1
|
Hussein MT, Kotb NM, Mokhtar DM, Hussein MM. Developmental Dynamics of the Rabbit Cerebellum During Fetal Maturation With Insights into the Role of Radial Glia in Neuronal Development. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozaf015. [PMID: 40156886 DOI: 10.1093/mam/ozaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/08/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
This study examines the development of the rabbit cerebellum from the 10th day postconception to full-term fetal age, with a particular focus on the role of radial glial cells in the differentiation of cerebellar neurons. A total of 35 embryonic samples were meticulously dissected and microscopically analyzed. On embryonic day (ED) 12, cerebellar primordia, consisting of the ventricular neuroepithelium and rhombic lip, were observed. By ED16, significant neuronal cell proliferation and migration in both the radial and tangential directions were noted. On ED 20, lamination processes began, forming the external granular layer (EGL) and Purkinje cell plate (PCP) with the support of radial glial cells. By ED 25, the cerebellar cortex had developed three distinct layers: the EGL, PCP, and the prospective molecular layer (PML), with radial glial cells localized in the PCP. Differentiation continued, and upon ED30, a new cortical layer, the internal granular layer, was evident. Additionally, the gradual replacement of nestin by glial fibrillary acidic protein marked the differentiation of radial glia into Bergmann glia at ED 25 and ED 30. β-III tubulin, a marker of differentiated neurons, was detected in the inner layer of EGL and PCP during these stages. In conclusion, this study highlights the pivotal role of radial glial cells in the layered organization and neuronal differentiation of the developing rabbit cerebellum. The developmental trajectory observed provides valuable insights into cerebellar morphogenesis and supports the relevance of the rabbit model for exploring neurodevelopmental processes.
Collapse
Affiliation(s)
- Manal T Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Norhan M Kotb
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
- Department of Anatomy and Histology, School of Veterinary Medicine, Badr University in Assiut, Assiut 11829, Egypt
| | - Marwa M Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
2
|
Casoni F, Croci L, Marroni F, Demenego G, Marullo C, Cremona O, Codazzi F, Consalez GG. A spatial-temporal map of glutamatergic neurogenesis in the murine embryonic cerebellar nuclei uncovers a high degree of cellular heterogeneity. J Anat 2024; 245:560-571. [PMID: 38970393 PMCID: PMC11424815 DOI: 10.1111/joa.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
The nuclei are the main output structures of the cerebellum. Each and every cerebellar cortical computation reaches several areas of the brain by means of cerebellar nuclei processing and integration. Nevertheless, our knowledge of these structures is still limited compared to the cerebellar cortex. Here, we present a mouse genetic inducible fate-mapping study characterizing rhombic lip-derived glutamatergic neurons of the nuclei, the most conspicuous family of long-range cerebellar efferent neurons. Glutamatergic neurons mainly occupy dorsal and lateral territories of the lateral and interposed nuclei, as well as the entire medial nucleus. In mice, they are born starting from about embryonic day 9.5, with a peak between 10.5 and 12.5, and invade the nuclei with a lateral-to-medial progression. While some markers label a heterogeneous population of neurons sharing a common location (BRN2), others appear to be lineage specific (TBR1, LMX1a, and MEIS2). A comparative analysis of TBR1 and LMX1a distributions reveals an incomplete overlap in their expression domains, in keeping with the existence of separate efferent subpopulations. Finally, some tagged glutamatergic progenitors are not labeled by any of the markers used in this study, disclosing further complexity. Taken together, our results obtained in late embryonic nuclei shed light on the heterogeneity of the excitatory neuron pool, underlying the diversity in connectivity and functions of this largely unexplored cerebellar territory. Our findings contribute to laying the groundwork for a comprehensive functional analysis of nuclear neuron subpopulations.
Collapse
Affiliation(s)
- Filippo Casoni
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Laura Croci
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Francesca Marroni
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Giulia Demenego
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Chiara Marullo
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Ottavio Cremona
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Franca Codazzi
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - G. Giacomo Consalez
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| |
Collapse
|
3
|
Itoh T, Uehara M, Yura S, Wang JC, Fujii Y, Nakanishi A, Shimizu T, Hibi M. Foxp and Skor family proteins control differentiation of Purkinje cells from Ptf1a- and Neurog1-expressing progenitors in zebrafish. Development 2024; 151:dev202546. [PMID: 38456494 PMCID: PMC11057878 DOI: 10.1242/dev.202546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Cerebellar neurons, such as GABAergic Purkinje cells (PCs), interneurons (INs) and glutamatergic granule cells (GCs) are differentiated from neural progenitors expressing proneural genes, including ptf1a, neurog1 and atoh1a/b/c. Studies in mammals previously suggested that these genes determine cerebellar neuron cell fate. However, our studies on ptf1a;neurog1 zebrafish mutants and lineage tracing of ptf1a-expressing progenitors have revealed that the ptf1a/neurog1-expressing progenitors can generate diverse cerebellar neurons, including PCs, INs and a subset of GCs in zebrafish. The precise mechanisms of how each cerebellar neuron type is specified remains elusive. We found that genes encoding the transcriptional regulators Foxp1b, Foxp4, Skor1b and Skor2, which are reportedly expressed in PCs, were absent in ptf1a;neurog1 mutants. foxp1b;foxp4 mutants showed a strong reduction in PCs, whereas skor1b;skor2 mutants completely lacked PCs, and displayed an increase in immature GCs. Misexpression of skor2 in GC progenitors expressing atoh1c suppressed GC fate. These data indicate that Foxp1b/4 and Skor1b/2 function as key transcriptional regulators in the initial step of PC differentiation from ptf1a/neurog1-expressing neural progenitors, and that Skor1b and Skor2 control PC differentiation by suppressing their differentiation into GCs.
Collapse
Affiliation(s)
- Tsubasa Itoh
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Mari Uehara
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Shinnosuke Yura
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Jui Chun Wang
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Yukimi Fujii
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Akiko Nakanishi
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Takashi Shimizu
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Masahiko Hibi
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
4
|
Itoh T, Inoue S, Sun X, Kusuda R, Hibi M, Shimizu T. Cfdp1 controls the cell cycle and neural differentiation in the zebrafish cerebellum and retina. Dev Dyn 2021; 250:1618-1633. [PMID: 33987914 DOI: 10.1002/dvdy.371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Although the cell cycle and cell differentiation should be coordinately regulated to generate a variety of neurons in the brain, the molecules that are involved in this coordination still remain largely unknown. In this study, we analyzed the roles of a nuclear protein Cfdp1, which is thought to be involved in chromatin remodeling, in zebrafish neurogenesis. RESULTS Zebrafish cfdp1 mutants maintained the progenitors of granule cells (GCs) in the cerebellum, but showed defects in their differentiation to GCs. cfdp1 mutants showed an increase in phospho-histone 3 (pH 3)-positive cells and apoptotic cells, as well as a delayed cell cycle transition from the G2 to the M phase in the cerebellum. The inhibition of tp53 prevented apoptosis but not GC differentiation in the cfdp1 mutant cerebellum. A similar increase in apoptotic cells and pH 3-positive cells, and defective cell differentiation, were observed in the cfdp1 mutant retina. Although mitotic spindles formed, mitosis was blocked before anaphase in both the cerebellum and retina of cfdp1 mutant larvae. Furthermore, expression of the G2/mitotic-specific cyclin B1 gene increased in the cfdp1 mutant cerebellum. CONCLUSIONS Our findings suggest that Cfdp1 regulates the cell cycle of neural progenitors, thereby promoting neural differentiation in the brain.
Collapse
Affiliation(s)
- Tsubasa Itoh
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Shinsuke Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Xiaoding Sun
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Ryo Kusuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takashi Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
The RacGAP β-Chimaerin is essential for cerebellar granule cell migration. Sci Rep 2018; 8:680. [PMID: 29330522 PMCID: PMC5766509 DOI: 10.1038/s41598-017-19116-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/21/2017] [Indexed: 11/08/2022] Open
Abstract
During mammalian cerebellar development, postnatal granule cell progenitors proliferate in the outer part of the External Granule Layer (EGL). Postmitotic granule progenitors migrate tangentially in the inner EGL before switching to migrate radially inward, past the Purkinje cell layer, to achieve their final position in the mature Granule Cell Layer (GCL). Here, we show that the RacGAP β-chimaerin is expressed by a small population of late-born, premigratory granule cells. β-chimaerin deficiency causes a subset of granule cells to become arrested in the EGL, where they differentiate and form ectopic neuronal clusters. These clusters of granule cells are able to recruit aberrantly projecting mossy fibers. Collectively, these data suggest a role for β-chimaerin as an intracellular mediator of Cerebellar Granule Cell radial migration.
Collapse
|
6
|
Kratochwil CF, Maheshwari U, Rijli FM. The Long Journey of Pontine Nuclei Neurons: From Rhombic Lip to Cortico-Ponto-Cerebellar Circuitry. Front Neural Circuits 2017; 11:33. [PMID: 28567005 PMCID: PMC5434118 DOI: 10.3389/fncir.2017.00033] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 01/26/2023] Open
Abstract
The pontine nuclei (PN) are the largest of the precerebellar nuclei, neuronal assemblies in the hindbrain providing principal input to the cerebellum. The PN are predominantly innervated by the cerebral cortex and project as mossy fibers to the cerebellar hemispheres. Here, we comprehensively review the development of the PN from specification to migration, nucleogenesis and circuit formation. PN neurons originate at the posterior rhombic lip and migrate tangentially crossing several rhombomere derived territories to reach their final position in ventral part of the pons. The developing PN provide a classical example of tangential neuronal migration and a study system for understanding its molecular underpinnings. We anticipate that understanding the mechanisms of PN migration and assembly will also permit a deeper understanding of the molecular and cellular basis of cortico-cerebellar circuit formation and function.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of KonstanzKonstanz, Germany.,Zukunftskolleg, University of KonstanzKonstanz, Germany
| | - Upasana Maheshwari
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland.,University of BaselBasel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland.,University of BaselBasel, Switzerland
| |
Collapse
|
7
|
Hibi M, Matsuda K, Takeuchi M, Shimizu T, Murakami Y. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum. Dev Growth Differ 2017; 59:228-243. [DOI: 10.1111/dgd.12349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Masahiko Hibi
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Koji Matsuda
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Miki Takeuchi
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
| | - Takashi Shimizu
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering; Ehime University; Matsuyama 790-8577 Japan
| |
Collapse
|
8
|
Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerková G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJT, Hawkes R. Consensus Paper: Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2016; 15:789-828. [PMID: 26439486 PMCID: PMC4846577 DOI: 10.1007/s12311-015-0724-2] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy.
| | - Marife Arancillo
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Esther B E Becker
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN, 37232, USA
| | - Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
- Department of Pediatrics, Genetics Division, University of Washington, Seattle, WA, USA
| | - Isabelle Dusart
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Institut de Biologie Paris Seine, France, 75005, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR8246, INSERM U1130, Neuroscience Paris Seine, France, 75005, Paris, France
| | - Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, 10065, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daniel L Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Salvador Martinez
- Department Human Anatomy, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Karl Schilling
- Anatomie und Zellbiologie, Anatomisches Institut, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Gabriella Sekerková
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy V Sillitoe
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Constantino Sotelo
- Institut de la Vision, UPMC Université de Paris 06, Paris, 75012, France
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Annika Wefers
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4NI, AB, Canada
| |
Collapse
|
9
|
Takeuchi M, Yamaguchi S, Sakakibara Y, Hayashi T, Matsuda K, Hara Y, Tanegashima C, Shimizu T, Kuraku S, Hibi M. Gene expression profiling of granule cells and Purkinje cells in the zebrafish cerebellum. J Comp Neurol 2016; 525:1558-1585. [DOI: 10.1002/cne.24114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/03/2016] [Accepted: 09/04/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Miki Takeuchi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology; Nagoya University; Nagoya Aichi 464-8601 Japan
| | - Shingo Yamaguchi
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yoshimasa Sakakibara
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Takuto Hayashi
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Koji Matsuda
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology; Nagoya University; Nagoya Aichi 464-8601 Japan
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yuichiro Hara
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies; Kobe Hyogo 650-0047 Japan
| | - Chiharu Tanegashima
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies; Kobe Hyogo 650-0047 Japan
| | - Takashi Shimizu
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology; Nagoya University; Nagoya Aichi 464-8601 Japan
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies; Kobe Hyogo 650-0047 Japan
| | - Masahiko Hibi
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology; Nagoya University; Nagoya Aichi 464-8601 Japan
- Division of Biological Science, Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| |
Collapse
|
10
|
Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci 2015; 8:450. [PMID: 25628535 PMCID: PMC4290586 DOI: 10.3389/fncel.2014.00450] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada ; Department of Pathology, University of Manitoba Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Robby M Zachariah
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
11
|
Butts T, Modrell MS, Baker CVH, Wingate RJT. The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a non-teleost ray-finned fish. Evol Dev 2014; 16:92-100. [PMID: 24617988 DOI: 10.1111/ede.12067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cerebellum represents one of the most morphologically variable structures in the vertebrate brain. To shed light on its evolutionary history, we have examined the molecular anatomy and proliferation of the developing cerebellum of the North American paddlefish, Polyodon spathula. Absence of an external proliferative cerebellar layer and the restriction of Atonal1 expression to the rhombic lip and valvular primordium demonstrate that transit amplification in a cerebellar external germinal layer, a prominent feature of amniote cerebellum development, is absent in paddlefish. Furthermore, expression of Sonic hedgehog, which drives secondary proliferation in the mouse cerebellum, is absent from the paddlefish cerebellum. These data are consistent with what has been observed in zebrafish and suggest that the transit amplification seen in the amniote cerebellum was either lost very early in the ray-finned fish lineage or evolved in the lobe-finned fish lineage. We also suggest that the Atoh1-positive proliferative valvular primordium may represent a synapomorphy (shared derived character) of ray-finned fishes. The topology of valvular primordium development in paddlefish differs significantly from that of zebrafish and correlates with the adult cerebellar form. The distribution of proliferative granule cell precursors in different vertebrate taxa is thus the likely determining factor in cerebellar morphological diversity.
Collapse
Affiliation(s)
- Thomas Butts
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | | | | | | |
Collapse
|
12
|
Transformation of the cerebellum into more ventral brainstem fates causes cerebellar agenesis in the absence of Ptf1a function. Proc Natl Acad Sci U S A 2014; 111:E1777-86. [PMID: 24733890 DOI: 10.1073/pnas.1315024111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Model organism studies have demonstrated that cell fate specification decisions play an important role in normal brain development. Their role in human neurodevelopmental disorders, however, is poorly understood, with very few examples described. The cerebellum is an excellent system to study mechanisms of cell fate specification. Although signals from the isthmic organizer are known to specify cerebellar territory along the anterior-posterior axis of the neural tube, the mechanisms establishing the cerebellar anlage along the dorsal-ventral axis are unknown. Here we show that the gene encoding pancreatic transcription factor PTF1A, which is inactivated in human patients with cerebellar agenesis, is required to segregate the cerebellum from more ventral extracerebellar fates. Using genetic fate mapping in mice, we show that in the absence of Ptf1a, cells originating in the cerebellar ventricular zone initiate a more ventral brainstem expression program, including LIM homeobox transcription factor 1 beta and T-cell leukemia homeobox 3. Misspecified cells exit the cerebellar anlage and contribute to the adjacent brainstem or die, leading to cerebellar agenesis in Ptf1a mutants. Our data identify Ptf1a as the first gene involved in the segregation of the cerebellum from the more ventral brainstem. Further, we propose that cerebellar agenesis represents a new, dorsal-to-ventral, cell fate misspecification phenotype in humans.
Collapse
|
13
|
Green MJ, Myat AM, Emmenegger BA, Wechsler-Reya RJ, Wilson LJ, Wingate RJT. Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development 2014; 141:389-98. [PMID: 24381197 PMCID: PMC3879817 DOI: 10.1242/dev.099119] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rhombic lip gives rise to neuronal populations that contribute to cerebellar, proprioceptive and interoceptive networks. Cell production depends on the expression of the basic helix-loop-helix (bHLH) transcription factor Atoh1. In rhombomere 1, Atoh1-positive cells give rise to both cerebellar neurons and extra-cerebellar nuclei in ventral hindbrain. The origin of this cellular diversity has previously been attributed to temporal signals rather than spatial patterning. Here, we show that in both chick and mouse the cerebellar Atoh1 precursor pool is partitioned into initially cryptic spatial domains that reflect the activity of two different organisers: an isthmic Atoh1 domain, which gives rise to isthmic nuclei, and the rhombic lip, which generates deep cerebellar nuclei and granule cells. We use a combination of in vitro explant culture, genetic fate mapping and gene overexpression and knockdown to explore the role of isthmic signalling in patterning these domains. We show that an FGF-dependent isthmic Atoh1 domain is the origin of distinct populations of Lhx9-positive neurons in the extra-cerebellar isthmic nuclei. In the cerebellum, ectopic FGF induces proliferation while blockade reduces the length of the cerebellar rhombic lip. FGF signalling is not required for the specification of cerebellar cell types from the rhombic lip and its upregulation inhibits their production. This suggests that although the isthmus regulates the size of the cerebellar anlage, the downregulation of isthmic FGF signals is required for induction of rhombic lip-derived cerebellar neurons.
Collapse
Affiliation(s)
- Mary J Green
- MRC Centre for Developmental Neurobiology, King's College London, 4th floor New Hunt's House, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
14
|
Basson MA, Wingate RJ. Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences. Front Neuroanat 2013; 7:29. [PMID: 24027500 PMCID: PMC3759752 DOI: 10.3389/fnana.2013.00029] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/09/2013] [Indexed: 12/14/2022] Open
Abstract
Over the last 60 years, the spotlight of research has periodically returned to the cerebellum as new techniques and insights have emerged. Because of its simple homogeneous structure, limited diversity of cell types and characteristic behavioral pathologies, the cerebellum is a natural home for studies of cell specification, patterning, and neuronal migration. However, recent evidence has extended the traditional range of perceived cerebellar function to include modulation of cognitive processes and implicated cerebellar hypoplasia and Purkinje neuron hypo-cellularity with autistic spectrum disorder. In the light of this emerging frontier, we review the key stages and genetic mechanisms behind cerebellum development. In particular, we discuss the role of the midbrain hindbrain isthmic organizer in the development of the cerebellar vermis and the specification and differentiation of Purkinje cells and granule neurons. These developmental processes are then considered in relation to recent insights into selected human developmental cerebellar defects: Joubert syndrome, Dandy–Walker malformation, and pontocerebellar hypoplasia. Finally, we review current research that opens up the possibility of using the mouse as a genetic model to study the role of the cerebellum in cognitive function.
Collapse
Affiliation(s)
- M Albert Basson
- Department of Craniofacial Development and Stem Cell Biology, King's College London London, UK ; Medical Research Council Centre for Developmental Neurobiology, King's College London London, UK
| | | |
Collapse
|
15
|
Guijarro P, Jiang J, Yuan XB. Culturing of cerebellar granule cells to study neuronal migration: gradient and local perfusion assays. ACTA ACUST UNITED AC 2013; Chapter 3:Unit 3.26. [PMID: 22752893 DOI: 10.1002/0471142301.ns0326s60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cultures of cerebellar granule cells are a suitable model to analyze the mechanisms governing neuronal migration. In this unit, we describe a protocol to obtain cultures of dissociated granule cells at a low density, where individual cells can be easily observed. In addition, we include a protocol for studying neuronal migration in these cultures, using single, actively migrating cerebellar granule cells. Following this protocol, a factor of interest can be applied either in a gradient concentration by means of a micropipet located near the neuron, or in a homogeneous concentration by locally perfusing a certain region of the neuron. Time-lapse images are taken to analyze changes in the speed and/or directionality of the observed neuron. Overall, the two protocols take more or less a day and a half to perform, and are a useful way to evaluate a certain factor/drug for its chemotactic activity or its capacity to alter migration speed.
Collapse
Affiliation(s)
- Patricia Guijarro
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
16
|
Franco SJ, Müller U. Extracellular matrix functions during neuronal migration and lamination in the mammalian central nervous system. Dev Neurobiol 2012; 71:889-900. [PMID: 21739613 DOI: 10.1002/dneu.20946] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Extracellular matrix (ECM) glycoproteins are expressed in the central nervous system (CNS) in complex and developmentally regulated patterns. The ECM provides a number of critical functions in the CNS, contributing both to the overall structural organization of the CNS and to control of individual cells. At the cellular level, the ECM affects its functions by a wide range of mechanisms, including providing structural support to cells, regulating the activity of second messenger systems, and controlling the distribution and local concentration of growth and differentiation factors. Perhaps the most well known role of the ECM is as a substrate on which motile cells can migrate. Genetic, cell biological, and biochemical studies provide strong evidence that ECM glycoproteins such as laminins, tenascins, and proteoglycans control neuronal migration and positioning in several regions of the developing and adult brain. Recent findings have also shed important new insights into the cellular and molecular mechanisms by which reelin regulates migration. Here we will summarize these findings, emphasizing the emerging concept that ECM glycoproteins promote different modes of neuronal migration such as radial, tangential, and chain migration. We also discuss several studies demonstrating that mutations in ECM glycoproteins can alter neuronal positioning by cell nonautonomous mechanisms that secondarily affect migrating neurons.
Collapse
Affiliation(s)
- Santos J Franco
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
17
|
Hibi M, Shimizu T. Development of the cerebellum and cerebellar neural circuits. Dev Neurobiol 2012; 72:282-301. [DOI: 10.1002/dneu.20875] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Chung SH, Marzban H, Aldinger K, Dixit R, Millen K, Schuurmans C, Hawkes R. Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Dev 2011. [PMID: 21592321 DOI: 10.1186/1749‐8104‐6‐25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The cerebellum is composed of a diverse array of neuronal subtypes. Here we have used a candidate approach to identify Zac1, a tumor suppressor gene encoding a zinc finger transcription factor, as a new player in the transcriptional network required for the development of a specific subset of cerebellar nuclei and a population of Golgi cells in the cerebellar cortex. RESULTS We found that Zac1 has a complex expression profile in the developing cerebellum, including in two proliferating progenitor populations; the cerebellar ventricular zone and the external granular layer overlying posterior cerebellar lobules IX and X. Zac1 is also expressed in some postmitotic cerebellar neurons, including a subset of GABAergic interneurons in the medial cerebellar nuclei. Notably, GABAergic interneurons in the cerebellar nuclei are derived from the cerebellar ventricular zone, where Zac1 is also expressed, consistent with a lineage relationship between these two Zac1+ populations. Zac1 is also expressed in a small subset of cells in the posterior vermis, including some neurogranin-immunoreactive (NG+) Golgi cells, which, based on short-term birthdating, are derived from the EGL, where Zac1 is also expressed. However, Zac1+ cells and NG+ Golgi cells in the cerebellar cortex also display unique properties, as they are generated within different, albeit overlapping, time windows. Finally, consistent with the expression profile of Zac1, two conspicuous abnormalities were found in the cerebellum of Zac1 null mice: the medial cerebellar nuclei, and not the others, were significantly reduced in size; and the number of Golgi cells in cerebellar lobule IX was reduced by approximately 60% compared to wild-type littermates. CONCLUSIONS The data presented here indicate that the tumor suppressor gene Zac1 is expressed in a complex fashion in the developing cerebellum, including in two dividing progenitor populations and in specific subsets of postmitotic neurons, including Golgi cells and GABAergic neurons in the medial nuclei, which require Zac1 for their differentiation. We thus conclude that Zac1 is a critical regulator of normal cerebellar development, adding a new transcriptional regulator to the growing list of factors involved in generating neuronal diversity in the developing cerebellum.
Collapse
Affiliation(s)
- Seung-Hyuk Chung
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | |
Collapse
|
19
|
Chung SH, Marzban H, Aldinger K, Dixit R, Millen K, Schuurmans C, Hawkes R. Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Dev 2011; 6:25. [PMID: 21592321 PMCID: PMC3113315 DOI: 10.1186/1749-8104-6-25] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/18/2011] [Indexed: 11/20/2022] Open
Abstract
Background The cerebellum is composed of a diverse array of neuronal subtypes. Here we have used a candidate approach to identify Zac1, a tumor suppressor gene encoding a zinc finger transcription factor, as a new player in the transcriptional network required for the development of a specific subset of cerebellar nuclei and a population of Golgi cells in the cerebellar cortex. Results We found that Zac1 has a complex expression profile in the developing cerebellum, including in two proliferating progenitor populations; the cerebellar ventricular zone and the external granular layer overlying posterior cerebellar lobules IX and X. Zac1 is also expressed in some postmitotic cerebellar neurons, including a subset of GABAergic interneurons in the medial cerebellar nuclei. Notably, GABAergic interneurons in the cerebellar nuclei are derived from the cerebellar ventricular zone, where Zac1 is also expressed, consistent with a lineage relationship between these two Zac1+ populations. Zac1 is also expressed in a small subset of cells in the posterior vermis, including some neurogranin-immunoreactive (NG+) Golgi cells, which, based on short-term birthdating, are derived from the EGL, where Zac1 is also expressed. However, Zac1+ cells and NG+ Golgi cells in the cerebellar cortex also display unique properties, as they are generated within different, albeit overlapping, time windows. Finally, consistent with the expression profile of Zac1, two conspicuous abnormalities were found in the cerebellum of Zac1 null mice: the medial cerebellar nuclei, and not the others, were significantly reduced in size; and the number of Golgi cells in cerebellar lobule IX was reduced by approximately 60% compared to wild-type littermates. Conclusions The data presented here indicate that the tumor suppressor gene Zac1 is expressed in a complex fashion in the developing cerebellum, including in two dividing progenitor populations and in specific subsets of postmitotic neurons, including Golgi cells and GABAergic neurons in the medial nuclei, which require Zac1 for their differentiation. We thus conclude that Zac1 is a critical regulator of normal cerebellar development, adding a new transcriptional regulator to the growing list of factors involved in generating neuronal diversity in the developing cerebellum.
Collapse
Affiliation(s)
- Seung-Hyuk Chung
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci U S A 2010. [PMID: 20498066 DOI: 10.1073/pnas.0910786107;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The cerebellar rhombic lip and telencephalic cortical hem are dorsally located germinal zones which contribute substantially to neuronal diversity in the CNS, but the mechanisms that drive neurogenesis within these zones are ill defined. Using genetic fate mapping in wild-type and Lmx1a(-/-) mice, we demonstrate that Lmx1a is a critical regulator of cell-fate decisions within both these germinal zones. In the developing cerebellum, Lmx1a is expressed in the roof plate, where it is required to segregate the roof plate lineage from neuronal rhombic lip derivatives. In addition, Lmx1a is expressed in a subset of rhombic lip progenitors which produce granule cells that are predominantly restricted to the cerebellar posterior vermis. In the absence of Lmx1a, these cells precociously exit the rhombic lip and overmigrate into the anterior vermis. This overmigration is associated with premature regression of the rhombic lip and posterior vermis hypoplasia in Lmx1a(-/-) mice. These data reveal molecular organization of the cerebellar rhombic lip and introduce Lmx1a as an important regulator of rhombic lip cell-fate decisions, which are critical for maintenance of the entire rhombic lip and normal cerebellar morphogenesis. In the developing telencephalon Lmx1a is expressed in the cortical hem, and in its absence cortical hem progenitors contribute excessively to the adjacent hippocampus instead of producing Cajal-Retzius neurons. Thus, Lmx1a activity is critical for proper production of cells originating from both the cerebellar rhombic lip and the telencephalic cortical hem.
Collapse
|
21
|
Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci U S A 2010; 107:10725-30. [PMID: 20498066 DOI: 10.1073/pnas.0910786107] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cerebellar rhombic lip and telencephalic cortical hem are dorsally located germinal zones which contribute substantially to neuronal diversity in the CNS, but the mechanisms that drive neurogenesis within these zones are ill defined. Using genetic fate mapping in wild-type and Lmx1a(-/-) mice, we demonstrate that Lmx1a is a critical regulator of cell-fate decisions within both these germinal zones. In the developing cerebellum, Lmx1a is expressed in the roof plate, where it is required to segregate the roof plate lineage from neuronal rhombic lip derivatives. In addition, Lmx1a is expressed in a subset of rhombic lip progenitors which produce granule cells that are predominantly restricted to the cerebellar posterior vermis. In the absence of Lmx1a, these cells precociously exit the rhombic lip and overmigrate into the anterior vermis. This overmigration is associated with premature regression of the rhombic lip and posterior vermis hypoplasia in Lmx1a(-/-) mice. These data reveal molecular organization of the cerebellar rhombic lip and introduce Lmx1a as an important regulator of rhombic lip cell-fate decisions, which are critical for maintenance of the entire rhombic lip and normal cerebellar morphogenesis. In the developing telencephalon Lmx1a is expressed in the cortical hem, and in its absence cortical hem progenitors contribute excessively to the adjacent hippocampus instead of producing Cajal-Retzius neurons. Thus, Lmx1a activity is critical for proper production of cells originating from both the cerebellar rhombic lip and the telencephalic cortical hem.
Collapse
|
22
|
Kani S, Bae YK, Shimizu T, Tanabe K, Satou C, Parsons MJ, Scott E, Higashijima SI, Hibi M. Proneural gene-linked neurogenesis in zebrafish cerebellum. Dev Biol 2010; 343:1-17. [PMID: 20388506 DOI: 10.1016/j.ydbio.2010.03.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 01/30/2023]
Abstract
In mammals, cerebellar neurons are categorized as glutamatergic or GABAergic, and are derived from progenitors that express the proneural genes atoh1 or ptf1a, respectively. In zebrafish, three atoh1 genes, atoh1a, atoh1b, and atoh1c, are expressed in overlapping but distinct expression domains in the upper rhombic lip (URL): ptf1a is expressed exclusively in the ventricular zone (VZ). Using transgenic lines expressing fluorescent proteins under the control of the regulatory elements of atoh1a and ptf1a, we traced the lineages of the cerebellar neurons. The atoh1(+) progenitors gave rise not only to granule cells but also to neurons of the anteroventral rhombencephalon. The ptf1a(+) progenitors generated Purkinje cells. The olig2(+) eurydendroid cells, which are glutamatergic, were derived mostly from ptf1a(+) progenitors in the VZ but some originated from the atoh1(+) progenitors in the URL. In the adult cerebellum, atoh1a, atoh1b, and atoh1c are expressed in the molecular layer of the valvula cerebelli and of the medial corpus cerebelli, and ptf1a was detected in the VZ. The proneural gene expression patterns coincided with the sites of proliferating neuronal progenitors in the adult cerebellum. Our data indicate that proneural gene-linked neurogenesis is evolutionarily conserved in the cerebellum among vertebrates, and that the continuously generated neurons help remodel neural circuits in the adult zebrafish cerebellum.
Collapse
Affiliation(s)
- Shuichi Kani
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chaplin N, Tendeng C, Wingate RJT. Absence of an external germinal layer in zebrafish and shark reveals a distinct, anamniote ground plan of cerebellum development. J Neurosci 2010; 30:3048-57. [PMID: 20181601 PMCID: PMC2883741 DOI: 10.1523/jneurosci.6201-09.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 01/08/2010] [Indexed: 02/03/2023] Open
Abstract
The granule cell layer of the cerebellum comprises the largest population of neurons in the vertebrate CNS. In amniotes, its precursors undergo a unique phase of transit amplification, regulated by Sonic hedgehog. They do so within a prominent but transient secondary proliferative epithelium, the external germinal layer, which is formed by tangential migration of precursor cells from the rhombic lip. This behavior is a hallmark of bird and mammal cerebellum development. Despite its significance for both development and disease, it is unclear whether an external germinal layer is a requirement for granule cell production or an expedient of transit amplification. Evidence for its existence in more basal vertebrates is contradictory. We therefore examined cerebellum development in the zebrafish, specifically in relation to the expression of the basic helix-loop-helix gene Atonal 1, which definitively characterizes granule cell precursors. The expression of Atoh1a-Atoh1c, in combination with patterns of proliferation and fate maps, define precursor pools at the rhombic lip and cerebellar midline but demonstrate that an external germinal layer is absent. Sonic hedgehog signaling is correspondingly absent in the zebrafish cerebellum. Sustained roof-plate-derived signals suggest that, in the absence of transit amplification, primary granule cell precursor pools are maintained throughout development. To determine whether this pattern is specific to zebrafish or reflects a more general anamniote organization, we examined the expression of similar genes in the dogfish, Scylliorhinus canicula. We show that these anamniotes share a common ground plan of granule cell production that does not include an external germinal layer.
Collapse
Affiliation(s)
- Natalie Chaplin
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | | | | |
Collapse
|
24
|
Zhou B, Williams DW, Altman J, Riddiford LM, Truman JW. Temporal patterns of broad isoform expression during the development of neuronal lineages in Drosophila. Neural Dev 2009; 4:39. [PMID: 19883497 PMCID: PMC2780399 DOI: 10.1186/1749-8104-4-39] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 11/02/2009] [Indexed: 12/28/2022] Open
Abstract
Background During the development of the central nervous system (CNS) of Drosophila, neuronal stem cells, the neuroblasts (NBs), first generate a set of highly diverse neurons, the primary neurons that mature to control larval behavior, and then more homogeneous sets of neurons that show delayed maturation and are primarily used in the adult. These latter, 'secondary' neurons show a complex pattern of expression of broad, which encodes a transcription factor usually associated with metamorphosis, where it acts as a key regulator in the transitions from larva and pupa. Results The Broad-Z3 (Br-Z3) isoform appears transiently in most central neurons during embryogenesis, but persists in a subset of these cells through most of larval growth. Some of the latter are embryonic-born secondary neurons, whose development is arrested until the start of metamorphosis. However, the vast bulk of the secondary neurons are generated during larval growth and bromodeoxyuridine incorporation shows that they begin expressing Br-Z3 about 7 hours after their birth, approximately the time that they have finished outgrowth to their initial targets. By the start of metamorphosis, the oldest secondary neurons have turned off Br-Z3 expression, while the remainder, with the exception of the very youngest, maintain Br-Z3 while they are interacting with potential partners in preparation for neurite elaboration. That Br-Z3 may be involved in early sprouting is suggested by ectopically expressing this isoform in remodeling primary neurons, which do not normally express Br-Z3. These cells now sprout into ectopic locations. The expression of Br-Z3 is transient and seen in all interneurons, but two other isoforms, Br-Z4 and Br-Z1, show a more selective expression. Analysis of MARCM clones shows that the Br-Z4 isoform is expressed by neurons in virtually all lineages, but only in those cells born during a window during the transition from the second to the third larval instar. Br-Z4 expression is then maintained in this temporal cohort of cells into the adult. Conclusion These data show the potential for diverse functions of Broad within the developing CNS. The Br-Z3 isoform appears in all interneurons, but not motoneurons, when they first begin to interact with potential targets. Its function during this early sorting phase needs to be defined. Two other Broad isoforms, by contrast, are stably expressed in cohorts of neurons in all lineages and are the first examples of persisting molecular 'time-stamps' for Drosophila postembryonic neurons.
Collapse
Affiliation(s)
- Baohua Zhou
- Department of Biology, University of Washington, Seattle, 98195, USA.
| | | | | | | | | |
Collapse
|
25
|
Aldinger KA, Lehmann OJ, Hudgins L, Chizhikov VV, Bassuk AG, Ades LC, Krantz ID, Dobyns WB, Millen KJ. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet 2009; 41:1037-42. [PMID: 19668217 PMCID: PMC2843139 DOI: 10.1038/ng.422] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 06/29/2009] [Indexed: 12/22/2022]
Abstract
Dandy-Walker malformation (DWM), the most common human cerebellar malformation, has only one characterized associated locus. Here we characterize a second DWM-linked locus on 6p25.3, showing that deletions or duplications encompassing FOXC1 are associated with cerebellar and posterior fossa malformations including cerebellar vermis hypoplasia (CVH), mega-cisterna magna (MCM) and DWM. Foxc1-null mice have embryonic abnormalities of the rhombic lip due to loss of mesenchyme-secreted signaling molecules with subsequent loss of Atoh1 expression in vermis. Foxc1 homozygous hypomorphs have CVH with medial fusion and foliation defects. Human FOXC1 heterozygous mutations are known to affect eye development, causing a spectrum of glaucoma-associated anomalies (Axenfeld-Rieger syndrome, ARS; MIM no. 601631). We report the first brain imaging data from humans with FOXC1 mutations and show that these individuals also have CVH. We conclude that alteration of FOXC1 function alone causes CVH and contributes to MCM and DWM. Our results highlight a previously unrecognized role for mesenchyme-neuroepithelium interactions in the mid-hindbrain during early embryogenesis.
Collapse
|
26
|
Model organisms inform the search for the genes and developmental pathology underlying malformations of the human hindbrain. Semin Pediatr Neurol 2009; 16:155-63. [PMID: 19778712 PMCID: PMC2778478 DOI: 10.1016/j.spen.2009.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Congenital malformations of the human hindbrain, including the cerebellum, are poorly understood largely because their recognition is a relatively recent advance for imaging diagnostics. Cerebellar malformations are the most obvious and best characterized hindbrain malformations due to their relative ease of viewing by magnetic resonance imaging and the recent identification of several causative genes (Millen et al. Curr Opin Neurobiol 18:12-19, 2008). Malformations of the pons and medulla have also been described both in isolation and in association with cerebellar malformations (Barkovich et al. Ann Neurol 62:625-639, 2007). Although little is understood regarding the specific developmental pathologies underlying hindbrain malformations in humans, much is known regarding the mechanisms and genes driving hindbrain development in vertebrate model organisms. Thus, studies in vertebrate models provide a developmental framework in which to categorize human hindbrain malformations and serve to provide information regarding disrupted developmental processes and candidate genes. Here, we survey the basic principles of vertebrate hindbrain development and integrate our current knowledge of human hindbrain malformations into this framework.
Collapse
|
27
|
Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche. J Neurosci 2009; 29:6142-53. [PMID: 19439592 DOI: 10.1523/jneurosci.0072-09.2009] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the adult CNS, neurogenesis takes place in special niches. It is not understood how these niches are formed during development and how they are maintained. In contrast to mammals, stem cell niches are abundant in zebrafish and also found in other parts of the brain than telencephalon. To understand common characteristics of neural stem cell niches in vertebrates, we studied the origin and architecture of a previously unknown stem cell niche using transgenic lines, in vivo imaging, and marker analysis. We show that bipotent stem cells are maintained in a distinct niche in the adult zebrafish cerebellum. Remarkably, the stem cells are not typical glia but instead retain neuroepithelial characteristics. The cerebellar stem cell niche is generated by the coordinated displacement of ventricle and rhombic lip progenitors in a two-step process involving morphogenetic movements and tissue growth. Importantly, the niche and its stem cells still remain in ventricular contact through a previously unknown derivative of the ventricle. Factors propagated in the ventricle are thought to be important regulators of stem cell activity. To test the requirements of one family of important factors, Fibroblast growth factors, we used zebrafish with an inducible dominant-negative Fgf receptor. Inhibition of Fgf signaling leads to significant reduction of stem cell activity. In contrast to the predominant view, adult neural stem cells in nonmammalian vertebrates show more neuroepithelial than glial characteristics. Nevertheless, retained epithelial properties such as distinct polarization and ventricular contact are critical common determinants to maintain neural stem cell activity in vertebrates.
Collapse
|
28
|
Bae YK, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, Higashijima SI, Hibi M. Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol 2009; 330:406-26. [PMID: 19371731 DOI: 10.1016/j.ydbio.2009.04.013] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 01/11/2023]
Abstract
The cerebellum is important for the integration of sensory perception and motor control, but its structure has mostly been studied in mammals. Here, we describe the cell types and neural tracts of the adult zebrafish cerebellum using molecular markers and transgenic lines. Cerebellar neurons are categorized to two major groups: GABAergic and glutamatergic neurons. The Purkinje cells, which are GABAergic neurons, express parvalbumin7, carbonic anhydrase 8, and aldolase C like (zebrin II). The glutamatergic neurons are vglut1(+) granule cells and vglut2(high) cells, which receive Purkinje cell inputs; some vglut2(high) cells are eurydendroid cells, which are equivalent to the mammalian deep cerebellar nuclei. We found olig2(+) neurons in the adult cerebellum and ascertained that at least some of them are eurydendroid cells. We identified markers for climbing and mossy afferent fibers, efferent fibers, and parallel fibers from granule cells. Furthermore, we found that the cerebellum-like structures in the optic tectum and antero-dorsal hindbrain show similar Parvalbumin7 and Vglut1 expression profiles as the cerebellum. The differentiation of GABAergic and glutamatergic neurons begins 3 days post-fertilization (dpf), and layers are first detectable 5 dpf. Using anti-Parvalbumin7 and Vglut1 antibodies to label Purkinje cells and granule cell axons, respectively, we screened for mutations affecting cerebellar neuronal development and the formation of neural tracts. Our data provide a platform for future studies of zebrafish cerebellar development.
Collapse
Affiliation(s)
- Young-Ki Bae
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zordan P, Croci L, Hawkes R, Consalez GG. Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn 2008; 237:1726-35. [PMID: 18498101 DOI: 10.1002/dvdy.21571] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The embryonic cerebellum contains two germinative epithelia: the rhombic lip and the ventricular zone. While the lineage of glutamatergic neurons arising from the rhombic lip has been characterized, plenty remains to be learned about the factors giving rise to the array of ventricular zone-derived gamma-aminobutyric acid (GABA)ergic neurons. In the present study, we describe the expression of proneural genes Mash1/Ascl1, Ngn1/Neurog1, and Ngn2/Neurog2 in the cerebellar primordium at key stages of Purkinje cell and interneuron development, and compare them with the expression of other genes active in the same context. Our results indicate that Ngn1, Ngn2 and Mash1 are expressed at relevant stages of cerebellar neurogenesis in the prospective cerebellar nuclei and in the ventricular zone, excluding the Math1/Atoh1-positive rhombic lip. Their expression domains are only partially overlapping, suggesting that they may contribute selectively to ventricular zone regionalization, giving rise to the diversity of cerebellar GABA neurons and, possibly, Purkinje cell subtypes.
Collapse
Affiliation(s)
- Paola Zordan
- San Raffaele Scientific Institute and San Raffaele University, Milan, Italy
| | | | | | | |
Collapse
|
30
|
Millen KJ, Gleeson JG. Cerebellar development and disease. Curr Opin Neurobiol 2008; 18:12-9. [PMID: 18513948 PMCID: PMC2474776 DOI: 10.1016/j.conb.2008.05.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/08/2008] [Accepted: 05/09/2008] [Indexed: 11/22/2022]
Abstract
The molecular control of cell-type specification within the developing cerebellum as well as the genetic causes of the most common human developmental cerebellar disorders have long remained mysterious. Recent genetic lineage and loss-of-function data from mice have revealed unique and nonoverlapping anatomical origins for GABAergic neurons from ventricular zone precursors and glutamatergic cell from rhombic lip precursors, mirroring distinct origins for these neurotransmitter-specific cell types in the cerebral cortex. Mouse studies elucidating the role of Ptf1a as a cerebellar ventricular zone GABerigic fate switch were actually preceded by the recognition that PTF1A mutations in humans cause cerebellar agenesis, a birth defect of the human cerebellum. Indeed, several genes for congenital human cerebellar malformations have recently been identified, including genes causing Joubert syndrome, Dandy-Walker malformation, and pontocerebellar hypoplasia. These studies have pointed to surprisingly complex roles for transcriptional regulation, mitochondrial function, and neuronal cilia in patterning, homeostasis, and cell proliferation during cerebellar development. Together, mouse and human studies are synergistically advancing our understanding of the developmental mechanisms that generate the uniquely complex mature cerebellum.
Collapse
Affiliation(s)
- Kathleen J. Millen
- Associate Professor of Human Genetics and Neurology, The University of Chicago, 920 East 58th Street, Cummings Life Sciences Center 319, Department of Human Genetics, University of Chicago, Chicago, IL 60637,
| | - Joseph G. Gleeson
- Associate Professor of Neuroscience, University of California, San Diego, Neurogenetics Laboratory, Leichtag 3A16, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA 92093-0691,
| |
Collapse
|
31
|
Mione M, Baldessari D, Deflorian G, Nappo G, Santoriello C. How neuronal migration contributes to the morphogenesis of the CNS: insights from the zebrafish. Dev Neurosci 2008; 30:65-81. [PMID: 18075256 DOI: 10.1159/000109853] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 06/24/2007] [Indexed: 11/19/2022] Open
Abstract
We used transgenic zebrafish expressing GFP or YFP in subpopulations of neurons to study the migration, homing process and axon extension of groups of CNS neurons in different regions of the zebrafish brain. We found that extensive migration takes place at all levels of the CNS and gives rise to nuclei or cell populations with specific identities. Here, we describe 4 previously unknown or only partially characterized migratory events taking place in the zebrafish telencephalon and rhombic lip, using 3 different transgenic lines, and identify the phenotypes of the cells undertaking these migrations. The migration of a subgroup of mitral cell precursors from the dorsocaudal telencephalon to the olfactory bulb, visualized in the tg(tbr1:YFP) transgenic line, is coupled with morphogenetic transformation of the dorsal telencephalon. The tg(1.4dlx5a-6a:GFP) transgenic line provides a means to analyze the migration of GABAergic interneurons from the ventral to the dorsal telencephalon, thus extending the occurrence of this migration to another vertebrate. The tg(Xeom:GFP) transgenic line provides the first demonstration of the dorsoventral migration of glutamatergic septal neurons, present in mammals and now described in fish, thus reconciling the contrasting evidence of dorsal patterning genes (tbr1, eomes) expressed in a ventral cell population. Furthermore, migration studies in the tg(1.4dlx5a-6a:GFP) and tg(Xeom:GFP) lines help determine the origin of 2 important cell populations in the fish cerebellum: projection neurons and Purkinje cells. These examples reinforce the concept that migratory events contribute to the distribution of cell types with diverse identities through the CNS and that zebrafish transgenic lines represent excellent tools to study these events.
Collapse
Affiliation(s)
- Marina Mione
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy.
| | | | | | | | | |
Collapse
|
32
|
Volkmann K, Rieger S, Babaryka A, Köster RW. The zebrafish cerebellar rhombic lip is spatially patterned in producing granule cell populations of different functional compartments. Dev Biol 2008; 313:167-80. [DOI: 10.1016/j.ydbio.2007.10.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 09/18/2007] [Accepted: 10/15/2007] [Indexed: 11/27/2022]
|
33
|
Wilson LJ, Myat A, Sharma A, Maden M, Wingate RJT. Retinoic acid is a potential dorsalising signal in the late embryonic chick hindbrain. BMC DEVELOPMENTAL BIOLOGY 2007; 7:138. [PMID: 18093305 PMCID: PMC2266733 DOI: 10.1186/1471-213x-7-138] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 12/19/2007] [Indexed: 01/12/2023]
Abstract
BACKGROUND Human retinoic acid teratogenesis results in malformations of dorsally derived hindbrain structures such as the cerebellum, noradrenergic hindbrain neurons and the precerebellar system. These structures originate from the rhombic lip and adjacent dorsal precursor pools that border the fourth ventricle roofplate. While retinoic acid synthesis is known to occur in the meninges that blanket the hindbrain, the particular sensitivity of only dorsal structures to disruptions in retinoid signalling is puzzling. We therefore looked for evidence within the neural tube for more spatiotemporally specific signalling pathways using an in situ hybridisation screen of known retinoic acid pathway transcripts. RESULTS We find that there are highly restricted domains of retinoic acid synthesis and breakdown within specific hindbrain nuclei as well as the ventricular layer and roofplate. Intriguingly, transcripts of cellular retinoic acid binding protein 1 are always found at the interface between dividing and post-mitotic cells. By contrast to earlier stages of development, domains of synthesis and breakdown in post-mitotic neurons are co-localised. At the rhombic lip, expression of the mRNA for retinoic acid synthesising and catabolising enzymes is spatially highly organised with respect to the Cath1-positive precursors of migratory precerebellar neurons. CONCLUSION The late developing hindbrain shows patterns of retinoic acid synthesis and use that are distinct from the well characterised phase of rostrocaudal patterning. Selected post-mitotic populations, such as the locus coeruleus, appear to both make and break down retinoic acid suggesting that a requirement for an autocrine, or at least a highly localised paracrine signalling network, might explain its acute sensitivity to retinoic acid disruption. At the rhombic lip, retinoic acid is likely to act as a dorsalising factor in parallel with other roofplate signalling pathways. While its precise role is unclear, retinoic acid is potentially well placed to regulate temporally determined cell fate decisions within the rhombic lip precursor pool.
Collapse
Affiliation(s)
- Leigh J Wilson
- MRC Centre for Developmental Neurobiology, King's College London, 4floor New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anna Myat
- MRC Centre for Developmental Neurobiology, King's College London, 4floor New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Aadhar Sharma
- MRC Centre for Developmental Neurobiology, King's College London, 4floor New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Malcolm Maden
- MRC Centre for Developmental Neurobiology, King's College London, 4floor New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Richard JT Wingate
- MRC Centre for Developmental Neurobiology, King's College London, 4floor New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
34
|
Friedel RH, Kerjan G, Rayburn H, Schüller U, Sotelo C, Tessier-Lavigne M, Chédotal A. Plexin-B2 controls the development of cerebellar granule cells. J Neurosci 2007; 27:3921-32. [PMID: 17409257 PMCID: PMC6672405 DOI: 10.1523/jneurosci.4710-06.2007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cerebellar granule cell progenitors proliferate postnatally in the upper part of the external granule cell layer (EGL) of the cerebellum. Postmitotic granule cells differentiate and migrate, tangentially in the EGL and then radially through the molecular and Purkinje cell layers. The molecular control of the transition between proliferation and differentiation in cerebellar granule cells is poorly understood. We show here that the transmembrane receptor Plexin-B2 is expressed by proliferating granule cell progenitors. To study Plexin-B2 function, we generated a targeted mutation of mouse Plexin-B2. Most Plexin-B2(-/-) mutants die at birth as a result of neural tube closure defects. Some mutants survive but their cerebellum cytoarchitecture is profoundly altered. This is correlated with a disorganization of the timing of granule cell proliferation and differentiation in the EGL. Many differentiated granule cells migrate inside the cerebellum and keep proliferating. These results reveal that Plexin-B2 controls the balance between proliferation and differentiation in granule cells.
Collapse
Affiliation(s)
- Roland H. Friedel
- Department of Biological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Géraldine Kerjan
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, Université Paris 6, 75005 Paris, France
| | - Helen Rayburn
- Department of Biological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Ulrich Schüller
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, and
| | - Constantino Sotelo
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, Université Paris 6, 75005 Paris, France
- Cátedra de Neurobiología del Desarrollo “Remedios Caro Almela,” Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche, Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Alicante, Spain
| | - Marc Tessier-Lavigne
- Department of Biological Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Alain Chédotal
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7102, Université Paris 6, 75005 Paris, France
| |
Collapse
|
35
|
Abstract
New genetic technologies are transforming nervous system studies in mice, impacting fields from neural development to the neurobiology of disease. Of necessity, alongside these methodological advances, new concepts are taking shape with respect to both vocabulary and form. Here we review aspects of both burgeoning areas. Presented are technologies which, by co-opting site-specific recombinase systems, enable select genes to be turned on or off in specific brain cells of otherwise undisturbed mouse embryos or adults. Manipulated genes can be endogenous loci or inserted transgenes encoding reporter, sensor, or effector molecules, making it now possible to assess not only gene function, but also cell function, origin, fate, connectivity, and behavioral output. From these methodological advances, a new form of molecular neuroscience is emerging that may be said to lean on the concepts of genetic access, genetic lineage, and genetic anatomy – the three ‘Gs’ – much like a general education rests on the basics of reading, ‘riting and ‘rithmetic.
Collapse
Affiliation(s)
- Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | |
Collapse
|
36
|
Hoshino M. Molecular machinery governing GABAergic neuron specification in the cerebellum. THE CEREBELLUM 2006; 5:193-8. [PMID: 16997750 DOI: 10.1080/14734220600589202] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Although the cerebellum contains a relatively small variety of neurons, the molecular machinery governing neuronal generation and/or subtype specification is still poorly understood. We identified a novel mutant mouse, cerebelless, which lacks the entire cerebellar cortex but survives up to the adult stages. Analyses of its phenotypes and identification of its responsible gene clarified that Ptf1a (pancreas transcription factor 1a), which encodes a bHLH transcription factor, is involved in cerebellar GABAergic neuron production. Together with recently published papers describing another bHLH gene, Math1, our study proposes that two bHLH transcription factors, PTF1A and MATH1, may participate in regionalization of cerebellar neuroepithelium, defining two distinct areas, the ventricular zone and the rhombic lip, which generate GABAergic and glutamatergic neurons, respectively. Here I will describe a novel cerebellar mutant, cerebelless, review the role of Ptf1a in GABAergic neuron production, and discuss new insights into cerebellar development from the vantage point of regulation by bHLH transcription factors.
Collapse
Affiliation(s)
- Mikio Hoshino
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
37
|
Joyner AL, Zervas M. Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn 2006; 235:2376-85. [PMID: 16871622 DOI: 10.1002/dvdy.20884] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A fascinating aspect of developmental biology is how organs are assembled in three dimensions over time. Fundamental to understanding organogenesis is the ability to determine when and where specific cell types are generated, the lineage of each cell, and how cells move to reside in their final position. Numerous methods have been developed to mark and follow the fate of cells in various model organisms used by developmental biologists, but most are not readily applicable to mouse embryos in utero because they involve physical marking of cells through injection of tracers. The advent of sophisticated transgenic and gene targeting techniques, combined with the use of site-specific recombinases, has revolutionized fate mapping studies in mouse. Furthermore, using genetic fate mapping to mark cells has opened up the possibility of addressing fundamental questions that cannot be studied with traditional methods of fate mapping in other organisms. Specifically, genetic fate mapping allows both the relationship between embryonic gene expression and cell fate (genetic lineage) to be determined, as well as the link between gene expression domains and anatomy (genetic anatomy) to be established. In this review, we present the ever-evolving development of genetic fate mapping techniques in mouse, especially the recent advance of Genetic Inducible Fate Mapping. We then review recent studies in the nervous system (focusing on the anterior hindbrain) as well as in the limb and with adult stem cells to highlight fundamental developmental processes that can be discovered using genetic fate mapping approaches. We end with a look toward the future at a powerful new approach that combines genetic fate mapping with cellular phenotyping alleles to study cell morphology, physiology, and function using examples from the nervous system.
Collapse
Affiliation(s)
- Alexandra L Joyner
- Howard Hughes Medical Institute and Developmental Genetics Program, Department of Cell Biology and Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
38
|
Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ. The roof plate regulates cerebellar cell-type specification and proliferation. Development 2006; 133:2793-804. [PMID: 16790481 DOI: 10.1242/dev.02441] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During embryogenesis, the isthmic organizer, a well-described signaling center at the junction of the mid-hindbrain, establishes the cerebellar territory along the anterior/posterior axis of the neural tube. Mechanisms specifying distinct populations within the early cerebellar anlage are less defined. Using a newly developed gene expression map of the early cerebellar anlage, we demonstrate that secreted signals from the rhombomere 1 roof plate are both necessary and sufficient for specification of the adjacent cerebellar rhombic lip and its derivative fates. Surprisingly, we show that the roof plate is not absolutely required for initial specification of more distal cerebellar cell fates, but rather regulates progenitor proliferation and cell position within the cerebellar anlage. Thus, in addition to the isthmus, the roof plate represents an important signaling center controlling multiple aspects of cerebellar patterning.
Collapse
Affiliation(s)
- Victor V Chizhikov
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, CLSC 319 Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
39
|
Wilson LJ, Wingate RJT. Temporal identity transition in the avian cerebellar rhombic lip. Dev Biol 2006; 297:508-21. [PMID: 16806151 DOI: 10.1016/j.ydbio.2006.05.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 05/09/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
The rhombic lip is a discrete strip of neuroepithelium bordering the roofplate of the fourth ventricle, which gives rise to a defined sequence of migratory neuronal derivatives. In rhombomere 1 of the chick, early born cells give rise to post-mitotic hindbrain nuclei, while later derivatives comprise of cerebellar granule cell precursors, a unique proliferative, migratory precursor population that forms the external granule cell layer. We have examined the temporal specification of these two populations using a heterochronic grafting strategy, in ovo. When transplanted into younger neural tube, rhombic lip cells maintain their characteristic molecular markers and migrate into the hindbrain. Granule cell precursor derivatives of late grafts are, in addition, able to exploit neural crest streams to populate the branchial arches. Within the neural tube, derivatives of early and late rhombic lip progenitors display patterns of migration and process extension, characterised by specific trajectories and targets, which are consistent with their temporal origin. However, the normal temporal progression of cell production is disrupted in grafted progenitors: transplanted early rhombic lip fails to subsequently produce granule cell precursors. This indicates that, while the behaviour of derivatives is intrinsically specified at the rhombic lip, the orderly temporal transition in cell type production is dependent on extrinsic cues present only in the later embryo.
Collapse
Affiliation(s)
- Leigh J Wilson
- MRC Centre for Developmental Neurobiology, King's College London, UK
| | | |
Collapse
|