1
|
May L, Dauphin A, Gjorgjieva J. Pre-training artificial neural networks with spontaneous retinal activity improves motion prediction in natural scenes. PLoS Comput Biol 2025; 21:e1012830. [PMID: 40096645 DOI: 10.1371/journal.pcbi.1012830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
The ability to process visual stimuli rich with motion represents an essential skill for animal survival and is largely already present at the onset of vision. Although the exact mechanisms underlying its maturation remain elusive, spontaneous activity patterns in the retina, known as retinal waves, have been shown to contribute to this developmental process. Retinal waves exhibit complex spatio-temporal statistics and contribute to the establishment of circuit connectivity and function in the visual system, including the formation of retinotopic maps and the refinement of receptive fields in downstream areas such as the thalamus and visual cortex. Recent work in mice has shown that retinal waves have statistical features matching those of natural visual stimuli, such as optic flow, suggesting that they could prime the visual system for motion processing upon vision onset. Motivated by these findings, we examined whether artificial neural network (ANN) models trained on natural movies show improved performance if pre-trained with retinal waves. We employed the spatio-temporally complex task of next-frame prediction, in which the ANN was trained to predict the next frame based on preceding input frames of a movie. We found that pre-training ANNs with retinal waves enhances the processing of real-world visual stimuli and accelerates learning. Strikingly, when we merely replaced the initial training epochs on naturalistic stimuli with retinal waves, keeping the total training time the same, we still found that an ANN trained on retinal waves temporarily outperforms one trained solely on natural movies. Similar to observations made in biological systems, we also found that pre-training with spontaneous activity refines the receptive field of ANN neurons. Overall, our work sheds light on the functional role of spatio-temporally patterned spontaneous activity in the processing of motion in natural scenes, suggesting it acts as a training signal to prepare the developing visual system for adult visual processing.
Collapse
Affiliation(s)
- Lilly May
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Alice Dauphin
- School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute of Machine Learning and Neural Computation, Graz University of Technology, Graz, Austria
| | | |
Collapse
|
2
|
Griswold SV, Van Hooser SD. Premature vision drives aberrant development of response properties in primary visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643139. [PMID: 40161832 PMCID: PMC11952534 DOI: 10.1101/2025.03.13.643139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Development of the mammalian visual system is thought to proceed in two stages. In the first stage, before birth in primates and before eye opening in altricial mammals, spontaneous activity generated by the retina and cortex shapes visual brain circuits in an activity-dependent but experience-independent manner. In the second stage, visual activity generated by sensory experience refines receptive fields. Here we investigated the consequences of altering this sequence of events by prematurely opening one or both eyes of ferrets and examining visual receptive fields in monocular cortex after the closure of the critical period for ocular dominance plasticity. We observed that many cells in animals with prematurely-opened eyes exhibited low-pass temporal frequency tuning and increased temporal frequency bandwidths, and these cells showed slightly increased orientation and direction selectivity index values. Spontaneous activity was greatly elevated in both hemispheres following the premature opening of one or both eyes, suggesting a global change in circuit excitability that was not restricted to cells that viewed the world through the prematurely opened eye. No major changes were noted in spatial frequency tuning. These results suggest that premature visual experience alters circuit excitability and visual receptive fields, in particular with respect to temporal processing. We speculate that closed lids in altricial mammals serve to prevent visual experience until circuits are initially established and are ready to be refined by visual experience.
Collapse
Affiliation(s)
| | - Stephen D. Van Hooser
- Department of Biology
- Volen Center for Complex Systems
- Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University, Waltham, MA 02454 USA
| |
Collapse
|
3
|
Murakami T. Spatial dynamics of spontaneous activity in the developing and adult cortices. Neurosci Res 2025; 212:1-10. [PMID: 39653148 DOI: 10.1016/j.neures.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Even in the absence of external stimuli, the brain remains remarkably active, with neurons continuously firing and communicating with each other. It is not merely random firing of individual neurons but rather orchestrated patterns of activity that propagate throughout the intricate network. Over two decades, advancements in neuroscience observation tools for hemodynamics, membrane potential, and neural calcium signals, have allowed researchers to analyze the dynamics of spontaneous activity across different spatial scales, from individual neurons to macroscale brain networks. One of the remarkable findings from these studies is that the spatial patterns of spontaneous activity in the developing brain are vastly different from those in the mature adult brain. Spatial patterns of spontaneous activity during development are essential for connection refinement between brain regions, whereas the functional role in the adult brain is still controversial. In this paper, I review the differences in spatial dynamics of spontaneous activity between developing and adult cortices. Then, I delve into the cellular mechanisms underlying spontaneous activity, especially its generation and propagation manner, to contribute to a deeper understanding of brain function and its development.
Collapse
Affiliation(s)
- Tomonari Murakami
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Merkulyeva N, Lyakhovetskii V, Mikhalkin А. Anisotropy of the Orientation Selectivity in the Visual Cortex Area 18 of Cats Reared Under Normal and Altered Visual Experience. Eur J Neurosci 2025; 61:e70004. [PMID: 39866043 DOI: 10.1111/ejn.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 12/07/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
The "oblique effect" refers to the reduced visual performance for stimuli presented at oblique orientations compared to those at cardinal orientations. In the cortex, neurons that respond to specific orientations are organized into orientation columns. This raises the question: Are the orientation signals in the iso-orientation columns associated with cardinal orientations the same as those in the iso-orientation columns associated with oblique orientations, and is this signal influenced by experience? To explore this, iso-orientation columns in visual area 18 were examined using optical imaging techniques. Kittens were raised under either standard or modified conditions, including total darkness or rhythmic light stimulation through one or both eyes, which could potentially disrupt the orientation tuning of visual neurons. A signal profile around the pinwheel center was calculated to assess the distribution of the orientation signal within the hypercolumn. This profile exhibits a sinusoidal pattern with identifiable minima and maxima. To emphasize that these amplitude variations are localized within a specific circle rather than throughout the entire optical map, we used the terms "local minima" and "local maxima." The number of local maxima in areas corresponding to oblique orientations was similar to those in regions associated with vertical orientations. The highest number of local maxima was found in horizontal iso-orientation columns, indicating a "horizontal bias." This finding may be related to the postnatal development of sensory-sensory and sensory-motor integrations involving the visual system. We propose that the data presented should be incorporated into mathematical models of visual cortex activity, as well as vision itself.
Collapse
Affiliation(s)
- N Merkulyeva
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia
| | - V Lyakhovetskii
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia
| | - А Mikhalkin
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia
| |
Collapse
|
5
|
Arcaro M, Livingstone M. A Whole-Brain Topographic Ontology. Annu Rev Neurosci 2024; 47:21-40. [PMID: 38360565 DOI: 10.1146/annurev-neuro-082823-073701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
It is a common view that the intricate array of specialized domains in the ventral visual pathway is innately prespecified. What this review postulates is that it is not. We explore the origins of domain specificity, hypothesizing that the adult brain emerges from an interplay between a domain-general map-based architecture, shaped by intrinsic mechanisms, and experience. We argue that the most fundamental innate organization of cortex in general, and not just the visual pathway, is a map-based topography that governs how the environment maps onto the brain, how brain areas interconnect, and ultimately, how the brain processes information.
Collapse
Affiliation(s)
- Michael Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
6
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 PMCID: PMC11825063 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Burbridge TJ, Ratliff JM, Dwivedi D, Vrudhula U, Alvarado-Huerta F, Sjulson L, Ibrahim LA, Cheadle L, Fishell G, Batista-Brito R. Disruption of Cholinergic Retinal Waves Alters Visual Cortex Development and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588143. [PMID: 38644996 PMCID: PMC11030223 DOI: 10.1101/2024.04.05.588143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Retinal waves represent an early form of patterned spontaneous neural activity in the visual system. These waves originate in the retina before eye-opening and propagate throughout the visual system, influencing the assembly and maturation of subcortical visual brain regions. However, because it is technically challenging to ablate retina-derived cortical waves without inducing compensatory activity, the role these waves play in the development of the visual cortex remains unclear. To address this question, we used targeted conditional genetics to disrupt cholinergic retinal waves and their propagation to select regions of primary visual cortex, which largely prevented compensatory patterned activity. We find that loss of cholinergic retinal waves without compensation impaired the molecular and synaptic maturation of excitatory neurons located in the input layers of visual cortex, as well as layer 1 interneurons. These perinatal molecular and synaptic deficits also relate to functional changes observed at later ages. We find that the loss of perinatal cholinergic retinal waves causes abnormal visual cortex retinotopy, mirroring changes in the retinotopic organization of gene expression, and additionally impairs the processing of visual information. We further show that retinal waves are necessary for higher order processing of sensory information by impacting the state-dependent activity of layer 1 interneurons, a neuronal type that shapes neocortical state-modulation, as well as for state-dependent gain modulation of visual responses of excitatory neurons. Together, these results demonstrate that a brief targeted perinatal disruption of patterned spontaneous activity alters early cortical gene expression as well as synaptic and physiological development, and compromises both fundamental and, notably, higher-order functions of visual cortex after eye-opening.
Collapse
Affiliation(s)
- Timothy J Burbridge
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115
| | - Jacob M Ratliff
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Deepanjali Dwivedi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115
| | - Uma Vrudhula
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Psychiatry and Behavioral Sciences, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, KSA
| | - Lucas Cheadle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724
| | - Gordon Fishell
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Psychiatry and Behavioral Sciences, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Genetics, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
8
|
Nelson J, Woeste EM, Oba K, Bitterman K, Billings BK, Sacco J, Jacobs B, Sherwood CC, Manger PR, Spocter MA. Neuropil Variation in the Prefrontal, Motor, and Visual Cortex of Six Felids. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:25-44. [PMID: 38354714 DOI: 10.1159/000537843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Felids have evolved a specialized suite of morphological adaptations for obligate carnivory. Although the musculoskeletal anatomy of the Felidae has been studied extensively, the comparative neuroanatomy of felids is relatively unexplored. Little is known about how variation in the cerebral anatomy of felids relates to species-specific differences in sociality, hunting strategy, or activity patterns. METHODS We quantitatively analyzed neuropil variation in the prefrontal, primary motor, and primary visual cortices of six species of Felidae (Panthera leo, Panthera uncia, Panthera tigris, Panthera leopardus, Acinonyx jubatus, Felis sylvestris domesticus) to investigate relationships with brain size, neuronal cell parameters, and select behavioral and ecological factors. Neuropil is the dense, intricate network of axons, dendrites, and synapses in the brain, playing a critical role in information processing and communication between neurons. RESULTS There were significant species and regional differences in neuropil proportions, with African lion, cheetah, and tiger having more neuropil in all three cortical regions in comparison to the other species. Based on regression analyses, we find that the increased neuropil fraction in the prefrontal cortex supports social and behavioral flexibility, while in the primary motor cortex, this facilitates the neural activity needed for hunting movements. Greater neuropil fraction in the primary visual cortex may contribute to visual requirements associated with diel activity patterns. CONCLUSION These results provide a cross-species comparison of neuropil fraction variation in the Felidae, particularly the understudied Panthera, and provide evidence for convergence of the neuroanatomy of Panthera and cheetahs.
Collapse
Affiliation(s)
- Jacob Nelson
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Erin M Woeste
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Ken Oba
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Kathleen Bitterman
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James Sacco
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa, USA
| | - Bob Jacobs
- Department of Psychology, Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
9
|
Sourav S, Kekunnaya R, Bottari D, Shareef I, Pitchaimuthu K, Röder B. Sound suppresses earliest visual cortical processing after sight recovery in congenitally blind humans. Commun Biol 2024; 7:118. [PMID: 38253781 PMCID: PMC10803735 DOI: 10.1038/s42003-023-05749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Neuroscientific research has consistently shown more extensive non-visual activity in the visual cortex of congenitally blind humans compared to sighted controls; a phenomenon known as crossmodal plasticity. Whether or not crossmodal activation of the visual cortex retracts if sight can be restored is still unknown. The present study, involving a rare group of sight-recovery individuals who were born pattern vision blind, employed visual event-related potentials to investigate persisting crossmodal modulation of the initial visual cortical processing stages. Here we report that the earliest, stimulus-driven retinotopic visual cortical activity (<100 ms) was suppressed in a spatially specific manner in sight-recovery individuals when concomitant sounds accompanied visual stimulation. In contrast, sounds did not modulate the earliest visual cortical response in two groups of typically sighted controls, nor in a third control group of sight-recovery individuals who had suffered a transient phase of later (rather than congenital) visual impairment. These results provide strong evidence for persisting crossmodal activity in the visual cortex after sight recovery following a period of congenital visual deprivation. Based on the time course of this modulation, we speculate on a role of exuberant crossmodal thalamic input which may arise during a sensitive phase of brain development.
Collapse
Affiliation(s)
- Suddha Sourav
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany.
| | - Ramesh Kekunnaya
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Davide Bottari
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
- IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Idris Shareef
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, India
| | - Kabilan Pitchaimuthu
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, India
- Department of Medicine and Optometry, Linnaeus University, Kalmar, Sweden
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
- Jasti V Ramanamma Children's Eye Care Center, Child Sight Institute, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
10
|
Ligeralde A, Kuang Y, Yerxa TE, Pitcher MN, Feller M, Chung S. Unsupervised learning on spontaneous retinal activity leads to efficient neural representation geometry. ARXIV 2023:arXiv:2312.02791v1. [PMID: 38106456 PMCID: PMC10723543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Prior to the onset of vision, neurons in the developing mammalian retina spontaneously fire in correlated activity patterns known as retinal waves. Experimental evidence suggests that retinal waves strongly influence the emergence of sensory representations before visual experience. We aim to model this early stage of functional development by using movies of neurally active developing retinas as pre-training data for neural networks. Specifically, we pre-train a ResNet-18 with an unsupervised contrastive learning objective (SimCLR) on both simulated and experimentally-obtained movies of retinal waves, then evaluate its performance on image classification tasks. We find that pre-training on retinal waves significantly improves performance on tasks that test object invariance to spatial translation, while slightly improving performance on more complex tasks like image classification. Notably, these performance boosts are realized on held-out natural images even though the pre-training procedure does not include any natural image data. We then propose a geometrical explanation for the increase in network performance, namely that the spatiotemporal characteristics of retinal waves facilitate the formation of separable feature representations. In particular, we demonstrate that networks pre-trained on retinal waves are more effective at separating image manifolds than randomly initialized networks, especially for manifolds defined by sets of spatial translations. These findings indicate that the broad spatiotemporal properties of retinal waves prepare networks for higher order feature extraction.
Collapse
Affiliation(s)
- Andrew Ligeralde
- Biophysics Graduate Group, University of California, Berkeley
- Center for Computational Neuroscience, Flatiron Institute
| | - Yilun Kuang
- Center for Computational Neuroscience, Flatiron Institute
- Courant Inst. of Mathematical Sciences, New York University
| | - Thomas Edward Yerxa
- Center for Computational Neuroscience, Flatiron Institute
- Center for Neural Science, New York University
| | - Miah N Pitcher
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Marla Feller
- Helen Wills Neuroscience Institute, University of California, Berkeley
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - SueYeon Chung
- Center for Computational Neuroscience, Flatiron Institute
- Center for Neural Science, New York University
| |
Collapse
|
11
|
Zhang K, Su A, Wang Y, Crair M. Acetylcholine Promotes Directionally Biased Glutamatergic Retinal Waves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566639. [PMID: 38014271 PMCID: PMC10680594 DOI: 10.1101/2023.11.10.566639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Spontaneous retinal waves are a critical driving force for the self-organization of the mouse visual system prior to eye-opening. Classically characterized as taking place in three distinct stages defined by their primary excitatory drive, Stage II waves during the first postnatal week are propagated through the volume transmission of acetylcholine while Stage III retinal waves during the second postnatal week depend on glutamatergic transmission from bipolar cells. However, both late Stage II and early Stage III retinal waves share a defining propagation bias toward the temporal-to-nasal direction despite developmental changes in the underlying cholinergic and glutamatergic retinal networks. Here, we leverage genetic and pharmacological manipulations to investigate the relationship between cholinergic and glutamatergic neurotransmission during the transition between Stage II and Stage III waves in vivo. We find that the cholinergic network continues to play a vital role in the propagation of waves during Stage III after the primary mode of neurotransmission changes to glutamate. In the absence of glutamatergic waves, compensatory cholinergic activity persists but lacks the propagation bias typically observed in Stage III waves. In the absence of cholinergic waves, gap junction-mediated activity typically associated with Stage I waves persists throughout the developmental window in which Stage III waves usually emerge and lacks the spatiotemporal profile of normal Stage III waves, including a temporal-to-nasal propagation bias. Finally, we show that cholinergic signaling through β2 subunit-containing nicotinic acetylcholine receptors, essential for Stage II wave propagation, is also critical for Stage III wave directionality.
Collapse
Affiliation(s)
- Kathy Zhang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, United States
- Present address: Department of Ecology and Evolutionary Biology, Yale University, United States
| | - Ashley Su
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, United States
| | - Yixiang Wang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, United States
| | - Michael Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, United States
| |
Collapse
|
12
|
Breitinger E, Dundon NM, Pokorny L, Wunram HL, Roessner V, Bender S. Contingent negative variation to tactile stimuli - differences in anticipatory and preparatory processes between participants with and without blindness. Cereb Cortex 2023; 33:7582-7594. [PMID: 36977633 DOI: 10.1093/cercor/bhad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/30/2023] Open
Abstract
People who are blind demonstrate remarkable abilities within the spared senses and compensatory enhancement of cognitive skills, underscored by substantial plastic reorganization in relevant neural areas. However, little is known about whether people with blindness form top-down models of the world on short timescales more efficiently to guide goal-oriented behavior. This electroencephalography study investigates this hypothesis at the neurophysiological level, focusing on contingent negative variation (CNV) as a marker of anticipatory and preparatory processes prior to expected events. In sum, 20 participants with blindness and 27 sighted participants completed a classic CNV task and a memory CNV task, both containing tactile stimuli to exploit the expertise of the former group. Although the reaction times in the classic CNV task did not differ between groups, participants who are blind reached higher performance rates in the memory task. This superior performance co-occurred with a distinct neurophysiological profile, relative to controls: greater late CNV amplitudes over central areas, suggesting enhanced stimulus expectancy and motor preparation prior to key events. Controls, in contrast, recruited more frontal sites, consistent with inefficient sensory-aligned control. We conclude that in more demanding cognitive contexts exploiting the spared senses, people with blindness efficiently generate task-relevant internal models to facilitate behavior.
Collapse
Affiliation(s)
- Eva Breitinger
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Neil M Dundon
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, University of Freiburg, Germany
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA
| | - Lena Pokorny
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Heidrun L Wunram
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Faculty of Medicine, University Hospital C. G. Carus, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Germany
| |
Collapse
|
13
|
Suárez R, Bluett T, McCullough MH, Avitan L, Black DA, Paolino A, Fenlon LR, Goodhill GJ, Richards LJ. Cortical activity emerges in region-specific patterns during early brain development. Proc Natl Acad Sci U S A 2023; 120:e2208654120. [PMID: 37216522 PMCID: PMC10235933 DOI: 10.1073/pnas.2208654120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
The development of precise neural circuits in the brain requires spontaneous patterns of neural activity prior to functional maturation. In the rodent cerebral cortex, patchwork and wave patterns of activity develop in somatosensory and visual regions, respectively, and are present at birth. However, whether such activity patterns occur in noneutherian mammals, as well as when and how they arise during development, remain open questions relevant for understanding brain formation in health and disease. Since the onset of patterned cortical activity is challenging to study prenatally in eutherians, here we offer an approach in a minimally invasive manner using marsupial dunnarts, whose cortex forms postnatally. We discovered similar patchwork and travelling waves in the dunnart somatosensory and visual cortices at stage 27 (equivalent to newborn mice) and examined earlier stages of development to determine the onset of these patterns and how they first emerge. We observed that these patterns of activity emerge in a region-specific and sequential manner, becoming evident as early as stage 24 in somatosensory and stage 25 in visual cortices (equivalent to embryonic day 16 and 17, respectively, in mice), as cortical layers establish and thalamic axons innervate the cortex. In addition to sculpting synaptic connections of existing circuits, evolutionarily conserved patterns of neural activity could therefore help regulate other early events in cortical development.
Collapse
Affiliation(s)
- Rodrigo Suárez
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| | - Tobias Bluett
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
| | - Michael H. McCullough
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
| | - Lilach Avitan
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
| | - Dylan A. Black
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| | - Annalisa Paolino
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| | - Laura R. Fenlon
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| | - Geoffrey J. Goodhill
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Mathematics and Physics, BrisbaneQLD4072, Australia
| | - Linda J. Richards
- The University of Queensland, Queensland Brain Institute, BrisbaneQLD4072, Australia
- The University of Queensland, School of Biomedical Sciences, BrisbaneQLD4072, Australia
| |
Collapse
|
14
|
Bibollet-Bahena O, Tissier S, Ho-Tran S, Rojewski A, Casanova C. Enriched environment exposure during development positively impacts the structure and function of the visual cortex in mice. Sci Rep 2023; 13:7020. [PMID: 37120630 PMCID: PMC10148800 DOI: 10.1038/s41598-023-33951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
Optimal conditions of development have been of interest for decades, since genetics alone cannot fully explain how an individual matures. In the present study, we used optical brain imaging to investigate whether a relatively simple enrichment can positively influence the development of the visual cortex of mice. The enrichment paradigm was composed of larger cages housing multiple mice that contained several toys, hiding places, nesting material and a spinning wheel that were moved or replaced at regular intervals. We compared C57BL/6N adult mice (> P60) that had been raised either in an enriched environment (EE; n = 16) or a standard (ST; n = 12) environment from 1 week before birth to adulthood, encompassing all cortical developmental stages. Here, we report significant beneficial changes on the structure and function of the visual cortex following environmental enrichment throughout the lifespan. More specifically, retinotopic mapping through intrinsic signal optical imaging revealed that the size of the primary visual cortex was greater in mice reared in an EE compared to controls. In addition, the visual field coverage of EE mice was wider. Finally, the organization of the cortical representation of the visual field (as determined by cortical magnification) versus its eccentricity also differed between the two groups. We did not observe any significant differences between females and males within each group. Taken together, these data demonstrate specific benefits of an EE throughout development on the visual cortex, which suggests adaptation to their environmental realities.
Collapse
Affiliation(s)
- O Bibollet-Bahena
- Laboratoire des Neurosciences de la Vision, School of Optometry, Université de Montréal, Montreal, QC, Canada.
| | - S Tissier
- Laboratoire des Neurosciences de la Vision, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - S Ho-Tran
- Laboratoire des Neurosciences de la Vision, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - A Rojewski
- Laboratoire des Neurosciences de la Vision, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - C Casanova
- Laboratoire des Neurosciences de la Vision, School of Optometry, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
15
|
Suárez R, Bluett T, McCullough MH, Avitan L, Black DA, Paolino A, Fenlon LR, Goodhill GJ, Richards LJ. Cortical activity emerges in region-specific patterns during early brain development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529078. [PMID: 36824827 PMCID: PMC9949140 DOI: 10.1101/2023.02.18.529078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The development of precise neural circuits in the brain requires spontaneous patterns of neural activity prior to functional maturation. In the rodent cerebral cortex patchwork and wave patterns of activity develop in somatosensory and visual regions, respectively, and are present at birth. However, whether such activity patterns occur in non-eutherian mammals, as well as when and how they arise during development remain open questions relevant to understand brain formation in health and disease. Since the onset of patterned cortical activity is challenging to study prenatally in eutherians, here we offer a new approach in a minimally invasive manner using marsupial dunnarts, whose cortex forms postnatally. We discovered similar patchwork and travelling waves in the dunnart somatosensory and visual cortices at stage 27 (equivalent to newborn mice), and examined progressively earlier stages of development to determine their onset and how they first emerge. We observed that these patterns of activity emerge in a region-specific and sequential manner, becoming evident as early as stage 24 in somatosensory and stage 25 in visual cortices (equivalent to embryonic day 16 and 17, respectively, in mice), as cortical layers establish and thalamic axons innervate the cortex. In addition to sculpting synaptic connections of existing circuits, evolutionarily conserved patterns of neural activity could therefore help regulate early events in cortical development. Significance Statement Region-specific patterns of neural activity are present at birth in rodents and are thought to refine synaptic connections during critical periods of cerebral cortex development. Marsupials are born much more immature than rodents, allowing the investigation of how these patterns arise in vivo. We discovered that cortical activity patterns are remarkably similar in marsupial dunnarts and rodents, and that they emerge very early, before cortical neurogenesis is complete. Moreover, they arise from the outset in different patterns specific to somatosensory and visual areas (i.e., patchworks and waves) indicating they may also play evolutionarily conserved roles in cortical regionalization during development.
Collapse
Affiliation(s)
- Rodrigo Suárez
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| | - Tobias Bluett
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
| | | | - Lilach Avitan
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
| | - Dylan A. Black
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| | - Annalisa Paolino
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| | - Laura R. Fenlon
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| | - Geoffrey J. Goodhill
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Mathematics and Physics; Brisbane, Australia
| | - Linda J. Richards
- The University of Queensland, Queensland Brain Institute; Brisbane, Australia
- The University of Queensland, School of Biomedical Sciences; Brisbane, Australia
| |
Collapse
|
16
|
Johnson KO, Harel L, Triplett JW. Postsynaptic NMDA Receptor Expression Is Required for Visual Corticocollicular Projection Refinement in the Mouse Superior Colliculus. J Neurosci 2023; 43:1310-1320. [PMID: 36717228 PMCID: PMC9987568 DOI: 10.1523/jneurosci.1473-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 01/31/2023] Open
Abstract
Efficient sensory processing of spatial information is facilitated through the organization of neuronal connections into topographic maps of space. In integrative sensory centers, converging topographic maps must be aligned to merge spatially congruent information. The superior colliculus (SC) receives topographically ordered visual inputs from retinal ganglion cells (RGCs) in the eye and layer 5 neurons in the primary visual cortex (L5-V1). Previous studies suggest that RGCs instruct the alignment of later-arriving L5-V1 inputs in an activity-dependent manner. However, the molecular mechanisms underlying this remain unclear. Here, we explored the role of NMDA receptors in visual map alignment in the SC using a conditional genetic knockout approach. We leveraged a novel knock-in mouse line that expresses tamoxifen-inducible Cre recombinase under the control of the Tal1 gene (Tal1CreERT2 ), which we show allows for specific recombination in the superficial layers of the SC. We used Tal1CreERT2 mice of either sex to conditionally delete the obligate GluN1 subunit of the NMDA receptor (SC-cKO) during the period of visual map alignment. We observed a significant disruption of L5-V1 axon terminal organization in the SC of SC-cKO mice. Importantly, retinocollicular topography was unaffected in this context, suggesting that alignment is also disrupted. Time-course experiments suggest that NMDA receptors may play a critical role in the refinement of L5-V1 inputs in the SC. Together, these data implicate NMDA receptors as critical mediators of activity-dependent visual map alignment in the SC.SIGNIFICANCE STATEMENT Alignment of topographic inputs is critical for integration of spatially congruent sensory information; however, little is known about the mechanisms underlying this complex process. Here, we took a conditional genetic approach to explore the role of NMDA receptors in the alignment of retinal and cortical visual inputs in the superior colliculus. We characterize a novel mouse line providing spatial and temporal control of recombination in the superior colliculus and reveal a critical role for NMDA expression in visual map alignment. These data support a role for neuronal activity in visual map alignment and provide mechanistic insight into this complex developmental process.
Collapse
Affiliation(s)
- Kristy O Johnson
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, George Washington University School of Medicine, Washington, DC 20037
| | - Leeor Harel
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
| | - Jason W Triplett
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC 20010
- Institute for Biomedical Sciences, George Washington University School of Medicine, Washington, DC 20037
- Department of Pediatrics, George Washington University School of Medicine, Washington, DC 20037
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037
| |
Collapse
|
17
|
Navarro-Calvo J, Esquiva G, Gómez-Vicente V, Valor LM. MicroRNAs in the Mouse Developing Retina. Int J Mol Sci 2023; 24:ijms24032992. [PMID: 36769311 PMCID: PMC9918188 DOI: 10.3390/ijms24032992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The retina is among the highest organized tissues of the central nervous system. To achieve such organization, a finely tuned regulation of developmental processes is required to form the retinal layers that contain the specialized neurons and supporting glial cells to allow precise phototransduction. MicroRNAs are a class of small RNAs with undoubtful roles in fundamental biological processes, including neurodevelopment of the brain and the retina. This review provides a short overview of the most important findings regarding microRNAs in the regulation of retinal development, from the developmental-dependent rearrangement of the microRNA expression program to the key roles of particular microRNAs in the differentiation and maintenance of retinal cell subtypes.
Collapse
Affiliation(s)
- Jorge Navarro-Calvo
- Unidad de Investigación, Hospital General Universitario Dr. Balmis, ISABIAL, 03010 Alicante, Spain
| | - Gema Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Violeta Gómez-Vicente
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Luis M. Valor
- Unidad de Investigación, Hospital General Universitario Dr. Balmis, ISABIAL, 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-913-988
| |
Collapse
|
18
|
Li VJ, Chorghay Z, Ruthazer ES. A Guide for the Multiplexed: The Development of Visual Feature Maps in the Brain. Neuroscience 2023; 508:62-75. [PMID: 35952996 DOI: 10.1016/j.neuroscience.2022.07.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/17/2023]
Abstract
Neural maps are found ubiquitously in the brain, where they encode a wide range of behaviourally relevant features into neural space. Developmental studies have shown that animals devote a great deal of resources to establish consistently patterned organization in neural circuits throughout the nervous system, but what purposes maps serve beneath their often intricate appearance and composition is a topic of active debate and exploration. In this article, we review the general mechanisms of map formation, with a focus on the visual system, and then survey notable organizational properties of neural maps: the multiplexing of feature representations through a nested architecture, the interspersing of fine-scale heterogeneity within a globally smooth organization, and the complex integration at the microcircuit level that enables a high dimensionality of information encoding. Finally, we discuss the roles of maps in cortical functions, including input segregation, feature extraction and routing of circuit outputs for higher order processing, as well as the evolutionary basis for the properties we observe in neural maps.
Collapse
Affiliation(s)
- Vanessa J Li
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| | - Zahraa Chorghay
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| | - Edward S Ruthazer
- Montreal Neurological Institute-Hospital, McGill University, 3801 University St. Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
19
|
Whitney IE, Butrus S, Dyer MA, Rieke F, Sanes JR, Shekhar K. Vision-Dependent and -Independent Molecular Maturation of Mouse Retinal Ganglion Cells. Neuroscience 2023; 508:153-173. [PMID: 35870562 PMCID: PMC10809145 DOI: 10.1016/j.neuroscience.2022.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 01/17/2023]
Abstract
The development and connectivity of retinal ganglion cells (RGCs), the retina's sole output neurons, are patterned by activity-independent transcriptional programs and activity-dependent remodeling. To inventory the molecular correlates of these influences, we applied high-throughput single-cell RNA sequencing (scRNA-seq) to mouse RGCs at six embryonic and postnatal ages. We identified temporally regulated modules of genes that correlate with, and likely regulate, multiple phases of RGC development, ranging from differentiation and axon guidance to synaptic recognition and refinement. Some of these genes are expressed broadly while others, including key transcription factors and recognition molecules, are selectively expressed by one or a few of the 45 transcriptomically distinct types defined previously in adult mice. Next, we used these results as a foundation to analyze the transcriptomes of RGCs in mice lacking visual experience due to dark rearing from birth or to mutations that ablate either bipolar or photoreceptor cells. 98.5% of visually deprived (VD) RGCs could be unequivocally assigned to a single RGC type based on their transcriptional profiles, demonstrating that visual activity is dispensable for acquisition and maintenance of RGC type identity. However, visual deprivation significantly reduced the transcriptomic distinctions among RGC types, implying that activity is required for complete RGC maturation or maintenance. Consistent with this notion, transcriptomic alternations in VD RGCs significantly overlapped with gene modules found in developing RGCs. Our results provide a resource for mechanistic analyses of RGC differentiation and maturation, and for investigating the role of activity in these processes.
Collapse
Affiliation(s)
- Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Karthik Shekhar
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences, QB3, Center for Computational Biology, University of California, Berkeley, CA 94720, USA; Biological Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
Murakami T, Ohki K. Thalamocortical circuits for the formation of hierarchical pathways in the mammalian visual cortex. Front Neural Circuits 2023; 17:1155195. [PMID: 37139079 PMCID: PMC10149680 DOI: 10.3389/fncir.2023.1155195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
External sensory inputs propagate from lower-order to higher-order brain areas, and the hierarchical neural network supporting this information flow is a fundamental structure of the mammalian brain. In the visual system, multiple hierarchical pathways process different features of the visual information in parallel. The brain can form this hierarchical structure during development with few individual differences. A complete understanding of this formation mechanism is one of the major goals of neuroscience. For this purpose, it is necessary to clarify the anatomical formation process of connections between individual brain regions and to elucidate the molecular and activity-dependent mechanisms that instruct these connections in each areal pair. Over the years, researchers have unveiled developmental mechanisms of the lower-order pathway from the retina to the primary visual cortex. The anatomical formation of the entire visual network from the retina to the higher visual cortex has recently been clarified, and higher-order thalamic nuclei are gaining attention as key players in this process. In this review, we summarize the network formation process in the mouse visual system, focusing on projections from the thalamic nuclei to the primary and higher visual cortices, which are formed during the early stages of development. Then, we discuss how spontaneous retinal activity that propagates through thalamocortical pathways is essential for the formation of corticocortical connections. Finally, we discuss the possible role of higher-order thalamocortical projections as template structures in the functional maturation of visual pathways that process different visual features in parallel.
Collapse
Affiliation(s)
- Tomonari Murakami
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Kenichi Ohki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- World Premier International Research Center Initiative-International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Cline HT, Lau M, Hiramoto M. Activity-dependent Organization of Topographic Neural Circuits. Neuroscience 2023; 508:3-18. [PMID: 36470479 PMCID: PMC9839526 DOI: 10.1016/j.neuroscience.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Sensory information in the brain is organized into spatial representations, including retinotopic, somatotopic, and tonotopic maps, as well as ocular dominance columns. The spatial representation of sensory inputs is thought to be a fundamental organizational principle that is important for information processing. Topographic maps are plastic throughout an animal's life, reflecting changes in development and aging of brain circuitry, changes in the periphery and sensory input, and changes in circuitry, for instance in response to experience and learning. Here, we review mechanisms underlying the role of activity in the development, stability and plasticity of topographic maps, focusing on recent work suggesting that the spatial information in the visual field, and the resulting spatiotemporal patterns of activity, provide instructive cues that organize visual projections.
Collapse
Affiliation(s)
- Hollis T Cline
- Department of Neuroscience and the Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA.
| | - Melissa Lau
- Department of Neuroscience and the Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Masaki Hiramoto
- Department of Neuroscience and the Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
22
|
Lanjewar AL, Jagetia S, Khan ZM, Eagleson KL, Levitt P. Subclass-specific expression patterns of MET receptor tyrosine kinase during development in medial prefrontal and visual cortices. J Comp Neurol 2023; 531:132-148. [PMID: 36201439 PMCID: PMC9691614 DOI: 10.1002/cne.25418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Met encodes a receptor tyrosine kinase (MET) that is expressed during development and regulates cortical synapse maturation. Conditional deletion of Met in the nervous system during embryonic development leads to deficits in adult contextual fear learning, a medial prefrontal cortex (mPFC)-dependent cognitive task. MET also regulates the timing of critical period plasticity for ocular dominance in primary visual cortex (V1). However, the underlying circuitry responsible remains unknown. Therefore, this study determines the broad expression patterns of MET throughout postnatal development in mPFC and V1 projection neurons (PNs), providing insight into similarities and differences in the neuronal subtypes and temporal patterns of MET expression between cortical areas. Using a transgenic mouse line that expresses green fluorescent protein (GFP) in Met+ neurons, immunofluorescence and confocal microscopy were performed to visualize MET-GFP+ cell bodies and PN subclass-specific protein markers. Analyses reveal that the MET expression is highly enriched in infragranular layers of mPFC, but in supragranular layers of V1. Interestingly, temporal regulation of the percentage of MET+ neurons across development not only differs between cortical regions but also is distinct between lamina within a cortical region. Further, MET is expressed predominantly in the subcerebral PN subclass in mPFC, but the intratelencephalic PN subclass in V1. The data suggest that MET signaling influences the development of distinct circuits in mPFC and V1 that underlie subcerebral and intracortical functional deficits following Met deletion, respectively.
Collapse
Affiliation(s)
- Alexandra L. Lanjewar
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA,Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sonum Jagetia
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zuhayr M. Khan
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kathie L. Eagleson
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Pat Levitt
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
23
|
Graf J, Rahmati V, Majoros M, Witte OW, Geis C, Kiebel SJ, Holthoff K, Kirmse K. Network instability dynamics drive a transient bursting period in the developing hippocampus in vivo. eLife 2022; 11:e82756. [PMID: 36534089 PMCID: PMC9762703 DOI: 10.7554/elife.82756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Spontaneous correlated activity is a universal hallmark of immature neural circuits. However, the cellular dynamics and intrinsic mechanisms underlying network burstiness in the intact developing brain are largely unknown. Here, we use two-photon Ca2+ imaging to comprehensively map the developmental trajectories of spontaneous network activity in the hippocampal area CA1 of mice in vivo. We unexpectedly find that network burstiness peaks after the developmental emergence of effective synaptic inhibition in the second postnatal week. We demonstrate that the enhanced network burstiness reflects an increased functional coupling of individual neurons to local population activity. However, pairwise neuronal correlations are low, and network bursts (NBs) recruit CA1 pyramidal cells in a virtually random manner. Using a dynamic systems modeling approach, we reconcile these experimental findings and identify network bi-stability as a potential regime underlying network burstiness at this age. Our analyses reveal an important role of synaptic input characteristics and network instability dynamics for NB generation. Collectively, our data suggest a mechanism, whereby developing CA1 performs extensive input-discrimination learning prior to the onset of environmental exploration.
Collapse
Affiliation(s)
- Jürgen Graf
- Department of Neurology, Jena University HospitalJenaGermany
| | - Vahid Rahmati
- Department of Neurology, Jena University HospitalJenaGermany
- Section Translational Neuroimmunology, Jena University HospitalJenaGermany
- Department of Psychology, Technical University DresdenDresdenGermany
| | - Myrtill Majoros
- Department of Neurology, Jena University HospitalJenaGermany
| | - Otto W Witte
- Department of Neurology, Jena University HospitalJenaGermany
| | - Christian Geis
- Department of Neurology, Jena University HospitalJenaGermany
- Section Translational Neuroimmunology, Jena University HospitalJenaGermany
| | - Stefan J Kiebel
- Department of Psychology, Technical University DresdenDresdenGermany
| | - Knut Holthoff
- Department of Neurology, Jena University HospitalJenaGermany
| | - Knut Kirmse
- Department of Neurology, Jena University HospitalJenaGermany
- Department of Neurophysiology, Institute of Physiology, University of WürzburgWürzburgGermany
| |
Collapse
|
24
|
Jung YJ, Almasi A, Sun SH, Yunzab M, Cloherty SL, Bauquier SH, Renfree M, Meffin H, Ibbotson MR. Orientation pinwheels in primary visual cortex of a highly visual marsupial. SCIENCE ADVANCES 2022; 8:eabn0954. [PMID: 36179020 PMCID: PMC9524828 DOI: 10.1126/sciadv.abn0954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Primary visual cortices in many mammalian species exhibit modular and periodic orientation preference maps arranged in pinwheel-like layouts. The role of inherited traits as opposed to environmental influences in determining this organization remains unclear. Here, we characterize the cortical organization of an Australian marsupial, revealing pinwheel organization resembling that of eutherian carnivores and primates but distinctly different from the simpler salt-and-pepper arrangement of eutherian rodents and rabbits. The divergence of marsupials from eutherians 160 million years ago and the later emergence of rodents and rabbits suggest that the salt-and-pepper structure is not the primitive ancestral form. Rather, the genetic code that enables complex pinwheel formation is likely widespread, perhaps extending back to the common therian ancestors of modern mammals.
Collapse
Affiliation(s)
- Young Jun Jung
- National Vision Research Institute, Melbourne, VIC, Australia
| | - Ali Almasi
- Optalert Limited, Melbourne, VIC, Australia
| | - Shi H. Sun
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Molis Yunzab
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Sebastien H. Bauquier
- Veterinary Hospital, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilyn Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Hamish Meffin
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- National Vision Research Institute, Melbourne, VIC, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Guillamón-Vivancos T, Aníbal-Martínez M, Puche-Aroca L, Moreno-Bravo JA, Valdeolmillos M, Martini FJ, López-Bendito G. Input-dependent segregation of visual and somatosensory circuits in the mouse superior colliculus. Science 2022; 377:845-850. [PMID: 35981041 PMCID: PMC7614159 DOI: 10.1126/science.abq2960] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Whereas sensory perception relies on specialized sensory pathways, it is unclear whether these pathways originate as modality-specific circuits. We demonstrated that somatosensory and visual circuits are not by default segregated but require the earliest retinal activity to do so. In the embryo, somatosensory and visual circuits are intermingled in the superior colliculus, leading to cortical multimodal responses to whisker pad stimulation. At birth, these circuits segregate, and responses switch to unimodal. Blocking stage I retinal waves prolongs the multimodal configuration into postnatal life, with the superior colliculus retaining a mixed somato-visual molecular identity and defects arising in the spatial organization of the visual system. Hence, the superior colliculus mediates the timely segregation of sensory modalities in an input-dependent manner, channeling specific sensory cues to their appropriate sensory pathway.
Collapse
|
26
|
Modular strategy for development of the hierarchical visual network in mice. Nature 2022; 608:578-585. [PMID: 35922512 DOI: 10.1038/s41586-022-05045-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/28/2022] [Indexed: 12/31/2022]
Abstract
Hierarchical and parallel networks are fundamental structures of the mammalian brain1-8. During development, lower- and higher-order thalamic nuclei and many cortical areas in the visual system form interareal connections and build hierarchical dorsal and ventral streams9-13. One hypothesis for the development of visual network wiring involves a sequential strategy wherein neural connections are sequentially formed alongside hierarchical structures from lower to higher areas14-17. However, this sequential strategy would be inefficient for building the entire visual network comprising numerous interareal connections. We show that neural pathways from the mouse retina to primary visual cortex (V1) or dorsal/ventral higher visual areas (HVAs) through lower- or higher-order thalamic nuclei form as parallel modules before corticocortical connections. Subsequently, corticocortical connections among V1 and HVAs emerge to combine these modules. Retina-derived activity propagating the initial parallel modules is necessary to establish retinotopic inter-module connections. Thus, the visual network develops in a modular manner involving initial establishment of parallel modules and their subsequent concatenation. Findings in this study raise the possibility that parallel modules from higher-order thalamic nuclei to HVAs act as templates for cortical ventral and dorsal streams and suggest that the brain has an efficient strategy for the development of a hierarchical network comprising numerous areas.
Collapse
|
27
|
Ferrer C, De Marco García NV. The Role of Inhibitory Interneurons in Circuit Assembly and Refinement Across Sensory Cortices. Front Neural Circuits 2022; 16:866999. [PMID: 35463203 PMCID: PMC9021723 DOI: 10.3389/fncir.2022.866999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory information is transduced into electrical signals in the periphery by specialized sensory organs, which relay this information to the thalamus and subsequently to cortical primary sensory areas. In the cortex, microcircuits constituted by interconnected pyramidal cells and inhibitory interneurons, distributed throughout the cortical column, form the basic processing units of sensory information underlying sensation. In the mouse, these circuits mature shortly after birth. In the first postnatal week cortical activity is characterized by highly synchronized spontaneous activity. While by the second postnatal week, spontaneous activity desynchronizes and sensory influx increases drastically upon eye opening, as well as with the onset of hearing and active whisking. This influx of sensory stimuli is fundamental for the maturation of functional properties and connectivity in neurons allocated to sensory cortices. In the subsequent developmental period, spanning the first five postnatal weeks, sensory circuits are malleable in response to sensory stimulation in the so-called critical periods. During these critical periods, which vary in timing and duration across sensory areas, perturbations in sensory experience can alter cortical connectivity, leading to long-lasting modifications in sensory processing. The recent advent of intersectional genetics, in vivo calcium imaging and single cell transcriptomics has aided the identification of circuit components in emergent networks. Multiple studies in recent years have sought a better understanding of how genetically-defined neuronal subtypes regulate circuit plasticity and maturation during development. In this review, we discuss the current literature focused on postnatal development and critical periods in the primary auditory (A1), visual (V1), and somatosensory (S1) cortices. We compare the developmental trajectory among the three sensory areas with a particular emphasis on interneuron function and the role of inhibitory circuits in cortical development and function.
Collapse
|
28
|
Spead O, Weaver CJ, Moreland T, Poulain FE. Live imaging of retinotectal mapping reveals topographic map dynamics and a previously undescribed role for Contactin 2 in map sharpening. Development 2021; 148:272618. [PMID: 34698769 DOI: 10.1242/dev.199584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
Organization of neuronal connections into topographic maps is essential for processing information. Yet, our understanding of topographic mapping has remained limited by our inability to observe maps forming and refining directly in vivo. Here, we used Cre-mediated recombination of a new colorswitch reporter in zebrafish to generate the first transgenic model allowing the dynamic analysis of retinotectal mapping in vivo. We found that the antero-posterior retinotopic map forms early but remains dynamic, with nasal and temporal retinal axons expanding their projection domains over time. Nasal projections initially arborize in the anterior tectum but progressively refine their projection domain to the posterior tectum, leading to the sharpening of the retinotopic map along the antero-posterior axis. Finally, using a CRISPR-mediated mutagenesis approach, we demonstrate that the refinement of nasal retinal projections requires the adhesion molecule Contactin 2. Altogether, our study provides the first analysis of a topographic map maturing in real time in a live animal and opens new strategies for dissecting the molecular mechanisms underlying precise topographic mapping in vertebrates.
Collapse
Affiliation(s)
- Olivia Spead
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Cory J Weaver
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Trevor Moreland
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
29
|
Faust TE, Gunner G, Schafer DP. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci 2021; 22:657-673. [PMID: 34545240 PMCID: PMC8541743 DOI: 10.1038/s41583-021-00507-y] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Almost 60 years have passed since the initial discovery by Hubel and Wiesel that changes in neuronal activity can elicit developmental rewiring of the central nervous system (CNS). Over this period, we have gained a more comprehensive picture of how both spontaneous neural activity and sensory experience-induced changes in neuronal activity guide CNS circuit development. Here we review activity-dependent synaptic pruning in the mammalian CNS, which we define as the removal of a subset of synapses, while others are maintained, in response to changes in neural activity in the developing nervous system. We discuss the mounting evidence that immune and cell-death molecules are important mechanistic links by which changes in neural activity guide the pruning of specific synapses, emphasizing the role of glial cells in this process. Finally, we discuss how these developmental pruning programmes may go awry in neurodevelopmental disorders of the human CNS, focusing on autism spectrum disorder and schizophrenia. Together, our aim is to give an overview of how the field of activity-dependent pruning research has evolved, led to exciting new questions and guided the identification of new, therapeutically relevant mechanisms that result in aberrant circuit development in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Travis E Faust
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Georgia Gunner
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
30
|
Natu VS, Rosenke M, Wu H, Querdasi FR, Kular H, Lopez-Alvarez N, Grotheer M, Berman S, Mezer AA, Grill-Spector K. Infants' cortex undergoes microstructural growth coupled with myelination during development. Commun Biol 2021; 4:1191. [PMID: 34650227 PMCID: PMC8516989 DOI: 10.1038/s42003-021-02706-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Development of cortical tissue during infancy is critical for the emergence of typical brain functions in cortex. However, how cortical microstructure develops during infancy remains unknown. We measured the longitudinal development of cortex from birth to six months of age using multimodal quantitative imaging of cortical microstructure. Here we show that infants' cortex undergoes profound microstructural tissue growth during the first six months of human life. Comparison of postnatal to prenatal transcriptomic gene expression data demonstrates that myelination and synaptic processes are dominant contributors to this postnatal microstructural tissue growth. Using visual cortex as a model system, we find hierarchical microstructural growth: higher-level visual areas have less mature tissue at birth than earlier visual areas but grow at faster rates. This overturns the prominent view that visual areas that are most mature at birth develop fastest. Together, in vivo, longitudinal, and quantitative measurements, which we validated with ex vivo transcriptomic data, shed light on the rate, sequence, and biological mechanisms of developing cortical systems during early infancy. Importantly, our findings propose a hypothesis that cortical myelination is a key factor in cortical development during early infancy, which has important implications for diagnosis of neurodevelopmental disorders and delays in infants.
Collapse
Affiliation(s)
- Vaidehi S. Natu
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA 94305 USA
| | - Mona Rosenke
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA 94305 USA
| | - Hua Wu
- Center for Cognitive and Neurobiological Imaging, Stanford, CA 94305 USA
| | - Francesca R. Querdasi
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA 94305 USA ,grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Holly Kular
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA 94305 USA
| | - Nancy Lopez-Alvarez
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA 94305 USA
| | - Mareike Grotheer
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA 94305 USA ,grid.10253.350000 0004 1936 9756Department of Psychology, University of Marburg, Marburg, 35039 Germany ,grid.513205.0Center for Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg, 35039 Germany
| | - Shai Berman
- grid.9619.70000 0004 1937 0538Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | - Aviv A. Mezer
- grid.9619.70000 0004 1937 0538Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, 94305, USA. .,Neurosciences Program, Stanford University, Stanford, CA, 94305, USA. .,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Farhy-Tselnicker I, Boisvert MM, Liu H, Dowling C, Erikson GA, Blanco-Suarez E, Farhy C, Shokhirev MN, Ecker JR, Allen NJ. Activity-dependent modulation of synapse-regulating genes in astrocytes. eLife 2021; 10:70514. [PMID: 34494546 PMCID: PMC8497060 DOI: 10.7554/elife.70514] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
Astrocytes regulate the formation and function of neuronal synapses via multiple signals; however, what controls regional and temporal expression of these signals during development is unknown. We determined the expression profile of astrocyte synapse-regulating genes in the developing mouse visual cortex, identifying astrocyte signals that show differential temporal and layer-enriched expression. These patterns are not intrinsic to astrocytes, but regulated by visually evoked neuronal activity, as they are absent in mice lacking glutamate release from thalamocortical terminals. Consequently, synapses remain immature. Expression of synapse-regulating genes and synaptic development is also altered when astrocyte signaling is blunted by diminishing calcium release from astrocyte stores. Single-nucleus RNA sequencing identified groups of astrocytic genes regulated by neuronal and astrocyte activity, and a cassette of genes that show layer-specific enrichment. Thus, the development of cortical circuits requires coordinated signaling between astrocytes and neurons, highlighting astrocytes as a target to manipulate in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Isabella Farhy-Tselnicker
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Matthew M Boisvert
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Cari Dowling
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Galina A Erikson
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, United States
| | - Elena Blanco-Suarez
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Chen Farhy
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, United States
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
32
|
Ribot J, Breton R, Calvo CF, Moulard J, Ezan P, Zapata J, Samama K, Moreau M, Bemelmans AP, Sabatet V, Dingli F, Loew D, Milleret C, Billuart P, Dallérac G, Rouach N. Astrocytes close the mouse critical period for visual plasticity. Science 2021; 373:77-81. [PMID: 34210880 DOI: 10.1126/science.abf5273] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/13/2021] [Indexed: 12/26/2022]
Abstract
Brain postnatal development is characterized by critical periods of experience-dependent remodeling of neuronal circuits. Failure to end these periods results in neurodevelopmental disorders. The cellular processes defining critical-period timing remain unclear. Here, we show that in the mouse visual cortex, astrocytes control critical-period closure. We uncover the underlying pathway, which involves astrocytic regulation of the extracellular matrix, allowing interneuron maturation. Unconventional astrocyte connexin signaling hinders expression of extracellular matrix-degrading enzyme matrix metalloproteinase 9 (MMP9) through RhoA-guanosine triphosphatase activation. Thus, astrocytes not only influence the activity of single synapses but also are key elements in the experience-dependent wiring of brain circuits.
Collapse
Affiliation(s)
- Jérôme Ribot
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Rachel Breton
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.,Doctoral School N°568, Paris Saclay University, PSL Research University, Le Kremlin Bicetre, France.,Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Charles-Félix Calvo
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Julien Moulard
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.,Doctoral School N°158, Sorbonne University, Paris, France
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Jonathan Zapata
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Kevin Samama
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Matthieu Moreau
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic and Development of Cerebral Cortex Laboratory, GHU Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, Paris, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale, Institut de biologie François Jacob, MIRCen, and CNRS UMR 9199, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Valentin Sabatet
- Institut Curie, PSL Research University, Mass Spectrometry and Proteomics Laboratory, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Mass Spectrometry and Proteomics Laboratory, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Mass Spectrometry and Proteomics Laboratory, Paris, France
| | - Chantal Milleret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Pierre Billuart
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic and Development of Cerebral Cortex Laboratory, GHU Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, Paris, France
| | - Glenn Dallérac
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.
| |
Collapse
|
33
|
Sherrill SP, Timme NM, Beggs JM, Newman EL. Partial information decomposition reveals that synergistic neural integration is greater downstream of recurrent information flow in organotypic cortical cultures. PLoS Comput Biol 2021; 17:e1009196. [PMID: 34252081 PMCID: PMC8297941 DOI: 10.1371/journal.pcbi.1009196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/22/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022] Open
Abstract
The directionality of network information flow dictates how networks process information. A central component of information processing in both biological and artificial neural networks is their ability to perform synergistic integration–a type of computation. We established previously that synergistic integration varies directly with the strength of feedforward information flow. However, the relationships between both recurrent and feedback information flow and synergistic integration remain unknown. To address this, we analyzed the spiking activity of hundreds of neurons in organotypic cultures of mouse cortex. We asked how empirically observed synergistic integration–determined from partial information decomposition–varied with local functional network structure that was categorized into motifs with varying recurrent and feedback information flow. We found that synergistic integration was elevated in motifs with greater recurrent information flow beyond that expected from the local feedforward information flow. Feedback information flow was interrelated with feedforward information flow and was associated with decreased synergistic integration. Our results indicate that synergistic integration is distinctly influenced by the directionality of local information flow. Networks compute information. That is, they modify inputs to generate distinct outputs. These computations are an important component of network information processing. Knowing how the routing of information in a network influences computation is therefore crucial. Here we asked how a key form of computation—synergistic integration—is related to the direction of local information flow in networks of spiking cortical neurons. Specifically, we asked how information flow between input neurons (i.e., recurrent information flow) and information flow from output neurons to input neurons (i.e., feedback information flow) was related to the amount of synergistic integration performed by output neurons. We found that greater synergistic integration occurred where there was more recurrent information flow. And, lesser synergistic integration occurred where there was more feedback information flow relative to feedforward information flow. These results show that computation, in the form of synergistic integration, is distinctly influenced by the directionality of local information flow. Such work is valuable for predicting where and how network computation occurs and for designing networks with desired computational abilities.
Collapse
Affiliation(s)
- Samantha P. Sherrill
- Department of Psychological and Brain Sciences & Program in Neuroscience, Indiana University Bloomington, Bloomington, Indiana, United States of America
- * E-mail: (SPS); (ELN)
| | - Nicholas M. Timme
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - John M. Beggs
- Department of Physics & Program in Neuroscience, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Ehren L. Newman
- Department of Psychological and Brain Sciences & Program in Neuroscience, Indiana University Bloomington, Bloomington, Indiana, United States of America
- * E-mail: (SPS); (ELN)
| |
Collapse
|
34
|
Leighton AH, Cheyne JE, Houwen GJ, Maldonado PP, De Winter F, Levelt CN, Lohmann C. Somatostatin interneurons restrict cell recruitment to retinally driven spontaneous activity in the developing cortex. Cell Rep 2021; 36:109316. [PMID: 34233176 DOI: 10.1016/j.celrep.2021.109316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/11/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022] Open
Abstract
During early development, before the eyes open, synaptic refinement of sensory networks depends on activity generated by developing neurons themselves. In the mouse visual system, retinal cells spontaneously depolarize and recruit downstream neurons to bursts of activity, where the number of recruited cells determines the resolution of synaptic retinotopic refinement. Here we show that during the second post-natal week in mouse visual cortex, somatostatin (SST)-expressing interneurons control the recruitment of cells to retinally driven spontaneous activity. Suppressing SST interneurons increases cell participation and allows events to spread farther along the cortex. During the same developmental period, a second type of high-participation, retina-independent event occurs. During these events, cells receive such large excitatory charge that inhibition is overwhelmed and large parts of the cortex participate in each burst. These results reveal a role of SST interneurons in restricting retinally driven activity in the visual cortex, which may contribute to the refinement of retinotopy.
Collapse
Affiliation(s)
- Alexandra H Leighton
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Juliette E Cheyne
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Gerrit J Houwen
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Paloma P Maldonado
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Fred De Winter
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Christiaan N Levelt
- Department of Molecular Visual Plasticity, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, the Netherlands
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
35
|
Wang Q, Banerjee S, So C, Qiu C, Sze Y, Lam TC, To CH, Pan F. The Effect of Low-Dose Atropine on Alpha Ganglion Cell Signaling in the Mouse Retina. Front Cell Neurosci 2021; 15:664491. [PMID: 34025362 PMCID: PMC8131517 DOI: 10.3389/fncel.2021.664491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
Low-dose atropine helps to control myopia progression with few side effects. However, the impact of atropine, a non-selective muscarinic Acetylcholine (ACh) receptor antagonist, on retinal ganglion cells (RGCs) remains unclear. After immersing the cornea and adjacent conjunctiva of enucleated eyes in 0.05% (approximately 800 μM) atropine solution for 30 min, the atropine concentration reached in the retina was below 2 μM. After direct superfusion of the retina with 1 μM atropine (considering that the clinical application of 0.05% atropine eye drops will be diluted over time due to tear flow for 30 min), no noticeable changes in the morphology of ON and OFF alpha RGCs (αRGCs) were observed. Atropine affected the light-evoked responses of ON and OFF αRGCs in a dose- and time-dependent fashion. Direct application of less than 100 μM atropine on the retina did not affect light-evoked responses. The time latency of light-induced responses of ON or OFF αRGCs did not change after the application of 0.05–100 μM atropine for 5 min. However, 50 μM atropine extended the threshold of joint inter-spike interval (ISI) distribution of the RGCs. These results indicated that low-dose atropine (<0.5 μM; equal to 1% atropine topical application) did not interfere with spike frequency, the pattern of synchronized firing between OFF αRGCs, or the threshold of joint ISI distribution of αRGCs. The application of atropine unmasked inhibition to induce ON responses from certain OFF RGCs, possibly via the GABAergic pathway, potentially affecting visual information processing.
Collapse
Affiliation(s)
- Qin Wang
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Seema Banerjee
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - ChungHim So
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - ChunTing Qiu
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - YingHon Sze
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Thomas Chuen Lam
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Centre for Eye and Vision Research, Hong Kong, Hong Kong
| | - Chi-Ho To
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Centre for Eye and Vision Research, Hong Kong, Hong Kong
| | - Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Centre for Eye and Vision Research, Hong Kong, Hong Kong
| |
Collapse
|
36
|
Wosniack ME, Kirchner JH, Chao LY, Zabouri N, Lohmann C, Gjorgjieva J. Adaptation of spontaneous activity in the developing visual cortex. eLife 2021; 10:61619. [PMID: 33722342 PMCID: PMC7963484 DOI: 10.7554/elife.61619] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Spontaneous activity drives the establishment of appropriate connectivity in different circuits during brain development. In the mouse primary visual cortex, two distinct patterns of spontaneous activity occur before vision onset: local low-synchronicity events originating in the retina and global high-synchronicity events originating in the cortex. We sought to determine the contribution of these activity patterns to jointly organize network connectivity through different activity-dependent plasticity rules. We postulated that local events shape cortical input selectivity and topography, while global events homeostatically regulate connection strength. However, to generate robust selectivity, we found that global events should adapt their amplitude to the history of preceding cortical activation. We confirmed this prediction by analyzing in vivo spontaneous cortical activity. The predicted adaptation leads to the sparsification of spontaneous activity on a slower timescale during development, demonstrating the remarkable capacity of the developing sensory cortex to acquire sensitivity to visual inputs after eye-opening.
Collapse
Affiliation(s)
- Marina E Wosniack
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jan H Kirchner
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ling-Ya Chao
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Nawal Zabouri
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Christian Lohmann
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands.,Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
37
|
Redolfi N, Lodovichi C. Spontaneous Afferent Activity Carves Olfactory Circuits. Front Cell Neurosci 2021; 15:637536. [PMID: 33767612 PMCID: PMC7985084 DOI: 10.3389/fncel.2021.637536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Electrical activity has a key role in shaping neuronal circuits during development. In most sensory modalities, early in development, internally generated spontaneous activity sculpts the initial layout of neuronal wiring. With the maturation of the sense organs, the system relies more on sensory-evoked electrical activity. Stimuli-driven neuronal discharge is required for the transformation of immature circuits in the specific patterns of neuronal connectivity that subserve normal brain function. The olfactory system (OS) differs from this organizational plan. Despite the important role of odorant receptors (ORs) in shaping olfactory topography, odor-evoked activity does not have a prominent role in refining neuronal wiring. On the contrary, afferent spontaneous discharge is required to achieve and maintain the specific diagram of connectivity that defines the topography of the olfactory bulb (OB). Here, we provide an overview of the development of olfactory topography, with a focus on the role of afferent spontaneous discharge in the formation and maintenance of the specific synaptic contacts that result in the topographic organization of the OB.
Collapse
Affiliation(s)
- Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Claudia Lodovichi
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Neuroscience Institute CNR, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
38
|
Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, Biojone C, Cannarozzo C, Sahu MP, Kaurinkoski K, Brunello CA, Steinzeig A, Winkel F, Patil S, Vestring S, Serchov T, Diniz CRAF, Laukkanen L, Cardon I, Antila H, Rog T, Piepponen TP, Bramham CR, Normann C, Lauri SE, Saarma M, Vattulainen I, Castrén E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021; 184:1299-1313.e19. [PMID: 33606976 PMCID: PMC7938888 DOI: 10.1016/j.cell.2021.01.034] [Citation(s) in RCA: 412] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.
Collapse
Affiliation(s)
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Senem M Fred
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Vera Kovaleva
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Rafael Moliner
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Katja Kaurinkoski
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | - Anna Steinzeig
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Frederike Winkel
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Stefan Vestring
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tsvetan Serchov
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cassiano R A F Diniz
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paul, Brazil
| | - Liina Laukkanen
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Iseline Cardon
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Brain Master Program, Faculty of Science, Aix-Marseille Université, Marseille, France; Department of Psychiatry, University of Regensburg, Regenburg, Germany
| | - Hanna Antila
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomasz Rog
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Timo Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation (NeuroModul Basics), University of Freiburg, Freiburg, Germany
| | - Sari E Lauri
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland; Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Eero Castrén
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
39
|
Maldonado PP, Nuno-Perez A, Kirchner JH, Hammock E, Gjorgjieva J, Lohmann C. Oxytocin Shapes Spontaneous Activity Patterns in the Developing Visual Cortex by Activating Somatostatin Interneurons. Curr Biol 2021; 31:322-333.e5. [PMID: 33157028 PMCID: PMC7846278 DOI: 10.1016/j.cub.2020.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 01/15/2023]
Abstract
Spontaneous network activity shapes emerging neuronal circuits during early brain development prior to sensory perception. However, how neuromodulation influences this activity is not fully understood. Here, we report that the neuromodulator oxytocin differentially shapes spontaneous activity patterns across sensory cortices. In vivo, oxytocin strongly decreased the frequency and pairwise correlations of spontaneous activity events in the primary visual cortex (V1), but it did not affect the frequency of spontaneous network events in the somatosensory cortex (S1). Patch-clamp recordings in slices and RNAscope showed that oxytocin affects S1 excitatory and inhibitory neurons similarly, whereas in V1, oxytocin targets only inhibitory neurons. Somatostatin-positive (SST+) interneurons expressed the oxytocin receptor and were activated by oxytocin in V1. Accordingly, pharmacogenetic silencing of V1 SST+ interneurons fully blocked oxytocin's effect on inhibition in vitro as well its effect on spontaneous activity patterns in vivo. Thus, oxytocin decreases the excitatory/inhibitory (E/I) ratio by recruiting SST+ interneurons and modulates specific features of V1 spontaneous activity patterns that are crucial for the wiring and refining of developing sensory circuits.
Collapse
Affiliation(s)
- Paloma P Maldonado
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands.
| | - Alvaro Nuno-Perez
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands.
| | - Jan H Kirchner
- Max Planck Institute for Brain Research, Computation in Neural Circuits, 60438 Frankfurt am Main, Germany; TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
| | - Elizabeth Hammock
- Program in Neuroscience, The Florida State University, Tallahassee, FL 32306, USA; Department of Psychology, The Florida State University, Tallahassee, FL 32306, USA.
| | - Julijana Gjorgjieva
- Max Planck Institute for Brain Research, Computation in Neural Circuits, 60438 Frankfurt am Main, Germany; TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
| | - Christian Lohmann
- Department of Synapse and Network Development, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
40
|
Zhang Z, Collins DC, Maier JX. Network Dynamics in the Developing Piriform Cortex of Unanesthetized Rats. Cereb Cortex 2021; 31:1334-1346. [PMID: 33063095 DOI: 10.1093/cercor/bhaa300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/02/2023] Open
Abstract
The time course of changes in functional cortical activity during early development has been extensively studied in the rodent visual system. A key period in this process is the time of eye opening, which marks the onset of patterned visual input and active vision. However, vision differs from other systems in that it receives limited patterned sensory input before eye opening, and it remains unclear how findings from vision relate to other systems. Here, we focus on the development of cortical network activity in the olfactory system-which is crucial for survival at birth-by recording field potential and spiking activity from piriform cortex of unanesthetized rat pups from birth (P0) to P21. Our results demonstrate that odors evoke stable 10-15 Hz oscillations in piriform cortex from birth to P15, after which cortical responses undergo rapid changes. This transition is coincident with the emergence of gamma oscillations and fast sniffing behavior and preceded by an increase in spontaneous activity. Neonatal network oscillations and their developmental dynamics exhibit striking similarities with those previously observed in the visual, auditory, and somatosensory systems, providing insight into the network-level mechanisms underlying the development of sensory cortex in general and olfactory processing in particular.
Collapse
Affiliation(s)
- Zihao Zhang
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald Chad Collins
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joost X Maier
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
41
|
Yan RS, Yang XL, Zhong YM, Zhang DQ. Spontaneous Depolarization-Induced Action Potentials of ON-Starburst Amacrine Cells during Cholinergic and Glutamatergic Retinal Waves. Cells 2020; 9:cells9122574. [PMID: 33271919 PMCID: PMC7759856 DOI: 10.3390/cells9122574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
Correlated spontaneous activity in the developing retina (termed “retinal waves”) plays an instructive role in refining neural circuits of the visual system. Depolarizing (ON) and hyperpolarizing (OFF) starburst amacrine cells (SACs) initiate and propagate cholinergic retinal waves. Where cholinergic retinal waves stop, SACs are thought to be driven by glutamatergic retinal waves initiated by ON-bipolar cells. However, the properties and function of cholinergic and glutamatergic waves in ON- and OFF-SACs still remain poorly understood. In the present work, we performed whole-cell patch-clamp recordings and Ca2+ imaging from genetically labeled ON- and OFF-SACs in mouse flat-mount retinas. We found that both SAC subtypes exhibited spontaneous rhythmic depolarization during cholinergic and glutamatergic waves. Interestingly, ON-SACs had wave-induced action potentials (APs) in an age-dependent manner, but OFF-SACs did not. Simultaneous Ca2+ imaging and patch-clamp recordings demonstrated that, during a cholinergic wave, APs of an ON-SAC appeared to promote the dendritic release of acetylcholine onto neighboring ON- and OFF-SACs, which enhances their Ca2+ transients. These results advance the understanding of the cellular mechanisms underlying correlated spontaneous activity in the developing retina.
Collapse
Affiliation(s)
- Rong-Shan Yan
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; (R.-S.Y.); (X.-L.Y.)
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA
| | - Xiong-Li Yang
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; (R.-S.Y.); (X.-L.Y.)
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yong-Mei Zhong
- Institutes of Brain Science, Fudan University, Shanghai 200032, China; (R.-S.Y.); (X.-L.Y.)
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- Correspondence: (Y.-M.Z.); (D.-Q.Z.); Tel.: +86-21-5423-7736 (Y.-M.Z.); +1-248-3702399 (D.-Q.Z.)
| | - Dao-Qi Zhang
- Eye Research Institute, Oakland University, Rochester, MI 48309-4479, USA
- Correspondence: (Y.-M.Z.); (D.-Q.Z.); Tel.: +86-21-5423-7736 (Y.-M.Z.); +1-248-3702399 (D.-Q.Z.)
| |
Collapse
|
42
|
Selective Removal of Sodium Salt Taste Disrupts the Maintenance of Dendritic Architecture of Gustatory Relay Neurons in the Mouse Nucleus of the Solitary Tract. eNeuro 2020; 7:ENEURO.0140-20.2020. [PMID: 32817119 PMCID: PMC7598914 DOI: 10.1523/eneuro.0140-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Neuronal activity plays critical roles in the development of sensory circuits in the mammalian brain. Experimental procedures are now available to alter the function of specific taste transduction pathways and have been especially useful in studying how stimulus-specific taste activity influences the development of central gustatory circuits. We previously used a mouse knock-out (KO) model in which the transduction channel necessary for sodium taste is removed from taste bud cells throughout life. In these KO mice, the terminal fields that carry taste information from taste buds into the nucleus of the solitary tract (NST) fail to mature, suggesting that sodium-elicited taste activity is important for the proper development of central gustatory circuits. Here, we tested the hypothesis that the development and maintenance of the dendritic architecture of NST relay cells, the primary postsynaptic partner of gustatory nerve terminal fields, are similarly dependent on sodium-elicited taste activity. The dendritic fields of NST relay cells, from adult male and female mice in which the α-subunit of the epithelial sodium channel (αENaC) was conditionally deleted in taste bud cells throughout life, were up to 2.4× larger and more complex than that of age-matched control mice. Interestingly, these differences in dendritic architecture did not appear until after the age when terminal fields begin “pruning,” after postnatal day (P)20. Overall, our results suggest that ENaC-mediated sodium taste activity is necessary for the maintenance of dendritic fields of relay cells in the gustatory NST.
Collapse
|
43
|
Kim J, Song M, Jang J, Paik SB. Spontaneous Retinal Waves Can Generate Long-Range Horizontal Connectivity in Visual Cortex. J Neurosci 2020; 40:6584-6599. [PMID: 32680939 PMCID: PMC7486661 DOI: 10.1523/jneurosci.0649-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
In the primary visual cortex (V1) of higher mammals, long-range horizontal connections (LHCs) are observed to develop, linking iso-orientation domains of cortical tuning. It is unknown how this feature-specific wiring of circuitry develops before eye-opening. Here, we suggest that LHCs in V1 may originate from spatiotemporally structured feedforward activities generated from spontaneous retinal waves. Using model simulations based on the anatomy and observed activity patterns of the retina, we show that waves propagating in retinal mosaics can initialize the wiring of LHCs by coactivating neurons of similar tuning, whereas equivalent random activities cannot induce such organizations. Simulations showed that emerged LHCs can produce the patterned activities observed in V1, matching the topography of the underlying orientation map. The model can also reproduce feature-specific microcircuits in the salt-and-pepper organizations found in rodents. Our results imply that early peripheral activities contribute significantly to cortical development of functional circuits.SIGNIFICANCE STATEMENT Long-range horizontal connections (LHCs) in the primary visual cortex (V1) are observed to emerge before the onset of visual experience, thereby selectively connecting iso-domains of orientation map. However, it is unknown how such feature-specific wirings develop before eye-opening. Here, we show that LHCs in V1 may originate from the feature-specific activation of cortical neurons by spontaneous retinal waves during early developmental stages. Our simulations of a visual cortex model show that feedforward activities from the retina initialize the spatial organization of activity patterns in V1, which induces visual feature-specific wirings in the V1 neurons. Our model also explains the origin of cortical microcircuits observed in rodents, suggesting that the proposed developmental mechanism is universally applicable to circuits of various mammalian species.
Collapse
Affiliation(s)
| | - Min Song
- Department of Bio and Brain Engineering
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | | | - Se-Bum Paik
- Department of Bio and Brain Engineering
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
44
|
Zhang Y, Zhang X. Portrait of visual cortical circuits for generating neural oscillation dynamics. Cogn Neurodyn 2020; 15:3-16. [PMID: 34109010 DOI: 10.1007/s11571-020-09623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022] Open
Abstract
The mouse primary visual cortex (V1) has emerged as a classical system to study neural circuit mechanisms underlying visual function and plasticity. A variety of efferent-afferent neuronal connections exists within the V1 and between the V1 and higher visual cortical areas or thalamic nuclei, indicating that the V1 system is more than a mere receiver in information processing. Sensory representations in the V1 are dynamically correlated with neural activity oscillations that are distributed across different cortical layers in an input-dependent manner. Circuits consisting of excitatory pyramidal cells (PCs) and inhibitory interneurons (INs) are the basis for generating neural oscillations. In general, INs are clustered with their adjacent PCs to form specific microcircuits that gate or filter the neural information. The interaction between these two cell populations has to be coordinated within a local circuit in order to preserve neural coding schemes and maintain excitation-inhibition (E-I) balance. Phasic alternations of the E-I balance can dynamically regulate temporal rhythms of neural oscillation. Accumulating experimental evidence suggests that the two major sub-types of INs, parvalbumin-expressing (PV+) cells and somatostatin-expressing (SOM+) INs, are active in controlling slow and fast oscillations, respectively, in the mouse V1. The review summarizes recent experimental findings on elucidating cellular or circuitry mechanisms for the generation of neural oscillations with distinct rhythms in either developing or matured mouse V1, mainly focusing on visual relaying circuits and distinct local inhibitory circuits.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
45
|
Sherrill SP, Timme NM, Beggs JM, Newman EL. Correlated activity favors synergistic processing in local cortical networks in vitro at synaptically relevant timescales. Netw Neurosci 2020; 4:678-697. [PMID: 32885121 PMCID: PMC7462423 DOI: 10.1162/netn_a_00141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
Neural information processing is widely understood to depend on correlations in neuronal activity. However, whether correlation is favorable or not is contentious. Here, we sought to determine how correlated activity and information processing are related in cortical circuits. Using recordings of hundreds of spiking neurons in organotypic cultures of mouse neocortex, we asked whether mutual information between neurons that feed into a common third neuron increased synergistic information processing by the receiving neuron. We found that mutual information and synergistic processing were positively related at synaptic timescales (0.05-14 ms), where mutual information values were low. This effect was mediated by the increase in information transmission-of which synergistic processing is a component-that resulted as mutual information grew. However, at extrasynaptic windows (up to 3,000 ms), where mutual information values were high, the relationship between mutual information and synergistic processing became negative. In this regime, greater mutual information resulted in a disproportionate increase in redundancy relative to information transmission. These results indicate that the emergence of synergistic processing from correlated activity differs according to timescale and correlation regime. In a low-correlation regime, synergistic processing increases with greater correlation, and in a high-correlation regime, synergistic processing decreases with greater correlation.
Collapse
Affiliation(s)
- Samantha P. Sherrill
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Nicholas M. Timme
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - John M. Beggs
- Department of Physics & Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Ehren L. Newman
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
46
|
Camacho MC, Quiñones-Camacho LE, Perlman SB. Does the child brain rest?: An examination and interpretation of resting cognition in developmental cognitive neuroscience. Neuroimage 2020; 212:116688. [PMID: 32114148 PMCID: PMC7190083 DOI: 10.1016/j.neuroimage.2020.116688] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/02/2023] Open
Abstract
In cognitive neuroscience, measurements of "resting baseline" are often considered stable across age and used as a reference point against which to judge cognitive state. The task-based approach-comparing resting baseline to task conditions-implies that resting baseline is an equalizer across participants and-in the case of studies of developmental changes in cognition-across age groups. In contrast, network neuroscience explicitly examines the development of "resting state" networks across age, at odds with the idea of a consistent resting baseline. Little attention has been paid to how cognition during rest may shift across development, particularly in children under the age of eight. Childhood is marked by striking maturation of neural systems, including a protracted developmental period for cognitive control systems. To grow and shape these cognitive systems, children have a developmental imperative to engage their neural circuitry at every possible opportunity. Thus, periods of "rest" without specific instructions may require additional control for children as they fight against developmental expectation to move, speak, or otherwise engage. We therefore theorize that the child brain does not rest in a manner consistent with the adult brain as longer rest periods may represent increased cognitive control. To shape this theory, we first review the extant literature on neurodevelopment across early childhood within the context of cognitive development. Next, we present nascent evidence for a destabilized baseline for comparisons across age. Finally, we present recommendations for designing, analyzing, and interpreting tasks conducted with young children as well as for resting state. Future work must aim to tease apart the cognitive context under which we examine functional brain development in young children and take considerations into account unique to each age.
Collapse
Affiliation(s)
- M Catalina Camacho
- Division of Biology and Biomedical Sciences (Neurosciences), Washington University in St. Louis, St. Louis, MO, USA.
| | | | - Susan B Perlman
- Division of Biology and Biomedical Sciences (Neurosciences), Washington University in St. Louis, St. Louis, MO, USA; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
47
|
Liu J, Wang M, Sun L, Pan NC, Zhang C, Zhang J, Zuo Z, He S, Wu Q, Wang X. Integrative analysis of in vivo recording with single-cell RNA-seq data reveals molecular properties of light-sensitive neurons in mouse V1. Protein Cell 2020; 11:417-432. [PMID: 32350740 PMCID: PMC7251024 DOI: 10.1007/s13238-020-00720-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/09/2020] [Indexed: 01/09/2023] Open
Abstract
Vision formation is classically based on projections from retinal ganglion cells (RGC) to the lateral geniculate nucleus (LGN) and the primary visual cortex (V1). Neurons in the mouse V1 are tuned to light stimuli. Although the cellular information of the retina and the LGN has been widely studied, the transcriptome profiles of single light-stimulated neuron in V1 remain unknown. In our study, in vivo calcium imaging and whole-cell electrophysiological patch-clamp recording were utilized to identify 53 individual cells from layer 2/3 of V1 as light-sensitive (LS) or non-light-sensitive (NS) by single-cell light-evoked calcium evaluation and action potential spiking. The contents of each cell after functional tests were aspirated in vivo through a patch-clamp pipette for mRNA sequencing. Moreover, the three-dimensional (3-D) morphological characterizations of the neurons were reconstructed in a live mouse after the whole-cell recordings. Our sequencing results indicated that V1 neurons with a high expression of genes related to transmission regulation, such as Rtn4r and Rgs7, and genes involved in membrane transport, such as Na+/K+ ATPase and NMDA-type glutamatergic receptors, preferentially responded to light stimulation. Furthermore, an antagonist that blocks Rtn4r signals could inactivate the neuronal responses to light stimulation in live mice. In conclusion, our findings of the vivo-seq analysis indicate the key role of the strength of synaptic transmission possesses neurons in V1 of light sensory.
Collapse
Affiliation(s)
- Jianwei Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Clara Pan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changjiang Zhang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
48
|
Wei W. Decreasing Influence of Retinal Inputs on the Developing Visual Cortex. Neuron 2020; 104:629-631. [PMID: 31751542 DOI: 10.1016/j.neuron.2019.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Before vision matures, spontaneous retinal activity drives downstream visual targets. In this issue of Neuron, Gribizis et al. (2019) image activity simultaneously in connected mouse visual areas and demonstrate distinct developmental patterns of signal transformation in thalamocortical versus retinocollicular pathways.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
49
|
Alteration in the time and/or mode of delivery differentially modulates early development in mice. Mol Brain 2020; 13:34. [PMID: 32151280 PMCID: PMC7063737 DOI: 10.1186/s13041-020-00578-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Delivery is a complex biological process involving hormonal and mechanical stimuli that together condition the survival and development of the fetus out of the womb. Accordingly, changes in the time or way of being born are associated with an alteration of fundamental biological functions and hypothesized to promote the emergence of neurodevelopmental disorders. Hence, the steadily rise in preterm birth and cesarean section (CS) delivery rates over the past years has become a worldwide health concern. In our previous work, we reported that even though no long-term autistic-like deficits were observed, mice born preterm by CS presented early transient neuronal and communicative defects. However, understanding if these alterations were due to an early birth combined with CS delivery, or if prematurity solely could lead to a similar outcome remained to be evaluated. Using mice born either at term or preterm by vaginal or CS delivery, we assessed early life ultrasonic vocalizations and the onset of eye opening. We report that alterations in communicative behaviors are finely attuned and specifically affected either by preterm birth or by the association between CS delivery and preterm birth in mice, while delayed onset of eye opening is due to prematurity. Moreover, our work further underlies a gender-dependent vulnerability to changes in the time and/or way of being born with distinct outcomes observed in males and females. Thus, our results shed light on the intricacy of birth alterations and might further explain the disparities reported in epidemiological studies.
Collapse
|
50
|
Arcaro MJ, Schade PF, Livingstone MS. Universal Mechanisms and the Development of the Face Network: What You See Is What You Get. Annu Rev Vis Sci 2019; 5:341-372. [PMID: 31226011 PMCID: PMC7568401 DOI: 10.1146/annurev-vision-091718-014917] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Our assignment was to review the development of the face-processing network, an assignment that carries the presupposition that a face-specific developmental program exists. We hope to cast some doubt on this assumption and instead argue that the development of face processing is guided by the same ubiquitous rules that guide the development of cortex in general.
Collapse
Affiliation(s)
- Michael J Arcaro
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Peter F Schade
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | | |
Collapse
|