1
|
Wankhede NL, Koppula S, Ballal S, Doshi H, Kumawat R, Raju SS, Arora I, Sammeta SS, Khalid M, Zafar A, Taksande BG, Upaganlawar AB, Gulati M, Umekar MJ, Kopalli SR, Kale MB. Virtual reality modulating dynamics of neuroplasticity: Innovations in neuro-motor rehabilitation. Neuroscience 2025; 566:97-111. [PMID: 39722287 DOI: 10.1016/j.neuroscience.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Virtual reality (VR) technology has emerged as a ground-breaking tool in neuroscience, revolutionizing our understanding of neuroplasticity and its implications for neurological rehabilitation. By immersing individuals in simulated environments, VR induces profound neurobiological transformations, affecting neuronal connectivity, sensory feedback mechanisms, motor learning processes, and cognitive functions. These changes highlight the dynamic interplay between molecular events, synaptic adaptations, and neural reorganization, emphasizing the potential of VR as a therapeutic intervention in various neurological disorders. This comprehensive review delves into the therapeutic applications of VR, focusing on its role in addressing multiple conditions such as stroke, traumatic brain injuries, phobias, and post-traumatic stress disorder. It highlights how VR can enhance motor recovery, cognitive rehabilitation, and emotional resilience, showcasing its potential as an innovative and effective tool in neurological rehabilitation. Integrating molecular neuroscience with VR technology allows for a deeper understanding of the molecular mechanisms underlying neuroplasticity, opening doors to personalized interventions and precise treatment strategies for individuals with neurological impairments. Moreover, the review emphasizes the ethical considerations and challenges that come with implementing VR-based interventions in clinical practice, stressing the importance of data privacy, informed consent, and collaborative interdisciplinary efforts. By leveraging advanced molecular imaging techniques, VR-based research methodologies, and computational modelling, the review envisions a future where VR technology plays a central role in revolutionizing neuroscience research and clinical neurorehabilitation, ultimately providing tailored and impactful solutions for individuals facing neurological challenges.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Hardik Doshi
- Marwadi University Research Center, Department of Computer Engineering, Faculty of Engineering & Technology, Marwadi University, Rajkot 360003, Gujarat, India
| | - Rohit Kumawat
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - SSrinadh Raju
- Department of Computer Science and Engineering, Raghu Engineering College, Vishakhapatnam 531162, Andhra Pradesh, India
| | - Isha Arora
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Shivkumar S Sammeta
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
2
|
Grimaud J, Dorrell W, Jayakumar S, Pehlevan C, Murthy V. Bilateral Alignment of Receptive Fields in the Olfactory Cortex. eNeuro 2024; 11:ENEURO.0155-24.2024. [PMID: 39433407 PMCID: PMC11540595 DOI: 10.1523/eneuro.0155-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Each olfactory cortical hemisphere receives ipsilateral odor information directly from the olfactory bulb and contralateral information indirectly from the other cortical hemisphere. Since neural projections to the olfactory cortex (OC) are disordered and nontopographic, spatial information cannot be used to align projections from the two sides like in the visual cortex. Therefore, how bilateral information is integrated in individual cortical neurons is unknown. We have found, in mice, that the odor responses of individual neurons to selective stimulation of each of the two nostrils are significantly correlated, such that odor identity decoding optimized with information arriving from one nostril transfers very well to the other side. Nevertheless, these aligned responses are asymmetric enough to allow decoding of stimulus laterality. Computational analysis shows that such matched odor tuning is incompatible with purely random connections but is explained readily by Hebbian plasticity structuring bilateral connectivity. Our data reveal that despite the distributed and fragmented sensory representation in the OC, odor information across the two hemispheres is highly coordinated.
Collapse
Affiliation(s)
- Julien Grimaud
- Molecules, Cells, and Organisms Graduate Program, Harvard University, Cambridge, Massachusetts 02138
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Cell Engineering Laboratory (CellTechs), SupBiotech, 94800 Villejuif, France
| | - William Dorrell
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Siddharth Jayakumar
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
- Kempner Institute for Natural and Artificial Intelligence, Harvard University, Cambridge, Massachusetts 02138
| | - Venkatesh Murthy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Kempner Institute for Natural and Artificial Intelligence, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
3
|
Wang DC, Santos-Valencia F, Song JH, Franks KM, Luo L. Embryonically active piriform cortex neurons promote intracortical recurrent connectivity during development. Neuron 2024; 112:2938-2954.e6. [PMID: 38964330 PMCID: PMC11377168 DOI: 10.1016/j.neuron.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/28/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used targeted recombination in active populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.
Collapse
Affiliation(s)
- David C Wang
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA; Stanford MSTP, Stanford, CA 94305, USA
| | | | - Jun H Song
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Penker S, Lawabny N, Dhamshy A, Licht T, Rokni D. Synaptic Connectivity and Electrophysiological Properties of the Nucleus of the Lateral Olfactory Tract. J Neurosci 2024; 44:e2420232024. [PMID: 38997160 PMCID: PMC11326862 DOI: 10.1523/jneurosci.2420-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The sense of smell is tightly linked to emotions, a link that is thought to rely on the direct synaptic connections between the olfactory bulb (OB) and nuclei of the amygdala. However, there are multiple pathways projecting olfactory information to the amygdala, and their unique functions are unknown. The pathway via the nucleus of the lateral olfactory tract (NLOT) that receives input from olfactory regions and projects to the basolateral amygdala (BLA) is among them. NLOT has been very little studied, and consequentially its function is unknown. Furthermore, formulation of informed hypotheses about NLOT function is at this stage limited by the lack of knowledge about its connectivity and physiological properties. Here, we used virus-based tracing methods to systematically reveal inputs into NLOT, as well as NLOT projection targets in mice of both sexes. We found that the NLOT is interconnected with several olfactory brain regions and with the BLA. Some of these connections were reciprocal, and some showed unique interhemispheric patterns. We tested the excitable properties of NLOT neurons and the properties of each of the major synaptic inputs. We found that the NLOT receives powerful input from the piriform cortex, tenia tecta, and the BLA but only very weak input from the OB. When input crosses threshold, NLOT neurons respond with calcium-dependent bursts of action potentials. We hypothesize that this integration of olfactory and amygdalar inputs serves behaviors that combine smell and emotion.
Collapse
Affiliation(s)
- Sapir Penker
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Naheel Lawabny
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Aya Dhamshy
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Tamar Licht
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Dan Rokni
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
5
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
6
|
Wang DC, Santos-Valencia F, Song JH, Franks KM, Luo L. Embryonically Active Piriform Cortex Neurons Promote Intracortical Recurrent Connectivity during Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593265. [PMID: 38766173 PMCID: PMC11100831 DOI: 10.1101/2024.05.08.593265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used Targeted Recombination in Active Populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing of these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.
Collapse
|
7
|
Throesch BT, Bin Imtiaz MK, Muñoz-Castañeda R, Sakurai M, Hartzell AL, James KN, Rodriguez AR, Martin G, Lippi G, Kupriyanov S, Wu Z, Osten P, Izpisua Belmonte JC, Wu J, Baldwin KK. Functional sensory circuits built from neurons of two species. Cell 2024; 187:2143-2157.e15. [PMID: 38670072 PMCID: PMC11293795 DOI: 10.1016/j.cell.2024.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.
Collapse
Affiliation(s)
- Benjamin T Throesch
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Muhammad Khadeesh Bin Imtiaz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Masahiro Sakurai
- Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrea L Hartzell
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Kiely N James
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Alberto R Rodriguez
- Mouse Genetics Core, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Greg Martin
- Mouse Genetics Core, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Giordano Lippi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Sergey Kupriyanov
- Mouse Genetics Core, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Zhuhao Wu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Juan Carlos Izpisua Belmonte
- Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Altos Labs, San Diego, CA, USA
| | - Jun Wu
- Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kristin K Baldwin
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Genetics and Development, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Coppola DM, Reisert J. The Role of the Stimulus in Olfactory Plasticity. Brain Sci 2023; 13:1553. [PMID: 38002512 PMCID: PMC10669894 DOI: 10.3390/brainsci13111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Plasticity, the term we use to describe the ability of a nervous system to change with experience, is the evolutionary adaptation that freed animal behavior from the confines of genetic determinism. This capacity, which increases with brain complexity, is nowhere more evident than in vertebrates, especially mammals. Though the scientific study of brain plasticity dates back at least to the mid-19th century, the last several decades have seen unprecedented advances in the field afforded by new technologies. Olfaction is one system that has garnered particular attention in this realm because it is the only sensory modality with a lifelong supply of new neurons, from two niches no less! Here, we review some of the classical and contemporary literature dealing with the role of the stimulus or lack thereof in olfactory plasticity. We have restricted our comments to studies in mammals that have used dual tools of the field: stimulus deprivation and stimulus enrichment. The former manipulation has been implemented most frequently by unilateral naris occlusion and, thus, we have limited our comments to research using this technique. The work reviewed on deprivation provides substantial evidence of activity-dependent processes in both developing and adult mammals at multiple levels of the system from olfactory sensory neurons through to olfactory cortical areas. However, more recent evidence on the effects of deprivation also establishes several compensatory processes with mechanisms at every level of the system, whose function seems to be the restoration of information flow in the face of an impoverished signal. The results of sensory enrichment are more tentative, not least because of the actual manipulation: What odor or odors? At what concentrations? On what schedule? All of these have frequently not been sufficiently rationalized or characterized. Perhaps it is not surprising, then, that discrepant results are common in sensory enrichment studies. Despite this problem, evidence has accumulated that even passively encountered odors can "teach" olfactory cortical areas to better detect, discriminate, and more efficiently encode them for future encounters. We discuss these and other less-established roles for the stimulus in olfactory plasticity, culminating in our recommended "aspirations" for the field going forward.
Collapse
Affiliation(s)
- David M. Coppola
- Biology Department, Randolph-Macon College, Ashland, VA 23005, USA
| | | |
Collapse
|
9
|
Maier JX, Zhang Z. Early development of olfactory circuit function. Front Cell Neurosci 2023; 17:1225186. [PMID: 37565031 PMCID: PMC10410114 DOI: 10.3389/fncel.2023.1225186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023] Open
Abstract
During early development, brains undergo profound changes in structure at the molecular, synaptic, cellular and circuit level. At the same time, brains need to perform adaptive function. How do structurally immature brains process information? How do brains perform stable and reliable function despite massive changes in structure? The rodent olfactory system presents an ideal model for approaching these poorly understood questions. Rodents are born deaf and blind, and rely completely on their sense of smell to acquire resources essential for survival during the first 2 weeks of life, such as food and warmth. Here, we review decades of work mapping structural changes in olfactory circuits during early development, as well as more recent studies performing in vivo electrophysiological recordings to characterize functional activity patterns generated by these circuits. The findings demonstrate that neonatal olfactory processing relies on an interacting network of brain areas including the olfactory bulb and piriform cortex. Circuits in these brain regions exhibit varying degrees of structural maturity in neonatal animals. However, despite substantial ongoing structural maturation of circuit elements, the neonatal olfactory system produces dynamic network-level activity patterns that are highly stable over protracted periods during development. We discuss how these findings inform future work aimed at elucidating the circuit-level mechanisms underlying information processing in the neonatal olfactory system, how they support unique neonatal behaviors, and how they transition between developmental stages.
Collapse
Affiliation(s)
- Joost X. Maier
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | |
Collapse
|
10
|
Svalina MN, Sullivan R, Restrepo D, Huntsman MM. From circuits to behavior: Amygdala dysfunction in fragile X syndrome. Front Integr Neurosci 2023; 17:1128529. [PMID: 36969493 PMCID: PMC10034113 DOI: 10.3389/fnint.2023.1128529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a repeat expansion mutation in the promotor region of the FMR1 gene resulting in transcriptional silencing and loss of function of fragile X messenger ribonucleoprotein 1 protein (FMRP). FMRP has a well-defined role in the early development of the brain. Thus, loss of the FMRP has well-known consequences for normal cellular and synaptic development leading to a variety of neuropsychiatric disorders including an increased prevalence of amygdala-based disorders. Despite our detailed understanding of the pathophysiology of FXS, the precise cellular and circuit-level underpinnings of amygdala-based disorders is incompletely understood. In this review, we discuss the development of the amygdala, the role of neuromodulation in the critical period plasticity, and recent advances in our understanding of how synaptic and circuit-level changes in the basolateral amygdala contribute to the behavioral manifestations seen in FXS.
Collapse
Affiliation(s)
- Matthew N. Svalina
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Regina Sullivan
- Brain Institute, Nathan Kline Institute, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, Child Study Center, New York University School of Medicine, New York, NY, United States
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Molly M. Huntsman
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Molly M. Huntsman,
| |
Collapse
|
11
|
Vasilev D, Dubrovskaya NM, Nalivaeva NN. Caspase Inhibition Restores NEP Expression and Rescues Olfactory Deficit in Rats Caused by Prenatal Hypoxia. J Mol Neurosci 2022; 72:1516-1526. [PMID: 35344141 DOI: 10.1007/s12031-022-01986-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023]
Abstract
Development of the olfactory system begins early in embryogenesis and is important for the survival of new-borns in postnatal life. Olfactory malfunction in early life disrupts development of behavioural patterns while with ageing manifests development of neurodegenerative disorders. Previously, we have shown that prenatal hypoxia in rats leads to impaired olfaction in the offspring and correlates with reduced expression of a neuropeptidase neprilysin (NEP) in the brain structures involved in processing of the olfactory stimuli. Prenatal hypoxia also resulted in an increased activity of caspases in rat brain and its inhibition restored NEP content in the brain tissue and improved rat memory. In this study, we have analysed effects of intraventricular administration of a caspase inhibitor Ac-DEVD-CHO on NEP mRNA expression, the number of dendritic spines and olfactory function of rats subjected to prenatal hypoxia on E14. The data obtained demonstrated that a single injection of the inhibitor on P20 restored NEP mRNA levels and number of dendritic spines in the entorhinal and parietal cortices, hippocampus and rescued rat olfactory function in food search and odour preference tests. The data obtained suggest that caspase activation caused by prenatal hypoxia contributes to the olfactory dysfunction in developing animals and that caspase inhibition restores the olfactory deficit via upregulating NEP expression and neuronal networking. Because NEP is a major amyloid-degrading enzyme, any decrease in its expression and activity not only impairs brain functions but also predisposes to accumulation of the amyloid-β peptide and development of neurodegeneration characteristic of Alzheimer's disease.
Collapse
Affiliation(s)
- Dimitrii Vasilev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez av, Saint Petersburg, 194223, Russia.
| | - Nadezhda M Dubrovskaya
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez av, Saint Petersburg, 194223, Russia
| | - Natalia N Nalivaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez av, Saint Petersburg, 194223, Russia.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
12
|
Ahn JW, Kim S, Ko S, Kim YH, Jeong JH, Chung S. Modified (−)-gallocatechin gallate-enriched green tea extract rescues age-related cognitive deficits by restoring hippocampal synaptic plasticity. Biochem Biophys Rep 2022; 29:101201. [PMID: 35198737 PMCID: PMC8841891 DOI: 10.1016/j.bbrep.2022.101201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Ji-Woong Ahn
- BnH Research Co., LTD., Goyang-si, Gyeonggi-do, 10594, Republic of Korea
| | - Sohyun Kim
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sukjin Ko
- BnH Research Co., LTD., Goyang-si, Gyeonggi-do, 10594, Republic of Korea
| | - Young-Hwan Kim
- BnH Research Co., LTD., Goyang-si, Gyeonggi-do, 10594, Republic of Korea
| | - Ji-Hyun Jeong
- BnH Research Co., LTD., Goyang-si, Gyeonggi-do, 10594, Republic of Korea
| | - Seungsoo Chung
- BnH Research Co., LTD., Goyang-si, Gyeonggi-do, 10594, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Corresponding author. Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
13
|
Dubrovskaya NM, Vasilev DS, Tumanova NL, Alekseeva OS, Nalivaeva NN. Prenatal Hypoxia Impairs Olfactory Function in Postnatal Ontogeny in Rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:262-270. [PMID: 35317268 PMCID: PMC8930458 DOI: 10.1007/s11055-022-01233-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Affiliation(s)
- N. M. Dubrovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - D. S. Vasilev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - N. L. Tumanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - O. S. Alekseeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - N. N. Nalivaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
14
|
Age-Dependent Contributions of NMDA Receptors and L-Type Calcium Channels to Long-Term Depression in the Piriform Cortex. Int J Mol Sci 2021; 22:ijms222413551. [PMID: 34948347 PMCID: PMC8706958 DOI: 10.3390/ijms222413551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
In the hippocampus, the contributions of N-methyl-D-aspartate receptors (NMDARs) and L-type calcium channels (LTCCs) to neuronal transmission and synaptic plasticity change with aging, underlying calcium dysregulation and cognitive dysfunction. However, the relative contributions of NMDARs and LTCCs in other learning encoding structures during aging are not known. The piriform cortex (PC) plays a significant role in odor associative memories, and like the hippocampus, exhibits forms of long-term synaptic plasticity. Here, we investigated the expression and contribution of NMDARs and LTCCs in long-term depression (LTD) of the PC associational fiber pathway in three cohorts of Sprague Dawley rats: neonatal (1-2 weeks), young adult (2-3 months) and aged (20-25 months). Using a combination of slice electrophysiology, Western blotting, fluorescent immunohistochemistry and confocal imaging, we observed a shift from an NMDAR to LTCC mediation of LTD in aged rats, despite no difference in the amount of LTD expression. These changes in plasticity are related to age-dependent differential receptor expression in the PC. LTCC Cav1.2 expression relative to postsynaptic density protein 95 is increased in the associational pathway of the aged PC layer Ib. Enhanced LTCC contribution in synaptic depression in the PC may contribute to altered olfactory function and learning with aging.
Collapse
|
15
|
Kumar A, Barkai E, Schiller J. Plasticity of olfactory bulb inputs mediated by dendritic NMDA-spikes in rodent piriform cortex. eLife 2021; 10:70383. [PMID: 34698637 PMCID: PMC8575458 DOI: 10.7554/elife.70383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
The piriform cortex (PCx) is essential for learning of odor information. The current view postulates that odor learning in the PCx is mainly due to plasticity in intracortical (IC) synapses, while odor information from the olfactory bulb carried via the lateral olfactory tract (LOT) is ‘hardwired.’ Here, we revisit this notion by studying location- and pathway-dependent plasticity rules. We find that in contrast to the prevailing view, synaptic and optogenetically activated LOT synapses undergo strong and robust long-term potentiation (LTP) mediated by only a few local NMDA-spikes delivered at theta frequency, while global spike timing-dependent plasticity (STDP) protocols failed to induce LTP in these distal synapses. In contrast, IC synapses in apical and basal dendrites undergo plasticity with both NMDA-spikes and STDP protocols but to a smaller extent compared with LOT synapses. These results are consistent with a self-potentiating mechanism of odor information via NMDA-spikes that can form branch-specific memory traces of odors that can further associate with contextual IC information via STDP mechanisms to provide cognitive and emotional value to odors.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edi Barkai
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Jackie Schiller
- Department of Physiology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Redolfi N, Lodovichi C. Spontaneous Afferent Activity Carves Olfactory Circuits. Front Cell Neurosci 2021; 15:637536. [PMID: 33767612 PMCID: PMC7985084 DOI: 10.3389/fncel.2021.637536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Electrical activity has a key role in shaping neuronal circuits during development. In most sensory modalities, early in development, internally generated spontaneous activity sculpts the initial layout of neuronal wiring. With the maturation of the sense organs, the system relies more on sensory-evoked electrical activity. Stimuli-driven neuronal discharge is required for the transformation of immature circuits in the specific patterns of neuronal connectivity that subserve normal brain function. The olfactory system (OS) differs from this organizational plan. Despite the important role of odorant receptors (ORs) in shaping olfactory topography, odor-evoked activity does not have a prominent role in refining neuronal wiring. On the contrary, afferent spontaneous discharge is required to achieve and maintain the specific diagram of connectivity that defines the topography of the olfactory bulb (OB). Here, we provide an overview of the development of olfactory topography, with a focus on the role of afferent spontaneous discharge in the formation and maintenance of the specific synaptic contacts that result in the topographic organization of the OB.
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Claudia Lodovichi
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Neuroscience Institute CNR, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
17
|
Vasilev DS, Dubrovskaya NM, Zhuravin IA, Nalivaeva NN. Developmental Profile of Brain Neprilysin Expression Correlates with Olfactory Behaviour of Rats. J Mol Neurosci 2021; 71:1772-1785. [PMID: 33433852 DOI: 10.1007/s12031-020-01786-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/25/2020] [Indexed: 12/26/2022]
Abstract
A neuropeptidase, neprilysin (NEP), is a major amyloid (Aβ)-degrading enzyme involved in the pathogenesis of Alzheimer's disease (AD). The olfactory system is affected early in AD with characteristic Aβ accumulation, but data on the dynamics of NEP expression in the olfactory system are absent. Our study demonstrates that NEP mRNA expression in rat olfactory bulbs (OB), entorhinal cortex (ECx), hippocampus (Hip), parietal cortex (PCx) and striatum (Str) increases during the first postnatal month being the highest in the OB and Str. By 3 months, NEP mRNA levels sharply decrease in the ECx, Hip and PCx and by 9 months in the OB, but not in the Str, which correlates with declining olfaction in aged rats tested in the food search paradigm. One-month-old rats subjected to prenatal hypoxia on E14 had lower NEP mRNA levels in the ECx, Hip and PCx (but not in the OB and Str) compared with the control offspring and demonstrated impaired olfaction in the odour preference and food search paradigms. Administration to these rats of a histone deacetylase inhibitor, sodium valproate, restored NEP expression in the ECx, Hip and PCx and improved olfaction. Our data support NEP involvement in olfactory function.
Collapse
Affiliation(s)
- Dimitrii S Vasilev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg, 194223, Russia
| | - Nadezhda M Dubrovskaya
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg, 194223, Russia
| | - Igor A Zhuravin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg, 194223, Russia
| | - Natalia N Nalivaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, RAS, 44 Thorez Avenue, Saint Petersburg, 194223, Russia. .,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
18
|
Zhang Z, Collins DC, Maier JX. Network Dynamics in the Developing Piriform Cortex of Unanesthetized Rats. Cereb Cortex 2021; 31:1334-1346. [PMID: 33063095 DOI: 10.1093/cercor/bhaa300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/02/2023] Open
Abstract
The time course of changes in functional cortical activity during early development has been extensively studied in the rodent visual system. A key period in this process is the time of eye opening, which marks the onset of patterned visual input and active vision. However, vision differs from other systems in that it receives limited patterned sensory input before eye opening, and it remains unclear how findings from vision relate to other systems. Here, we focus on the development of cortical network activity in the olfactory system-which is crucial for survival at birth-by recording field potential and spiking activity from piriform cortex of unanesthetized rat pups from birth (P0) to P21. Our results demonstrate that odors evoke stable 10-15 Hz oscillations in piriform cortex from birth to P15, after which cortical responses undergo rapid changes. This transition is coincident with the emergence of gamma oscillations and fast sniffing behavior and preceded by an increase in spontaneous activity. Neonatal network oscillations and their developmental dynamics exhibit striking similarities with those previously observed in the visual, auditory, and somatosensory systems, providing insight into the network-level mechanisms underlying the development of sensory cortex in general and olfactory processing in particular.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald Chad Collins
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joost X Maier
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
19
|
Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex. J Neurosci 2020; 40:9414-9425. [PMID: 33115926 DOI: 10.1523/jneurosci.0965-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022] Open
Abstract
Odors activate distributed ensembles of neurons within the piriform cortex, forming cortical representations of odor thought to be essential to olfactory learning and behaviors. This odor response is driven by direct input from the olfactory bulb, but is also shaped by a dense network of associative or intracortical inputs to piriform, which may enhance or constrain the cortical odor representation. With optogenetic techniques, it is possible to functionally isolate defined inputs to piriform cortex and assess their potential to activate or inhibit piriform pyramidal neurons. The anterior olfactory nucleus (AON) receives direct input from the olfactory bulb and sends an associative projection to piriform cortex that has potential roles in the state-dependent processing of olfactory behaviors. Here, we provide a detailed functional assessment of the AON afferents to piriform in male and female C57Bl/6J mice. We confirm that the AON forms glutamatergic excitatory synapses onto piriform pyramidal neurons; and while these inputs are not as strong as piriform recurrent collaterals, they are less constrained by disynaptic inhibition. Moreover, AON-to-piriform synapses contain a substantial NMDAR-mediated current that prolongs the synaptic response at depolarized potentials. These properties of limited inhibition and slow NMDAR-mediated currents result in strong temporal summation of AON inputs within piriform pyramidal neurons, and suggest that the AON could powerfully enhance activation of piriform neurons in response to odor.SIGNIFICANCE STATEMENT Odor information is transmitted from olfactory receptors to olfactory bulb, and then to piriform cortex, where ensembles of activated neurons form neural representations of the odor. While these ensembles are driven by primary bulbar afferents, and shaped by intracortical recurrent connections, the potential for another early olfactory area, the anterior olfactory nucleus (AON), to contribute to piriform activity is not known. Here, we use optogenetic circuit-mapping methods to demonstrate that AON inputs can significantly activate piriform neurons, as they are coupled to NMDAR currents and to relatively modest disynaptic inhibition. The AON may enhance the piriform odor response, encouraging further study to determine the states or behaviors through which AON potentiates the cortical response to odor.
Collapse
|
20
|
Oruro EM, Pardo GVE, Lucion AB, Calcagnotto ME, Idiart MAP. The maturational characteristics of the GABA input in the anterior piriform cortex may also contribute to the rapid learning of the maternal odor during the sensitive period. ACTA ACUST UNITED AC 2020; 27:493-502. [PMID: 33199474 PMCID: PMC7670864 DOI: 10.1101/lm.052217.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/27/2020] [Indexed: 11/25/2022]
Abstract
During the first ten postnatal days (P), infant rodents can learn olfactory preferences for novel odors if they are paired with thermo-tactile stimuli that mimic components of maternal care. After P10, the thermo-tactile pairing becomes ineffective for conditioning. The current explanation for this change in associative learning is the alteration in the norepinephrine (NE) inputs from the locus coeruleus (LC) to the olfactory bulb (OB) and the anterior piriform cortex (aPC). By combining patch-clamp electrophysiology and computational simulations, we showed in a recent work that a transitory high responsiveness of the OB-aPC circuit to the maternal odor is an alternative mechanism that could also explain early olfactory preference learning and its cessation after P10. That result relied solely on the maturational properties of the aPC pyramidal cells. However, the GABAergic system undergoes important changes during the same period. To address the importance of the maturation of the GABAergic system for early olfactory learning, we incorporated data from the GABA inputs, obtained from in vitro patch-clamp experiment in the aPC of rat pups aged P5–P7 reported here, to the model proposed in our previous publication. In the younger than P10 OB-aPC circuit with GABA synaptic input, the number of responsive aPC pyramidal cells to the conditioned maternal odor was amplified in 30% compared to the circuit without GABAergic input. When compared with the circuit with other younger than P10 OB-aPC circuit with adult GABAergic input profile, this amplification was 88%. Together, our results suggest that during the olfactory preference learning in younger than P10, the GABAergic synaptic input presumably acts by depolarizing the aPC pyramidal neurons in such a way that it leads to the amplification of the pyramidal neurons response to the conditioned maternal odor. Furthermore, our results suggest that during this developmental period, the aPC pyramidal cells themselves seem to resolve the apparent lack of GABAergic synaptic inhibition by a strong firing adaptation in response to increased depolarizing inputs.
Collapse
Affiliation(s)
- Enver Miguel Oruro
- Neurocomputational and Language Processing Laboratory, Institute of Physics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Grace V E Pardo
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil.,Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.,Centre for Interdisciplinary Science and Society Studies, Universidad de Ciencias y Humanidades, Los Olivos, Lima 15314, Peru.,Center for Biomedical Research, Universidad Andina del Cusco, San Jerónimo, Cuzco 08006, Peru
| | - Aldo Bolten Lucion
- Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.,Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Maria Elisa Calcagnotto
- Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Marco A P Idiart
- Neurocomputational and Language Processing Laboratory, Institute of Physics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| |
Collapse
|
21
|
Bolding KA, Nagappan S, Han BX, Wang F, Franks KM. Recurrent circuitry is required to stabilize piriform cortex odor representations across brain states. eLife 2020; 9:e53125. [PMID: 32662420 PMCID: PMC7360366 DOI: 10.7554/elife.53125] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Pattern completion, or the ability to retrieve stable neural activity patterns from noisy or partial cues, is a fundamental feature of memory. Theoretical studies indicate that recurrently connected auto-associative or discrete attractor networks can perform this process. Although pattern completion and attractor dynamics have been observed in various recurrent neural circuits, the role recurrent circuitry plays in implementing these processes remains unclear. In recordings from head-fixed mice, we found that odor responses in olfactory bulb degrade under ketamine/xylazine anesthesia while responses immediately downstream, in piriform cortex, remain robust. Recurrent connections are required to stabilize cortical odor representations across states. Moreover, piriform odor representations exhibit attractor dynamics, both within and across trials, and these are also abolished when recurrent circuitry is eliminated. Here, we present converging evidence that recurrently-connected piriform populations stabilize sensory representations in response to degraded inputs, consistent with an auto-associative function for piriform cortex supported by recurrent circuitry.
Collapse
Affiliation(s)
- Kevin A Bolding
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| | | | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| | - Fan Wang
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical SchoolDurhamUnited States
| |
Collapse
|
22
|
Circuit-Specific Dendritic Development in the Piriform Cortex. eNeuro 2020; 7:ENEURO.0083-20.2020. [PMID: 32457067 PMCID: PMC7307633 DOI: 10.1523/eneuro.0083-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Dendritic geometry is largely determined during postnatal development and has a substantial impact on neural function. In sensory processing, postnatal development of the dendritic tree is affected by two dominant circuit motifs, ascending sensory feedforward inputs and descending and local recurrent connections. In the three-layered anterior piriform cortex (aPCx), neurons in the sublayers 2a and 2b display vertical segregation of these two circuit motifs. Here, we combined electrophysiology, detailed morphometry, and Ca2+ imaging in acute mouse brain slices and modeling to study circuit-specific aspects of dendritic development. We observed that determination of branching complexity, dendritic length increases, and pruning occurred in distinct developmental phases. Layer 2a and layer 2b neurons displayed developmental phase-specific differences between their apical and basal dendritic trees related to differences in circuit incorporation. We further identified functional candidate mechanisms for circuit-specific differences in postnatal dendritic growth in sublayers 2a and 2b at the mesoscale and microscale levels. Already in the first postnatal week, functional connectivity of layer 2a and layer 2b neurons during early spontaneous network activity scales with differences in basal dendritic growth. During the early critical period of sensory plasticity in the piriform cortex, our data are consistent with a model that proposes a role for dendritic NMDA-spikes in selecting branches for survival during developmental pruning in apical dendrites. The different stages of the morphologic and functional developmental pattern differences between layer 2a and layer 2b neurons demonstrate the complex interplay between dendritic development and circuit specificity.
Collapse
|
23
|
Ribic A. Stability in the Face of Change: Lifelong Experience-Dependent Plasticity in the Sensory Cortex. Front Cell Neurosci 2020; 14:76. [PMID: 32372915 PMCID: PMC7186337 DOI: 10.3389/fncel.2020.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Plasticity is a fundamental property of the nervous system that enables its adaptations to the ever-changing environment. Heightened plasticity typical for developing circuits facilitates their robust experience-dependent functional maturation. This plasticity wanes during adolescence to permit the stabilization of mature brain function, but abundant evidence supports that adult circuits exhibit both transient and long-term experience-induced plasticity. Cortical plasticity has been extensively studied throughout the life span in sensory systems and the main distinction between development and adulthood arising from these studies is the concept that passive exposure to relevant information is sufficient to drive robust plasticity early in life, while higher-order attentional mechanisms are necessary to drive plastic changes in adults. Recent work in the primary visual and auditory cortices began to define the circuit mechanisms that govern these processes and enable continuous adaptation to the environment, with transient circuit disinhibition emerging as a common prerequisite for both developmental and adult plasticity. Drawing from studies in visual and auditory systems, this review article summarizes recent reports on the circuit and cellular mechanisms of experience-driven plasticity in the developing and adult brains and emphasizes the similarities and differences between them. The benefits of distinct plasticity mechanisms used at different ages are discussed in the context of sensory learning, as well as their relationship to maladaptive plasticity and neurodevelopmental brain disorders. Knowledge gaps and avenues for future work are highlighted, and these will hopefully motivate future research in these areas, particularly those about the learning of complex skills during development.
Collapse
Affiliation(s)
- Adema Ribic
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
24
|
Oruro EM, Pardo GVE, Lucion AB, Calcagnotto ME, Idiart MAP. Maturation of pyramidal cells in anterior piriform cortex may be sufficient to explain the end of early olfactory learning in rats. ACTA ACUST UNITED AC 2019; 27:20-32. [PMID: 31843979 PMCID: PMC6919191 DOI: 10.1101/lm.050724.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 01/09/2023]
Abstract
Studies have shown that neonate rodents exhibit high ability to learn a preference for novel odors associated with thermo-tactile stimuli that mimics maternal care. Artificial odors paired with vigorous strokes in rat pups younger than 10 postnatal days (P), but not older, rapidly induce an orientation-approximation behavior toward the conditioned odor in a two-choice preference test. The olfactory bulb (OB) and the anterior olfactory cortex (aPC), both modulated by norepinephrine (NE), have been identified as part of a neural circuit supporting this transitory olfactory learning. One possible explanation at the neuronal level for why the odor-stroke pairing induces consistent orientation-approximation behavior in <P10 pups, but not in >P10, is the coincident activation of prior existent neurons in the aPC mediating this behavior. Specifically, odor-stroke conditioning in <P10 pups may activate more mother/nest odor's responsive aPC neurons than in >P10 pups, promoting orientation-approximation behavior in the former but not in the latter. In order to test this hypothesis, we performed in vitro patch-clamp recordings of the aPC pyramidal neurons from rat pups from two age groups (P5–P8 and P14–P17) and built computational models for the OB-aPC neural circuit based on this physiological data. We conditioned the P5–P8 OB-aPC artificial circuit to an odor associated with NE activation (representing the process of maternal odor learning during mother–infant interactions inside the nest) and then evaluated the response of the OB-aPC circuit to the presentation of the conditioned odor. The results show that the number of responsive aPC neurons to the presentation of the conditioned odor in the P14–P17 OB-aPC circuit was lower than in the P5–P8 circuit, suggesting that at P14–P17, the reduced number of responsive neurons to the conditioned (maternal) odor might not be coincident with the responsive neurons for a second conditioned odor.
Collapse
Affiliation(s)
- Enver Miguel Oruro
- Neurocomputational and Language Processing Laboratory, Institute of Physics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970 Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003 Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil
| | - Grace V E Pardo
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003 Brazil.,Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil.,Centre for Interdisciplinary Science and Society Studies, Universidad de Ciencias y Humanidades, Los Olivos, Lima, 15314 Peru
| | - Aldo B Lucion
- Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003 Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil
| | - Marco A P Idiart
- Neurocomputational and Language Processing Laboratory, Institute of Physics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970 Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil
| |
Collapse
|
25
|
Strauch C, Manahan-Vaughan D. In the Piriform Cortex, the Primary Impetus for Information Encoding through Synaptic Plasticity Is Provided by Descending Rather than Ascending Olfactory Inputs. Cereb Cortex 2019; 28:764-776. [PMID: 29186359 DOI: 10.1093/cercor/bhx315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 12/27/2022] Open
Abstract
Information encoding by means of persistent changes in synaptic strength supports long-term information storage and memory in structures such as the hippocampus. In the piriform cortex (PC), that engages in the processing of associative memory, only short-term synaptic plasticity has been described to date, both in vitro and in anesthetized rodents in vivo. Whether the PC maintains changes in synaptic strength for longer periods of time is unknown: Such a property would indicate that it can serve as a repository for long-term memories. Here, we report that in freely behaving animals, frequency-dependent synaptic plasticity does not occur in the anterior PC (aPC) following patterned stimulation of the olfactory bulb (OB). Naris closure changed action potential properties of aPC neurons and enabled expression of long-term potentiation (LTP) by OB stimulation, indicating that an intrinsic ability to express synaptic plasticity is present. Odor discrimination and categorization in the aPC is supported by descending inputs from the orbitofrontal cortex (OFC). Here, OFC stimulation resulted in LTP (>4 h), suggesting that this structure plays an important role in promoting information encoding through synaptic plasticity in the aPC. These persistent changes in synaptic strength are likely to comprise a means through which long-term memories are encoded and/or retained in the PC.
Collapse
Affiliation(s)
- Christina Strauch
- Department of Neurophysiology, Medical Faculty.,International Graduate School for Neuroscience, Ruhr University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty.,International Graduate School for Neuroscience, Ruhr University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
26
|
Witkowski ED, Gao Y, Gavsyuk AF, Maor I, DeWalt GJ, Eldred WD, Mizrahi A, Davison IG. Rapid Changes in Synaptic Strength After Mild Traumatic Brain Injury. Front Cell Neurosci 2019; 13:166. [PMID: 31105533 PMCID: PMC6498971 DOI: 10.3389/fncel.2019.00166] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions of Americans annually, but effective treatments remain inadequate due to our poor understanding of how injury impacts neural function. Data are particularly limited for mild, closed-skull TBI, which forms the majority of human cases, and for acute injury phases, when trauma effects and compensatory responses appear highly dynamic. Here we use a mouse model of mild TBI to characterize injury-induced synaptic dysfunction, and examine its progression over the hours to days after trauma. Mild injury consistently caused both locomotor deficits and localized neuroinflammation in piriform and entorhinal cortices, along with reduced olfactory discrimination ability. Using whole-cell recordings to characterize synaptic input onto piriform pyramidal neurons, we found moderate effects on excitatory or inhibitory synaptic function at 48 h after TBI and robust increase in excitatory inputs in slices prepared 1 h after injury. Excitatory increases predominated over inhibitory effects, suggesting that loss of excitatory-inhibitory balance is a common feature of both mild and severe TBI. Our data indicate that mild injury drives rapidly evolving alterations in neural function in the hours following injury, highlighting the need to better characterize the interplay between the primary trauma responses and compensatory effects during this early time period.
Collapse
Affiliation(s)
| | - Yuan Gao
- Department of Biology, Boston University, Boston, MA, United States
| | | | - Ido Maor
- Department of Neurobiology, Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gloria J. DeWalt
- Department of Biology, Boston University, Boston, MA, United States
| | | | - Adi Mizrahi
- Department of Neurobiology, Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ian G. Davison
- Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|
27
|
Kumar A, Schiff O, Barkai E, Mel BW, Poleg-Polsky A, Schiller J. NMDA spikes mediate amplification of inputs in the rat piriform cortex. eLife 2018; 7:38446. [PMID: 30575520 PMCID: PMC6333441 DOI: 10.7554/elife.38446] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
The piriform cortex (PCx) receives direct input from the olfactory bulb (OB) and is the brain's main station for odor recognition and memory. The transformation of the odor code from OB to PCx is profound: mitral and tufted cells in olfactory glomeruli respond to individual odorant molecules, whereas pyramidal neurons (PNs) in the PCx responds to multiple, apparently random combinations of activated glomeruli. How these 'discontinuous' receptive fields are formed from OB inputs remains unknown. Counter to the prevailing view that olfactory PNs sum their inputs passively, we show for the first time that NMDA spikes within individual dendrites can both amplify OB inputs and impose combination selectivity upon them, while their ability to compartmentalize voltage signals allows different dendrites to represent different odorant combinations. Thus, the 2-layer integrative behavior of olfactory PN dendrites provides a parsimonious account for the nonlinear remapping of the odor code from bulb to cortex.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Oded Schiff
- Department of Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edi Barkai
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Bartlett W Mel
- Biomedical Engineering Department, University of Southern California, Los Angeles, United States
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, United States
| | - Jackie Schiller
- Department of Physiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
28
|
Coppola DM, White LE. Forever young: Neoteny, neurogenesis and a critique of critical periods in olfaction. J Bioenerg Biomembr 2018; 51:53-63. [PMID: 30421031 DOI: 10.1007/s10863-018-9778-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
The critical period concept has been one of the most transcendent in science, education, and society forming the basis of our fixation on 'quality' of childhood experiences. The neural basis of this process has been revealed in developmental studies of visual, auditory and somatosensory maps and their enduring modification through manipulations of experience early in life. Olfaction, too, possesses a number of phenomena that share key characteristics with classical critical periods like sensitive temporal windows and experience dependence. In this review, we analyze the candidate critical period-like phenomena in olfaction and find them disanalogous to classical critical periods in other sensory systems in several important ways. This leads us to speculate as to why olfaction may be alone among exteroceptive systems in lacking classical critical periods and how life-long neurogenesis of olfactory sensory neurons and bulbar interneurons-a neotenic vestige-- relates to the structure and function of the mammalian olfactory system.
Collapse
Affiliation(s)
- David M Coppola
- Department of Biology, Randolph Macon College, Ashland, VA, 23005, USA.
| | - Leonard E White
- Department of Neurology, Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC, 27708, USA
| |
Collapse
|
29
|
Al Koborssy D, Palouzier-Paulignan B, Canova V, Thevenet M, Fadool DA, Julliard AK. Modulation of olfactory-driven behavior by metabolic signals: role of the piriform cortex. Brain Struct Funct 2018; 224:315-336. [PMID: 30317390 DOI: 10.1007/s00429-018-1776-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022]
Abstract
Olfaction is one of the major sensory modalities that regulates food consumption and is in turn regulated by the feeding state. Given that the olfactory bulb has been shown to be a metabolic sensor, we explored whether the anterior piriform cortex (aPCtx)-a higher olfactory cortical processing area-had the same capacity. Using immunocytochemical approaches, we report the localization of Kv1.3 channel, glucose transporter type 4, and the insulin receptor in the lateral olfactory tract and Layers II and III of the aPCtx. In current-clamped superficial pyramidal (SP) cells, we report the presence of two populations of SP cells: glucose responsive and non-glucose responsive. Using varied glucose concentrations and a glycolysis inhibitor, we found that insulin modulation of the instantaneous and spike firing frequency are both glucose dependent and require glucose metabolism. Using a plethysmograph to record sniffing frequency, rats microinjected with insulin failed to discriminate ratiometric enantiomers; considered a difficult task. Microinjection of glucose prevented discrimination of odorants of different chain-lengths, whereas injection of margatoxin increased the rate of habituation to repeated odor stimulation and enhanced discrimination. These data suggest that metabolic signaling pathways that are present in the aPCtx are capable of neuronal modulation and changing complex olfactory behaviors in higher olfactory centers.
Collapse
Affiliation(s)
- Dolly Al Koborssy
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| | - Brigitte Palouzier-Paulignan
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France
| | - Vincent Canova
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France
| | - Marc Thevenet
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France
| | - Debra Ann Fadool
- Program in Neuroscience, The Florida State University, Tallahassee, FL, USA.,Institute of Molecular Biophysics, The Florida State University, Tallahassee, FL, USA.,Department of Biological Science, The Florida State University, Tallahassee, FL, USA
| | - Andrée Karyn Julliard
- Univ Lyon, Université Claude Bernard Lyon1, Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028/CNRS UMR5292 Team Olfaction: From Coding to Memory, 50 Av. Tony Garnier, 69366, Lyon, France.
| |
Collapse
|
30
|
Pardo GVE, Lucion AB, Calcagnotto ME. Postnatal development of inhibitory synaptic transmission in the anterior piriform cortex. Int J Dev Neurosci 2018; 71:1-9. [PMID: 30055229 DOI: 10.1016/j.ijdevneu.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/09/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
The morphological and functional development of inhibitory circuit in the anterior piriform cortex (aPC) during the first three postnatal weeks may be crucial for the development of odor preference learning in infant rodents. As first step toward testing this hypothesis, we examined the normal development of GABAergic synaptic transmission in the aPC of rat pups during the postnatal days (P) 5-8 and 14-17. Whole cell patch-clamp recordings of layer 2/3 (L2/3) aPC pyramidal cells revealed a significant increase in spontaneous (sIPSC) and miniature (mIPSC) inhibitory postsynaptic current frequencies and a decrease in mIPSC rise and decay-time constant at P14-P17. Moreover, as the development of neocortical inhibitory circuit can be driven by sensory experience, we recorded sIPSC and mIPSC onto L2/3 aPC pyramidal cells from unilateral naris-occluded animals. Early partial olfactory deprivation caused by naris occlusion do not affected the course of age-dependent increase IPSC frequency onto L2/3 aPC pyramidal cell. However, this age-dependent increase of sIPSC and mIPSC frequencies were lower on aPC pyramidal cells ipsilateral to the occlusion side. In addition, the age-dependent increase in sIPSC frequency and amplitude were more pronounced on aPC pyramidal cells contralateral to the occlusion. While mIPSC kinetics were not affected by age or olfactory deprivation, at P5-P8, the sIPSC decay-time constant on aPC pyramidal cells of both hemispheres of naris-occluded animals were significantly higher when compared to sham. These results demonstrated that the GABAergic synaptic transmission on the aPC changed during postnatal development by increasing inhibitory inputs on L2/3 pyramidal cells, with increment in frequency of both sIPSC and mIPSC and faster kinetics of mIPSC. Our data suggested that the maturation of GABAergic synaptic transmission was little affected by early partial olfactory deprivation. These results could contribute to unravel the mechanisms underlying the development of odor processing and olfactory preference learning.
Collapse
Affiliation(s)
- Grace Violeta Espinoza Pardo
- Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aldo Bolten Lucion
- Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Ren L, Hao X, Min S, Deng J, Chen Q, Chen H, Liu D. Anesthetics alleviate learning and memory impairment induced by electroconvulsive shock by regulation of NMDA receptor-mediated metaplasticity in depressive rats. Neurobiol Learn Mem 2018; 155:65-77. [PMID: 29953948 DOI: 10.1016/j.nlm.2018.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 02/05/2023]
Abstract
Along with its outstanding antidepressant effect, electroconvulsive shock (ECS) can induce learning and memory impairment. Propofol and ketamine have shown to be useful in alleviating the learning and memory impairment. Nevertheless, the mechanism still remains unclear. This study investigated the role of NMDA receptor (NMDAR)-mediated metaplasticity in the learning and memory impairment induced by ECS, as well as the neuroprotective effect of propofol and ketamine in depressive rats. Rats received ECS or ECS under anesthetics after chronic unpredictable mild stress procedure. Long-term potentiation (LTP) was tested by extracellular recording. LTD/LTP threshold was assessed by stimulation of different frequencies. Additionally, NMDAR-mediated field excitatory postsynaptic potential (fEPSP) and NMDAR input/output relationship were detected under hippocampal slice perfusion. Results showed that propofol or low-dose ketamine could partially alleviate ECS-induced LTP impairment, while propofol combined with low-dose ketamine almost reversed the LTP impairment. LTP under ECS was increased by stronger stimulation. ECS could up-regulated LTD/LTP threshold, while propofol or ketamine could down-regulate it. Moreover, ECS activated NMDAR, while propofol and ketamine could inhibit the activation of NMDAR. NMDAR input/output relationship decrease was induced by preconditioning (an analog of ECS in hippocampal slice), however, NMDAR input/output relationship increased by propofol or ketamine. In conclusion, ECS-induced cognitive impairment is caused by NMDAR-mediated metaplasticity via up-regulation of LTD/LTP threshold. Propofol or ketamine alleviates the cognitive impairment, possibly by down-regulating the threshold via inhibition of NMDAR activation induced by ECS.
Collapse
Affiliation(s)
- Li Ren
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuechao Hao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jie Deng
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qibin Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hengsheng Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dawei Liu
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Islam S, Ueda M, Nishida E, Wang MX, Osawa M, Lee D, Itoh M, Nakagawa K, Tana, Nakagawa T. Odor preference and olfactory memory are impaired in Olfaxin-deficient mice. Brain Res 2018; 1688:81-90. [PMID: 29571668 DOI: 10.1016/j.brainres.2018.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
Olfaxin, which is a BNIP2 and Cdc42GAP homology (BCH) domain-containing protein, is predominantly expressed in mitral and tufted (M/T) cells in the olfactory bulb (OB). Olfaxin and Caytaxin, which share 56.3% amino acid identity, are similar in their glutamatergic terminal localization, kidney-type glutaminase (KGA) interaction, and caspase-3 substrate. Although the deletion of Caytaxin protein causes human Cayman ataxia and ataxia in the mutant mouse, the function of Olfaxin is largely unknown. In this study, we generated Prune2 gene mutant mice (Prune2Ex16-/-; knock out [KO] mice) using the CRISPR/Cas9 system, during which the exon 16 containing start codon of Olfaxin mRNA was deleted. Exon 16 has 80 nucleotides and is contained in four of five Prune2 isoforms, including PRUNE2, BMCC1, BNIPXL, and Olfaxin/BMCC1s. The levels of Olfaxin mRNA and Olfaxin protein in the OB and piriform cortex of KO mice significantly decreased. Although Prune2 mRNA also significantly decreased in the spinal cord, the gross anatomy of the spinal cord and dorsal root ganglion (DRG) was intact. Further, disturbance of the sensory and motor system was not observed in KO mice. Therefore, in the current study, we examined the role of Olfaxin in the olfactory system where PRUNE2, BMCC1, and BNIPXL are scarcely expressed. Odor preference was impaired in KO mice using opposite-sex urinary scents as well as a non-social odor stimulus (almond). Results of the odor-aversion test demonstrated that odor-associative learning was disrupted in KO mice. Moreover, the NMDAR2A/NMDAR2B subunits switch in the piriform cortex was not observed in KO mice. These results indicated that Olfaxin may play a critical role in odor preference and olfactory memory.
Collapse
Affiliation(s)
- Saiful Islam
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masashi Ueda
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan; Department of Embryology, Institute for Developmental Research, Aichi Human Service Center, Aichi, Japan
| | - Emika Nishida
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Miao-Xing Wang
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masatake Osawa
- Department of Molecular Design and Synthesis, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Dongsoo Lee
- Department of Molecular Design and Synthesis, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Itoh
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyomi Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tana
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiyuki Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
33
|
Wuttke TV, Markopoulos F, Padmanabhan H, Wheeler AP, Murthy VN, Macklis JD. Developmentally primed cortical neurons maintain fidelity of differentiation and establish appropriate functional connectivity after transplantation. Nat Neurosci 2018; 21:517-529. [PMID: 29507412 PMCID: PMC5876138 DOI: 10.1038/s41593-018-0098-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 01/26/2018] [Indexed: 01/06/2023]
Abstract
Repair of complex CNS circuitry requires newly incorporated neurons to become appropriately, functionally integrated. One approach is to direct differentiation of endogenous progenitors in situ, or ex vivo followed by transplantation. Prior studies find that newly incorporated neurons can establish long-distance axon projections, form synapses and functionally integrate in evolutionarily old hypothalamic energy-balance circuitry. We now demonstrate that postnatal neocortical connectivity can be reconstituted with point-to-point precision, including cellular integration of specific, molecularly identified projection neuron subtypes into correct positions, combined with development of appropriate long-distance projections and synapses. Using optogenetics-based electrophysiology, experiments demonstrate functional afferent and efferent integration of transplanted neurons into transcallosal projection neuron circuitry. Results further indicate that 'primed' early postmitotic neurons, including already fate-restricted deep-layer projection neurons and/or plastic postmitotic neuroblasts with partially fate-restricted potential, account for the predominant population of neurons capable of achieving this optimal level of integration.
Collapse
Affiliation(s)
- Thomas V Wuttke
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,Departments of Neurosurgery and of Neurology and Epileptology, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Foivos Markopoulos
- Dept. of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Hari Padmanabhan
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Aaron P Wheeler
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Venkatesh N Murthy
- Dept. of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D Macklis
- Dept. of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
34
|
Gerrard LB, Tantirigama MLS, Bekkers JM. Pre- and Postsynaptic Activation of GABA B Receptors Modulates Principal Cell Excitation in the Piriform Cortex. Front Cell Neurosci 2018; 12:28. [PMID: 29459821 PMCID: PMC5807346 DOI: 10.3389/fncel.2018.00028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
The piriform cortex (PC), like other cortical regions, normally operates in a state of dynamic equilibrium between excitation and inhibition. Here we examined the roles played by pre- and postsynaptic GABAB receptors in maintaining this equilibrium in the PC. Using whole-cell recordings in brain slices from the anterior PC of mice, we found that synaptic activation of postsynaptic GABAB receptors hyperpolarized the two major classes of layer 2 principal neurons and reduced the intrinsic electrical excitability of these neurons. Presynaptic GABAB receptors are expressed on the terminals of associational (intracortical) glutamatergic axons in the PC. Heterosynaptic activation of these receptors reduced excitatory associational inputs onto principal cells. Presynaptic GABAB receptors are also expressed on the axons of GABAergic interneurons in the PC, and blockade of these autoreceptors enhanced inhibitory inputs onto principal cells. Hence, presynaptic GABAB autoreceptors produce disinhibition of principal cells. To study the functional consequences of GABAB activation in vivo, we used 2-photon calcium imaging to simultaneously monitor the activity of ~200 layer 2 neurons. Superfusion of the GABAB agonist baclofen reduced spontaneous random firing but also promoted synchronous epileptiform activity. These findings suggest that, while GABAB activation can dampen excitability by engaging pre- and postsynaptic GABAB heteroreceptors on glutamatergic neurons, it can also promote excitability by disinhibiting principal cells by activating presynaptic GABAB autoreceptors on interneurons. Thus, depending on the dynamic balance of hetero- and autoinhibition, GABAB receptors can function as variable modulators of circuit excitability in the PC.
Collapse
Affiliation(s)
- Leah B Gerrard
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Malinda L S Tantirigama
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - John M Bekkers
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
35
|
Revisiting metaplasticity: The roles of calcineurin and histone deacetylation in unlearning odor preference memory in rat pups. Neurobiol Learn Mem 2018; 154:62-69. [PMID: 29421612 DOI: 10.1016/j.nlm.2018.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/16/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Previous work has shown that 24 h duration odor preference learning, induced by one-trial training, generates a down-regulation of the GluN1 receptor in anterior piriform cortex at 3 h, and results in metaplastic unlearning if a second training trial is given at 3 h. The GluN1 receptor upregulates at 24 h so 24 h spaced training is highly effective in extending memory duration. The present study replicates the piriform cortex unlearning result in the olfactory bulb circuit and further studies the relationship between the initial training strength and its associated metaplastic effect. Intrabulbar infusions that block calcineurin or inhibit histone deacetylation normally produce extended days-long memory. If given during training, they are not associated with GluN1 downregulation at 3 h and do not recruit an unlearning process at that time. The two memory strengthening protocols do not appear to interact, but are also not synergistic. These outcomes argue that it is critical to understand the metaplastic effects of training in order to optimize training protocols in the service of either memory strengthening or of memory weakening.
Collapse
|
36
|
Dingess PM, Darling RA, Derman RC, Wulff SS, Hunter ML, Ferrario CR, Brown TE. Structural and Functional Plasticity within the Nucleus Accumbens and Prefrontal Cortex Associated with Time-Dependent Increases in Food Cue-Seeking Behavior. Neuropsychopharmacology 2017; 42:2354-2364. [PMID: 28294131 PMCID: PMC5645745 DOI: 10.1038/npp.2017.57] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/18/2023]
Abstract
Urges to consume food can be driven by stimuli in the environment that are associated with previous food experience. Identifying adaptations within brain reward circuits that facilitate cue-induced food seeking is critical for understanding and preventing the overconsumption of food and subsequent weight gain. Utilizing electrophysiological, biochemical, and DiI labeling, we examined functional and structural changes in the nucleus accumbens (NAc) and prefrontal cortex (PFC) associated with time-dependent increases in food craving ('incubation of craving'). Rats self-administered 60% high fat or chow 45 mg pellets and were then tested for incubation of craving either 1 or 30 days after training. High fat was chosen for comparison to determine whether palatability differentially affected incubation and/or plasticity. Rats showed robust incubation of craving for both food rewards, although responding for cues previously associated with high fat was greater than chow at both 1 and 30 days. In addition, previous experience with high-fat consumption reduced dendritic spine density in the PFC at both time points. In contrast, incubation was associated with an increase in NAc spine density and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission at 30 days in both groups. Finally, incubation of craving for chow and high fat was accompanied by an increase in calcium-permeable and calcium-impermeable AMPARs, respectively. Our results suggest that incubation of food craving alters brain reward circuitry and macronutrient composition specifically induces cortical changes in a way that may facilitate maladaptive food-seeking behaviors.
Collapse
Affiliation(s)
- Paige M Dingess
- Neuroscience Program, University of Wyoming, Laramie, WY, USA
| | | | - Rifka C Derman
- Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | - Shaun S Wulff
- Department of Statistics, University of Wyoming, Laramie, WY, USA
| | | | - Carrie R Ferrario
- Neuroscience Program, University of Michigan, Ann Arbor, MI, USA,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Travis E Brown
- Neuroscience Program, University of Wyoming, Laramie, WY, USA,Department of Statistics, University of Wyoming, Laramie, WY, USA,School of Pharmacy, Neuroscience Program, University of Wyoming, 1000 E. University Avenue, Department 3375, Laramie, WY 82071, USA, Tel: 307 766 6129, Fax: 307 766 2953, E-mail:
| |
Collapse
|
37
|
Ghosh A, Mukherjee B, Chen X, Yuan Q. β-Adrenoceptor activation enhances L-type calcium channel currents in anterior piriform cortex pyramidal cells of neonatal mice: implication for odor learning. ACTA ACUST UNITED AC 2017; 24:132-135. [PMID: 28202717 PMCID: PMC5311384 DOI: 10.1101/lm.044818.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023]
Abstract
Early odor preference learning occurs in one-week-old rodents when a novel odor is paired with a tactile stimulation mimicking maternal care. β-Adrenoceptors and L-type calcium channels (LTCCs) in the anterior piriform cortex (aPC) are critically involved in this learning. However, whether β-adrenoceptors interact directly with LTCCs in aPC pyramidal cells is unknown. Here we show that pyramidal cells expressed significant LTCC currents that declined with age. β-Adrenoceptor activation via isoproterenol age-dependently enhanced LTCC currents. Nifedipine-sensitive, isoproterenol enhancement of calcium currents was only observed in post-natal day 7–10 mice. APC β-adrenoceptor activation induced early odor preference learning was blocked by nifedipine coinfusion.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Bandhan Mukherjee
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Xihua Chen
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| |
Collapse
|
38
|
Development and Organization of the Evolutionarily Conserved Three-Layered Olfactory Cortex. eNeuro 2017; 4:eN-REV-0193-16. [PMID: 28144624 PMCID: PMC5272922 DOI: 10.1523/eneuro.0193-16.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/11/2016] [Accepted: 12/08/2016] [Indexed: 01/31/2023] Open
Abstract
The olfactory cortex is part of the mammalian cerebral cortex together with the neocortex and the hippocampus. It receives direct input from the olfactory bulbs and participates in odor discrimination, association, and learning (Bekkers and Suzuki, 2013). It is thought to be an evolutionarily conserved paleocortex, which shares common characteristics with the three-layered general cortex of reptiles (Aboitiz et al., 2002). The olfactory cortex has been studied as a “simple model” to address sensory processing, though little is known about its precise cell origin, diversity, and identity. While the development and the cellular diversity of the six-layered neocortex are increasingly understood, the olfactory cortex remains poorly documented in these aspects. Here is a review of current knowledge of the development and organization of the olfactory cortex, keeping the analogy with those of the neocortex. The comparison of olfactory cortex and neocortex will allow the opening of evolutionary perspectives on cortical development.
Collapse
|
39
|
Choy JM, Suzuki N, Shima Y, Budisantoso T, Nelson SB, Bekkers JM. Optogenetic Mapping of Intracortical Circuits Originating from Semilunar Cells in the Piriform Cortex. Cereb Cortex 2017; 27:589-601. [PMID: 26503263 PMCID: PMC5939214 DOI: 10.1093/cercor/bhv258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite its comparatively simple trilaminar architecture, the primary olfactory (piriform) cortex of mammals is capable of performing sophisticated sensory processing, an ability that is thought to depend critically on its extensive associational (intracortical) excitatory circuits. Here, we used a novel transgenic mouse model and optogenetics to measure the connectivity of associational circuits that originate in semilunar (SL) cells in layer 2a of the anterior piriform cortex (aPC). We generated a mouse line (48L) in which channelrhodopsin-2 (ChR) could be selectively expressed in a subset of SL cells. Light-evoked excitatory postsynaptic currents (EPSCs) could be evoked in superficial pyramidal cells (17.4% of n = 86 neurons) and deep pyramidal cells (33.3%, n = 9) in the aPC, but never in ChR- SL cells (0%, n = 34). Thus, SL cells monosynaptically excite pyramidal cells, but not other SL cells. Light-evoked EPSCs were also selectively elicited in 3 classes of GABAergic interneurons in layer 3 of the aPC. Our results show that SL cells are specialized for providing feedforward excitation of specific classes of neurons in the aPC, confirming that SL cells comprise a functionally distinctive input layer.
Collapse
Affiliation(s)
- Julian M.C. Choy
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Norimitsu Suzuki
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Yasuyuki Shima
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Timotheus Budisantoso
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
- Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki444-8787, Japan
- Current address: Department of Physiology, School of Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan
| | - Sacha B. Nelson
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - John M. Bekkers
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
40
|
Abstract
The medial amygdala (MeA) is a central hub in the olfactory neural network. It receives vomeronasal information directly from the accessory olfactory bulb (AOB) and main olfactory information largely via odor-processing regions such as the olfactory cortical amygdala (CoA). How these inputs are processed by MeA neurons is poorly understood. Using the GAD67-GFP mouse, we show that MeA principal neurons receive convergent AOB and CoA inputs. Somatically recorded AOB synaptic inputs had slower kinetics than CoA inputs, suggesting that they are electrotonically more distant. Field potential recording, pharmacological manipulation, and Ca(2+) imaging revealed that AOB synapses are confined to distal dendrites and segregated from the proximally located CoA synapses. Moreover, unsynchronized AOB inputs had significantly broader temporal summation that was dependent on the activation of NMDA receptors. These findings show that MeA principal neurons process main and accessory olfactory inputs differentially in distinct dendritic compartments. Significance statement: In most vertebrates, olfactory cues are processed by two largely segregated neural pathways, the main and accessory olfactory systems, which are specialized to detect odors and nonvolatile chemosignals, respectively. Information from these two pathways ultimately converges at higher brain regions, one of the major hubs being the medial amygdala. Little is known about how olfactory inputs are processed by medial amygdala neurons. This study shows that individual principal neurons in this region receive input from both pathways and that these synapses are spatially segregated on their dendritic tree. We provide evidence suggesting that this dendritic segregation leads to distinct input integration and impact on neuronal output; hence, dendritic mechanisms control olfactory processing in the amygdala.
Collapse
|
41
|
Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro 2015; 2:eN-TNC-0018-15. [PMID: 26665163 PMCID: PMC4672204 DOI: 10.1523/eneuro.0018-15.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/21/2022] Open
Abstract
Gamma (∼40-90 Hz) and beta (∼15-40 Hz) oscillations and their associated neuronal assemblies are key features of neuronal sensory processing. However, the mechanisms involved in either their interaction and/or the switch between these different regimes in most sensory systems remain misunderstood. Based on in vivo recordings and biophysical modeling of the mammalian olfactory bulb (OB), we propose a general scheme where OB internal dynamics can sustain two distinct dynamic states, each dominated by either a gamma or a beta regime. The occurrence of each regime depends on the excitability level of granule cells, the main OB interneurons. Using this model framework, we demonstrate how the balance between sensory and centrifugal input can control the switch between the two oscillatory dynamic states. In parallel, we experimentally observed that sensory and centrifugal inputs to the rat OB could both be modulated by the respiration of the animal (2-12 Hz) and each one phase shifted with the other. Implementing this phase shift in our model resulted in the appearance of the alternation between gamma and beta rhythms within a single respiratory cycle, as in our experimental results under urethane anesthesia. Our theoretical framework can also account for the oscillatory frequency response, depending on the odor intensity, the odor valence, and the animal sniffing strategy observed under various conditions including animal freely-moving. Importantly, the results of the present model can form a basis to understand how fast rhythms could be controlled by the slower sensory and centrifugal modulations linked to the respiration. Visual Abstract: See Abstract.
Collapse
|
42
|
Abstract
How sensory information is processed within olfactory cortices is unclear. Here, we examined long-range circuit wiring between different olfactory cortical regions of acute mouse brain slices using a channelrhodopsin-2 (ChR2)-based neuronal targeting approach. Our results provide detailed information regarding the synaptic properties of the reciprocal long-range monosynaptic glutamatergic projections (LRMGP) between and within anterior piriform cortex (aPC), posterior piriform cortex (pPC), and lateral entorhinal cortex (LEC), thereby creating a long-range inter- and intracortical circuit diagrams at the level of synapses and single cortical neurons. Our results reveal the following information regarding hierarchical intra- and intercortical organizations: (i) there is massive bottom-up (i.e., rostral-caudal) excitation within the LRMGP accompanied with strong feedforward (FF) inhibition; (ii) there are convergent FF connections onto LEC from both aPC and pPC; (iii) feedback (FB) intercortical connections are weak with a significant fraction of presumptive silent synapses; and (iv) intra and intercortical long-range connections lack layer specificity and their innervation of interneurons are stronger than neighboring pyramidal neurons. The elucidation of the distinct hierarchical organization of long-range olfactory cortical circuits paves the way for further understanding of higher order cortical processing within the olfactory system.
Collapse
Affiliation(s)
- Weiguo Yang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY Graduate Neuroscience Program, University of Wyoming, Laramie, WY
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY
| |
Collapse
|
43
|
Mokrushin AA, Pavlinova LI, Borovikov SE. Influence of cooling rate on activity of ionotropic glutamate receptors in brain slices at hypothermia. J Therm Biol 2014; 44:5-13. [PMID: 25086967 DOI: 10.1016/j.jtherbio.2014.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Hypothermia is a known approach in the treatment of neurological pathologies. Mild hypothermia enhances the therapeutic window for application of medicines, while deep hypothermia is often accompanied by complications, including problems in the recovery of brain functions. The purpose of present study was to investigate the functioning of glutamate ionotropic receptors in brain slices cooled with different rates during mild, moderate and deep hypothermia. Using a system of gradual cooling combined with electrophysiological recordings in slices, we have shown that synaptic activity mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in rat olfactory cortex was strongly dependent on the rate of lowering the temperature. High cooling rate caused a progressive decrease in glutamate receptor activity in brain slices during gradual cooling from mild to deep hypothermia. On the contrary, low cooling rate slightly changed the synaptic responses in deep hypothermia. The short-term potentiation may be induced in slices by electric tetanization at 16 °C in this case. Hence, low cooling rate promoted preservation of neuronal activity and plasticity in the brain tissue.
Collapse
Affiliation(s)
- Anatoly A Mokrushin
- I.P. Pavlov Institute of Physiology, Russian Academy of Science, 199034, Nab. Makarova, 6, Saint-Petersburg, Russia
| | - Larisa I Pavlinova
- I.P. Pavlov Institute of Physiology, Russian Academy of Science, 199034, Nab. Makarova, 6, Saint-Petersburg, Russia; Institute of Experimental Medicine, Russian Academy of Science, 197376, Ul.Akad. Pavlova, 12, Saint-Petersburg, Russia.
| | - Sergey E Borovikov
- Science Center "Bio", 197376 Street L. Tolstoy, Building 7, 5-H (9), Saint-Petersburg, Russia
| |
Collapse
|
44
|
Wang X, Hooks BM, Sun QQ. Thorough GABAergic innervation of the entire axon initial segment revealed by an optogenetic 'laserspritzer'. J Physiol 2014; 592:4257-76. [PMID: 25085892 DOI: 10.1113/jphysiol.2014.275719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
GABAergic terminals of chandelier cells exclusively innervate the axon initial segment (AIS) of excitatory neurons. Although the anatomy of these synapses has been well-studied in several brain areas, relatively little is known about their physiological properties. Using vesicular γ-aminobutyric acid transporter-channelrhodopsin 2-enhanced yellow fluorescence protein (VGAT-ChR2-YFP)-expressing mice and a novel fibreoptic 'laserspritzer' approach that we developed, we investigated the physiological properties of axo-axonic synapses (AASs) in brain slices from the piriform cortex (PC) of mice. AASs were in close proximity to voltage-gated Na(+) (NaV) channels located at the AIS. AASs were selectively activated by a 5 μm laserspritzer placed in close proximity to the AIS. Under a minimal laser stimulation condition and using whole-cell somatic voltage-clamp recordings, the amplitudes and kinetics of IPSCs mediated by AASs were similar to those mediated by perisomatic inhibitions. Results were further validated with channelrhodopsin 2-assisted circuit mapping (CRACM) of the entire inhibitory inputs map. For the first time, we revealed that the laserspritzer-induced AAS-IPSCs persisted in the presence of TTX and TEA but not 4-AP. Next, using gramicidin-based perforated patch recordings, we found that the GABA reversal potential (EGABA) was -73.6 ± 1.2 mV when induced at the AIS and -72.8 ± 1.1 mV when induced at the perisomatic site. Our anatomical and physiological results lead to the novel conclusions that: (1) AASs innervate the entire length of the AIS, as opposed to forming a highly concentrated cartridge, (2) AAS inhibition suppresses action potentials and epileptiform activity more robustly than perisomatic inhibitions, and (3) AAS activation alone can be sufficient to inhibit action potential generation and epileptiform activities in vitro.
Collapse
Affiliation(s)
- Xinjun Wang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA Graduate Neuroscience Program, University of Wyoming, Laramie, WY, 82071, USA
| | - Bryan M Hooks
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
45
|
Sheridan DC, Hughes AR, Erdélyi F, Szabó G, Hentges ST, Schoppa NE. Matching of feedback inhibition with excitation ensures fidelity of information flow in the anterior piriform cortex. Neuroscience 2014; 275:519-30. [PMID: 24969131 DOI: 10.1016/j.neuroscience.2014.06.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/24/2014] [Accepted: 06/12/2014] [Indexed: 11/18/2022]
Abstract
Odor-evoked responses in mitral cells of the olfactory bulb are characterized by prolonged patterns of action potential (spike) activity. If downstream neurons are to respond to each spike in these patterns, the duration of the excitatory response to one spike should be limited, enabling cells to respond to subsequent spikes. To test for such mechanisms, we performed patch-clamp recordings in slices of the mouse anterior piriform cortex. Mitral cell axons in the lateral olfactory tract (LOT) were stimulated electrically at different intensities and with various frequency patterns to mimic changing input conditions that the piriform cortex likely encounters in vivo. We found with cell-attached measurements that superficial pyramidal (SP) cells in layer 2 consistently responded to LOT stimulation across conditions with a limited number (1-2) of spikes per stimulus pulse. The key synaptic feature accounting for the limited spike number appeared to be somatic inhibition derived from layer 3 fast-spiking cells. This inhibition tracked the timing of the first spike in SP cells across conditions, which naturally limited the spike number to 1-2. These response features to LOT stimulation were, moreover, not unique to SP cells, also occurring in a population of fluorescently labeled interneurons in glutamic acid decarboxylase 65-eGFP mice. That these different cortical cells respond to incoming inputs with 1-2 spikes per stimulus may be especially critical for relaying bulbar information contained in synchronized oscillations at beta (15-30Hz) or gamma (30-80Hz) frequencies.
Collapse
Affiliation(s)
- D C Sheridan
- University of Colorado Anschutz Medical Campus, Department of Physiology & Biophysics, 12800 East 19th Avenue, Aurora, CO 80045, United States.
| | - A R Hughes
- Department of Biomedical Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523, United States
| | - F Erdélyi
- Institute of Experimental Medicine, Division of Medical Gene Technology, Budapest, Hungary
| | - G Szabó
- Institute of Experimental Medicine, Division of Medical Gene Technology, Budapest, Hungary.
| | - S T Hentges
- Department of Biomedical Sciences, Colorado State University, 1680 Campus Delivery, Fort Collins, CO 80523, United States.
| | - N E Schoppa
- University of Colorado Anschutz Medical Campus, Department of Physiology & Biophysics, 12800 East 19th Avenue, Aurora, CO 80045, United States.
| |
Collapse
|
46
|
Unlearning: NMDA receptor-mediated metaplasticity in the anterior piriform cortex following early odor preference training in rats. J Neurosci 2014; 34:5143-51. [PMID: 24719094 DOI: 10.1523/jneurosci.0128-14.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Here we demonstrate metaplastic effect of a change in NMDA receptor (NMDAR) number in the anterior piriform cortex (aPC) in rat induced by a 10 min pairing of peppermint odor + stroking, which significantly modifies later learning and memory. Using isolated synaptoneurosomes, we found NR1 receptor downregulation 3 h after training and upregulation at 24 h. Consistent with the NR1 pattern, the NMDAR-mediated EPSP was smaller at 3 h and larger at 24 h. Subunit composition was unchanged. Whereas LTP was reduced at both times by training, LTD was facilitated only at 3 h. Behaviorally, pups, given a pairing of peppermint + stroking 3 h after an initial peppermint + stroking training, lost the normally acquired peppermint preference 24 h later. To probe the pathway specificity of this unlearning effect, pups were trained first with peppermint and then, at 3 h, given a second training with peppermint or vanillin. Pups given peppermint training at both times lost the learned peppermint preference. Pups given vanillin retraining at 3 h had normal peppermint preference. Downregulating NR1 with siRNA prevented odor preference learning. Finally, the NMDAR antagonist MK-801 blocked the LTD facilitation seen 3 h after training, and giving MK-801 before the second peppermint training trial eliminated the loss of peppermint odor preference. A training-associated reduction in NMDARs facilitates LTD 3 h later; training at the time of LTD facilitation reverses an LTP-dependent odor preference. Experience-dependent, pathway-specific metaplastic effects in a cortical structure have broad implications for the optimal spacing of learning experiences.
Collapse
|
47
|
Kang MS, Yang YS, Kim SH, Park JM, Eun SY, Jung SC. The Downregulation of Somatic A-Type K(+) Channels Requires the Activation of Synaptic NMDA Receptors in Young Hippocampal Neurons of Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:135-41. [PMID: 24757375 PMCID: PMC3994300 DOI: 10.4196/kjpp.2014.18.2.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
The downregulation of A-type K+ channels (IA channels) accompanying enhanced somatic excitability can mediate epileptogenic conditions in mammalian central nervous system. As IA channels are dominantly targeted by dendritic and postsynaptic processings during synaptic plasticity, it is presumable that they may act as cellular linkers between synaptic responses and somatic processings under various excitable conditions. In the present study, we electrophysiologically tested if the downregulation of somatic IA channels was sensitive to synaptic activities in young hippocampal neurons. In primarily cultured hippocampal neurons (DIV 6~9), the peak of IA recorded by a whole-cell patch was significantly reduced by high KCl or exogenous glutamate treatment to enhance synaptic activities. However, the pretreatment of MK801 to block synaptic NMDA receptors abolished the glutamate-induced reduction of the IA peak, indicating the necessity of synaptic activation for the reduction of somatic IA. This was again confirmed by glycine treatment, showing a significant reduction of the somatic IA peak. Additionally, the gating property of IA channels was also sensitive to the activation of synaptic NMDA receptors, showing the hyperpolarizing shift in inactivation kinetics. These results suggest that synaptic LTP possibly potentiates somatic excitability via downregulating IA channels in expression and gating kinetics. The consequential changes of somatic excitability following the activity-dependent modulation of synaptic responses may be a series of processings for neuronal functions to determine outputs in memory mechanisms or pathogenic conditions.
Collapse
Affiliation(s)
- Moon-Seok Kang
- Department of Physiology, School of Medicine, Jeju National University, Jeju 690-756, Korea
| | - Yoon-Sil Yang
- Department of Physiology, School of Medicine, Jeju National University, Jeju 690-756, Korea
| | - Seon-Hee Kim
- Department of Physiology, School of Medicine, Jeju National University, Jeju 690-756, Korea
| | - Joo-Min Park
- Department of Physiology, School of Medicine, Jeju National University, Jeju 690-756, Korea
| | - Su-Yong Eun
- Department of Physiology, School of Medicine, Jeju National University, Jeju 690-756, Korea
| | - Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju 690-756, Korea. ; Institute of Medical Science, Jeju National University, Jeju 690-756, Korea
| |
Collapse
|
48
|
Abraham NM, Vincis R, Lagier S, Rodriguez I, Carleton A. Long term functional plasticity of sensory inputs mediated by olfactory learning. eLife 2014; 3:e02109. [PMID: 24642413 PMCID: PMC3953949 DOI: 10.7554/elife.02109] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sensory inputs are remarkably organized along all sensory pathways. While sensory representations are known to undergo plasticity at the higher levels of sensory pathways following peripheral lesions or sensory experience, less is known about the functional plasticity of peripheral inputs induced by learning. We addressed this question in the adult mouse olfactory system by combining odor discrimination studies with functional imaging of sensory input activity in awake mice. Here we show that associative learning, but not passive odor exposure, potentiates the strength of sensory inputs up to several weeks after the end of training. We conclude that experience-dependent plasticity can occur in the periphery of adult mouse olfactory system, which should improve odor detection and contribute towards accurate and fast odor discriminations. DOI:http://dx.doi.org/10.7554/eLife.02109.001 The mammalian brain is not static, but instead retains a significant degree of plasticity throughout an animal’s life. It is this plasticity that enables adults to learn new things, adjust to new environments and, to some degree, regain functions they have lost as a result of brain damage. However, information about the environment must first be detected and encoded by the senses. Odors, for example, activate specific receptors in the nose, and these in turn project to structures called glomeruli in a region of the brain known as the olfactory bulb. Each odor activates a unique combination of glomeruli, and the information contained within this ‘odor fingerprint’ is relayed via olfactory bulb neurons to the olfactory cortex. Now, Abraham et al. have revealed that the earliest stages of odor processing also show plasticity in adult animals. Two groups of mice were exposed to the same two odors: however, the first group was trained to discriminate between the odors to obtain a reward, whereas the second group was passively exposed to them. When both groups of mice were subsequently re-exposed to the odors, the trained group activated more glomeruli, more strongly, than a control group that had never encountered the odors before. By contrast, the responses of mice in the passively exposed group did not differ from those of a control group. Given that the response of glomeruli correlates with the ability of mice to discriminate between odors, these results suggest that trained animals would now be able to discriminate between the odors more easily than other mice. In other words, sensory plasticity ensures that stimuli that have been associatively learned with or without reward will be easier to detect should they be encountered again in the future. DOI:http://dx.doi.org/10.7554/eLife.02109.002
Collapse
Affiliation(s)
- Nixon M Abraham
- Department of Basic Neurosciences, School of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Yang YS, Kim KD, Eun SY, Jung SC. Roles of somatic A-type K(+) channels in the synaptic plasticity of hippocampal neurons. Neurosci Bull 2014; 30:505-14. [PMID: 24526657 DOI: 10.1007/s12264-013-1399-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/19/2013] [Indexed: 01/11/2023] Open
Abstract
In the mammalian brain, information encoding and storage have been explained by revealing the cellular and molecular mechanisms of synaptic plasticity at various levels in the central nervous system, including the hippocampus and the cerebral cortices. The modulatory mechanisms of synaptic excitability that are correlated with neuronal tasks are fundamental factors for synaptic plasticity, and they are dependent on intracellular Ca(2+)-mediated signaling. In the present review, the A-type K(+) (IA) channel, one of the voltage-dependent cation channels, is considered as a key player in the modulation of Ca(2+) influx through synaptic NMDA receptors and their correlated signaling pathways. The cellular functions of IA channels indicate that they possibly play as integral parts of synaptic and somatic complexes, completing the initiation and stabilization of memory.
Collapse
Affiliation(s)
- Yoon-Sil Yang
- Department of Physiology, School of Medicine, Jeju National University, Jeju, 690756, Republic of Korea
| | | | | | | |
Collapse
|
50
|
Lateralized odor preference training in rat pups reveals an enhanced network response in anterior piriform cortex to olfactory input that parallels extended memory. J Neurosci 2013; 33:15126-31. [PMID: 24048843 DOI: 10.1523/jneurosci.2503-13.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study examines synaptic plasticity in the anterior piriform cortex (aPC) using ex vivo slices from rat pups given lateralized odor preference training. In the early odor preference learning model, a brief 10 min training session yields 24 h memory, while four daily sessions yield 48 h memory. Odor preference memory can be lateralized through naris occlusion as the anterior commissure is not yet functional. AMPA receptor-mediated postsynaptic responses in the aPC to lateral olfactory tract input, shown to be enhanced at 24 h, are no longer enhanced 48 h after a single training session. Following four spaced lateralized trials, the AMPA receptor-mediated fEPSP is enhanced in the trained aPC at 48 h. Calcium imaging of aPC pyramidal cells within 48 h revealed decreased firing thresholds in the pyramidal cell network. Thus multiday odor preference training induced increased odor input responsiveness in previously weakly activated aPC cells. These results support the hypothesis that increased synaptic strength in olfactory input networks mediates odor preference memory. The increase in aPC network activation parallels behavioral memory.
Collapse
|