1
|
Gorla M, Guleria DS. Rho GTPase Signaling: A Molecular Switchboard for Regulating the Actin Cytoskeleton in Axon Guidance. J Cell Physiol 2025; 240:e70005. [PMID: 39888031 DOI: 10.1002/jcp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Axon pathfinding is a highly dynamic process regulated by the interactions between cell-surface guidance receptors and guidance cues present in the extracellular environment. During development, precise axon pathfinding is crucial for the formation of functional neural circuits. The spatiotemporal expression of axon guidance receptors helps the navigating axon make correct decisions in a complex environment comprising both attractive and repulsive guidance cues. Axon guidance receptors initiate distinct signaling cascades that eventually influence the cytoskeleton at the growing tip of an axon, called the growth cone. The actin cytoskeleton is the primary target of these guidance signals and plays a key role in growth cone motility, exploration, and behavior. Of the many regulatory molecules that modulate the actin cytoskeleton in response to distinct guidance signals, Rho GTPases play central roles. Rho GTPases are molecular switchboards; their ON (GTP-bound) and OFF (GDP-bound) switches are controlled by their interactions with proteins that regulate the exchange of GDP for GTP or with the proteins that promote GTP hydrolysis. Various upstream signals, including axon guidance signals, regulate the activity of these Rho GTPase switch regulators. As cycling molecular switches, Rho GTPases interact with and control the activities of downstream effectors, which directly influence actin reorganization in a context-dependent manner. A deeper exploration of the spatiotemporal dynamics of Rho GTPase signaling and the molecular basis of their involvement in regulating growth cone actin cytoskeleton can unlock promising therapeutic strategies for neurodevelopmental disorders linked to dysregulated Rho GTPase signaling. This review not only provides a comprehensive overview of the field but also highlights recent discoveries that have considerably advanced our understanding of the complex regulatory roles of Rho GTPases in modulating actin cytoskeleton arrangement at the growth cone during axon guidance.
Collapse
Affiliation(s)
- Madhavi Gorla
- National Institute of Animal Biotechnology, Hyderabad, India
| | | |
Collapse
|
2
|
Rodrigues RJ, Marques JM, Köfalvi A. Cannabis, Endocannabinoids and Brain Development: From Embryogenesis to Adolescence. Cells 2024; 13:1875. [PMID: 39594623 PMCID: PMC11593331 DOI: 10.3390/cells13221875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The endocannabinoid signalling system (ECS) plays a critical role from the very beginning of embryogenesis. Accordingly, the ECS is engaged early on in nervous system development, starting from neurulation, supported by the identification of ECS components-both receptors and enzymes controlling endocannabinoid metabolism-at these early stages. In particular, regarding the brain, the ECS is involved in the tightly regulated sequence of events that comprise brain development, from neurogenesis to neuronal migration, morphological guidance for neuronal connectivity, and synaptic circuitry refinement. The importance of this broad role of the ECS across various brain development processes is further underscored by the growing understanding of the consequences of cannabis exposure at different developmental stages. Despite the considerable knowledge we have on the role of the ECS in brain development, significant gaps in our understanding remain, particularly regarding the long-term impact and underlying mechanisms of cannabis exposure at different developmental stages. This review provides an overview of the current state of knowledge on the role of the ECS throughout brain development, from embryogenesis to adulthood, and discusses the impact of cannabis exposure, especially during adolescence-a critical period of circuitry maturation and refinement coinciding with an increased risk of cannabis use.
Collapse
Affiliation(s)
- Ricardo J. Rodrigues
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Joana M. Marques
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Attila Köfalvi
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
3
|
Agcaoili J, Evans TA. Drosophila Robo3 guides longitudinal axons partially independently of its cytodomain. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001228. [PMID: 38882930 PMCID: PMC11179118 DOI: 10.17912/micropub.biology.001228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Drosophila Robo3 is an axon guidance receptor that regulates longitudinal axon tract formation in the embryonic ventral nerve cord. Robo3 is thought to guide longitudinal axons by signaling repulsion in response to Slit. To test this, we modified the robo3 locus to express a version of the receptor lacking its cytoplasmic domain (Robo3∆C). We find that longitudinal axon guidance is reduced, but not eliminated, in embryos expressing Robo3∆C. Our results show that Robo3's cytodomain is partially dispensable for its axon guidance activity and suggest that it may guide axons via a mechanism other than direct transduction of Slit-dependent signaling.
Collapse
Affiliation(s)
- Jessie Agcaoili
- Biological Sciences, University of Arkansas at Fayetteville, Fayetteville, Arkansas, United States
| | - Timothy A. Evans
- Biological Sciences, University of Arkansas at Fayetteville, Fayetteville, Arkansas, United States
| |
Collapse
|
4
|
Jin JC, Chen BY, Deng CH, Chen JN, Xu F, Tao Y, Hu CL, Xu CH, Chang BH, Wang Y, Fei MY, Liu P, Yu PC, Li ZJ, Li XY, Chen SB, Jiang YL, Chen XC, Zong LJ, Zhang JY, Ren YY, Xu FH, Liu Q, Huang XH, Guo J, He Q, Song LX, Zhou LY, Su JY, Xiao C, Zhang YM, Yan M, Zhang Z, Wu D, Chang CK, Li X, Wang L, Wu LY. ROBO1 deficiency impairs HSPC homeostasis and erythropoiesis via CDC42 and predicts poor prognosis in MDS. SCIENCE ADVANCES 2023; 9:eadi7375. [PMID: 38019913 DOI: 10.1126/sciadv.adi7375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic neoplasms originating from hematopoietic stem progenitor cells (HSPCs). We previously identified frequent roundabout guidance receptor 1 (ROBO1) mutations in patients with MDS, while the exact role of ROBO1 in hematopoiesis remains poorly delineated. Here, we report that ROBO1 deficiency confers MDS-like disease with anemia and multilineage dysplasia in mice and predicts poor prognosis in patients with MDS. More specifically, Robo1 deficiency impairs HSPC homeostasis and disrupts HSPC pool, especially the reduction of megakaryocyte erythroid progenitors, which causes a blockage in the early stages of erythropoiesis in mice. Mechanistically, transcriptional profiling indicates that Cdc42, a member of the Rho-guanosine triphosphatase family, acts as a downstream target gene for Robo1 in HSPCs. Overexpression of Cdc42 partially restores the self-renewal and erythropoiesis of HSPCs in Robo1-deficient mice. Collectively, our result implicates the essential role of ROBO1 in maintaining HSPC homeostasis and erythropoiesis via CDC42.
Collapse
Affiliation(s)
- Jia-Cheng Jin
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bing-Yi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chu-Han Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Nan Chen
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Tao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng-Long Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin-He Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Yue Fei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng-Cheng Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi-Juan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xi-Ya Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu-Bei Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Lun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Chi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li-Juan Zong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Ying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Yi Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fan-Huan Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xin-Hui Huang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li-Yu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Ji-Ying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu-Mei Zhang
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Meng Yan
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Hematology, Shanghai Eighth People's Hospital, Shanghai, China
| |
Collapse
|
5
|
Dailey-Krempel B, Martin AL, Jo HN, Junge HJ, Chen Z. A tug of war between DCC and ROBO1 signaling during commissural axon guidance. Cell Rep 2023; 42:112455. [PMID: 37149867 DOI: 10.1016/j.celrep.2023.112455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Dynamic and coordinated axonal responses to changing environments are critical for establishing neural connections. As commissural axons migrate across the CNS midline, they are suggested to switch from being attracted to being repelled in order to approach and to subsequently leave the midline. A molecular mechanism that is hypothesized to underlie this switch in axonal responses is the silencing of Netrin1/Deleted in Colorectal Carcinoma (DCC)-mediated attraction by the repulsive SLIT/ROBO1 signaling. Using in vivo approaches including CRISPR-Cas9-engineered mouse models of distinct Dcc splice isoforms, we show here that commissural axons maintain responsiveness to both Netrin and SLIT during midline crossing, although likely at quantitatively different levels. In addition, full-length DCC in collaboration with ROBO3 can antagonize ROBO1 repulsion in vivo. We propose that commissural axons integrate and balance the opposing DCC and Roundabout (ROBO) signaling to ensure proper guidance decisions during midline entry and exit.
Collapse
Affiliation(s)
| | - Andrew L Martin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ha-Neul Jo
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Harald J Junge
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhe Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Sullivan KG, Bashaw GJ. Intracellular Trafficking Mechanisms that Regulate Repulsive Axon Guidance. Neuroscience 2023; 508:123-136. [PMID: 35863679 PMCID: PMC9839465 DOI: 10.1016/j.neuroscience.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 01/17/2023]
Abstract
Friedrich Bonhoeffer made seminal contributions to the study of axon guidance in the developing nervous system. His discoveries of key cellular and molecular mechanisms that dictate wiring specificity laid the foundation for countless investigators who have followed in his footsteps. Perhaps his most significant contribution was the cloning and characterization of members of the conserved ephrin family of repulsive axon guidance cues. In this review, we highlight the major contributions that Bonhoeffer and his colleagues made to the field of axon guidance, and discuss ongoing investigations into the diverse array of mechanisms that ensure that axon repulsion is precisely regulated to allow for accurate pathfinding. Specifically, we focus our discussion on the post-translational regulation of two major families of repulsive axon guidance factors: ephrin ligands and their Eph receptors, and slit ligands and their Roundabout (Robo) receptors. We will give special emphasis to the ways in which regulated endocytic trafficking events allow navigating axons to adjust their responses to repellant signals and how these trafficking events are intimately related to receptor signaling. By highlighting parallels and differences between the regulation of these two important repulsive axon guidance pathways, we hope to identify key outstanding questions for future investigation.
Collapse
Affiliation(s)
- Kelly G Sullivan
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, United States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
7
|
Zang Y, Chaudhari K, Bashaw GJ. Tace/ADAM17 is a bi-directional regulator of axon guidance that coordinates distinct Frazzled and Dcc receptor signaling outputs. Cell Rep 2022; 41:111785. [PMID: 36476876 DOI: 10.1016/j.celrep.2022.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/07/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Frazzled (Fra) and deleted in colorectal cancer (Dcc) are homologous receptors that promote axon attraction in response to netrin. In Drosophila, Fra also acts independently of netrin by releasing an intracellular domain (ICD) that activates gene transcription. How neurons coordinate these pathways to make accurate guidance decisions is unclear. Here we show that the ADAM metalloprotease Tace cleaves Fra, and this instructs the switch between the two pathways. Genetic manipulations that either increase or decrease Tace levels disrupt midline crossing of commissural axons. These conflicting phenotypes reflect Tace's function as a bi-directional regulator of axon guidance, a function conserved in its vertebrate homolog ADAM17: while Tace induces the formation of the Fra ICD to activate transcription, excessive Tace cleavage of Fra and Dcc suppresses the response to netrin. We propose that Tace and ADAM17 are key regulators of midline axon guidance by establishing the balance between netrin-dependent and netrin-independent signaling.
Collapse
Affiliation(s)
- Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Şen S, Erber R. Neuronal Guidance Molecules in Bone Remodeling and Orthodontic Tooth Movement. Int J Mol Sci 2022; 23:ijms231710077. [PMID: 36077474 PMCID: PMC9456342 DOI: 10.3390/ijms231710077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
During orthodontic tooth movement, mechanically induced remodeling occurs in the alveolar bone due to the action of orthodontic forces. The number of factors identified to be involved in mechanically induced bone remodeling is growing steadily. With the uncovering of the functions of neuronal guidance molecules (NGMs) for skeletal development as well as for bone homeostasis, NGMs are now also among the potentially significant factors for the regulation of bone remodeling during orthodontic tooth movement. This narrative review attempts to summarize the functions of NGMs in bone homeostasis and provides insight into the currently sparse literature on the functions of these molecules during orthodontic tooth movement. Presently, four families of NGMs are known: Netrins, Slits, Semaphorins, ephrins and Eph receptors. A search of electronic databases revealed roles in bone homeostasis for representatives from all four NGM families. Functions during orthodontic tooth movement, however, were only identified for Semaphorins, ephrins and Eph receptors. For these, crucial prerequisites for participation in the regulation of orthodontically induced bone remodeling, such as expression in cells of the periodontal ligament and in the alveolar bone, as well as mechanical inducibility, were shown, which suggests that the importance of NGMs in orthodontic tooth movement may be underappreciated to date and further research might be warranted.
Collapse
Affiliation(s)
- Sinan Şen
- Department of Orthodontics, University Medical Center Schleswig-Holstein, Campus Kiel, Christian Albrechts University, 24105 Kiel, Germany
- Correspondence: ; Tel.: +49-431-5002-6301
| | - Ralf Erber
- Department of Orthodontics and Dentofacial Orthopedics, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
González-Ramírez MC, Rojo-Cortés F, Candia N, Garay-Montecinos J, Guzmán-Palma P, Campusano JM, Oliva C. Autocrine/Paracrine Slit–Robo Signaling Controls Optic Lobe Development in Drosophila melanogaster. Front Cell Dev Biol 2022; 10:874362. [PMID: 35982851 PMCID: PMC9380857 DOI: 10.3389/fcell.2022.874362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Cell segregation mechanisms play essential roles during the development of the central nervous system (CNS) to support its organization into distinct compartments. The Slit protein is a secreted signal, classically considered a paracrine repellent for axonal growth through Robo receptors. However, its function in the compartmentalization of CNS is less explored. In this work, we show that Slit and Robo3 are expressed in the same neuronal population of the Drosophila optic lobe, where they are required for the correct compartmentalization of optic lobe neuropils by the action of an autocrine/paracrine mechanism. We characterize the endocytic route followed by the Slit/Robo3 complex and detected genetic interactions with genes involved in endocytosis and actin dynamics. Thus, we report that the Slit-Robo3 pathway regulates the morphogenesis of the optic lobe through an atypical autocrine/paracrine mechanism in addition to its role in axon guidance, and in association with proteins of the endocytic pathway and small GTPases.
Collapse
|
10
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
11
|
de Torres-Jurado A, Manzanero-Ortiz S, Carmena A. Glial-secreted Netrins regulate Robo1/Rac1-Cdc42 signaling threshold levels during Drosophila asymmetric neural stem/progenitor cell division. Curr Biol 2022; 32:2174-2188.e3. [DOI: 10.1016/j.cub.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 01/14/2023]
|
12
|
Geraldo LH, Xu Y, Jacob L, Pibouin-Fragner L, Rao R, Maissa N, Verreault M, Lemaire N, Knosp C, Lesaffre C, Daubon T, Dejaegher J, Solie L, Rudewicz J, Viel T, Tavitian B, De Vleeschouwer S, Sanson M, Bikfalvi A, Idbaih A, Lu QR, Lima FR, Thomas JL, Eichmann A, Mathivet T. SLIT2/ROBO signaling in tumor-associated microglia and macrophages drives glioblastoma immunosuppression and vascular dysmorphia. J Clin Invest 2021; 131:141083. [PMID: 34181595 PMCID: PMC8363292 DOI: 10.1172/jci141083] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
SLIT2 is a secreted polypeptide that guides migration of cells expressing Roundabout 1 and 2 (ROBO1 and ROBO2) receptors. Herein, we investigated SLIT2/ROBO signaling effects in gliomas. In patients with glioblastoma (GBM), SLIT2 expression increased with malignant progression and correlated with poor survival and immunosuppression. Knockdown of SLIT2 in mouse glioma cells and patient-derived GBM xenografts reduced tumor growth and rendered tumors sensitive to immunotherapy. Tumor cell SLIT2 knockdown inhibited macrophage invasion and promoted a cytotoxic gene expression profile, which improved tumor vessel function and enhanced efficacy of chemotherapy and immunotherapy. Mechanistically, SLIT2 promoted microglia/macrophage chemotaxis and tumor-supportive polarization via ROBO1- and ROBO2-mediated PI3K-γ activation. Macrophage Robo1 and Robo2 deletion and systemic SLIT2 trap delivery mimicked SLIT2 knockdown effects on tumor growth and the tumor microenvironment (TME), revealing SLIT2 signaling through macrophage ROBOs as a potentially novel regulator of the GBM microenvironment and immunotherapeutic target for brain tumors.
Collapse
Affiliation(s)
- Luiz H. Geraldo
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Brazil
| | - Yunling Xu
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | - Laurent Jacob
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | | | - Rohit Rao
- Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nawal Maissa
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | - Maïté Verreault
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Nolwenn Lemaire
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Camille Knosp
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | - Corinne Lesaffre
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | | | - Joost Dejaegher
- Department of Neurosciences and
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Lien Solie
- Department of Neurosciences and
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | | | - Thomas Viel
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | - Bertrand Tavitian
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| | | | - Marc Sanson
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
- Onconeurotek Tumor Bank, Institut du Cerveau et de la Moelle épinière-ICM, Paris, France
| | | | - Ahmed Idbaih
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Q. Richard Lu
- Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Flavia R.S. Lima
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Brazil
| | - Jean-Leon Thomas
- Sorbonne Université, INSERM U1127, CNRS UMR 7225, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
- Department of Neurology
| | - Anne Eichmann
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
- Cardiovascular Research Center, Department of Internal Medicine, and
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas Mathivet
- Université de Paris, Paris Cardiovascular Research Center, INSERM, Paris, France
| |
Collapse
|
13
|
Chaudhari K, Gorla M, Chang C, Kania A, Bashaw GJ. Robo recruitment of the Wave regulatory complex plays an essential and conserved role in midline repulsion. eLife 2021; 10:e64474. [PMID: 33843588 PMCID: PMC8096436 DOI: 10.7554/elife.64474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
The Roundabout (Robo) guidance receptor family induces axon repulsion in response to its ligand Slit by inducing local cytoskeletal changes; however, the link to the cytoskeleton and the nature of these cytoskeletal changes are poorly understood. Here, we show that the heteropentameric Scar/Wave Regulatory Complex (WRC), which drives Arp2/3-induced branched actin polymerization, is a direct effector of Robo signaling. Biochemical evidence shows that Slit triggers WRC recruitment to the Robo receptor's WRC-interacting receptor sequence (WIRS) motif. In Drosophila embryos, mutants of the WRC enhance Robo1-dependent midline crossing defects. Additionally, mutating Robo1's WIRS motif significantly reduces receptor activity in rescue assays in vivo, and CRISPR-Cas9 mutagenesis shows that the WIRS motif is essential for endogenous Robo1 function. Finally, axon guidance assays in mouse dorsal spinal commissural axons and gain-of-function experiments in chick embryos demonstrate that the WIRS motif is also required for Robo1 repulsion in mammals. Together, our data support an essential conserved role for the WIRS-WRC interaction in Robo1-mediated axon repulsion.
Collapse
Affiliation(s)
- Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Madhavi Gorla
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Chao Chang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
14
|
Daiber T, VanderZwan-Butler CJ, Bashaw GJ, Evans TA. Conserved and divergent aspects of Robo receptor signaling and regulation between Drosophila Robo1 and C. elegans SAX-3. Genetics 2021; 217:iyab018. [PMID: 33789352 PMCID: PMC8045725 DOI: 10.1093/genetics/iyab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
The evolutionarily conserved Roundabout (Robo) family of axon guidance receptors control midline crossing of axons in response to the midline repellant ligand Slit in bilaterian animals including insects, nematodes, and vertebrates. Despite this strong evolutionary conservation, it is unclear whether the signaling mechanism(s) downstream of Robo receptors are similarly conserved. To directly compare midline repulsive signaling in Robo family members from different species, here we use a transgenic approach to express the Robo family receptor SAX-3 from the nematode Caenorhabditis elegans in neurons of the fruit fly, Drosophila melanogaster. We examine SAX-3's ability to repel Drosophila axons from the Slit-expressing midline in gain of function assays, and test SAX-3's ability to substitute for Drosophila Robo1 during fly embryonic development in genetic rescue experiments. We show that C. elegans SAX-3 is properly translated and localized to neuronal axons when expressed in the Drosophila embryonic CNS, and that SAX-3 can signal midline repulsion in Drosophila embryonic neurons, although not as efficiently as Drosophila Robo1. Using a series of Robo1/SAX-3 chimeras, we show that the SAX-3 cytoplasmic domain can signal midline repulsion to the same extent as Robo1 when combined with the Robo1 ectodomain. We show that SAX-3 is not subject to endosomal sorting by the negative regulator Commissureless (Comm) in Drosophila neurons in vivo, and that peri-membrane and ectodomain sequences are both required for Comm sorting of Drosophila Robo1.
Collapse
Affiliation(s)
- Trent Daiber
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
15
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
16
|
Johnson V, Junge HJ, Chen Z. Temporal regulation of axonal repulsion by alternative splicing of a conserved microexon in mammalian Robo1 and Robo2. eLife 2019; 8:e46042. [PMID: 31392959 PMCID: PMC6687390 DOI: 10.7554/elife.46042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022] Open
Abstract
Proper connectivity of the nervous system requires temporal and spatial control of axon guidance signaling. As commissural axons navigate across the CNS midline, ROBO-mediated repulsion has traditionally been thought to be repressed before crossing, and then to become upregulated after crossing. The regulation of the ROBO receptors involves multiple mechanisms that control protein expression, trafficking, and activity. Here, we report that mammalian ROBO1 and ROBO2 are not uniformly inhibited precrossing and are instead subject to additional temporal control via alternative splicing at a conserved microexon. The NOVA splicing factors regulate the developmental expression of ROBO1 and ROBO2 variants with small sequence differences and distinct guidance activities. As a result, ROBO-mediated axonal repulsion is activated early in development to prevent premature crossing and becomes inhibited later to allow crossing. Postcrossing, the ROBO1 and ROBO2 isoforms are disinhibited to prevent midline reentry and to guide postcrossing commissural axons to distinct mediolateral positions.
Collapse
Affiliation(s)
- Verity Johnson
- Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUnited States
| | - Harald J Junge
- Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUnited States
| | - Zhe Chen
- Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUnited States
- Linda Crnic Institute for Down SyndromeUniversity of Colorado school of MedicineAuroraUnited States
| |
Collapse
|
17
|
Regulatory mechanisms of Robo4 and their effects on angiogenesis. Biosci Rep 2019; 39:BSR20190513. [PMID: 31160487 PMCID: PMC6620384 DOI: 10.1042/bsr20190513] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Roundabout4 (Robo4) is a transmembrane receptor that belongs to the Roundabout (Robo) family of axon guidance molecules. Robo4 is an endothelial-specific receptor that participates in endothelial cell migration, proliferation, and angiogenesis and the maintenance of vasculature homeostasis. The purpose of this review is to summarize and analyze three main mechanisms related to the expression and function of Robo4 during developmental and pathological angiogenesis. In this review, static shear stress and the binding of transcription factors such as E26 transformation-specific variant 2 (ETV2) and Slit3 induce Robo4 expression and activate Robo4 during tissue and organ development. Robo4 interacts with Slit2 or UNC5B to maintain vascular integrity, while a disturbed flow and the expression of transcription factors in inflammatory or neoplastic environments alter Robo4 expression levels, although these changes have uncertain functions. Based on the mechanisms described above, we discuss the aberrant expression of Robo4 in angiogenesis-related diseases and propose antiangiogenic therapies targeting the Robo4 signaling pathway for the treatment of ocular neovascularization lesions and tumors. Finally, although many problems related to Robo4 signaling pathways remain to be resolved, Robo4 is a promising and potentially valuable therapeutic target for treating pathological angiogenesis and developmental defects in angiogenesis.
Collapse
|
18
|
Niftullayev S, Lamarche-Vane N. Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. Int J Mol Sci 2019; 20:E1497. [PMID: 30934641 PMCID: PMC6471118 DOI: 10.3390/ijms20061497] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.
Collapse
Affiliation(s)
- Sadig Niftullayev
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| |
Collapse
|
19
|
Kaiser M, Arvidson R, Zarivach R, Adams ME, Libersat F. Molecular cross-talk in a unique parasitoid manipulation strategy. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 106:64-78. [PMID: 30508629 DOI: 10.1016/j.ibmb.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/18/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Envenomation of cockroach cerebral ganglia by the parasitoid Jewel wasp, Ampulex compressa, induces specific, long-lasting behavioural changes. We hypothesized that this prolonged action results from venom-induced changes in brain neurochemistry. Here, we address this issue by first identifying molecular targets of the venom, i.e., proteins to which venom components bind and interact with to mediate altered behaviour. Our results show that venom components bind to synaptic proteins and likely interfere with both pre- and postsynaptic processes. Since behavioural changes induced by the sting are long-lasting and reversible, we hypothesized further that long-term effects of the venom must be mediated by up or down regulation of cerebral ganglia proteins. We therefore characterize changes in cerebral ganglia protein abundance of stung cockroaches at different time points after the sting by quantitative mass spectrometry. Our findings indicate that numerous proteins are differentially expressed in cerebral ganglia of stung cockroaches, many of which are involved in signal transduction, such as the Rho GTPase pathway, which is implicated in synaptic plasticity. Altogether, our data suggest that the Jewel wasp commandeers cockroach behaviour through molecular cross-talk between venom components and molecular targets in the cockroach central nervous system, leading to broad-based alteration of synaptic efficacy and behavioural changes that promote successful development of wasp progeny.
Collapse
Affiliation(s)
- Maayan Kaiser
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel
| | - Ryan Arvidson
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, CA, 92521, USA; Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel
| | - Michael E Adams
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, CA, 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA; Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Frederic Libersat
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel.
| |
Collapse
|
20
|
Jeon MJ, Lim S, You MH, Park Y, Song DE, Sim S, Kim TY, Shong YK, Kim WB, Kim WG. The role of Slit2 as a tumor suppressor in thyroid cancer. Mol Cell Endocrinol 2019; 483:87-96. [PMID: 30648543 DOI: 10.1016/j.mce.2019.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023]
Abstract
Slits, representative axon guidance molecules, and their Roundabout (Robo) transmembrane receptors play roles in the progression of many cancers. We investigated the effects of Slit2 on the proliferation, migration, and invasion of thyroid cancer cells, and on the prognosis of papillary thyroid cancer (PTC). Slit2 overexpression inhibited the proliferation, migration and invasion of thyroid cancer cells by inhibiting transcriptional activity of beta-catenin and regulating Rho GTPase activity. Slit2 knockdown activated the migration and invasion of thyroid cancer cells and transcriptional activity of beta-catenin. Fragment Slit2 treatment inhibited thyroid cancer cell proliferation in a dose dependent manner, and also inhibited migration and invasion. When we evaluated the protein expression of Slit2 in PTCs, 24 of 160 PTCs (15%) were negative for Slit2 protein expression and these patients had significantly increased risk of cervical lymph node metastasis (P < 0.001), distant metastasis (P < 0.001) and recurrence of PTC (P < 0.001). Our findings suggest a role for Slit2 as a tumor suppressor, and also as a novel prognostic and potential therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Min Ji Jeon
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Seonhee Lim
- Asan Institute of Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Mi-Hyeon You
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea; Asan Institute of Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Yangsoon Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Dong Eun Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Soyoung Sim
- Asan Institute of Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Tae Yong Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Young Kee Shong
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Won Bae Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Won Gu Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
21
|
Pilling D, Chinea LE, Consalvo KM, Gomer RH. Different Isoforms of the Neuronal Guidance Molecule Slit2 Directly Cause Chemoattraction or Chemorepulsion of Human Neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:239-248. [PMID: 30510066 PMCID: PMC6310129 DOI: 10.4049/jimmunol.1800681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
The movement of neutrophils between blood and tissues appears to be regulated by chemoattractants and chemorepellents. Compared with neutrophil chemoattractants, relatively little is known about neutrophil chemorepellents. Slit proteins are endogenously cleaved into a variety of N- and C-terminal fragments, and these fragments are neuronal chemorepellents and inhibit chemoattraction of many cell types, including neutrophils. In this report, we show that the ∼140-kDa N-terminal Slit2 fragment (Slit2-N) is a chemoattractant and the ∼110-kDa N-terminal Slit2 fragment (Slit2-S) is a chemorepellent for human neutrophils. The effects of both Slit2 fragments were blocked by Abs to the Slit2 receptor Roundabout homolog 1 or the Slit2 coreceptor Syndecan-4. Slit2-N did not appear to activate Ras but increased phosphatidylinositol 3,4,5-triphosphate levels. Slit2-N-induced chemoattraction was unaffected by Ras inhibitors, reversed by PI3K inhibitors, and blocked by Cdc42 and Rac inhibitors. In contrast, Slit2-S activated Ras but did not increase phosphatidylinositol 3,4,5-triphosphate levels. Slit2-S-induced chemorepulsion was blocked by Ras and Rac inhibitors, not affected by PI3K inhibitors, and reversed by Cdc42 inhibitors. Slit2-N, but not Slit2-S, increased neutrophil adhesion, myosin L chain 2 phosphorylation, and polarized actin formation and single pseudopods at the leading edge of cells. Slit2-S induced multiple pseudopods. These data suggest that Slit2 isoforms use similar receptors but different intracellular signaling pathways and have different effects on the cytoskeleton and pseudopods to induce neutrophil chemoattraction or chemorepulsion.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Luis E Chinea
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
22
|
Rho GTPases in Intellectual Disability: From Genetics to Therapeutic Opportunities. Int J Mol Sci 2018; 19:ijms19061821. [PMID: 29925821 PMCID: PMC6032284 DOI: 10.3390/ijms19061821] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022] Open
Abstract
Rho-class small GTPases are implicated in basic cellular processes at nearly all brain developmental steps, from neurogenesis and migration to axon guidance and synaptic plasticity. GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Rho GTPases are highly regulated by a complex set of activating (GEFs) and inactivating (GAPs) partners, via protein:protein interactions (PPI). Misregulated RhoA, Rac1/Rac3 and cdc42 activity has been linked with intellectual disability (ID) and other neurodevelopmental conditions that comprise ID. All genetic evidences indicate that in these disorders the RhoA pathway is hyperactive while the Rac1 and cdc42 pathways are consistently hypoactive. Adopting cultured neurons for in vitro testing and specific animal models of ID for in vivo examination, the endophenotypes associated with these conditions are emerging and include altered neuronal networking, unbalanced excitation/inhibition and altered synaptic activity and plasticity. As we approach a clearer definition of these phenotype(s) and the role of hyper- and hypo-active GTPases in the construction of neuronal networks, there is an increasing possibility that selective inhibitors and activators might be designed via PPI, or identified by screening, that counteract the misregulation of small GTPases and result in alleviation of the cognitive condition. Here we review all knowledge in support of this possibility.
Collapse
|
23
|
Nguemgo Kouam P, Rezniczek GA, Kochanneck A, Priesch-Grzeszkowiak B, Hero T, Adamietz IA, Bühler H. Robo1 and vimentin regulate radiation-induced motility of human glioblastoma cells. PLoS One 2018; 13:e0198508. [PMID: 29864155 PMCID: PMC5986140 DOI: 10.1371/journal.pone.0198508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/21/2018] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is a primary brain tumor with a poor prognosis despite of many treatment regimens. Radiotherapy significantly prolongs patient survival and remains the most common treatment. Slit2 and Robo1 are evolutionarily conserved proteins involved in axon guidance, migration, and branching of neuronal cells. New studies have shown that Slit2 and Robo1 could play important roles in leukocyte chemotaxis and glioblastoma cell migration. Therefore, we investigated whether the Slit2/Robo1 complex has an impact on the motility of glioblastoma cells and whether irradiation with therapeutic doses modulates this effect. Our results indicate that photon irradiation increases the migration of glioblastoma cells in vitro. qPCR and immunoblotting experiments in two different glioblastoma cell lines (U-373 MG and U-87 MG) with different malignancy revealed that both Slit2 and Robo1 are significantly lower expressed in the cell populations with the highest motility and that the expression was reduced after irradiation. Overexpression of Robo1 significantly decreased the motility of glioblastoma cells and inhibited the accelerated migration of wild-type cells after irradiation. Immunoblotting analysis of migration-associated proteins (fascin and focal adhesion kinase) and of the epithelial-mesenchymal-transition-related protein vimentin showed that irradiation affected the migration of glioblastoma cells by increasing vimentin expression, which can be reversed by the overexpression of Slit2 and Robo1. Our findings suggest that Robo1 expression might counteract migration and also radiation-induced migration of glioblastoma cells, a process that might be connected to mesenchymal-epithelial transition.
Collapse
Affiliation(s)
- Pascaline Nguemgo Kouam
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Günther A. Rezniczek
- Department of Obstetrics and Gynecology, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Anja Kochanneck
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Bettina Priesch-Grzeszkowiak
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Thomas Hero
- Department of Radiotherapy and Radio-Oncology, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Irenäus A. Adamietz
- Department of Radiotherapy and Radio-Oncology, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Helmut Bühler
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| |
Collapse
|
24
|
Zou W, Dong X, Broederdorf TR, Shen A, Kramer DA, Shi R, Liang X, Miller DM, Xiang YK, Yasuda R, Chen B, Shen K. A Dendritic Guidance Receptor Complex Brings Together Distinct Actin Regulators to Drive Efficient F-Actin Assembly and Branching. Dev Cell 2018; 45:362-375.e3. [PMID: 29738713 DOI: 10.1016/j.devcel.2018.04.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/26/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023]
Abstract
Proper morphogenesis of dendrites plays a fundamental role in the establishment of neural circuits. The molecular mechanism by which dendrites grow highly complex branches is not well understood. Here, using the Caenorhabditis elegans PVD neuron, we demonstrate that high-order dendritic branching requires actin polymerization driven by coordinated interactions between two membrane proteins, DMA-1 and HPO-30, with their cytoplasmic interactors, the RacGEF TIAM-1 and the actin nucleation promotion factor WAVE regulatory complex (WRC). The dendrite branching receptor DMA-1 directly binds to the PDZ domain of TIAM-1, while the claudin-like protein HPO-30 directly interacts with the WRC. On dendrites, DMA-1 and HPO-30 form a receptor-associated signaling complex to bring TIAM-1 and the WRC to close proximity, leading to elevated assembly of F-actin needed to drive high-order dendrite branching. The synergistic activation of F-actin assembly by scaffolding distinct actin regulators might represent a general mechanism in promoting complex dendrite arborization.
Collapse
Affiliation(s)
- Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Xintong Dong
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Timothy R Broederdorf
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Ao Shen
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Rebecca Shi
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Xing Liang
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David M Miller
- Department of Cell and Developmental Biology and Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, CA 95616, USA; VA Northern California Health Care System, Mather, CA 95655, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
25
|
Zhao J, Mommersteeg MTM. Slit-Robo signalling in heart development. Cardiovasc Res 2018; 114:794-804. [PMID: 29538649 PMCID: PMC5909645 DOI: 10.1093/cvr/cvy061] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/16/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
The Slit ligands and their Robo receptors are well-known for their roles during axon guidance in the central nervous system but are still relatively unknown in the cardiac field. However, data from different animal models suggest a broad involvement of the pathway in many aspects of heart development, from cardiac cell migration and alignment, lumen formation, chamber formation, to the formation of the ventricular septum, semilunar and atrioventricular valves, caval veins, and pericardium. Absence of one or more of the genes in the pathway results in defects ranging from bicuspid aortic valves to ventricular septal defects and abnormal venous connections to the heart. Congenital heart defects are the most common congenital malformations found in life new-born babies and progress in methods for large scale human genetic testing has significantly enhanced the identification of new causative genes involved in human congenital heart disease. Recently, loss of function variants in ROBO1 have also been linked to ventricular septal defects and tetralogy of Fallot in patients. Here, we will give an overview of the role of the Slit-Robo signalling pathway in Drosophila, zebrafish, and mouse heart development. The extent of these data warrant further attention on the SLIT-ROBO signalling pathway as a candidate for an array of human congenital heart defects.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Mathilda T M Mommersteeg
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
26
|
Arbeille E, Bashaw GJ. Brain Tumor promotes axon growth across the midline through interactions with the microtubule stabilizing protein Apc2. PLoS Genet 2018; 14:e1007314. [PMID: 29617376 PMCID: PMC5902039 DOI: 10.1371/journal.pgen.1007314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/16/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Commissural axons must cross the midline to establish reciprocal connections between the two sides of the body. This process is highly conserved between invertebrates and vertebrates and depends on guidance cues and their receptors to instruct axon trajectories. The DCC family receptor Frazzled (Fra) signals chemoattraction and promotes midline crossing in response to its ligand Netrin. However, in Netrin or fra mutants, the loss of crossing is incomplete, suggesting the existence of additional pathways. Here, we identify Brain Tumor (Brat), a tripartite motif protein, as a new regulator of midline crossing in the Drosophila CNS. Genetic analysis indicates that Brat acts independently of the Netrin/Fra pathway. In addition, we show that through its B-Box domains, Brat acts cell autonomously to regulate the expression and localization of Adenomatous polyposis coli-2 (Apc2), a key component of the Wnt canonical signaling pathway, to promote axon growth across the midline. Genetic evidence indicates that the role of Brat and Apc2 to promote axon growth across the midline is independent of Wnt and Beta-catenin-mediated transcriptional regulation. Instead, we propose that Brat promotes midline crossing through directing the localization or stability of Apc2 at the plus ends of microtubules in navigating commissural axons. These findings define a new mechanism in the coordination of axon growth and guidance at the midline. The establishment of neuronal connections that cross the midline of the animal is essential to generate neural circuits that coordinate the left and right sides of the body. Axons that cross the midline to form these connections are called commissural axons and the molecules and mechanisms that control midline axon crossing are remarkably conserved across animal evolution. In this study we have used a genetic screen in the fruit fly in an attempt to uncover additional players in this key developmental process, and have identified a novel role for the Brain Tumor (Brat) protein in promoting commissural axon growth across the midline. Unlike its previous described functions, in the context of midline axon guidance Brat cooperates with the microtubule stabilizing protein Apc2 to coordinate axon growth and guidance. Molecular and genetic analyses point to the conserved B box motifs of the Brat protein as key in promoting the association of Apc2 with the plus ends of microtubules. Brat is highly conserved and future studies will determine whether homologous genes play analogous roles in mammalian neural development.
Collapse
Affiliation(s)
- Elise Arbeille
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
27
|
Howard LJ, Brown HE, Wadsworth BC, Evans TA. Midline axon guidance in the Drosophila embryonic central nervous system. Semin Cell Dev Biol 2017; 85:13-25. [PMID: 29174915 DOI: 10.1016/j.semcdb.2017.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023]
Abstract
Studies in the fruit fly Drosophila melanogaster have provided many fundamental insights into the genetic regulation of neural development, including the identification and characterization of evolutionarily conserved axon guidance pathways and their roles in important guidance decisions. Due to its highly organized and fast-developing embryonic nervous system, relatively small number of neurons, and molecular and genetic tools for identifying, labeling, and manipulating individual neurons or small neuronal subsets, studies of axon guidance in the Drosophila embryonic CNS have allowed researchers to dissect these genetic mechanisms with a high degree of precision. In this review, we discuss the major axon guidance pathways that regulate midline crossing of axons and the formation and guidance of longitudinal axon tracts, two processes that contribute to the development of the precise three-dimensional structure of the insect nerve cord. We focus particularly on recent insights into the roles and regulation of canonical midline axon guidance pathways, and on additional factors and pathways that have recently been shown to contribute to axon guidance decisions at and near the midline.
Collapse
Affiliation(s)
- LaFreda J Howard
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Haley E Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Benjamin C Wadsworth
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA.
| |
Collapse
|
28
|
Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis. Leukemia 2017; 32:820-827. [PMID: 28819285 PMCID: PMC5739283 DOI: 10.1038/leu.2017.267] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 02/01/2023]
Abstract
Son of Sevenless 1 (SOS1) is a dual guanine nucleotide exchange factor (GEF) that activates the small GTPases RAC and RAS. Although the molecular mechanisms of RAS GEF catalysis have been unveiled, how SOS1 acquires RAC GEF activity and what is the physio-pathological relevance of this activity is much less understood. Here we show that SOS1 is tyrosine phosphorylated on Y1196 by ABL. Phosphorylation of Y1196 controls SOS1 inter-molecular interaction, is required to promote the exchange of nucleotides on RAC in vitro and for platelet-derived growth factor (PDGF) activation of RAC- and RAC-dependent actin remodeling and cell migration. SOS1 is also phosphorylated on Y1196 by BCR-ABL in chronic myelogenous leukemic cells. Importantly, in these cells, SOS1 is required for BCR-ABL-mediated activation of RAC, cell proliferation and transformation in vitro and in a xenograft mouse model. Finally, genetic removal of Sos1 in the bone marrow-derived cells (BMDCs) from Sos1fl/fl mice and infected with BCR-ABL causes a significant delay in the onset of leukemogenesis once BMDCs are injected into recipient, lethally irradiated mice. Thus, SOS1 is required for full transformation and critically contribute to the leukemogenic potential of BCR-ABL.
Collapse
|
29
|
Winfree LM, Speese SD, Logan MA. Protein phosphatase 4 coordinates glial membrane recruitment and phagocytic clearance of degenerating axons in Drosophila. Cell Death Dis 2017; 8:e2623. [PMID: 28230857 PMCID: PMC5386485 DOI: 10.1038/cddis.2017.40] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/15/2022]
Abstract
Neuronal damage induced by injury, stroke, or neurodegenerative disease elicits swift immune responses from glial cells, including altered gene expression, directed migration to injury sites, and glial clearance of damaged neurons through phagocytic engulfment. Collectively, these responses hinder further cellular damage, but the mechanisms that underlie these important protective glial reactions are still unclear. Here, we show that the evolutionarily conserved trimeric protein phosphatase 4 (PP4) serine/threonine phosphatase complex is a novel set of factors required for proper glial responses to nerve injury in the adult Drosophila brain. Glial-specific knockdown of PP4 results in reduced recruitment of glia to severed axons and delayed glial clearance of degenerating axonal debris. We show that PP4 functions downstream of the the glial engulfment receptor Draper to drive glial morphogenesis through the guanine nucleotide exchange factor SOS and the Rho GTPase Rac1, revealing that PP4 molecularly couples Draper to Rac1-mediated cytoskeletal remodeling to ensure glial infiltration of injury sites and timely removal of damaged neurons from the CNS.
Collapse
Affiliation(s)
- Lilly M Winfree
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Sean D Speese
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mary A Logan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
30
|
Fan X, Yang H, Kumar S, Tumelty KE, Pisarek-Horowitz A, Rasouly HM, Sharma R, Chan S, Tyminski E, Shamashkin M, Belghasem M, Henderson JM, Coyle AJ, Salant DJ, Berasi SP, Lu W. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight 2016; 1:e86934. [PMID: 27882344 DOI: 10.1172/jci.insight.86934] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The repulsive guidance cue SLIT2 and its receptor ROBO2 are required for kidney development and podocyte foot process structure, but the SLIT2/ROBO2 signaling mechanism regulating podocyte function is not known. Here we report that a potentially novel signaling pathway consisting of SLIT/ROBO Rho GTPase activating protein 1 (SRGAP1) and nonmuscle myosin IIA (NMIIA) regulates podocyte adhesion downstream of ROBO2. We found that the myosin II regulatory light chain (MRLC), a subunit of NMIIA, interacts directly with SRGAP1 and forms a complex with ROBO2/SRGAP1/NMIIA in the presence of SLIT2. Immunostaining demonstrated that SRGAP1 is a podocyte protein and is colocalized with ROBO2 on the basal surface of podocytes. In addition, SLIT2 stimulation inhibits NMIIA activity, decreases focal adhesion formation, and reduces podocyte attachment to collagen. In vivo studies further showed that podocyte-specific knockout of Robo2 protects mice from hypertension-induced podocyte detachment and albuminuria and also partially rescues the podocyte-loss phenotype in Myh9 knockout mice. Thus, we have identified SLIT2/ROBO2/SRGAP1/NMIIA as a potentially novel signaling pathway in kidney podocytes, which may play a role in regulating podocyte adhesion and attachment. Our findings also suggest that SLIT2/ROBO2 signaling might be a therapeutic target for kidney diseases associated with podocyte detachment and loss.
Collapse
Affiliation(s)
- Xueping Fan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Hongying Yang
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Sudhir Kumar
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Kathleen E Tumelty
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Anna Pisarek-Horowitz
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Hila Milo Rasouly
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Richa Sharma
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Stefanie Chan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Edyta Tyminski
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Michael Shamashkin
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Anthony J Coyle
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - David J Salant
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Stephen P Berasi
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Abstract
Slits are secreted proteins that bind to Roundabout (Robo) receptors. Slit-Robo signaling is best known for mediating axon repulsion in the developing nervous system. However, in recent years the functional repertoire of Slits and Robo has expanded tremendously and Slit-Robo signaling has been linked to roles in neurogenesis, angiogenesis and cancer progression among other processes. Likewise, our mechanistic understanding of Slit-Robo signaling has progressed enormously. Here, we summarize new insights into Slit-Robo evolutionary and system-dependent diversity, receptor-ligand interactions, signaling crosstalk and receptor activation.
Collapse
Affiliation(s)
- Heike Blockus
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris 75012, France Ecole des Neurosciences de Paris, Paris F-75005, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris 75012, France
| |
Collapse
|
32
|
Reichert MC, Brown HE, Evans TA. In vivo functional analysis of Drosophila Robo1 immunoglobulin-like domains. Neural Dev 2016; 11:15. [PMID: 27539083 PMCID: PMC4991095 DOI: 10.1186/s13064-016-0071-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/15/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND In animals with bilateral symmetry, midline crossing of axons in the developing central nervous system is regulated by Slit ligands and their neuronal Roundabout (Robo) receptors. Multiple structural domains are present in an evolutionarily conserved arrangement in Robo family proteins, but our understanding of the functional importance of individual domains for midline repulsive signaling is limited. METHODS We have examined the functional importance of each of the five conserved immunoglobulin-like (Ig) domains within the Drosophila Robo1 receptor. We generated a series of Robo1 variants, each lacking one of the five Ig domains (Ig1-5), and tested each for their ability to bind Slit when expressed in cultured Drosophila cells. We used a transgenic approach to express each variant in robo1's normal expression pattern in wild-type and robo1 mutant embryos, and examined the effects of deleting each domain on receptor expression, axonal localization, regulation, and midline repulsive signaling in vivo. RESULTS We show that individual deletion of Ig domains 2-5 does not interfere with Robo1's ability to bind Slit, while deletion of Ig1 strongly disrupts Slit binding. None of the five Ig domains (Ig1-5) are individually required for proper expression of Robo1 in embryonic neurons, for exclusion from commissural axon segments in wild-type embryos, or for downregulation by Commissureless (Comm), a negative regulator of Slit-Robo repulsion in Drosophila. Each of the Robo1 Ig deletion variants (with the exception of Robo1∆Ig1) were able to restore midline crossing in robo1 mutant embryos to nearly the same extent as full-length Robo1, indicating that Ig domains 2-5 are individually dispensable for midline repulsive signaling in vivo. CONCLUSIONS Our findings indicate that four of the five Ig domains within Drosophila Robo1 are dispensable for its role in midline repulsion, despite their strong evolutionary conservation, and highlight a unique requirement for the Slit-binding Ig1 domain in the regulation of midline crossing.
Collapse
Affiliation(s)
- Marie C Reichert
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
- Present address: Intramural Research Training Program, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Haley E Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
33
|
Le LTN, Cazares O, Mouw JK, Chatterjee S, Macias H, Moran A, Ramos J, Keely PJ, Weaver VM, Hinck L. Loss of miR-203 regulates cell shape and matrix adhesion through ROBO1/Rac/FAK in response to stiffness. J Cell Biol 2016; 212:707-19. [PMID: 26975850 PMCID: PMC4792073 DOI: 10.1083/jcb.201507054] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/09/2016] [Indexed: 01/20/2023] Open
Abstract
Breast tumor progression is accompanied by changes in the surrounding extracellular matrix (ECM) that increase stiffness of the microenvironment. Mammary epithelial cells engage regulatory pathways that permit dynamic responses to mechanical cues from the ECM. Here, we identify a SLIT2/ROBO1 signaling circuit as a key regulatory mechanism by which cells sense and respond to ECM stiffness to preserve tensional homeostasis. We observed that Robo1 ablation in the developing mammary gland compromised actin stress fiber assembly and inhibited cell contractility to perturb tissue morphogenesis, whereas SLIT2 treatment stimulated Rac and increased focal adhesion kinase activity to enhance cell tension by maintaining cell shape and matrix adhesion. Further investigation revealed that a stiff ECM increased Robo1 levels by down-regulating miR-203. Consistently, patients whose tumor expressed a low miR-203/high Robo1 expression pattern exhibited a better overall survival prognosis. These studies show that cells subjected to stiffened environments up-regulate Robo1 as a protective mechanism that maintains cell shape and facilitates ECM adherence.
Collapse
Affiliation(s)
- Lily Thao-Nhi Le
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Oscar Cazares
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Janna K Mouw
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - Sharmila Chatterjee
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Hector Macias
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Angel Moran
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Jillian Ramos
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Patricia J Keely
- Department of Cellular and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Valerie M Weaver
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
34
|
Kızılay Z, Erken HA, Çetin NK, Aktaş S, Abas Bİ, Yılmaz A. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury. Neural Regen Res 2016; 11:1660-1665. [PMID: 27904499 PMCID: PMC5116847 DOI: 10.4103/1673-5374.193247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to investigate the effects of boric acid in experimental acute sciatic nerve injury. Twenty-eight adult male rats were randomly divided into four equal groups (n = 7): control (C), boric acid (BA), sciatic nerve injury (I), and sciatic nerve injury + boric acid treatment (BAI). Sciatic nerve injury was generated using a Yasargil aneurysm clip in the groups I and BAI. Boric acid was given four times at 100 mg/kg to rats in the groups BA and BAI after injury (by gavage at 0, 24, 48 and 72 hours) but no injury was made in the group BA. In vivo electrophysiological tests were performed at the end of the day 4 and sciatic nerve tissue samples were taken for histopathological examination. The amplitude of compound action potential, the nerve conduction velocity and the number of axons were significantly lower and the myelin structure was found to be broken in group I compared with those in groups C and BA. However, the amplitude of the compound action potential, the nerve conduction velocity and the number of axons were significantly greater in group BAI than in group I. Moreover, myelin injury was significantly milder and the intensity of nuclear factor kappa B immunostaining was significantly weaker in group BAI than in group I. The results of this study show that administration of boric acid at 100 mg/kg after sciatic nerve injury in rats markedly reduces myelin and axonal injury and improves the electrophysiological function of injured sciatic nerve possibly through alleviating oxidative stress reactions.
Collapse
Affiliation(s)
- Zahir Kızılay
- Department of Neurosurgery, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Haydar Ali Erken
- Department of Physiology, Faculty of Medicine, Balikesir University, Balikesir, Turkey
| | - Nesibe Kahraman Çetin
- Department of Pathology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Serdar Aktaş
- Department of Pharmacology and Toxicology, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Burçin İrem Abas
- Department of Clinical Biochemistry, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Ali Yılmaz
- Department of Neurosurgery, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
35
|
Brown HE, Reichert MC, Evans TA. Slit Binding via the Ig1 Domain Is Essential for Midline Repulsion by Drosophila Robo1 but Dispensable for Receptor Expression, Localization, and Regulation in Vivo. G3 (BETHESDA, MD.) 2015; 5:2429-39. [PMID: 26362767 PMCID: PMC4632062 DOI: 10.1534/g3.115.022327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/09/2015] [Indexed: 12/11/2022]
Abstract
The midline repellant ligand Slit and its Roundabout (Robo) family receptors constitute the major midline repulsive pathway in bilaterians. Slit proteins produced at the midline of the central nervous system (CNS) signal through Robo receptors expressed on axons to prevent them from crossing the midline, and thus regulate connectivity between the two sides of the nervous system. Biochemical structure and interaction studies support a model in which Slit binding to the first immunoglobulin-like (Ig1) domain of Robo receptors activates a repulsive signaling pathway in axonal growth cones. Here, we examine the in vivo functional importance of the Ig1 domain of the Drosophila Robo1 receptor, which controls midline crossing of axons in response to Slit during development of the embryonic CNS. We show that deleting Ig1 from Robo1 disrupts Slit binding in cultured Drosophila cells, and that a Robo1 variant lacking Ig1 (Robo1(∆Ig1)) is unable to promote ectopic midline repulsion in gain-of-function studies in the Drosophila embryonic CNS. We show that the Ig1 domain is not required for proper expression, axonal localization, or Commissureless (Comm)-dependent regulation of Robo1 in vivo, and we use a genetic rescue assay to show that Robo1(∆Ig1) is unable to substitute for full-length Robo1 to properly regulate midline crossing of axons. These results establish a direct link between in vitro biochemical studies of Slit-Robo interactions and in vivo genetic studies of Slit-Robo signaling during midline axon guidance, and distinguish Slit-dependent from Slit-independent aspects of Robo1 expression, regulation, and activity during embryonic development.
Collapse
Affiliation(s)
- Haley E Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Marie C Reichert
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
36
|
Charron F. Signaling from Within: Endocytic Trafficking of the Robo Receptor Is Required for Midline Axon Repulsion. PLoS Genet 2015; 11:e1005441. [PMID: 26334304 PMCID: PMC4559454 DOI: 10.1371/journal.pgen.1005441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Frédéric Charron
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, Division of Experimental Medicine, Department of Medicine, Department of Anatomy and Cell Biology, Department of Biology, McGill University, Quebec, Canada
| |
Collapse
|
37
|
Chance RK, Bashaw GJ. Slit-Dependent Endocytic Trafficking of the Robo Receptor Is Required for Son of Sevenless Recruitment and Midline Axon Repulsion. PLoS Genet 2015; 11:e1005402. [PMID: 26335920 PMCID: PMC4559387 DOI: 10.1371/journal.pgen.1005402] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/26/2015] [Indexed: 01/07/2023] Open
Abstract
Understanding how axon guidance receptors are activated by their extracellular ligands to regulate growth cone motility is critical to learning how proper wiring is established during development. Roundabout (Robo) is one such guidance receptor that mediates repulsion from its ligand Slit in both invertebrates and vertebrates. Here we show that endocytic trafficking of the Robo receptor in response to Slit-binding is necessary for its repulsive signaling output. Dose-dependent genetic interactions and in vitro Robo activation assays support a role for Clathrin-dependent endocytosis, and entry into both the early and late endosomes as positive regulators of Slit-Robo signaling. We identify two conserved motifs in Robo's cytoplasmic domain that are required for its Clathrin-dependent endocytosis and activation in vitro; gain of function and genetic rescue experiments provide strong evidence that these trafficking events are required for Robo repulsive guidance activity in vivo. Our data support a model in which Robo's ligand-dependent internalization from the cell surface to the late endosome is essential for receptor activation and proper repulsive guidance at the midline by allowing recruitment of the downstream effector Son of Sevenless in a spatially constrained endocytic trafficking compartment.
Collapse
Affiliation(s)
- Rebecca K. Chance
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
38
|
Evans TA, Santiago C, Arbeille E, Bashaw GJ. Robo2 acts in trans to inhibit Slit-Robo1 repulsion in pre-crossing commissural axons. eLife 2015; 4:e08407. [PMID: 26186094 PMCID: PMC4505356 DOI: 10.7554/elife.08407] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/26/2015] [Indexed: 11/13/2022] Open
Abstract
During nervous system development, commissural axons cross the midline despite the presence of repellant ligands. In Drosophila, commissural axons avoid premature responsiveness to the midline repellant Slit by expressing the endosomal sorting receptor Commissureless, which reduces surface expression of the Slit receptor Roundabout1 (Robo1). In this study, we describe a distinct mechanism to inhibit Robo1 repulsion and promote midline crossing, in which Roundabout2 (Robo2) binds to and prevents Robo1 signaling. Unexpectedly, we find that Robo2 is expressed in midline cells during the early stages of commissural axon guidance, and that over-expression of Robo2 can rescue robo2-dependent midline crossing defects non-cell autonomously. We show that the extracellular domains required for binding to Robo1 are also required for Robo2's ability to promote midline crossing, in both gain-of-function and rescue assays. These findings indicate that at least two independent mechanisms to overcome Slit-Robo1 repulsion in pre-crossing commissural axons have evolved in Drosophila.
Collapse
Affiliation(s)
- Timothy A Evans
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
- Department of Biological Sciences, University of Arkansas, Fayetteville, United States
| | - Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Elise Arbeille
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
39
|
Abstract
Many of the major discoveries in the fields of genetics and developmental biology have been made using the fruit fly, Drosophila melanogaster. With regard to heart development, the conserved network of core cardiac transcription factors that underlies cardiogenesis has been studied in great detail in the fly, and the importance of several signaling pathways that regulate heart morphogenesis, such as Slit/Robo, was first shown in the fly model. Recent technological advances have led to a large increase in the genomic data available from patients with congenital heart disease (CHD). This has highlighted a number of candidate genes and gene networks that are potentially involved in CHD. To validate genes and genetic interactions among candidate CHD-causing alleles and to better understand heart formation in general are major tasks. The specific limitations of the various cardiac model systems currently employed (mammalian and fish models) provide a niche for the fly model, despite its evolutionary distance to vertebrates and humans. Here, we review recent advances made using the Drosophila embryo that identify factors relevant for heart formation. These underline how this model organism still is invaluable for a better understanding of CHD.
Collapse
|
40
|
Delloye-Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, Kindbeiter K, Yoshida Y, Zagar Y, Kong Y, Jones YE, Falk J, Chédotal A, Castellani V. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat Neurosci 2015; 18:36-45. [PMID: 25485759 DOI: 10.1038/nn.3893] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
Robo-Slit and Plexin-Semaphorin signaling participate in various developmental and pathogenic processes. During commissural axon guidance in the spinal cord, chemorepulsion by Semaphorin3B and Slits controls midline crossing. Slit processing generates an N-terminal fragment (SlitN) that binds to Robo1 and Robo2 receptors and mediates Slit repulsive activity, as well as a C-terminal fragment (SlitC) with an unknown receptor and bioactivity. We identified PlexinA1 as a Slit receptor and found that it binds the C-terminal Slit fragment specifically and transduces a SlitC signal independently of the Robos and the Neuropilins. PlexinA1-SlitC complexes are detected in spinal cord extracts, and ex vivo, SlitC binding to PlexinA1 elicits a repulsive commissural response. Analysis of various ligand and receptor knockout mice shows that PlexinA1-Slit and Robo-Slit signaling have complementary roles during commissural axon guidance. Thus, PlexinA1 mediates both Semaphorin and Slit signaling, and Slit processing generates two active fragments, each exerting distinct effects through specific receptors.
Collapse
Affiliation(s)
| | - Arnaud Jacquier
- University of Lyon, University Claude Bernard Lyon 1, CGphiMC UMR CNRS 5534, Lyon, France
| | - Camille Charoy
- University of Lyon, University Claude Bernard Lyon 1, CGphiMC UMR CNRS 5534, Lyon, France
| | - Florie Reynaud
- University of Lyon, University Claude Bernard Lyon 1, CGphiMC UMR CNRS 5534, Lyon, France
| | - Homaira Nawabi
- University of Lyon, University Claude Bernard Lyon 1, CGphiMC UMR CNRS 5534, Lyon, France
| | - Karine Thoinet
- University of Lyon, University Claude Bernard Lyon 1, CGphiMC UMR CNRS 5534, Lyon, France
| | - Karine Kindbeiter
- University of Lyon, University Claude Bernard Lyon 1, CGphiMC UMR CNRS 5534, Lyon, France
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yvrick Zagar
- 1] INSERM, UMRS_U968, Institut de la Vision, Paris, France. [2] Sorbonne Universités, Université Pierre et Marie Curie (UPMC) University of Paris 06, Institut de la Vision, Paris, France. [3] CNRS, UMR_7210, Paris, France
| | - Youxin Kong
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yvonne E Jones
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julien Falk
- University of Lyon, University Claude Bernard Lyon 1, CGphiMC UMR CNRS 5534, Lyon, France
| | - Alain Chédotal
- 1] INSERM, UMRS_U968, Institut de la Vision, Paris, France. [2] Sorbonne Universités, Université Pierre et Marie Curie (UPMC) University of Paris 06, Institut de la Vision, Paris, France. [3] CNRS, UMR_7210, Paris, France
| | - Valérie Castellani
- University of Lyon, University Claude Bernard Lyon 1, CGphiMC UMR CNRS 5534, Lyon, France
| |
Collapse
|
41
|
Mulinari S, Häcker U. Rho-guanine nucleotide exchange factors during development: Force is nothing without control. Small GTPases 2014; 1:28-43. [PMID: 21686118 DOI: 10.4161/sgtp.1.1.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 01/04/2023] Open
Abstract
The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems.
Collapse
Affiliation(s)
- Shai Mulinari
- Department of Experimental Medical Science; Lund Strategic Research Center for Stem Cell Biology and Cell Therapy; Lund University; Lund, Sweden
| | | |
Collapse
|
42
|
DRK/DOS/SOS converge with Crk/Mbc/dCed-12 to activate Rac1 during glial engulfment of axonal debris. Proc Natl Acad Sci U S A 2014; 111:12544-9. [PMID: 25099352 DOI: 10.1073/pnas.1403450111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nervous system injury or disease leads to activation of glia, which govern postinjury responses in the nervous system. Axonal injury in Drosophila results in transcriptional up-regulation of the glial engulfment receptor Draper; there is extension of glial membranes to the injury site (termed activation), and then axonal debris is internalized and degraded. Loss of the small GTPase Rac1 from glia completely suppresses glial responses to injury, but upstream activators remain poorly defined. Loss of the Rac guanine nucleotide exchange factor (GEF) Crk/myoblast city (Mbc)/dCed-12 has no effect on glial activation, but blocks internalization and degradation of debris. Here we show that the signaling molecules downstream of receptor kinase (DRK) and daughter of sevenless (DOS) (mammalian homologs, Grb2 and Gab2, respectively) and the GEF son of sevenless (SOS) (mammalian homolog, mSOS) are required for efficient activation of glia after axotomy and internalization/degradation of axonal debris. At the earliest steps of glial activation, DRK/DOS/SOS function in a partially redundant manner with Crk/Mbc/dCed-12, with blockade of both complexes strongly suppressing all glial responses, similar to loss of Rac1. This work identifies DRK/DOS/SOS as the upstream Rac GEF complex required for glial responses to axonal injury, and demonstrates a critical requirement for multiple GEFs in efficient glial activation after injury and internalization/degradation of axonal debris.
Collapse
|
43
|
Alpár A, Tortoriello G, Calvigioni D, Niphakis MJ, Milenkovic I, Bakker J, Cameron GA, Hanics J, Morris CV, Fuzik J, Kovacs GG, Cravatt BF, Parnavelas JG, Andrews WD, Hurd YL, Keimpema E, Harkany T. Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nat Commun 2014; 5:4421. [PMID: 25030704 PMCID: PMC4110686 DOI: 10.1038/ncomms5421] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/16/2014] [Indexed: 11/21/2022] Open
Abstract
Local environmental cues are indispensable for axonal growth and guidance during brain circuit formation. Here, we combine genetic and pharmacological tools, as well as systems neuroanatomy in human fetuses and mouse models, to study the role of endocannabinoid and Slit/Robo signalling in axonal growth. We show that excess 2-arachidonoylglycerol, an endocannabinoid affecting directional axonal growth, triggers corpus callosum enlargement due to the errant CB1 cannabinoid receptor-containing corticofugal axon spreading. This phenotype mechanistically relies on the premature differentiation and end-feet proliferation of CB2R-expressing oligodendrocytes. We further show the dependence of both axonal Robo1 positioning and oligodendroglial Slit2 production on cell-type-specific cannabinoid receptor activation. Accordingly, Robo1 and/or Slit2 manipulation limits endocannabinoid modulation of axon guidance. We conclude that endocannabinoids can configure focal Slit2/Robo1 signalling to modulate directional axonal growth, which may provide a basis for understanding impaired brain wiring associated with metabolic deficits and prenatal drug exposure.
Collapse
Affiliation(s)
- Alán Alpár
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Giuseppe Tortoriello
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Daniela Calvigioni
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Micah J Niphakis
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd.,La Jolla, California CA 92037 USA
| | - Ivan Milenkovic
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Joanne Bakker
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Gary A Cameron
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - János Hanics
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tűzoltó u. 58, H-1094 Budapest, Hungary
| | - Claudia V Morris
- Icahn School of Medicine at Mount Sinai, New York, 1470 Madison Avenue, New York, NY 10029, USA
| | - János Fuzik
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Benjamin F Cravatt
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd.,La Jolla, California CA 92037 USA
| | - John G Parnavelas
- Department of Cell and Developmental Biology, 21 University Street, University College London, London WC1E 6DE, United Kingdom
| | - William D Andrews
- Department of Cell and Developmental Biology, 21 University Street, University College London, London WC1E 6DE, United Kingdom
| | - Yasmin L Hurd
- Icahn School of Medicine at Mount Sinai, New York, 1470 Madison Avenue, New York, NY 10029, USA
| | - Erik Keimpema
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Tibor Harkany
- Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Scheeles väg 1:A1, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| |
Collapse
|
44
|
Erken HA, Koç ER, Yazıcı H, Yay A, Önder GÖ, Sarıcı SF. Selenium partially prevents cisplatin-induced neurotoxicity: a preliminary study. Neurotoxicology 2014; 42:71-5. [PMID: 24751598 DOI: 10.1016/j.neuro.2014.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
Abstract
Cisplatin is an anticancer drug and it has neurotoxic effects. On the other hand, the neuroprotective effect of selenium was observed in previous studies. However, the effect of selenium on cisplatin-induced neurotoxicity has not been studied yet. Therefore, we aimed to investigate whether selenium prevent cisplatin-induced neurotoxicity. Twenty-one male Wistar albino rats were divided into three groups: control (C), cisplatin (CS), cisplatin and selenium (CSE, n=7 in each group). Cisplatin (12 mg/kg/day, i.p.) was administered for 3 days to CS and CSE groups. Also, CSE group received via oral gavage 3 mg/kg/day (twice-a-day as 1.5 mg/kg) selenium 5 days before of cisplatin injection and continued for 11 consecutive days. The same volumes of saline were intraperitoneally and orally administered to C group at same time. At the end of experimental protocol, electrophysiological and histopathological examinations were performed. The nerve conduction velocity, amplitude of compound action potential and number of axon of CS group were significantly lower than the C group. However, the same parameters of CSE group were significantly higher than the CS group. Although, cisplatin has a peripheral neurotoxic effect in rats, this effect was partially prevented by selenium treatment. Thus, it appears that co-administration of selenium and cisplatin may be a useful approach to decrease severity of peripheral neurotoxicity.
Collapse
Affiliation(s)
- Haydar Ali Erken
- Balikesir University, Faculty of Medicine, Department of Physiology, Balikesir, Turkey.
| | - Emine Rabia Koç
- Balikesir University, Faculty of Medicine, Department of Neurology, Balikesir, Turkey
| | - Haşmet Yazıcı
- Balikesir University, Faculty of Medicine, Department of Ear Nose Throat, Balikesir, Turkey
| | - Arzu Yay
- Erciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - Gözde Özge Önder
- Erciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - Saim Furkan Sarıcı
- Hacettepe University, Faculty of Medicine, Department of Oncology, Ankara, Turkey
| |
Collapse
|
45
|
Santiago C, Labrador JP, Bashaw GJ. The homeodomain transcription factor Hb9 controls axon guidance in Drosophila through the regulation of Robo receptors. Cell Rep 2014; 7:153-65. [PMID: 24685136 DOI: 10.1016/j.celrep.2014.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 02/05/2023] Open
Abstract
Transcription factors establish neural diversity and wiring specificity; however, how they orchestrate changes in cell morphology remains poorly understood. The Drosophila Roundabout (Robo) receptors regulate connectivity in the CNS, but how their precise expression domains are established is unknown. Here, we show that the homeodomain transcription factor Hb9 acts upstream of Robo2 and Robo3 to regulate axon guidance in the Drosophila embryo. In ventrally projecting motor neurons, hb9 is required for robo2 expression, and restoring Robo2 activity in hb9 mutants rescues motor axon defects. Hb9 requires its conserved repressor domain and functions in parallel with Nkx6 to regulate robo2. Moreover, hb9 can regulate the medio-lateral position of axons through robo2 and robo3, and restoring robo3 expression in hb9 mutants rescues the lateral position defects of a subset of neurons. Altogether, these data identify Robo2 and Robo3 as key effectors of Hb9 in regulating nervous system development.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Abstract
Roundabout receptors (Robo) and their Slit ligands were discovered in the 1990s and found to be key players in axon guidance. Slit was initially described s an extracellular matrix protein that was expressed by midline glia in Drosophila. A few years later, it was shown that, in vertebrates and invertebrates, Slits acted as chemorepellents for axons crossing the midline. Robo proteins were originally discovered in Drosophila in a mutant screen for genes involved in the regulation of midline crossing. This ligand-receptor pair has since been implicated in a variety of other neuronal and non-neuronal processes ranging from cell migration to angiogenesis, tumourigenesis and even organogenesis of tissues such as kidneys, lungs and breasts.
Collapse
|
47
|
Li J, Pu P, Le W. The SAX-3 receptor stimulates axon outgrowth and the signal sequence and transmembrane domain are critical for SAX-3 membrane localization in the PDE neuron of C. elegans. PLoS One 2013; 8:e65658. [PMID: 23776520 PMCID: PMC3680500 DOI: 10.1371/journal.pone.0065658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 04/25/2013] [Indexed: 01/02/2023] Open
Abstract
SAX-3, a receptor for Slit in C. elegans, is well characterized for its function in axonal development. However, the mechanism that regulates the membrane localization of SAX-3 and the role of SAX-3 in axon outgrowth are still elusive. Here we show that SAX-3::GFP caused ectopic axon outgrowth, which could be suppressed by the loss-of-function mutation in unc-73 (a guanine nucleotide exchange factor for small GTPases) and unc-115 (an actin binding protein), suggesting that they might act downstream of SAX-3 in axon outgrowth. We also examined genes related to axon development for their possible involvement in the subcellular localization of SAX-3. We found the unc-51 mutants appeared to accumulate SAX-3::GFP in the neuronal cell body of the posterior deirid (PDE) neuron, indicating that UNC-51 might play a role in SAX-3 membrane localization. Furthermore, we demonstrate that the N-terminal signal sequence and the transmembrane domain are essential for the subcellular localization of SAX-3 in the PDE neurons.
Collapse
Affiliation(s)
- Jia Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pu Pu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weidong Le
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Harpaz N, Ordan E, Ocorr K, Bodmer R, Volk T. Multiplexin promotes heart but not aorta morphogenesis by polarized enhancement of slit/robo activity at the heart lumen. PLoS Genet 2013; 9:e1003597. [PMID: 23825967 PMCID: PMC3694841 DOI: 10.1371/journal.pgen.1003597] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/16/2013] [Indexed: 11/19/2022] Open
Abstract
The Drosophila heart tube represents a structure that similarly to vertebrates' primary heart tube exhibits a large lumen; the mechanisms promoting heart tube morphology in both Drosophila and vertebrates are poorly understood. We identified Multiplexin (Mp), the Drosophila orthologue of mammalian Collagen-XV/XVIII, and the only structural heart-specific protein described so far in Drosophila, as necessary and sufficient for shaping the heart tube lumen, but not that of the aorta. Mp is expressed specifically at the stage of heart tube closure, in a polarized fashion, uniquely along the cardioblasts luminal membrane, and its absence results in an extremely small heart tube lumen. Importantly, Mp forms a protein complex with Slit, and interacts genetically with both slit and robo in the formation of the heart tube. Overexpression of Mp in cardioblasts promotes a large heart lumen in a Slit-dependent manner. Moreover, Mp alters Slit distribution, and promotes the formation of multiple Slit endocytic vesicles, similarly to the effect of overexpression of Robo in these cells. Our data are consistent with Mp-dependent enhancement of Slit/Robo activity and signaling, presumably by affecting Slit protein stabilization, specifically at the lumen side of the heart tube. This activity results with a Slit-dependent, local reduction of F-actin levels at the heart luminal membrane, necessary for forming the large heart tube lumen. Consequently, lack of Mp results in decreased diastolic capacity, leading to reduced heart contractility, as measured in live fly hearts. In summary, these findings show that the polarized localization of Mp controls the direction, timing, and presumably the extent of Slit/Robo activity and signaling at the luminal membrane of the heart cardioblasts. This regulation is essential for the morphogenetic changes that sculpt the heart tube in Drosophila, and possibly in forming the vertebrates primary heart tube.
Collapse
Affiliation(s)
- Nofar Harpaz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elly Ordan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Karen Ocorr
- Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Rolf Bodmer
- Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
49
|
Borrell V, Cárdenas A, Ciceri G, Galcerán J, Flames N, Pla R, Nóbrega-Pereira S, García-Frigola C, Peregrín S, Zhao Z, Ma L, Tessier-Lavigne M, Marín O. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 2012; 76:338-52. [PMID: 23083737 PMCID: PMC4443924 DOI: 10.1016/j.neuron.2012.08.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 11/23/2022]
Abstract
Neurogenesis relies on a delicate balance between progenitor maintenance and neuronal production. Progenitors divide symmetrically to increase the pool of dividing cells. Subsequently, they divide asymmetrically to self-renew and produce new neurons or, in some brain regions, intermediate progenitor cells (IPCs). Here we report that central nervous system progenitors express Robo1 and Robo2, receptors for Slit proteins that regulate axon guidance, and that absence of these receptors or their ligands leads to loss of ventricular mitoses. Conversely, production of IPCs is enhanced in Robo1/2 and Slit1/2 mutants, suggesting that Slit/Robo signaling modulates the transition between primary and intermediate progenitors. Unexpectedly, these defects do not lead to transient overproduction of neurons, probably because supernumerary IPCs fail to detach from the ventricular lining and cycle very slowly. At the molecular level, the role of Slit/Robo in progenitor cells involves transcriptional activation of the Notch effector Hes1. These findings demonstrate that Robo signaling modulates progenitor cell dynamics in the developing brain.
Collapse
Affiliation(s)
- Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Gabriele Ciceri
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Joan Galcerán
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Nuria Flames
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Ramón Pla
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Sandrina Nóbrega-Pereira
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Cristina García-Frigola
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Sandra Peregrín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| | - Zhen Zhao
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Le Ma
- Department of Cell and Neurobiology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d’Alacant 03550, Spain
| |
Collapse
|
50
|
Slováková J, Speicher S, Sánchez-Soriano N, Prokop A, Carmena A. The actin-binding protein Canoe/AF-6 forms a complex with Robo and is required for Slit-Robo signaling during axon pathfinding at the CNS midline. J Neurosci 2012; 32:10035-44. [PMID: 22815517 PMCID: PMC6621277 DOI: 10.1523/jneurosci.6342-11.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/07/2012] [Accepted: 05/29/2012] [Indexed: 11/21/2022] Open
Abstract
Axon guidance is a key process during nervous system development and regeneration. One of the best established paradigms to study the mechanisms underlying this process is the axon decision of whether or not to cross the midline in the Drosophila CNS. An essential regulator of that decision is the well conserved Slit-Robo signaling pathway. Slit guidance cues act through Robo receptors to repel axons from the midline. Despite good progress in our knowledge about these proteins, the intracellular mechanisms associated with Robo function remain poorly defined. In this work, we found that the scaffolding protein Canoe (Cno), the Drosophila orthologue of AF-6/Afadin, is essential for Slit-Robo signaling. Cno is expressed along longitudinal axonal pioneer tracts, and longitudinal Robo/Fasciclin2-positive axons aberrantly cross the midline in cno mutant embryos. cno mutant primary neurons show a significant reduction of Robo localized in growth cone filopodia and Cno forms a complex with Robo in vivo. Moreover, the commissureless (comm) phenotype (i.e., lack of commissures due to constitutive surface presentation of Robo in all neurons) is suppressed in comm, cno double-mutant embryos. Specific genetic interactions between cno, slit, robo, and genes encoding other components of the Robo pathway, such as Neurexin-IV, Syndecan, and Rac GTPases, further confirm that Cno functionally interacts with the Slit-Robo pathway. Our data argue that Cno is a novel regulator of the Slit-Robo signaling pathway, crucial for regulating the subcellular localization of Robo and for transducing its signaling to the actin cytoskeleton during axon guidance at the midline.
Collapse
Affiliation(s)
- Jana Slováková
- Instituto de Neurociencias, CSIC/UMH, 03550 Sant Joan d'Alacant, Spain, and
| | - Stephan Speicher
- Instituto de Neurociencias, CSIC/UMH, 03550 Sant Joan d'Alacant, Spain, and
| | - Natalia Sánchez-Soriano
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
| | - Ana Carmena
- Instituto de Neurociencias, CSIC/UMH, 03550 Sant Joan d'Alacant, Spain, and
| |
Collapse
|