exploring sex differences: insights into gene expression, neuroanatomy, neurochemistry, cognition, and pathology. Front Neurosci 2024; 18:1340108. [PMID: 38449735 PMCID: PMC10915038 DOI: 10.3389/fnins.2024.1340108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Increased knowledge about sex differences is important for development of individualized treatments against many diseases as well as understanding behavioral and pathological differences. This review summarizes sex chromosome effects on gene expression, epigenetics, and hormones in relation to the brain. We explore neuroanatomy, neurochemistry, cognition, and brain pathology aiming to explain the current state of the art. While some domains exhibit strong differences, others reveal subtle differences whose overall significance warrants clarification. We hope that the current review increases awareness and serves as a basis for the planning of future studies that consider both sexes equally regarding similarities and differences.
Collapse
Affiliation(s)
- Muataz S. Lafta
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Centre for Women’s Mental Health, Uppsala University, Uppsala, Sweden
| | - Oreste Affatato
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Centre for Women’s Mental Health, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Junhua Dang
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gerhard Andersson
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Eliot L. Remembering the null hypothesis when searching for brain sex differences. Biol Sex Differ 2024; 15:14. [PMID: 38336816 PMCID: PMC10854110 DOI: 10.1186/s13293-024-00585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Human brain sex differences have fascinated scholars for centuries and become a key focus of neuroscientists since the dawn of MRI. We recently published a major review in Neuroscience and Biobehavioral Reviews showing that most male-female brain differences in humans are small and few have been reliably replicated. Although widely cited, this work was the target of a critical Commentary by DeCasien et al. (Biol Sex Differ 13:43, 2022). In this response, I update our findings and confirm the small effect sizes and pronounced scatter across recent large neuroimaging studies of human sex/gender difference. Based on the sum of data, neuroscientists would be well-advised to take the null hypothesis seriously: that men and women's brains are fundamentally similar, or "monomorphic". This perspective has important implications for how we study the genesis of behavioral and neuropsychiatric gender disparities.
Collapse
Affiliation(s)
- Lise Eliot
- Stanson Toshok Center for Brain Function and Repair, Chicago Medical School, Rosalind Franklin University of Medicine & Science, North Chicago, IL, USA.
| |
Collapse
|
14
|
Sokołowski A, Bhagwat N, Chatelain Y, Dugré M, Hanganu A, Monchi O, McPherson B, Wang M, Poline JB, Sharp M, Glatard T. Longitudinal brain structure changes in Parkinson's disease: A replication study. PLoS One 2024; 19:e0295069. [PMID: 38295031 PMCID: PMC10830012 DOI: 10.1371/journal.pone.0295069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/13/2023] [Indexed: 02/02/2024] Open
Abstract
CONTEXT An existing major challenge in Parkinson's disease (PD) research is the identification of biomarkers of disease progression. While magnetic resonance imaging is a potential source of PD biomarkers, none of the magnetic resonance imaging measures of PD are robust enough to warrant their adoption in clinical research. This study is part of a project that aims to replicate 11 PD studies reviewed in a recent survey (JAMA neurology, 78(10) 2021) to investigate the robustness of PD neuroimaging findings to data and analytical variations. OBJECTIVE This study attempts to replicate the results in Hanganu et al. (Brain, 137(4) 2014) using data from the Parkinson's Progression Markers Initiative (PPMI). METHODS Using 25 PD subjects and 18 healthy controls, we analyzed the rate of change of cortical thickness and of the volume of subcortical structures, and we measured the relationship between structural changes and cognitive decline. We compared our findings to the results in the original study. RESULTS (1) Similarly to the original study, PD patients with mild cognitive impairment (MCI) exhibited increased cortical thinning over time compared to patients without MCI in the right middle temporal gyrus, insula, and precuneus. (2) The rate of cortical thinning in the left inferior temporal and precentral gyri in PD patients correlated with the change in cognitive performance. (3) There were no group differences in the change of subcortical volumes. (4) We did not find a relationship between the change in subcortical volumes and the change in cognitive performance. CONCLUSION Despite important differences in the dataset used in this replication study, and despite differences in sample size, we were able to partially replicate the original results. We produced a publicly available reproducible notebook allowing researchers to further investigate the reproducibility of the results in Hanganu et al. (2014) when more data is added to PPMI.
Collapse
Affiliation(s)
- Andrzej Sokołowski
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Nikhil Bhagwat
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Yohan Chatelain
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Mathieu Dugré
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Alexandru Hanganu
- Département de Psychologie, Université de Montréal, Montréal, Canada
| | - Oury Monchi
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montréal, Canada
| | - Brent McPherson
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Michelle Wang
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | - Madeleine Sharp
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Tristan Glatard
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
15
|
Tsalouchidou PE, Müller CJ, Belke M, Zahnert F, Menzler K, Trinka E, Knake S, Thomschewski A. Verbal memory depends on structural hippocampal subfield volume. Front Neurol 2023; 14:1209941. [PMID: 37900611 PMCID: PMC10613087 DOI: 10.3389/fneur.2023.1209941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Objective To investigate correlates in hippocampal subfield volume and verbal and visual memory function in patients with temporal lobe epilepsy (TLE), mild amnestic cognitive impairment (MCI) and heathy participants (HP). Methods 50 right-handed participants were included in this study; 11 patients with temporal lobe epilepsy (TLE), 18 patients with mild amnestic cognitive impairment (MCI) and 21 healthy participants (HP). Verbal memory performance was evaluated via the verbal memory test (VLMT) and visual memory performance via the diagnosticum for cerebral damage (DCM). Hippocampal subfield volumes of T1-weighted Magnetic Resonance Imaging (MRI) scans were computed with FreeSurfer version 7.1. Stepwise correlation analyses were performed between the left hippocampal subfield volumes and learning, free recall, consolidation and recognition performance scores of the VLMT as well as between right hippocampal subfield volumes and visual memory performance. Results The volume of the left subicular complex was highly correlated to learning performance (β = 0.284; p = 0.042) and free recall performance in the VLMT (β = 0.434; p = 0.001). The volume of the left CA3 subfield showed a significant correlation to the consolidation performance in the VLMT (β = 0.378; p = 0.006) and recognition performance in the VLMT (β = 0.290; p = 0.037). There was no significant correlation identified between the right hippocampal subfields and the visual memory performance. Conclusion The results of this study show verbal memory correlates with hippocampal subfields and support the role of left subiculum and left CA2/CA3 in verbal memory performance.
Collapse
Affiliation(s)
| | - Christina-Julia Müller
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Marcus Belke
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Felix Zahnert
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Katja Menzler
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Eugen Trinka
- Department of Neurology and Centre for Cognitive Neuroscience, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Susanne Knake
- Epilepsy Center Hessen, Department of Neurology, Philipps University Marburg, Marburg, Germany
- Center for Personalized Translational Epilepsy Research (CePTER), Frankfurt, Germany
| | - Aljoscha Thomschewski
- Department of Neurology and Centre for Cognitive Neuroscience, Christian Doppler University Hospital, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
16
|
Kheloui S, Jacmin-Park S, Larocque O, Kerr P, Rossi M, Cartier L, Juster RP. Sex/gender differences in cognitive abilities. Neurosci Biobehav Rev 2023; 152:105333. [PMID: 37517542 DOI: 10.1016/j.neubiorev.2023.105333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Sex/gender differences in cognitive sciences are riddled by conflicting perspectives. At the center of debates are clinical, social, and political perspectives. Front and center, evolutionary and biological perspectives have often focused on 'nature' arguments, while feminist and constructivist views have often focused on 'nurture arguments regarding cognitive sex differences. In the current narrative review, we provide a comprehensive overview regarding the origins and historical advancement of these debates while providing a summary of the results in the field of sexually polymorphic cognition. In so doing, we attempt to highlight the importance of using transdisciplinary perspectives which help bridge disciplines together to provide a refined understanding the specific factors that drive sex differences a gender diversity in cognitive abilities. To summarize, biological sex (e.g., birth-assigned sex, sex hormones), socio-cultural gender (gender identity, gender roles), and sexual orientation each uniquely shape the cognitive abilities reviewed. To date, however, few studies integrate these sex and gender factors together to better understand individual differences in cognitive functioning. This has potential benefits if a broader understanding of sex and gender factors are systematically measured when researching and treating numerous conditions where cognition is altered.
Collapse
Affiliation(s)
- Sarah Kheloui
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Silke Jacmin-Park
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Ophélie Larocque
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Philippe Kerr
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Mathias Rossi
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Louis Cartier
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada.
| |
Collapse
|
17
|
Torgerson C, Ahmadi H, Choupan J, Fan CC, Blosnich JR, Herting MM. Sex, gender diversity, and brain structure in children ages 9 to 11 years old. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551036. [PMID: 37546960 PMCID: PMC10402171 DOI: 10.1101/2023.07.28.551036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
There remains little consensus about the relationship between sex and brain structure, particularly in childhood. Moreover, few pediatric neuroimaging studies have analyzed both sex and gender as variables of interest - many of which included small sample sizes and relied on binary definitions of gender. The current study examined gender diversity with a continuous felt-gender score and categorized sex based on X and Y allele frequency in a large sample of children ages 9-11 years-old (N=7693). Then, a statistical model-building approach was employed to determine whether gender diversity and sex independently or jointly relate to brain morphology, including subcortical volume, cortical thickness, gyrification, and white matter microstructure. The model with sex, but not gender diversity, was the best-fitting model in 75% of gray matter regions and 79% of white matter regions examined. The addition of gender to the sex model explained significantly more variance than sex alone with regard to bilateral cerebellum volume, left precentral cortical thickness, as well as gyrification in the right superior frontal gyrus, right parahippocampal gyrus, and several regions in the left parietal lobe. For mean diffusivity in the left uncinate fasciculus, the model with sex, gender, and their interaction captured the most variance. Nonetheless, the magnitude of variance accounted for by sex was small in all cases and felt-gender score was not a significant predictor on its own for any white or gray matter regions examined. Overall, these findings demonstrate that at ages 9-11 years-old, sex accounts for a small proportion of variance in brain structure, while gender diversity is not directly associated with neurostructural diversity.
Collapse
Affiliation(s)
- Carinna Torgerson
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Chun Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Radiology, School of Medicine, University of California, San Diego
| | - John R. Blosnich
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Raschick M, Richter A, Fischer L, Knopf L, Schult A, Yakupov R, Behnisch G, Guttek K, Düzel E, Dunay IR, Seidenbecher CI, Schraven B, Reinhold D, Schott BH. Plasma concentrations of anti-inflammatory cytokine TGF-β are associated with hippocampal structure related to explicit memory performance in older adults. J Neural Transm (Vienna) 2023:10.1007/s00702-023-02638-1. [PMID: 37115329 PMCID: PMC10374779 DOI: 10.1007/s00702-023-02638-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Human cognitive abilities, and particularly hippocampus-dependent memory performance typically decline with increasing age. Immunosenescence, the age-related disintegration of the immune system, is increasingly coming into the focus of research as a considerable factor contributing to cognitive decline. In the present study, we investigated potential associations between plasma levels of pro- and anti-inflammatory cytokines and learning and memory performance as well as hippocampal anatomy in young and older adults. Plasma concentrations of the inflammation marker CRP as well as the pro-inflammatory cytokines IL-6 and TNF-α and the anti-inflammatory cytokine TGF-β1 were measured in 142 healthy adults (57 young, 24.47 ± 4.48 years; 85 older, 63.66 ± 7.32 years) who performed tests of explicit memory (Verbal Learning and Memory Test, VLMT; Wechsler Memory Scale, Logical Memory, WMS) with an additional delayed recall test after 24 h. Hippocampal volumetry and hippocampal subfield segmentation were performed using FreeSurfer, based on T1-weighted and high-resolution T2-weighted MR images. When investigating the relationship between memory performance, hippocampal structure, and plasma cytokine levels, we found that TGF-β1 concentrations were positively correlated with the volumes of the hippocampal CA4-dentate gyrus region in older adults. These volumes were in turn positively associated with better performance in the WMS, particularly in the delayed memory test. Our results support the notion that endogenous anti-inflammatory mechanisms may act as protective factors in neurocognitive aging.
Collapse
Affiliation(s)
- Matthias Raschick
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Larissa Fischer
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Lea Knopf
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Gusalija Behnisch
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Karina Guttek
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Emrah Düzel
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute for Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
19
|
Lista S, Vergallo A, Teipel SJ, Lemercier P, Giorgi FS, Gabelle A, Garaci F, Mercuri NB, Babiloni C, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Hampel H, Nisticò R. Determinants of approved acetylcholinesterase inhibitor response outcomes in Alzheimer's disease: relevance for precision medicine in neurodegenerative diseases. Ageing Res Rev 2023; 84:101819. [PMID: 36526257 DOI: 10.1016/j.arr.2022.101819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.
Collapse
Affiliation(s)
- Simone Lista
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France; School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Medicine Rostock, Rostock, Germany
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Audrey Gabelle
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, Italy
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| |
Collapse
|
20
|
Tillet Y. Magnetic Resonance Imaging, a New Tool for Neuroendocrine Research in Sheep. Neuroendocrinology 2023; 113:208-215. [PMID: 35051936 DOI: 10.1159/000522087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
Abstract
Magnetic resonance imaging (MRI) brain analysis is used in rodents and for clinical investigation in humans, and it becomes also possible now for large animal models studies. Specific facilities are available with clinical scanners and benefit to neuroendocrine investigations in sheep. Sheep has a large gyrencephalic brain and its organization is very similar to primates and human, and among physiological regulations, oestrous cycle of the ewes is similar to women. Therefore, this animal is a good model for preclinical researches using MRI, as illustrated with steroids impact on the brain. New data were obtained concerning the effect of sexual steroids on neuronal networks involved in the control of reproduction and in the influence of sexual steroids on cognition. In addition to the importance of such data for understanding the role of these hormones on brain functions, they give new insights to consider the sheep as a powerful model for preclinical studies in the field of neuroendocrinology. These points are discussed in this short review.
Collapse
Affiliation(s)
- Yves Tillet
- CNRS UMR 7247, IFCE, INRAE, University of Tours, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
21
|
DeCasien AR, Guma E, Liu S, Raznahan A. Sex differences in the human brain: a roadmap for more careful analysis and interpretation of a biological reality. Biol Sex Differ 2022; 13:43. [PMID: 35883159 PMCID: PMC9327177 DOI: 10.1186/s13293-022-00448-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
The presence, magnitude, and significance of sex differences in the human brain are hotly debated topics in the scientific community and popular media. This debate is largely fueled by studies containing strong, opposing conclusions: either little to no evidence exists for sex differences in human neuroanatomy, or there are small-to-moderate differences in the size of certain brain regions that are highly reproducible across cohorts (even after controlling for sex differences in average brain size). Our Commentary uses the specific comparison between two recent large-scale studies that adopt these opposing views-namely the review by Eliot and colleagues (2021) and the direct analysis of ~ 40k brains by Williams and colleagues (2021)-in an effort to clarify this controversy and provide a framework for conducting this research. First, we review observations that motivate research on sex differences in human neuroanatomy, including potential causes (evolutionary, genetic, and environmental) and effects (epidemiological and clinical evidence for sex-biased brain disorders). We also summarize methodological and empirical support for using structural MRI to investigate such patterns. Next, we outline how researchers focused on sex differences can better specify their study design (e.g., how sex was defined, if and how brain size was adjusted for) and results (by e.g., distinguishing sexual dimorphisms from sex differences). We then compare the different approaches available for studying sex differences across a large number of individuals: direct analysis, meta-analysis, and review. We stress that reviews do not account for methodological differences across studies, and that this variation explains many of the apparent inconsistencies reported throughout recent reviews (including the work by Eliot and colleagues). For instance, we show that amygdala volume is consistently reported as male-biased in studies with sufficient sample sizes and appropriate methods for brain size correction. In fact, comparing the results from multiple large direct analyses highlights small, highly reproducible sex differences in the volume of many brain regions (controlling for brain size). Finally, we describe best practices for the presentation and interpretation of these findings. Care in interpretation is important for all domains of science, but especially so for research on sex differences in the human brain, given the existence of broad societal gender-biases and a history of biological data being used justify sexist ideas. As such, we urge researchers to discuss their results from simultaneously scientific and anti-sexist viewpoints.
Collapse
Affiliation(s)
- Alex R DeCasien
- Section On Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA.
| | - Elisa Guma
- Section On Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | - Siyuan Liu
- Section On Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| | - Armin Raznahan
- Section On Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Setton R, Sheldon S, Turner GR, Spreng RN. Temporal pole volume is associated with episodic autobiographical memory in healthy older adults. Hippocampus 2022; 32:373-385. [PMID: 35247210 PMCID: PMC8995350 DOI: 10.1002/hipo.23411] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
Abstract
Recollection of personal past events differs across the lifespan. Older individuals recall fewer episodic details and convey more semantic information than young. Here we examine how gray matter volumes in temporal lobe regions integral to episodic and semantic memory (hippocampus and temporal poles, respectively) are related to age differences in autobiographical recollection. Gray matter volumes were obtained in healthy young (n = 158) and old (n = 105) adults. The temporal pole was demarcated and hippocampus segmented into anterior and posterior regions to test for volume differences between age groups. The Autobiographical Interview was administered to measure episodic and semantic autobiographical memory. Volume associations with episodic and semantic autobiographical memory were then assessed. Brain volumes were smaller for older adults in the posterior hippocampus. Autobiographical memory was less episodic and more semanticized for older versus younger adults. Older adults also showed positive associations between temporal pole volumes and episodic autobiographical recall; in the young, temporal pole volume was positively associated with performance on standard laboratory measures of semantic memory. Exploratory analyses revealed that age-related episodic autobiographical memory associations with anterior hippocampal volumes depended on sex. These findings suggest that age differences in brain structures implicated in episodic and semantic memory may portend reorganization of neural circuits to support autobiographical memory in later life.
Collapse
Affiliation(s)
- Roni Setton
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Signy Sheldon
- Departments of Psychology, McGill University, Montreal, QC, Canada
| | - Gary R. Turner
- Department of Psychology, York University, Toronto, ON, Canada
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Departments of Psychology, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
| |
Collapse
|
23
|
Saland SK, Wilczak K, Voss E, Lam TT, Kabbaj M. Sex- and estrous-cycle dependent dorsal hippocampal phosphoproteomic changes induced by low-dose ketamine. Sci Rep 2022; 12:1820. [PMID: 35110693 PMCID: PMC8810966 DOI: 10.1038/s41598-022-05937-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 01/05/2023] Open
Abstract
Numerous emotional and cognitive processes mediated by the hippocampus present differences between sexes and can be markedly influenced by hormonal status in males and females of several species. In rodents, the dorsal hippocampus (dHPC) is known to contribute to the rapid antidepressant actions of the NMDA receptor antagonist ketamine. We and others have demonstrated a greater sensitivity to the fast-acting antidepressant ketamine in female versus male rats that is estrogen- and progesterone-dependent. However, the underlying mechanisms remain unclear. Using an acute low dose (2.5 mg/kg) of ketamine that is behaviorally effective in female but not male rats, a label-free phosphoproteomics approach was employed to identify ketamine-induced changes in signaling pathway activation and phosphoprotein abundance within the dHPC of intact adult male rats and female rats in either diestrus or proestrus. At baseline, males and females showed striking dissimilarities in the dHPC proteome and phosphoproteome related to synaptic signaling and mitochondrial function-differences also strongly influenced by cycle stage in female rats. Notably, phosphoproteins enriched in PKA signaling emerged as being both significantly sex-dependent at baseline and also the primary target of ketamine-induced protein phosphorylation selectively in female rats, regardless of cycle stage. Reduced phosphoprotein abundance within this pathway was observed in males, suggesting bi-directional effects of low-dose ketamine between sexes. These findings present biological sex and hormonal milieu as critical modulators of ketamine's rapid actions within this brain region and provide greater insight into potential translational and post-translational processes underlying sex- and hormone-dependent modulation of ketamine's therapeutic effects.
Collapse
Affiliation(s)
- Samantha K Saland
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| | - Kathrin Wilczak
- Keck MD & Proteomics Resource, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Edward Voss
- Keck MD & Proteomics Resource, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MD & Proteomics Resource, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, College of Medicine, Florida State University, 1115 W Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|
24
|
Rabin RA, Mackey S, Parvaz MA, Cousijn J, Li C, Pearlson G, Schmaal L, Sinha R, Stein E, Veltman D, Thompson PM, Conrod P, Garavan H, Alia‐Klein N, Goldstein RZ. Common and gender-specific associations with cocaine use on gray matter volume: Data from the ENIGMA addiction working group. Hum Brain Mapp 2022; 43:543-554. [PMID: 32857473 PMCID: PMC8675419 DOI: 10.1002/hbm.25141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/26/2020] [Accepted: 07/10/2020] [Indexed: 11/30/2022] Open
Abstract
Gray matter volume (GMV) in frontal cortical and limbic regions is susceptible to cocaine-associated reductions in cocaine-dependent individuals (CD) and is negatively associated with duration of cocaine use. Gender differences in CD individuals have been reported clinically and in the context of neural responses to cue-induced craving and stress reactivity. The variability of GMV in select brain areas between men and women (e.g., limbic regions) underscores the importance of exploring interaction effects between gender and cocaine dependence on brain structure. Therefore, voxel-based morphometry data derived from the ENIGMA Addiction Consortium were used to investigate potential gender differences in GMV in CD individuals compared to matched controls (CTL). T1-weighted MRI scans and clinical data were pooled from seven sites yielding 420 gender- and age-matched participants: CD men (CDM, n = 140); CD women (CDW, n = 70); control men (CTLM, n = 140); and control women (CTLW, n = 70). Differences in GMV were assessed using a 2 × 2 ANCOVA, and voxelwise whole-brain linear regressions were conducted to explore relationships between GMV and duration of cocaine use. All analyses were corrected for age, total intracranial volume, and site. Diagnostic differences were predominantly found in frontal regions (CD < CTL). Interestingly, gender × diagnosis interactions in the left anterior insula and left lingual gyrus were also documented, driven by differences in women (CDW < CTLW). Further, lower right hippocampal GMV was associated with greater cocaine duration in CDM. Given the importance of the anterior insula to interoception and the hippocampus to learning contextual associations, results may point to gender-specific mechanisms in cocaine addiction.
Collapse
Affiliation(s)
- Rachel A. Rabin
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Scott Mackey
- Departments of Psychiatry and PsychologyUniversity of VermontBurlingtonVermontUSA
| | - Muhammad A. Parvaz
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Janna Cousijn
- Department of PsychologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Chiang‐shan Li
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Godfrey Pearlson
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia and Centre for Youth Mental HealthThe University of MelbourneMelbourneAustralia
| | - Rajita Sinha
- Department of PsychiatryYale University School of MedicineNew HavenConnecticutUSA
| | - Elliot Stein
- Intramural Research Program—Neuroimaging Research BranchNational Institute on Drug AbuseBaltimoreMarylandUSA
| | - Dick Veltman
- Department of PsychiatryVU University Medical CenterAmsterdamThe Netherlands
| | - Paul M. Thompson
- Imaging Genetics Center, Department of Neurology Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Patricia Conrod
- Department of PsychiatryUniversité de Montreal, CHU Ste Justine HospitalMontrealQuebecCanada
| | - Hugh Garavan
- Departments of Psychiatry and PsychologyUniversity of VermontBurlingtonVermontUSA
| | - Nelly Alia‐Klein
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Rita Z. Goldstein
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
25
|
Wierenga LM, Doucet GE, Dima D, Agartz I, Aghajani M, Akudjedu TN, Albajes‐Eizagirre A, Alnæs D, Alpert KI, Andreassen OA, Anticevic A, Asherson P, Banaschewski T, Bargallo N, Baumeister S, Baur‐Streubel R, Bertolino A, Bonvino A, Boomsma DI, Borgwardt S, Bourque J, den Braber A, Brandeis D, Breier A, Brodaty H, Brouwer RM, Buitelaar JK, Busatto GF, Calhoun VD, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Castellanos FX, Chaim‐Avancini TM, Ching CRK, Clark VP, Conrod PJ, Conzelmann A, Crivello F, Davey CG, Dickie EW, Ehrlich S, van't Ent D, Fisher SE, Fouche J, Franke B, Fuentes‐Claramonte P, de Geus EJC, Di Giorgio A, Glahn DC, Gotlib IH, Grabe HJ, Gruber O, Gruner P, Gur RE, Gur RC, Gurholt TP, de Haan L, Haatveit B, Harrison BJ, Hartman CA, Hatton SN, Heslenfeld DJ, van den Heuvel OA, Hickie IB, Hoekstra PJ, Hohmann S, Holmes AJ, Hoogman M, Hosten N, Howells FM, Hulshoff Pol HE, Huyser C, Jahanshad N, James AC, Jiang J, Jönsson EG, Joska JA, Kalnin AJ, Klein M, Koenders L, Kolskår KK, Krämer B, Kuntsi J, Lagopoulos J, Lazaro L, Lebedeva IS, Lee PH, Lochner C, Machielsen MWJ, Maingault S, Martin NG, Martínez‐Zalacaín I, Mataix‐Cols D, Mazoyer B, McDonald BC, McDonald C, McIntosh AM, McMahon KL, McPhilemy G, et alWierenga LM, Doucet GE, Dima D, Agartz I, Aghajani M, Akudjedu TN, Albajes‐Eizagirre A, Alnæs D, Alpert KI, Andreassen OA, Anticevic A, Asherson P, Banaschewski T, Bargallo N, Baumeister S, Baur‐Streubel R, Bertolino A, Bonvino A, Boomsma DI, Borgwardt S, Bourque J, den Braber A, Brandeis D, Breier A, Brodaty H, Brouwer RM, Buitelaar JK, Busatto GF, Calhoun VD, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Castellanos FX, Chaim‐Avancini TM, Ching CRK, Clark VP, Conrod PJ, Conzelmann A, Crivello F, Davey CG, Dickie EW, Ehrlich S, van't Ent D, Fisher SE, Fouche J, Franke B, Fuentes‐Claramonte P, de Geus EJC, Di Giorgio A, Glahn DC, Gotlib IH, Grabe HJ, Gruber O, Gruner P, Gur RE, Gur RC, Gurholt TP, de Haan L, Haatveit B, Harrison BJ, Hartman CA, Hatton SN, Heslenfeld DJ, van den Heuvel OA, Hickie IB, Hoekstra PJ, Hohmann S, Holmes AJ, Hoogman M, Hosten N, Howells FM, Hulshoff Pol HE, Huyser C, Jahanshad N, James AC, Jiang J, Jönsson EG, Joska JA, Kalnin AJ, Klein M, Koenders L, Kolskår KK, Krämer B, Kuntsi J, Lagopoulos J, Lazaro L, Lebedeva IS, Lee PH, Lochner C, Machielsen MWJ, Maingault S, Martin NG, Martínez‐Zalacaín I, Mataix‐Cols D, Mazoyer B, McDonald BC, McDonald C, McIntosh AM, McMahon KL, McPhilemy G, van der Meer D, Menchón JM, Naaijen J, Nyberg L, Oosterlaan J, Paloyelis Y, Pauli P, Pergola G, Pomarol‐Clotet E, Portella MJ, Radua J, Reif A, Richard G, Roffman JL, Rosa PGP, Sacchet MD, Sachdev PS, Salvador R, Sarró S, Satterthwaite TD, Saykin AJ, Serpa MH, Sim K, Simmons A, Smoller JW, Sommer IE, Soriano‐Mas C, Stein DJ, Strike LT, Szeszko PR, Temmingh HS, Thomopoulos SI, Tomyshev AS, Trollor JN, Uhlmann A, Veer IM, Veltman DJ, Voineskos A, Völzke H, Walter H, Wang L, Wang Y, Weber B, Wen W, West JD, Westlye LT, Whalley HC, Williams SCR, Wittfeld K, Wolf DH, Wright MJ, Yoncheva YN, Zanetti MV, Ziegler GC, de Zubicaray GI, Thompson PM, Crone EA, Frangou S, Tamnes CK. Greater male than female variability in regional brain structure across the lifespan. Hum Brain Mapp 2022; 43:470-499. [PMID: 33044802 PMCID: PMC8675415 DOI: 10.1002/hbm.25204] [Show More Authors] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/10/2020] [Accepted: 09/05/2020] [Indexed: 12/25/2022] Open
Abstract
For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
Collapse
Affiliation(s)
- Lara M Wierenga
- Institute of PsychologyLeiden UniversityLeidenThe Netherlands
- Leiden Institute for Brain and CognitionLeidenThe Netherlands
| | - Gaelle E Doucet
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Boys Town National Research HospitalOmahaNebraskaUSA
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, CityUniversity of LondonLondonUK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMCVrije UniversiteitAmsterdamThe Netherlands
- Department of Research & InnovationGGZ inGeestAmsterdamThe Netherlands
- Institute of Education and Child Studies, Forensic Family and Youth CareLeiden UniversityLeidenThe Netherlands
| | - Theophilus N Akudjedu
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
- Institute of Medical Imaging & Visualisation, Faculty of Health & Social SciencesBournemouth UniversityBournemouthUK
| | - Anton Albajes‐Eizagirre
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Kathryn I Alpert
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Alan Anticevic
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
| | - Nuria Bargallo
- Imaging Diagnostic CenterHospital ClínicBarcelonaSpain
- Magnetic Resonance Image Core FacilityIDIBAPSBarcelonaSpain
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
| | | | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
| | - Aurora Bonvino
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
| | - Dorret I Boomsma
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | - Stefan Borgwardt
- Department of PsychiatryUniversity of BaselBaselSwitzerland
- Department of PsychiatryUniversity of LübeckLübeckGermany
| | - Josiane Bourque
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
| | - Anouk den Braber
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- Alzheimer CenterAmsterdam UMC, Location VUMCAmsterdamThe Netherlands
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric HospitalUniversity of ZurichZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
- Neuroscience Centre ZurichUniversity and ETH ZurichZurichSwitzerland
| | - Alan Breier
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
- Dementia Centre for Research Collaboration, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Jan K Buitelaar
- Department of Cognitive NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
- Karakter Child and Adolescent Psychiatry University CentreNijmegenThe Netherlands
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Vince D Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia TechAtlantaGeorgiaUSA
| | - Erick J Canales‐Rodríguez
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
| | - Francisco X Castellanos
- Department of Child and Adolescent PsychiatryNYU Grossman School of MedicineNew YorkNew YorkUSA
- Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
| | - Tiffany M Chaim‐Avancini
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Christopher RK Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
- Mind Research NetworkAlbuquerqueNew MexicoUSA
| | - Patricia J Conrod
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
- Department of PsychiatryUniversity of MontrealMontrealCanada
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity of TübingenTübingenGermany
- Department of Psychology (Clinical Psychology II)PFH – Private University of Applied SciencesGöttingenGermany
| | - Fabrice Crivello
- Groupe d'Imagerie NeurofonctionnelleInstitut des Maladies NeurodégénérativesBordeauxFrance
| | - Christopher G Davey
- Centre for Youth Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- OrygenParkvilleVictoriaAustralia
| | - Erin W Dickie
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of PsychiatryUniversity of TorontoTorontoCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental Neurosciences; Technische Universität Dresden, Faculty of MedicineUniversity Hospital C.G. CarusDresdenGermany
| | - Dennis van't Ent
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | - Simon E Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Jean‐Paul Fouche
- Department of Psychiatry and Neuroscience InstituteUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Barbara Franke
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
| | - Paola Fuentes‐Claramonte
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Eco JC de Geus
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | | | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Olin Center for Neuropsychiatric Research, Institute of LivingHartford HospitalHartfordConnecticutUSA
| | - Ian H Gotlib
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Hans J Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg University HospitalHeidelbergGermany
| | - Patricia Gruner
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Raquel E Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain InstituteChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Ruben C Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Lieuwe de Haan
- Department of Early PsychosisAmsterdam UMCAmsterdamThe Netherlands
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of PsychiatryThe University of Melbourne & Melbourne HealthMelbourneAustralia
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion regulationUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sean N Hatton
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Dirk J Heslenfeld
- Departments of Experimental and Clinical PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMCVrije UniversiteitAmsterdamThe Netherlands
- Department of Anatomy & Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Ian B Hickie
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Pieter J Hoekstra
- Department of PsychiatryUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
| | - Avram J Holmes
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Martine Hoogman
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Norbert Hosten
- Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Fleur M Howells
- Neuroscience InstituteUniversity of Cape TownCape TownWestern CapeSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Chaim Huyser
- De Bascule, Academic center child and adolescent psychiatryDuivendrechtThe Netherlands
- Amsterdam UMC Department of Child and Adolescent PsychiatryAmsterdamThe Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Anthony C James
- Department of PsychiatryWarneford HospitalOxfordUK
- Highfield UnitWarneford HospitalOxfordUK
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - John A Joska
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Andrew J Kalnin
- Department of RadiologyThe Ohio State University College of MedicineColumbusOhioUSA
| | | | - Marieke Klein
- Department of Psychiatry, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Laura Koenders
- Department of Early PsychosisAmsterdam UMCAmsterdamThe Netherlands
| | - Knut K Kolskår
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- Sunnaas Rehabilitation Hospital HTNesoddenNorway
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg University HospitalHeidelbergGermany
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Jim Lagopoulos
- Sunshine Coast Mind and Neuroscience Thompson InstituteBirtinyaQueenslandAustralia
- University of the Sunshine CoastSunshine CoastQueenslandAustralia
| | - Luisa Lazaro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of Child and Adolescent Psychiatry and PsychologyHospital ClínicBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institut (IDIBAPS)BarcelonaSpain
- Department of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Irina S Lebedeva
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Phil H Lee
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityCape TownWestern CapeSouth Africa
| | | | - Sophie Maingault
- Institut des maladies neurodégénérativesUniversité de BordeauxBordeauxFrance
| | - Nicholas G Martin
- Genetic EpidemiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Ignacio Martínez‐Zalacaín
- Department of Psychiatry, Bellvitge University HospitalBellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Department of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
| | - David Mataix‐Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Bernard Mazoyer
- University of BordeauxBordeauxFrance
- Bordeaux University HospitalBordeauxFrance
| | - Brenna C McDonald
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | | | - Katie L McMahon
- Herston Imaging Research Facility and School of Clinical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
- Faculty of Health, Institute of Health and Biomedical InnovationQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - José M Menchón
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of Psychiatry, Bellvitge University HospitalBellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Department of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
| | - Jilly Naaijen
- Department of Cognitive NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | - Lars Nyberg
- Department of Radiation SciencesUmeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Jaap Oosterlaan
- Emma Children's Hospital, Amsterdam UMC University of Amsterdam and Vrije Universiteit AmsterdamEmma Neuroscience Group, Department of Pediatrics, Amsterdam Reproduction & DevelopmentAmsterdamThe Netherlands
- Clinical Neuropsychology SectionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Paul Pauli
- Department of PsychologyUniversity of WürzburgWürzburgGermany
- Centre of Mental Health, Medical FacultyUniversity of WürzburgWürzburgGermany
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
- Lieber Institute for Brain DevelopmentJohns Hopkins Medical CampusBaltimoreMary LandUSA
| | - Edith Pomarol‐Clotet
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Maria J Portella
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryInstitut d'Investigació Biomèdica Sant PauBarcelonaSpain
| | - Joaquim Radua
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Early Psychosis: Interventions and Clinical‐detection (EPIC) lab, Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital FrankfurtFrankfur am MaintGermany
| | - Geneviève Richard
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Joshua L Roffman
- Department of PsychiatryMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Pedro GP Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress ResearchMcLean Hospital, Harvard Medical SchoolBelmontMassachusettsUSA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
- Neuropsychiatric InstituteThe Prince of Wales HospitalRandwickNew South WalesAustralia
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | | | - Andrew J Saykin
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer Disease CenterIndianapolisIndianaUSA
| | - Mauricio H Serpa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Kang Sim
- West Region, Institute of Mental HealthSingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Andrew Simmons
- Department of Neuroimaging, Institute of PsychiatryPsychology and Neurology, King's College LondonLondonUK
| | - Jordan W Smoller
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, Rijksuniversiteit GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Carles Soriano‐Mas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of Psychiatry, Bellvitge University HospitalBellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Lachlan T Strike
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Philip R Szeszko
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC)James J. Peters VA Medical CenterNew YorkNew YorkUSA
| | - Henk S Temmingh
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Julian N Trollor
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Anne Uhlmann
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
- Department of Child and Adolescent Psychiatry and PsychotherapyFaculty of Medicine Carl Gustav Carus of TU DresdenDresdenGermany
| | - Ilya M Veer
- Department of Psychiatry and Psychotherapy CCM, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dick J Veltman
- Department of Psychiatry & Amsterdam NeuroscienceAmsterdam UMC, location VUMCAmsterdamThe Netherlands
| | - Aristotle Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of PsychiatryUniversity of TorontoTorontoCanada
| | - Henry Völzke
- Institute for Community MedicineUniversity Medicine GreifswaldGreifswaldGermany
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- DZD (German Center for Diabetes Research), partner site GreifswaldGreifswaldGermany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Lei Wang
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Yang Wang
- Department of RadiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Bernd Weber
- Institute for Experimental Epileptology and Cognition ResearchUniversity Hospital BonnBonnGermany
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - John D West
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Heather C Whalley
- Division of PsychiatryUniversity of EdinburghEdinburghUK
- Division of PsychiatryRoyal Edinburgh HospitalEdinburghUK
| | | | - Katharina Wittfeld
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Daniel H Wolf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Margaret J Wright
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQueenslandAustralia
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Yuliya N Yoncheva
- Department of Child and Adolescent Psychiatry, NYU Child Study CenterHassenfeld Children's Hospital at NYU LangoneNew YorkNew YorkUSA
| | - Marcus V Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
- Instituto de Ensino e PesquisaHospital Sírio‐LibanêsSão PauloBrazil
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental HealthUniversity of WürzburgWürzburgGermany
| | - Greig I de Zubicaray
- Faculty of Health, Institute of Health and Biomedical InnovationQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eveline A Crone
- Institute of PsychologyLeiden UniversityLeidenThe Netherlands
- Leiden Institute for Brain and CognitionLeidenThe Netherlands
- Department of Psychology, Education and Child Studies (DPECS), Erasmus School of Social and Behavioral SciencesErasmus University RotterdamThe Netherlands
| | - Sophia Frangou
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| |
Collapse
|
26
|
Salminen LE, Tubi MA, Bright J, Thomopoulos SI, Wieand A, Thompson PM. Sex is a defining feature of neuroimaging phenotypes in major brain disorders. Hum Brain Mapp 2022; 43:500-542. [PMID: 33949018 PMCID: PMC8805690 DOI: 10.1002/hbm.25438] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Sex is a biological variable that contributes to individual variability in brain structure and behavior. Neuroimaging studies of population-based samples have identified normative differences in brain structure between males and females, many of which are exacerbated in psychiatric and neurological conditions. Still, sex differences in MRI outcomes are understudied, particularly in clinical samples with known sex differences in disease risk, prevalence, and expression of clinical symptoms. Here we review the existing literature on sex differences in adult brain structure in normative samples and in 14 distinct psychiatric and neurological disorders. We discuss commonalities and sources of variance in study designs, analysis procedures, disease subtype effects, and the impact of these factors on MRI interpretation. Lastly, we identify key problems in the neuroimaging literature on sex differences and offer potential recommendations to address current barriers and optimize rigor and reproducibility. In particular, we emphasize the importance of large-scale neuroimaging initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analyses consortium, the UK Biobank, Human Connectome Project, and others to provide unprecedented power to evaluate sex-specific phenotypes in major brain diseases.
Collapse
Affiliation(s)
- Lauren E. Salminen
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Meral A. Tubi
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Joanna Bright
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Alyssa Wieand
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| |
Collapse
|
27
|
Sambuco N. Sex differences in the aging brain? A voxel-based morphometry analysis of the hippocampus and the amygdala. Neuroreport 2021; 32:1320-1324. [PMID: 34554939 DOI: 10.1097/wnr.0000000000001728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Volumetric reductions in the hippocampus and the amygdala are considered a hallmark for many psychiatric and neurodegenerative disorders. Because brain atrophy is often observed in disorders that have a higher prevalence in females than males, it has been proposed that sex differences in the aging brain represent a vulnerability factor for developing more severe psychiatric conditions. METHODS Sexual dimorphism was assessed in the amygdala volume and hippocampal volume in a large sample (N = 554) of healthy individuals ranging from 20 to 79 years old, using structural brain data available from a public dataset. RESULTS In both the hippocampus and the amygdala, a quadratic association was found between age and brain volume. Using uncorrected data for head size [total intracranial volume (TIV)], males clearly demonstrated larger amygdala and hippocampal volume across all ages, and an interaction between age and sex in the hippocampus supported the hypothesis of accelerated atrophy in the hippocampus in later life (60-79 years old). However, when volumetric data adjusted for TIV were used, sex differences were not observed in the hippocampus nor the amygdala. CONCLUSION These findings support the extensive series of studies suggesting that sex differences in brain volume are likely related to the confounding effect of head size. While continued effort is allocated to identify sex-related biomarkers, increasing evidence suggests that sexual dimorphism in the hippocampus or the amygdala does not appear to be the primary candidates for precision medicine to identify sex-related biomarkers that index potential vulnerabilities.
Collapse
Affiliation(s)
- Nicola Sambuco
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
28
|
Bruña R, Maestú F, López-Sanz D, Bagic A, Cohen AD, Chang YF, Cheng Y, Doman J, Huppert T, Kim T, Roush RE, Snitz BE, Becker JT. Sex Differences in Magnetoencephalography-Identified Functional Connectivity in the Human Connectome Project Connectomics of Brain Aging and Dementia Cohort. Brain Connect 2021; 12:561-570. [PMID: 34726478 PMCID: PMC9419974 DOI: 10.1089/brain.2021.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: The human brain shows modest traits of sexual dimorphism, with the female brain, on average, 10% smaller than the male brain. These differences do not imply a lowered cognitive performance, but suggest a more optimal brain organization in women. Here we evaluate the patterns of functional connectivity (FC) in women and men from the Connectomics of Brain Aging and Dementia sample. Methods: We used phase locking values to calculate FC from the magnetoencephalography time series in a sample of 138 old adults (87 females and 51 males). We compared the FC patterns between sexes, with the intention of detecting regions with different levels of connectivity. Results: We found a frontal cluster, involving anterior cingulate and the medial frontal lobe, where women showed higher FC values than men. Involved connections included the following: (1) medial parietal areas, such as posterior cingulate cortices and precunei; (2) right insula; and (3) medium cingulate and paracingulate cortices. Moreover, these differences persisted when considering only cognitively intact individuals, but not when considering only cognitively impaired individuals. Discussion: Increased anteroposterior FC has been identified as a biomarker for increased risk of developing cognitive impairment or dementia. In our study, cognitively intact women showed higher levels of FC than their male counterparts. This result suggests that neurodegenerative processes could be taking place in these women, but the changes are undetected by current diagnosis tools. FC, as measured here, might be valuable for early identification of this neurodegeneration.
Collapse
Affiliation(s)
- Ricardo Bruña
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Universidad Complutense de Madrid, Pozuelo de Alarcón, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Psychobiology, Universidad Complutense de Madrid, Madrid, Spain
| | - Anto Bagic
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Statistics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ann D Cohen
- Department of Neurosurgery, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yue-Fang Chang
- Department of Neurosurgery, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yu Cheng
- Department of Statistics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Biostatistics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jack Doman
- Department of Neurosurgery, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ted Huppert
- Department of Electrical Engineering, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tae Kim
- Department of Radiology, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca E Roush
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Beth E Snitz
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James T Becker
- Department of Psychiatry, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Neurology, and The University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Psychology, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Safari S, Ahmadi N, Mohammadkhani R, Ghahremani R, Khajvand-Abedeni M, Shahidi S, Komaki A, Salehi I, Karimi SA. Sex differences in spatial learning and memory and hippocampal long-term potentiation at perforant pathway-dentate gyrus (PP-DG) synapses in Wistar rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2021; 17:9. [PMID: 34724971 PMCID: PMC8559395 DOI: 10.1186/s12993-021-00184-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/24/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent studies show that gender may have a significant impact on brain functions. However, the reports of sex effects on spatial ability and synaptic plasticity in rodents are divergent and controversial. Here spatial learning and memory was measured in male and female rats by using Morris water maze (MWM) task. Moreover, to assess sex difference in hippocampal synaptic plasticity we examined hippocampal long-term potentiation (LTP) at perforant pathway-dentate gyrus (PP-DG) synapses. RESULTS In MWM task, male rats outperformed female rats, as they had significantly shorter swim distance and escape latency to find the hidden platform during training days. During spatial reference memory test, female rats spent less time and traveled less distance in the target zone. Male rats also had larger LTP at PP-DG synapses, which was evident in the high magnitude of population spike (PS) potentiation and the field excitatory post synaptic potentials (fEPSP) slope. CONCLUSIONS Taken together, our results suggest that sex differences in the LTP at PP-DG synapses, possibly contribute to the observed sex difference in spatial learning and memory.
Collapse
Affiliation(s)
- Samaneh Safari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nesa Ahmadi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Reza Ghahremani
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | | | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran.
| |
Collapse
|
30
|
Williams CM, Peyre H, Toro R, Ramus F. Neuroanatomical norms in the UK Biobank: The impact of allometric scaling, sex, and age. Hum Brain Mapp 2021; 42:4623-4642. [PMID: 34268815 PMCID: PMC8410561 DOI: 10.1002/hbm.25572] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Few neuroimaging studies are sufficiently large to adequately describe population‐wide variations. This study's primary aim was to generate neuroanatomical norms and individual markers that consider age, sex, and brain size, from 629 cerebral measures in the UK Biobank (N = 40,028). The secondary aim was to examine the effects and interactions of sex, age, and brain allometry—the nonlinear scaling relationship between a region and brain size (e.g., total brain volume)—across cerebral measures. Allometry was a common property of brain volumes, thicknesses, and surface areas (83%) and was largely stable across age and sex. Sex differences occurred in 67% of cerebral measures (median |β| = .13): 37% of regions were larger in males and 30% in females. Brain measures (49%) generally decreased with age, although aging effects varied across regions and sexes. While models with an allometric or linear covariate adjustment for brain size yielded similar significant effects, omitting brain allometry influenced reported sex differences in variance. Finally, we contribute to the reproducibility of research on sex differences in the brain by replicating previous studies examining cerebral sex differences. This large‐scale study advances our understanding of age, sex, and brain allometry's impact on brain structure and provides data for future UK Biobank studies to identify the cerebral regions that covary with specific phenotypes, independently of sex, age, and brain size.
Collapse
Affiliation(s)
- Camille Michèle Williams
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Études Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| | - Hugo Peyre
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Études Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France.,INSERM UMR 1141, Paris Diderot University, Paris, France.,Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, Paris, France.,Center for Research and Interdisciplinarity (CRI), INSERM U1284, Paris, France.,Université de Paris, Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Études Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| |
Collapse
|
31
|
Duarte-Guterman P, Albert AY, Barha CK, Galea LAM. Sex influences the effects of APOE genotype and Alzheimer's diagnosis on neuropathology and memory. Psychoneuroendocrinology 2021; 129:105248. [PMID: 33962245 DOI: 10.1016/j.psyneuen.2021.105248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/10/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by severe cognitive decline and pathological changes in the brain (brain atrophy, hyperphosphorylation of tau, and deposition of amyloid-beta protein). Females have greater neuropathology (AD biomarkers and brain atrophy rates) and cognitive decline than males, however these effects can depend on diagnosis (amnestic mild cognitive impairment (aMCI) or AD) and APOE genotype (presence of ε4 alleles). Using the ADNI database (N = 630 females, N = 830 males), we analyzed the effect of sex, APOE genotype (non-carriers or carriers of APOEε4 alleles), and diagnosis (cognitively normal (CN), early aMCI (EMCI), late aMCI (LMCI), probable AD) on cognition (memory and executive function), hippocampal volume, and AD biomarkers (CSF levels of amyloid beta, tau, and ptau). Regardless of APOE genotype, memory scores were higher in CN, EMCI, and LMCI females compared to males but this sex difference was absent in probable AD, which may suggest a delay in the onset of cognitive decline or diagnosis and/or a faster trajectory of cognitive decline in females. We found that, regardless of diagnosis, CSF tau-pathology was disproportionately elevated in female carriers of APOEε4 alleles compared to males. In contrast, male carriers of APOEε4 alleles had reduced levels of CSF amyloid beta compared to females, irrespective of diagnosis. We also detected sex differences in hippocampal volume but the direction was dependent on the method of correction. Altogether results suggest that across diagnosis females show greater memory decline compared to males and APOE genotype affects AD neuropathology differently in males and females which may influence sex differences in incidence and progression of aMCI and AD.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Arianne Y Albert
- Women's Health Research Institute of British Columbia, Vancouver, BC, Canada
| | - Cindy K Barha
- Djavad Mowafaghian Centre for Brain Health and Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
32
|
Chenji S, Cox E, Jaworska N, Swansburg RM, MacMaster FP. Body mass index and variability in hippocampal volume in youth with major depressive disorder. J Affect Disord 2021; 282:415-425. [PMID: 33422817 DOI: 10.1016/j.jad.2020.12.176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/31/2020] [Accepted: 12/24/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The hippocampus has been implicated in major depressive disorder (MDD), in both adults and youth. However, possible sources of variability for the hippocampus have not been well delineated. Here, we explored the relationship between body mass index (BMI) and hippocampal volume in youth with MDD. METHODS Twenty-two controls (9 male, 13 female, 12-24 years), 24 youth with MDD and normal BMI (12 male, 12 female, 14-24 years), and 20 youth with MDD and high BMI (14 male, 6 female, 13-22 years) underwent magnetic resonance (MR) imaging and spectroscopy (1H-MRS). Hippocampal volume was determined through manual tracing of high-resolution anatomical T1 scans, and LCModel quantified neurochemical concentrations. Intracranial volume was used as a covariate in analysis to control for effects of brain volume on hippocampus. RESULTS In youth with MDD and normal BMI, right hippocampal volume was reduced (p = 0.006, Bonferroni) and a trend for reduced left hippocampal volume was noted when compared to healthy controls (p = 0.054, Bonferroni). Left hippocampal volumes were negatively associated with BMI in youth with MDD and high BMI group (r = -0.593, p = 0.006). No associations were found between the right hippocampus and BMI and there were no group differences for metabolite concentrations. LIMITATIONS Larger sample sizes would enable researchers to explore overweight vs obese groups and effect of sex in MDD-BMI groups. CONCLUSIONS BMI may account for some of the variability observed in previous studies of hippocampal volume in MDD, and therefore BMI impacts should be considered in future analyses.
Collapse
Affiliation(s)
- Sneha Chenji
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Emily Cox
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Natalia Jaworska
- University of Ottawa Institute of Mental Health Research, Ontario, Canada
| | - Rose M Swansburg
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Frank P MacMaster
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada; Addictions and Mental Health Strategic Clinical Network, Alberta, Canada.
| |
Collapse
|
33
|
Dump the "dimorphism": Comprehensive synthesis of human brain studies reveals few male-female differences beyond size. Neurosci Biobehav Rev 2021; 125:667-697. [PMID: 33621637 DOI: 10.1016/j.neubiorev.2021.02.026] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/01/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
With the explosion of neuroimaging, differences between male and female brains have been exhaustively analyzed. Here we synthesize three decades of human MRI and postmortem data, emphasizing meta-analyses and other large studies, which collectively reveal few reliable sex/gender differences and a history of unreplicated claims. Males' brains are larger than females' from birth, stabilizing around 11 % in adults. This size difference accounts for other reproducible findings: higher white/gray matter ratio, intra- versus interhemispheric connectivity, and regional cortical and subcortical volumes in males. But when structural and lateralization differences are present independent of size, sex/gender explains only about 1% of total variance. Connectome differences and multivariate sex/gender prediction are largely based on brain size, and perform poorly across diverse populations. Task-based fMRI has especially failed to find reproducible activation differences between men and women in verbal, spatial or emotion processing due to high rates of false discovery. Overall, male/female brain differences appear trivial and population-specific. The human brain is not "sexually dimorphic."
Collapse
|
34
|
Loss of α7 nicotinic acetylcholine receptors in GABAergic neurons causes sex-dependent decreases in radial glia-like cell quantity and impairments in cognitive and social behavior. Brain Struct Funct 2021; 226:365-379. [PMID: 33398432 DOI: 10.1007/s00429-020-02179-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
The dentate gyrus (DG) is a unique brain structure in that neurons can be generated postnatally and integrated within existing circuitry throughout life. The maturation process of these newly generated neurons (granule cells) is modulated by nicotinic acetylcholine receptors (nAChRs) through a variety of mechanisms such as neural stem pool proliferation, cell survival, signal modulation, and dendritic integration. Disrupted nAChR signaling has been implicated in neuropsychiatric and neurodegenerative disorders, potentially via alterations in DG neurogenesis. GABAergic interneurons are known to express nAChRs, predominantly the α7 subtype, and have been shown to shape development, integration, and circuit reorganization of DG granule cells. Therefore, we examined histological and behavioral effects of knocking out α7 nAChRs in GABAergic neurons. Deletion of α7 nAChRs resulted in a reduction of radial glia-like cells within the subgranular zone of the DG and a concomitant trend towards decreased immature neurons, specifically in male mice, as well as sex-dependent changes in several behaviors, including social recognition and spatial learning. Overall, these findings suggest α7 nAChRs expressed in GABAergic neurons play an important role in regulating the adult neural stem cell pool and behavior in a sex-dependent manner. This provides important insight into the mechanisms by which cholinergic dysfunction contributes to the cognitive and behavioral changes associated with neurodevelopmental and neurodegenerative disorders.
Collapse
|
35
|
Bryant KL, Li L, Eichert N, Mars RB. A comprehensive atlas of white matter tracts in the chimpanzee. PLoS Biol 2020; 18:e3000971. [PMID: 33383575 PMCID: PMC7806129 DOI: 10.1371/journal.pbio.3000971] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/13/2021] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Chimpanzees (Pan troglodytes) are, along with bonobos, humans’ closest living relatives. The advent of diffusion MRI tractography in recent years has allowed a resurgence of comparative neuroanatomical studies in humans and other primate species. Here we offer, in comparative perspective, the first chimpanzee white matter atlas, constructed from in vivo chimpanzee diffusion-weighted scans. Comparative white matter atlases provide a useful tool for identifying neuroanatomical differences and similarities between humans and other primate species. Until now, comprehensive fascicular atlases have been created for humans (Homo sapiens), rhesus macaques (Macaca mulatta), and several other nonhuman primate species, but never in a nonhuman ape. Information on chimpanzee neuroanatomy is essential for understanding the anatomical specializations of white matter organization that are unique to the human lineage. Diffusion MRI tractography reveals the first complete atlas of white matter of the chimpanzee, with the potential to help understand differences between the organization of human and chimpanzee brains.
Collapse
Affiliation(s)
- Katherine L. Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Longchuan Li
- Marcus Autism Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, United States of America
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rogier B. Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Mu SH, Yuan BK, Tan LH. Effect of Gender on Development of Hippocampal Subregions From Childhood to Adulthood. Front Hum Neurosci 2020; 14:611057. [PMID: 33343321 PMCID: PMC7744655 DOI: 10.3389/fnhum.2020.611057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022] Open
Abstract
The hippocampus is known to be comprised of several subfields, but the developmental trajectories of these subfields are under debate. In this study, we analyzed magnetic resonance imaging (MRI) data from a cross-sectional sample (198 healthy Chinese) using an automated segmentation tool to delineate the development of the hippocampal subregions from 6 to 26 years of age. We also examined whether gender and hemispheric differences influence the development of these subregions. For the whole hippocampus, the trajectory of development was observed to be an inverse-u. A significant increase in volume with age was found for most of the subregions, except for the L/R-parasubiculum, L/R-fimbria, and L-HATA. Gender-related differences were also found in the development of most subregions, especially for the hippocampal tail, CA1, molecular layer HP, GC-DG, CA3, and CA4, which showed a consistent increase in females and an early increase followed by a decrease in males. A comparison of the average volumes showed that the right whole hippocampus was significantly larger, along with the R-presubiculum, R-hippocampal-fissure, L/R-CA1, and L/R-molecular layer HP in males in comparison to females. Additionally, the average volume of the right hemisphere was shown to be significantly larger for the hippocampal tail, CA1, molecular layer HP, GC-DG, CA3, and CA4. However, for the presubiculum, parasubiculum, and fimbria, the left side was shown to be larger. In conclusion, the hippocampal subregions appear to develop in various ways from childhood to adulthood, with both gender and hemispheric differences affecting their development.
Collapse
Affiliation(s)
- Shu Hua Mu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Bin Ke Yuan
- Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Li Hai Tan
- Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
37
|
Mole JP, Fasano F, Evans J, Sims R, Kidd E, Aggleton JP, Metzler-Baddeley C. APOE-ε4-related differences in left thalamic microstructure in cognitively healthy adults. Sci Rep 2020; 10:19787. [PMID: 33188215 PMCID: PMC7666117 DOI: 10.1038/s41598-020-75992-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 01/05/2023] Open
Abstract
APOE-ε4 is a main genetic risk factor for developing late onset Alzheimer's disease (LOAD) and is thought to interact adversely with other risk factors on the brain. However, evidence regarding the impact of APOE-ε4 on grey matter structure in asymptomatic individuals remains mixed. Much attention has been devoted to characterising APOE-ε4-related changes in the hippocampus, but LOAD pathology is known to spread through the whole of the Papez circuit including the limbic thalamus. Here, we tested the impact of APOE-ε4 and two other risk factors, a family history of dementia and obesity, on grey matter macro- and microstructure across the whole brain in 165 asymptomatic individuals (38-71 years). Microstructural properties of apparent neurite density and dispersion, free water, myelin and cell metabolism were assessed with Neurite Orientation Density and Dispersion (NODDI) and quantitative magnetization transfer (qMT) imaging. APOE-ε4 carriers relative to non-carriers had a lower macromolecular proton fraction (MPF) in the left thalamus. No risk effects were present for cortical thickness, subcortical volume, or NODDI indices. Reduced thalamic MPF may reflect inflammation-related tissue swelling and/or myelin loss in APOE-ε4. Future prospective studies should investigate the sensitivity and specificity of qMT-based MPF as a non-invasive biomarker for LOAD risk.
Collapse
Affiliation(s)
- Jilu P Mole
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Fabrizio Fasano
- Siemens Healthcare, Henkestrasse 127, 91052, Erlangen, Germany
| | - John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Haydn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Emma Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue,, Cardiff, CF10 3NB, UK
| | - John P Aggleton
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
38
|
Pillay S, Bhagwandin A, Bertelsen MF, Patzke N, Engler G, Engel AK, Manger PR. The hippocampal formation of two carnivore species: The feliform banded mongoose and the caniform domestic ferret. J Comp Neurol 2020; 529:8-27. [PMID: 33016331 DOI: 10.1002/cne.25047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/03/2023]
Abstract
Employing cyto-, myelo-, and chemoarchitectural staining techniques, we analyzed the structure of the hippocampal formation in the banded mongoose and domestic ferret, species belonging to the two carnivoran superfamilies, which have had independent evolutionary trajectories for the past 55 million years. Our observations indicate that, despite the time since sharing a last common ancestor, these species show extensive similarities. The four major portions of the hippocampal formation (cornu Ammonis, dentate gyrus, subicular complex, and entorhinal cortex) were readily observed, contained the same internal subdivisions, and maintained the topological relationships of these subdivisions that could be considered typically mammalian. In addition, adult hippocampal neurogenesis was observed in both species, occurring at a rate similar to that observed in other mammals. Despite the overall similarities, several differences to each other, and to other mammalian species, were observed. We could not find evidence for the presence of the CA2 and CA4 fields of the cornu Ammonis region. In the banded mongoose the dentate gyrus appears to be comprised of up to seven lamina, through the sublamination of the molecular and granule cell layers, which is not observed in the domestic ferret. In addition, numerous subtle variations in chemoarchitecture between the two species were observed. These differences may contribute to an overall variation in the functionality of the hippocampal formation between the species, and in comparison to other mammalian species. These similarities and variations are important to understanding to what extent phylogenetic affinities and constraints affect potential adaptive evolutionary plasticity of the hippocampal formation.
Collapse
Affiliation(s)
- Sashrika Pillay
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Nina Patzke
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gerhard Engler
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
39
|
Torromino G, Maggi A, De Leonibus E. Estrogen-dependent hippocampal wiring as a risk factor for age-related dementia in women. Prog Neurobiol 2020; 197:101895. [PMID: 32781107 DOI: 10.1016/j.pneurobio.2020.101895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Women are more prone than men to develop age-related dementia, such as Alzheimer's disease (AD). This has been linked to the marked decrease in circulating estrogens during menopause. This review proposes to change this perspective and consider women's vulnerability to developing AD as a consequence of sex differences in the neurobiology of memory, focusing on the hippocampus. The hippocampus of cognitively impaired subjects tends to shrink with age; however, in many cases, this can be prevented by exercise or cognitive training, suggesting that if you do not use the hippocampus you lose it. We will review the developmental trajectory of sex steroids-regulated differences on the hippocampus, proposing that the overall shaping action of sex-steroids results in a lower usage of the hippocampus in females, which in turn makes them more vulnerable to the effects of ageing, the "network fragility hypothesis". To explain why women rely less on hippocampus-dependent strategies, we propose a "computational hypothesis" that is based on experimental evidence suggesting that the direct effects of estrogens on hippocampal synaptic and structural plasticity during the estrous-cycle confers instability to the memory-dependent hippocampal network. Finally, we propose to counteract AD with training and/or treatments, such as orienteering, which specifically favour the use of the hippocampus.
Collapse
Affiliation(s)
- Giulia Torromino
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy.
| |
Collapse
|
40
|
Jacob A, Tward DJ, Resnick S, Smith PF, Lopez C, Rebello E, Wei EX, Ratnanather JT, Agrawal Y. Vestibular function and cortical and sub-cortical alterations in an aging population. Heliyon 2020; 6:e04728. [PMID: 32904672 PMCID: PMC7457317 DOI: 10.1016/j.heliyon.2020.e04728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 08/12/2020] [Indexed: 01/26/2023] Open
Abstract
While it is well known that the vestibular system is responsible for maintaining balance, posture and coordination, there is increasing evidence that it also plays an important role in cognition. Moreover, a growing number of epidemiological studies are demonstrating a link between vestibular dysfunction and cognitive deficits in older adults; however, the exact pathways through which vestibular loss may affect cognition are unknown. In this cross-sectional study, we sought to identify relationships between vestibular function and variation in morphometry in brain structures from structural neuroimaging. We used a subset of 80 participants from the Baltimore Longitudinal Study of Aging, who had both brain MRI and vestibular physiological data acquired during the same visit. Vestibular function was evaluated through the cervical vestibular-evoked myogenic potential (cVEMP). The brain structures of interest that we analyzed were the hippocampus, amygdala, thalamus, caudate nucleus, putamen, insula, entorhinal cortex (ERC), trans-entorhinal cortex (TEC) and perirhinal cortex, as these structures comprise or are connected with the putative "vestibular cortex." We modeled the volume and shape of these structures as a function of the presence/absence of cVEMP and the cVEMP amplitude, adjusting for age and sex. We observed reduced overall volumes of the hippocampus and the ERC associated with poorer vestibular function. In addition, we also found significant relationships between the shape of the hippocampus (p = 0.0008), amygdala (p = 0.01), thalamus (p = 0.008), caudate nucleus (p = 0.002), putamen (p = 0.02), and ERC-TEC complex (p = 0.008) and vestibular function. These findings provide novel insight into the multiple pathways through which vestibular loss may impact brain structures that are critically involved in spatial memory, navigation and orientation.
Collapse
Affiliation(s)
- Athira Jacob
- Center for Imaging Science and Institute for Computational Medicine,
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD,
USA
| | - Daniel J. Tward
- Center for Imaging Science and Institute for Computational Medicine,
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD,
USA
| | - Susan Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging,
Baltimore, MD, USA
| | - Paul F. Smith
- Department Pharmacology and Toxicology, School of Medical Sciences, The
Brain Health Research Centre, University of Otago, New Zealand
| | - Christophe Lopez
- Aix Marseille Universite, Centre National de la Recherche Scientifique,
Marseille, France
| | - Elliott Rebello
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
| | - Eric X. Wei
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
| | - J. Tilak Ratnanather
- Center for Imaging Science and Institute for Computational Medicine,
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD,
USA
| | - Yuri Agrawal
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins
University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Qi R, Luo Y, Zhang L, Weng Y, Surento W, Jahanshad N, Xu Q, Yin Y, Li L, Cao Z, Thompson PM, Lu GM. Social support modulates the association between PTSD diagnosis and medial frontal volume in Chinese adults who lost their only child. Neurobiol Stress 2020; 13:100227. [PMID: 32490056 PMCID: PMC7256056 DOI: 10.1016/j.ynstr.2020.100227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/03/2020] [Accepted: 05/02/2020] [Indexed: 11/30/2022] Open
Abstract
Losing an only child is a devastating life event that a parent can experience and may lead to post-traumatic stress disorder (PTSD). Social support could buffer against the negative influence of this trauma, but the neural mechanism underlying this alleviation effect remains poorly understood. In this study, voxel-based morphometry was conducted on brain MRI of 220 Han Chinese adults who had lost their only child. We performed multiple regression analysis to investigate the associations between social support scores – along with PTSD diagnosis, age, sex, body mass index (BMI) – and brain grey matter (GM) volumes in these bereaved parents. For all trauma-exposed adults, social support-by-diagnosis interaction was significantly associated with medial prefrontal volume (multiple comparisons corrected P ˂ 0.05), where positive correlation was found in adults with PTSD but not in those without PTSD. Besides, PTSD diagnosis was associated with decreased GM volume in medial and middle frontal gyri (P ˂ 0.001, uncorrected); older age was associated with widespread GM volume deficits; male sex was associated with lower GM volume in rolandic operculum, insular, postcentral gyrus (corrected P ˂ 0.05), and lower GM in thalamus but greater GM in parahippocampus (P ˂ 0.001, uncorrected); higher BMI was associated with GM deficits in occipital gyrus (corrected P ˂ 0.05) and precuneus (P ˂ 0.001, uncorrected). In conclusions, social support modulates the association between PTSD diagnosis and medial frontal volume, which may play an important role in the emotional disturbance in PTSD development in adults who lost their only child.
Collapse
Affiliation(s)
- Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Yifeng Luo
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 75 Tongzhenguan Road, 214200, Wuxi, China
| | - Li Zhang
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, 410011, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Wesley Surento
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yan Yin
- Hangzhou Seventh People's Hospital, Mental Health Center of Zhejiang University School of Medicine, 305 Tianmushan Road, Hangzhou, Zhejiang, 310013, China
| | - Lingjiang Li
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, 410011, China
| | - Zhihong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 75 Tongzhenguan Road, 214200, Wuxi, China
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
- Corresponding author.
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- Corresponding author. Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China.
| |
Collapse
|
42
|
Kijonka M, Borys D, Psiuk-Maksymowicz K, Gorczewski K, Wojcieszek P, Kossowski B, Marchewka A, Swierniak A, Sokol M, Bobek-Billewicz B. Whole Brain and Cranial Size Adjustments in Volumetric Brain Analyses of Sex- and Age-Related Trends. Front Neurosci 2020; 14:278. [PMID: 32317915 PMCID: PMC7147247 DOI: 10.3389/fnins.2020.00278] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Our goal was to determine the influence of sex, age and the head/brain size on the compartmental brain volumes in the radiologically verified healthy population (96 subjects; 54 women and 42 men) from the Upper Silesia region in Poland. The MRI examinations were done using 3T Philips Achieva with the same T1-weighted and T2-weighted protocols. The image segmentation procedures were performed with SPM (Statistical Parameter Mapping) and FSL-FIRST software. The volumes of 14 subcortical structures for the left and right hemispheres and 4 overall volumes were calculated. The General Linear Models (GLM) analysis was used with and without the Total Brain Volume (TBV) and Intracranial Volume (ICV) parameters as the covariates to study the regional vs. global brain atrophy. After the ICV/TBV adjustments, the majority of sex differences in the specific volumes of interest (VOIs) revealed to be linked to the difference in the head/brain size parameters. The analysis also confirmed the significant effect of the aging process on the brain loss. After the TBV adjustment, the age- and sex-related volumetric trends for the gray and white matter volumes were observed: the negative age dependence of the gray matter volume is more pronounced in the males, while in case of the white matter the positive age-related trend in the female group is weaker. The local losses of the left caudate nucleus and the right thalamus are more advanced than the global brain atrophy. Different head-size correction strategies are not interchangeable and may yield various volumetric results, but when used together, facilitate studies on the regional dependencies inherent to a healthy, but aging, brain.
Collapse
Affiliation(s)
- Marek Kijonka
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Krzysztof Psiuk-Maksymowicz
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Kamil Gorczewski
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Piotr Wojcieszek
- Brachytherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Swierniak
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Maria Sokol
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Barbara Bobek-Billewicz
- Department of Radiology, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| |
Collapse
|
43
|
Fellner M, Varga B, Grolmusz V. The Frequent Network Neighborhood Mapping of the human hippocampus shows much more frequent neighbor sets in males than in females. PLoS One 2020; 15:e0227910. [PMID: 31990956 PMCID: PMC6986708 DOI: 10.1371/journal.pone.0227910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
In the study of the human connectome, the vertices and the edges of the network of the human brain are analyzed: the vertices of the graphs are the anatomically identified gray matter areas of the subjects; this set is exactly the same for all the subjects. The edges of the graphs correspond to the axonal fibers, connecting these areas. In the biological applications of graph theory, it happens very rarely that scientists examine numerous large graphs on the very same, labeled vertex set. Exactly this is the case in the study of the connectomes. Because of the particularity of these sets of graphs, novel, robust methods need to be developed for their analysis. Here we introduce the new method of the Frequent Network Neighborhood Mapping for the connectome, which serves as a robust identification of the neighborhoods of given vertices of special interest in the graph. We apply the novel method for mapping the neighborhoods of the human hippocampus and discover strong statistical asymmetries between the connectomes of the sexes, computed from the Human Connectome Project. We analyze 413 braingraphs, each with 463 nodes. We show that the hippocampi of men have much more significantly frequent neighbor sets than women; therefore, in a sense, the connections of the hippocampi are more regularly distributed in men and more varied in women. Our results are in contrast to the volumetric studies of the human hippocampus, where it was shown that the relative volume of the hippocampus is the same in men and women.
Collapse
Affiliation(s)
- Máté Fellner
- PIT Bioinformatics Group, Eötvös University, Budapest, Hungary
| | - Bálint Varga
- PIT Bioinformatics Group, Eötvös University, Budapest, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös University, Budapest, Hungary
- Uratim Ltd., Budapest, Hungary
- * E-mail:
| |
Collapse
|
44
|
Chen F, Bertelsen AB, Holm IE, Nyengaard JR, Rosenberg R, Dorph-Petersen KA. Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects. Brain Res 2020; 1727:146546. [DOI: 10.1016/j.brainres.2019.146546] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/29/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
|
45
|
Luders E, Kurth F. Structural differences between male and female brains. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:3-11. [PMID: 33008534 DOI: 10.1016/b978-0-444-64123-6.00001-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research based on structural magnetic resonance imaging (MRI) has revealed a number of sex differences in the anatomy of the human brain. The first part of this chapter presents an excerpt of these findings discriminating among effects on a global, regional, and local level. While findings are far from consistent and conclusive, there is general consensus with respect to sex-specific brain size, with male brains being bigger on average than female brains. So, the question arises as to whether any of the observed sex differences are merely driven by brain size. The second part of this chapter thus sheds light on a unique scientific attempt to discriminate between brain size effects and sex effects. The overarching goal of this chapter is to exemplify the variety of findings and to demonstrate that the presence, magnitude, and direction of significant sex differences strongly depend on the measurement applied. The assumption that sex differences are simply a by-product of brain size, rather than pure (size independent) sex effects has proven to be true for some but certainly not all findings. Therefore, when examining the possible sexual dimorphism of the brain, it is imperative to avoid oversimplification and generalization.
Collapse
Affiliation(s)
- Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand; Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
Ritchie SJ, Cox SR, Shen X, Lombardo MV, Reus LM, Alloza C, Harris MA, Alderson HL, Hunter S, Neilson E, Liewald DCM, Auyeung B, Whalley HC, Lawrie SM, Gale CR, Bastin ME, McIntosh AM, Deary IJ. Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants. Cereb Cortex 2019; 28:2959-2975. [PMID: 29771288 PMCID: PMC6041980 DOI: 10.1093/cercor/bhy109] [Citation(s) in RCA: 484] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
Sex differences in the human brain are of interest for many reasons: for example, there are sex differences in the observed prevalence of psychiatric disorders and in some psychological traits that brain differences might help to explain. We report the largest single-sample study of structural and functional sex differences in the human brain (2750 female, 2466 male participants; mean age 61.7 years, range 44-77 years). Males had higher raw volumes, raw surface areas, and white matter fractional anisotropy; females had higher raw cortical thickness and higher white matter tract complexity. There was considerable distributional overlap between the sexes. Subregional differences were not fully attributable to differences in total volume, total surface area, mean cortical thickness, or height. There was generally greater male variance across the raw structural measures. Functional connectome organization showed stronger connectivity for males in unimodal sensorimotor cortices, and stronger connectivity for females in the default mode network. This large-scale study provides a foundation for attempts to understand the causes and consequences of sex differences in adult brain structure and function.
Collapse
Affiliation(s)
- Stuart J Ritchie
- Department of Psychology, The University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Department of Psychology, The University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - Michael V Lombardo
- Department of Psychology and Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus.,Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Lianne M Reus
- Department of Neurology and Alzheimer Centre, VU University Medical Centre, Amsterdam, The Netherlands
| | - Clara Alloza
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - Mathew A Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - Helen L Alderson
- Department of Psychiatry, Queen Margaret Hospital, Dunfermline, UK
| | | | - Emma Neilson
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - David C M Liewald
- Department of Psychology, The University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| | - Bonnie Auyeung
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | | | - Stephen M Lawrie
- Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - Catharine R Gale
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,Brain Research Imaging Centre, The University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK.,Division of Psychiatry, The University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Department of Psychology, The University of Edinburgh, Edinburgh, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
47
|
Hillerer KM, Slattery DA, Pletzer B. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus. Front Neuroendocrinol 2019; 55:100796. [PMID: 31580837 PMCID: PMC7115954 DOI: 10.1016/j.yfrne.2019.100796] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Men and women differ in their vulnerability to a variety of stress-related illnesses, but the underlying neurobiological mechanisms are not well understood. This is likely due to a comparative dearth of neurobiological studies that assess male and female rodents at the same time, while human neuroimaging studies often don't model sex as a variable of interest. These sex differences are often attributed to the actions of sex hormones, i.e. estrogens, progestogens and androgens. In this review, we summarize the results on sex hormone actions in the hippocampus and seek to bridge the gap between animal models and findings in humans. However, while effects of sex hormones on the hippocampus are largely consistent in animals and humans, methodological differences challenge the comparability of animal and human studies on stress effects. We summarise our current understanding of the neurobiological mechanisms that underlie sex-related differences in behavior and discuss implications for stress-related illnesses.
Collapse
Affiliation(s)
- Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University (PMU), Clinical Research Center Salzburg (CRCS), Salzburg, Austria.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
48
|
Tronson NC, Keiser AA. A Dynamic Memory Systems Framework for Sex Differences in Fear Memory. Trends Neurosci 2019; 42:680-692. [PMID: 31473031 DOI: 10.1016/j.tins.2019.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
Abstract
Emerging research demonstrates that a pattern of overlapping but distinct molecular and circuit mechanisms are engaged by males and females during memory tasks. Importantly, sex differences in neural mechanisms and behavioral strategies are evident even when performance on a memory task is similar between females and males. We propose that sex differences in memory may be best understood within a dynamic memory systems framework. Specifically, sex differences in hormonal influences and neural circuit development result in biases in the circuits engaged and the information preferentially stored or retrieved in males and females. By using animal models to understand the neural networks and molecular mechanisms required for memory in both sexes, we can gain crucial insights into sex and gender biases in disorders including post-traumatic stress disorder (PTSD) in humans.
Collapse
Affiliation(s)
- Natalie C Tronson
- Psychology Department, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ashley A Keiser
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
49
|
Sex Differences in the Complexity of Healthy Older Adults' Magnetoencephalograms. ENTROPY 2019; 21:e21080798. [PMID: 33267511 PMCID: PMC7515326 DOI: 10.3390/e21080798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/22/2023]
Abstract
The analysis of resting-state brain activity recording in magnetoencephalograms (MEGs) with new algorithms of symbolic dynamics analysis could help obtain a deeper insight into the functioning of the brain and identify potential differences between males and females. Permutation Lempel-Ziv complexity (PLZC), a recently introduced non-linear signal processing algorithm based on symbolic dynamics, was used to evaluate the complexity of MEG signals in source space. PLZC was estimated in a broad band of frequencies (2–45 Hz), as well as in narrow bands (i.e., theta (4–8 Hz), alpha (8–12 Hz), low beta (12–20 Hz), high beta (20–30 Hz), and gamma (30–45 Hz)) in a sample of 98 healthy elderly subjects (49 males, 49 female) aged 65–80 (average age of 72.71 ± 4.22 for males and 72.67 ± 4.21 for females). PLZC was significantly higher for females than males in the high beta band at posterior brain regions including the precuneus, and the parietal and occipital cortices. Further statistical analyses showed that higher complexity values over highly overlapping regions than the ones mentioned above were associated with larger hippocampal volumes only in females. These results suggest that sex differences in healthy aging can be identified from the analysis of magnetoencephalograms with novel signal processing methods.
Collapse
|
50
|
Pallayova M, Brandeburova A, Tokarova D. Update on Sexual Dimorphism in Brain Structure–Function Interrelationships: A Literature Review. Appl Psychophysiol Biofeedback 2019; 44:271-284. [DOI: 10.1007/s10484-019-09443-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|