1
|
Mathuram TL. GSK-3: An "Ace" Among Kinases. Cancer Biother Radiopharm 2024; 39:619-631. [PMID: 38746994 DOI: 10.1089/cbr.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024] Open
Abstract
Background: Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase known to participate in the regulation of β-catenin signaling (Wnt signaling). This aids in the establishment of a multicomponent destruction complex that stimulates phosphorylation, leading to the destruction of β-catenin. Evidence about the role of increasingly active β-catenin signaling is involved in many forms of human cancer. The understanding of GSK-3 remains elusive as recent research aims to focus on developing potent GSK-3 inhibitors to target this kinase. Objective: This short review aims to highlight the regulation of GSK-3 with emphasis on Wnt signaling while highlighting its interaction with miRNAs corresponding to pluripotency and epithelial mesenchymal transition substantiating this kinase as an "Ace" among kinases in regulation of cellular processes. Result: Significant findings of miRNA regulation by GSK-3 exemplify the underpinnings of kinase-mediated transcriptional regulation in cancers. Conclusion: The review provides evidence on the role of GSK-3 as a possible master regulator of proteins and noncoding RNA, thereby implicating the fate of a cell.
Collapse
|
2
|
Marichal N, Péron S, Beltrán Arranz A, Galante C, Franco Scarante F, Wiffen R, Schuurmans C, Karow M, Gascón S, Berninger B. Reprogramming astroglia into neurons with hallmarks of fast-spiking parvalbumin-positive interneurons by phospho-site-deficient Ascl1. SCIENCE ADVANCES 2024; 10:eadl5935. [PMID: 39454007 PMCID: PMC11506222 DOI: 10.1126/sciadv.adl5935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 09/19/2024] [Indexed: 10/27/2024]
Abstract
Cellular reprogramming of mammalian glia to an induced neuronal fate holds the potential for restoring diseased brain circuits. While the proneural factor achaete-scute complex-like 1 (Ascl1) is widely used for neuronal reprogramming, in the early postnatal mouse cortex, Ascl1 fails to induce the glia-to-neuron conversion, instead promoting the proliferation of oligodendrocyte progenitor cells (OPC). Since Ascl1 activity is posttranslationally regulated, here, we investigated the consequences of mutating six serine phospho-acceptor sites to alanine (Ascl1SA6) on lineage reprogramming in vivo. Ascl1SA6 exhibited increased neurogenic activity in the glia of the early postnatal mouse cortex, an effect enhanced by coexpression of B cell lymphoma 2 (Bcl2). Genetic fate-mapping revealed that most induced neurons originated from astrocytes, while only a few derived from OPCs. Many Ascl1SA6/Bcl2-induced neurons expressed parvalbumin and were capable of high-frequency action potential firing. Our study demonstrates the authentic conversion of astroglia into neurons featuring subclass hallmarks of cortical interneurons, advancing our scope of engineering neuronal fates in the brain.
Collapse
Affiliation(s)
- Nicolás Marichal
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Sophie Péron
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Ana Beltrán Arranz
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Chiara Galante
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
| | - Franciele Franco Scarante
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rebecca Wiffen
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sergio Gascón
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute – CSIC, Madrid, Spain
| | - Benedikt Berninger
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University, Mainz, Germany
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- The Francis Crick Institute, London, UK
- Focus Program Translational Neuroscience, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
3
|
Puglisi M, Lao CL, Wani G, Masserdotti G, Bocchi R, Götz M. Comparing Viral Vectors and Fate Mapping Approaches for Astrocyte-to-Neuron Reprogramming in the Injured Mouse Cerebral Cortex. Cells 2024; 13:1408. [PMID: 39272980 PMCID: PMC11394536 DOI: 10.3390/cells13171408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Direct neuronal reprogramming is a promising approach to replace neurons lost due to disease via the conversion of endogenous glia reacting to brain injury into neurons. However, it is essential to demonstrate that the newly generated neurons originate from glial cells and/or show that they are not pre-existing endogenous neurons. Here, we use controls for both requirements while comparing two viral vector systems (Mo-MLVs and AAVs) for the expression of the same neurogenic factor, the phosphorylation-resistant form of Neurogenin2. Our results show that Mo-MLVs targeting proliferating glial cells after traumatic brain injury reliably convert astrocytes into neurons, as assessed by genetic fate mapping of astrocytes. Conversely, expressing the same neurogenic factor in a flexed AAV system results in artefactual labelling of endogenous neurons fatemapped by birthdating in development that are negative for the genetic fate mapping marker induced in astrocytes. These results are further corroborated by chronic live in vivo imaging. Taken together, the phosphorylation-resistant form of Neurogenin2 is more efficient in reprogramming reactive glia into neurons than its wildtype counterpart in vivo using retroviral vectors (Mo-MLVs) targeting proliferating glia. Conversely, AAV-mediated expression generates artefacts and is not sufficient to achieve fate conversion.
Collapse
Affiliation(s)
- Matteo Puglisi
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; (M.P.); (C.L.L.); (G.W.); (G.M.); (R.B.)
- Institute for Stem Cell Research, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Nuremberg, Germany
- Graduate School of Systemic Neuroscience, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Chu Lan Lao
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; (M.P.); (C.L.L.); (G.W.); (G.M.); (R.B.)
- Institute for Stem Cell Research, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Nuremberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Gulzar Wani
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; (M.P.); (C.L.L.); (G.W.); (G.M.); (R.B.)
- Institute for Stem Cell Research, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Nuremberg, Germany
| | - Giacomo Masserdotti
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; (M.P.); (C.L.L.); (G.W.); (G.M.); (R.B.)
- Institute for Stem Cell Research, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Nuremberg, Germany
| | - Riccardo Bocchi
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; (M.P.); (C.L.L.); (G.W.); (G.M.); (R.B.)
- Institute for Stem Cell Research, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Nuremberg, Germany
| | - Magdalena Götz
- Division of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; (M.P.); (C.L.L.); (G.W.); (G.M.); (R.B.)
- Institute for Stem Cell Research, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764 Nuremberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Gasperoni JG, Tran SC, Grommen SVH, De Groef B, Dworkin S. The Role of PLAG1 in Mouse Brain Development and Neurogenesis. Mol Neurobiol 2024; 61:5851-5867. [PMID: 38240991 PMCID: PMC11249490 DOI: 10.1007/s12035-024-03943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/10/2024] [Indexed: 07/16/2024]
Abstract
The pleomorphic adenoma gene 1 (Plag1) is a transcription factor involved in the regulation of growth and cellular proliferation. Here, we report the spatial distribution and functional implications of PLAG1 expression in the adult mouse brain. We identified Plag1 promoter-dependent β-galactosidase expression in various brain structures, including the hippocampus, cortex, choroid plexus, subcommisural organ, ependymal cells lining the third ventricle, medial and lateral habenulae and amygdala. We noted striking spatial-restriction of PLAG1 within the cornu ammonis (CA1) region of the hippocampus and layer-specific cortical expression, with abundant expression noted in all layers except layer 5. Furthermore, our study delved into the role of PLAG1 in neurodevelopment, focusing on its impact on neural stem/progenitor cell proliferation. Loss of Plag1 resulted in reduced proliferation and decreased production of neocortical progenitors in vivo, although ex vivo neurosphere experiments revealed no cell-intrinsic defects in the proliferative or neurogenic capacity of Plag1-deficient neural progenitors. Lastly, we explored potential target genes of PLAG1 in the cortex, identifying that Neurogenin 2 (Ngn2) was significantly downregulated in Plag1-deficient mice. In summary, our study provides novel insights into the spatial distribution of PLAG1 expression in the adult mouse brain and its potential role in neurodevelopment. These findings expand our understanding of the functional significance of PLAG1 within the brain, with potential implications for neurodevelopmental disorders and therapeutic interventions.
Collapse
Affiliation(s)
- Jemma G Gasperoni
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Stephanie C Tran
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Sylvia V H Grommen
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Biology, KU Leuven, B3000, Leuven, Belgium
| | - Bert De Groef
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Biology, KU Leuven, B3000, Leuven, Belgium
| | - Sebastian Dworkin
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
5
|
Dong X, Hong H, Cui Z. Function of GSK‑3 signaling in spinal cord injury (Review). Exp Ther Med 2023; 26:541. [PMID: 37869638 PMCID: PMC10587879 DOI: 10.3892/etm.2023.12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/10/2023] [Indexed: 10/24/2023] Open
Abstract
Spinal cord injury (SCI) is a major social problem with a heavy burden on patient physiology and psychology. Glial scar formation and irreversible neuron loss are the two key points during SCI progression. During the acute phase of spinal cord injury, glial scars form, limiting the progression of inflammation. However, in the subacute or chronic phase, glial scarring inhibits axon regeneration. Following spinal cord injury, irreversible loss of neurons leads to further aggravation of spinal cord injury. Several therapies have been developed to improve either glial scar or neuron loss; however, few therapies reach the stage of clinical trials and there are no mainstream therapies for SCI. Exploring the key mechanism of SCI is crucial for finding further treatments. Glycogen synthase kinase-3 (GSK-3) is a widely expressed kinase with important physiological and pathophysiological functions in vivo. Dysfunction of the GSK-3 signaling pathway during SCI has been widely discussed for controlling neurite growth in vitro and in vivo, improving the proliferation and neuronal differentiation of endogenous neural stem cells and functional recovery from spinal cord injury. SCI can decrease the phosphorylated (p)/total (t)-GSK-3β ratio, which leads to an increase in apoptosis, whereas treatment with GSK-3 inhibitors can promote neurogenesis. In addition, several therapies for the treatment of SCI involve signaling pathways associated with GSK-3. Furthermore, signaling pathways associated with GSK-3 also participate in the pathological process of neuropathic pain that remains following SCI. The present review summarized the roles of GSK-3 signaling in SCI to aid in the understanding of GSK-3 signaling during the pathological processes of SCI and to provide evidence for the development of comprehensive treatments.
Collapse
Affiliation(s)
- Xiong Dong
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hongxiang Hong
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Spinal Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
6
|
Shim S, Goyal R, Panoutsopoulos AA, Balashova OA, Lee D, Borodinsky LN. Calcium dynamics at the neural cell primary cilium regulate Hedgehog signaling-dependent neurogenesis in the embryonic neural tube. Proc Natl Acad Sci U S A 2023; 120:e2220037120. [PMID: 37252980 PMCID: PMC10266006 DOI: 10.1073/pnas.2220037120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
The balance between neural stem cell proliferation and neuronal differentiation is paramount for the appropriate development of the nervous system. Sonic hedgehog (Shh) is known to sequentially promote cell proliferation and specification of neuronal phenotypes, but the signaling mechanisms responsible for the developmental switch from mitogenic to neurogenic have remained unclear. Here, we show that Shh enhances Ca2+ activity at the neural cell primary cilium of developing Xenopus laevis embryos through Ca2+ influx via transient receptor potential cation channel subfamily C member 3 (TRPC3) and release from intracellular stores in a developmental stage-dependent manner. This ciliary Ca2+ activity in turn antagonizes canonical, proliferative Shh signaling in neural stem cells by down-regulating Sox2 expression and up-regulating expression of neurogenic genes, enabling neuronal differentiation. These discoveries indicate that the Shh-Ca2+-dependent switch in neural cell ciliary signaling triggers the switch in Shh action from canonical-mitogenic to neurogenic. The molecular mechanisms identified in this neurogenic signaling axis are potential targets for the treatment of brain tumors and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sangwoo Shim
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - Raman Goyal
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - Alexios A. Panoutsopoulos
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - Olga A. Balashova
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - David Lee
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| | - Laura N. Borodinsky
- Department of Physiology and Membrane Biology, University of California Davis, Sacramento, CA95817
- Shriners Hospital for Children, University of California Davis, Sacramento, CA95817
| |
Collapse
|
7
|
Dasen JS. Establishing the Molecular and Functional Diversity of Spinal Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:3-44. [PMID: 36066819 DOI: 10.1007/978-3-031-07167-6_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.
Collapse
Affiliation(s)
- Jeremy S Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Hulme AJ, Maksour S, St-Clair Glover M, Miellet S, Dottori M. Making neurons, made easy: The use of Neurogenin-2 in neuronal differentiation. Stem Cell Reports 2021; 17:14-34. [PMID: 34971564 PMCID: PMC8758946 DOI: 10.1016/j.stemcr.2021.11.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Directed neuronal differentiation of human pluripotent stem cells (hPSCs), neural progenitors, or fibroblasts using transcription factors has allowed for the rapid and highly reproducible differentiation of mature and functional neurons. Exogenous expression of the transcription factor Neurogenin-2 (NGN2) has been widely used to generate different populations of neurons, which have been used in neurodevelopment studies, disease modeling, drug screening, and neuronal replacement therapies. Could NGN2 be a “one-glove-fits-all” approach for neuronal differentiations? This review summarizes the cellular roles of NGN2 and describes the applications and limitations of using NGN2 for the rapid and directed differentiation of neurons.
Collapse
Affiliation(s)
- Amy J Hulme
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mitchell St-Clair Glover
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
9
|
Zhang GY, Lv ZM, Ma HX, Chen Y, Yuan Y, Sun PX, Feng YQ, Li YW, Lu WJ, Yang YD, Yang C, Yu XL, Wang C, Liang SL, Zhang ML, Li HL, Li WL. Chemical approach to generating long-term self-renewing pMN progenitors from human embryonic stem cells. J Mol Cell Biol 2021; 14:6459209. [PMID: 34893854 PMCID: PMC8872822 DOI: 10.1093/jmcb/mjab076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/24/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Spinal cord impairment involving motor neuron degeneration and demyelination can cause life-long disabilities, but effective clinical interventions for restoring neurological functions have yet been developed. In early spinal cord development, neural progenitors in the pMN ('progenitors of motor neurons') domain, defined by the expression of oligodendrocyte transcription factor 2 (OLIG2), in ventral spinal cord first generate motor neurons and then switch the fate to produce myelin-forming oligodendrocytes. Given their differentiation potential, pMN progenitors could be a valuable cell source for cell therapy in relevant neurological conditions such as spinal cord injury. However, fast generation and expansion of pMN progenitors in vitro while conserving their differentiation potential has so far been technically challenging. In this study, based on the chemical screening, we have developed a new recipe for efficient induction of pMN progenitors from human embryonic stem cells. More importantly, these OLIG2+ pMN progenitors can be stably maintained for multiple passages without losing their ability to produce spinal motor neurons and oligodendrocytes rapidly. Our results suggest that these self-renewing pMN progenitors could potentially be useful as a renewable source of cell transplants for spinal cord injury and demyelinating disorders.
Collapse
Affiliation(s)
- Guan-Yu Zhang
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Zhu-Man Lv
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Hao-Xin Ma
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Yu Chen
- Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuan Yuan
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Ping-Xin Sun
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Yu-Qi Feng
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Ya-Wen Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Jie Lu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Dong Yang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Cheng Yang
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Xin-Lu Yu
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Chao Wang
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Shu-Long Liang
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Ming-Liang Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui-Liang Li
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Wen-Lin Li
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China.,Shanghai Key Laboratory of Cell Engineering, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
10
|
Almasoudi SH, Schlosser G. Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. Front Neuroanat 2021; 15:722374. [PMID: 34616280 PMCID: PMC8488300 DOI: 10.3389/fnana.2021.722374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
Using immunostaining and confocal microscopy, we here provide the first detailed description of otic neurogenesis in Xenopus laevis. We show that the otic vesicle comprises a pseudostratified epithelium with apicobasal polarity (apical enrichment of Par3, aPKC, phosphorylated Myosin light chain, N-cadherin) and interkinetic nuclear migration (apical localization of mitotic, pH3-positive cells). A Sox3-immunopositive neurosensory area in the ventromedial otic vesicle gives rise to neuroblasts, which delaminate through breaches in the basal lamina between stages 26/27 and 39. Delaminated cells congregate to form the vestibulocochlear ganglion, whose peripheral cells continue to proliferate (as judged by EdU incorporation), while central cells differentiate into Islet1/2-immunopositive neurons from stage 29 on and send out neurites at stage 31. The central part of the neurosensory area retains Sox3 but stops proliferating from stage 33, forming the first sensory areas (utricular/saccular maculae). The phosphatase and transcriptional coactivator Eya1 has previously been shown to play a central role for otic neurogenesis but the underlying mechanism is poorly understood. Using an antibody specifically raised against Xenopus Eya1, we characterize the subcellular localization of Eya1 proteins, their levels of expression as well as their distribution in relation to progenitor and neuronal differentiation markers during otic neurogenesis. We show that Eya1 protein localizes to both nuclei and cytoplasm in the otic epithelium, with levels of nuclear Eya1 declining in differentiating (Islet1/2+) vestibulocochlear ganglion neurons and in the developing sensory areas. Morpholino-based knockdown of Eya1 leads to reduction of proliferating, Sox3- and Islet1/2-immunopositive cells, redistribution of cell polarity proteins and loss of N-cadherin suggesting that Eya1 is required for maintenance of epithelial cells with apicobasal polarity, progenitor proliferation and neuronal differentiation during otic neurogenesis.
Collapse
Affiliation(s)
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Galway, Galway, Ireland
| |
Collapse
|
11
|
Mechanisms of Binding Specificity among bHLH Transcription Factors. Int J Mol Sci 2021; 22:ijms22179150. [PMID: 34502060 PMCID: PMC8431614 DOI: 10.3390/ijms22179150] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA’s shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.
Collapse
|
12
|
Pereira JD, DuBreuil DM, Devlin AC, Held A, Sapir Y, Berezovski E, Hawrot J, Dorfman K, Chander V, Wainger BJ. Human sensorimotor organoids derived from healthy and amyotrophic lateral sclerosis stem cells form neuromuscular junctions. Nat Commun 2021; 12:4744. [PMID: 34362895 PMCID: PMC8346474 DOI: 10.1038/s41467-021-24776-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Human induced pluripotent stem cells (iPSC) hold promise for modeling diseases in individual human genetic backgrounds and thus for developing precision medicine. Here, we generate sensorimotor organoids containing physiologically functional neuromuscular junctions (NMJs) and apply the model to different subgroups of amyotrophic lateral sclerosis (ALS). Using a range of molecular, genomic, and physiological techniques, we identify and characterize motor neurons and skeletal muscle, along with sensory neurons, astrocytes, microglia, and vasculature. Organoid cultures derived from multiple human iPSC lines generated from individuals with ALS and isogenic lines edited to harbor familial ALS mutations show impairment at the level of the NMJ, as detected by both contraction and immunocytochemical measurements. The physiological resolution of the human NMJ synapse, combined with the generation of major cellular cohorts exerting autonomous and non-cell autonomous effects in motor and sensory diseases, may prove valuable to understand the pathophysiological mechanisms of ALS.
Collapse
Affiliation(s)
- João D Pereira
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel M DuBreuil
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna-Claire Devlin
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron Held
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yechiam Sapir
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eugene Berezovski
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James Hawrot
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Katherine Dorfman
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vignesh Chander
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J Wainger
- Department of Neurology, Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA.
| |
Collapse
|
13
|
Oproescu AM, Han S, Schuurmans C. New Insights Into the Intricacies of Proneural Gene Regulation in the Embryonic and Adult Cerebral Cortex. Front Mol Neurosci 2021; 14:642016. [PMID: 33658912 PMCID: PMC7917194 DOI: 10.3389/fnmol.2021.642016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/21/2022] Open
Abstract
Historically, the mammalian brain was thought to lack stem cells as no new neurons were found to be made in adulthood. That dogma changed ∼25 years ago with the identification of neural stem cells (NSCs) in the adult rodent forebrain. However, unlike rapidly self-renewing mature tissues (e.g., blood, intestinal crypts, skin), the majority of adult NSCs are quiescent, and those that become 'activated' are restricted to a few neurogenic zones that repopulate specific brain regions. Conversely, embryonic NSCs are actively proliferating and neurogenic. Investigations into the molecular control of the quiescence-to-proliferation-to-differentiation continuum in the embryonic and adult brain have identified proneural genes encoding basic-helix-loop-helix (bHLH) transcription factors (TFs) as critical regulators. These bHLH TFs initiate genetic programs that remove NSCs from quiescence and drive daughter neural progenitor cells (NPCs) to differentiate into specific neural cell subtypes, thereby contributing to the enormous cellular diversity of the adult brain. However, new insights have revealed that proneural gene activities are context-dependent and tightly regulated. Here we review how proneural bHLH TFs are regulated, with a focus on the murine cerebral cortex, drawing parallels where appropriate to other organisms and neural tissues. We discuss upstream regulatory events, post-translational modifications (phosphorylation, ubiquitinylation), protein-protein interactions, epigenetic and metabolic mechanisms that govern bHLH TF expression, stability, localization, and consequent transactivation of downstream target genes. These tight regulatory controls help to explain paradoxical findings of changes to bHLH activity in different cellular contexts.
Collapse
Affiliation(s)
- Ana-Maria Oproescu
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sisu Han
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Wong ES, Zheng D, Tan SZ, Bower NL, Garside V, Vanwalleghem G, Gaiti F, Scott E, Hogan BM, Kikuchi K, McGlinn E, Francois M, Degnan BM. Deep conservation of the enhancer regulatory code in animals. Science 2020; 370:370/6517/eaax8137. [PMID: 33154111 DOI: 10.1126/science.aax8137] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 04/29/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022]
Abstract
Interactions of transcription factors (TFs) with DNA regulatory sequences, known as enhancers, specify cell identity during animal development. Unlike TFs, the origin and evolution of enhancers has been difficult to trace. We drove zebrafish and mouse developmental transcription using enhancers from an evolutionarily distant marine sponge. Some of these sponge enhancers are located in highly conserved microsyntenic regions, including an Islet enhancer in the Islet-Scaper region. We found that Islet enhancers in humans and mice share a suite of TF binding motifs with sponges, and that they drive gene expression patterns similar to those of sponge and endogenous Islet enhancers in zebrafish. Our results suggest the existence of an ancient and conserved, yet flexible, genomic regulatory syntax that has been repeatedly co-opted into cell type-specific gene regulatory networks across the animal kingdom.
Collapse
Affiliation(s)
- Emily S Wong
- School of Biological Sciences, University of Queensland, Brisbane, Australia. .,Victor Chang Cardiac Research Institute, Sydney, Australia.,School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
| | - Dawei Zheng
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Siew Z Tan
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Neil L Bower
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Victoria Garside
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | | | - Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Ethan Scott
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Benjamin M Hogan
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia.,Department of Anatomy and Neuroscience and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Kazu Kikuchi
- Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Edwina McGlinn
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Mathias Francois
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia. .,Centenary Institute, David Richmond Program for Cardio-Vascular Research: Gene Regulation and Editing, School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia.
| |
Collapse
|
15
|
Ma S, Zang T, Liu ML, Zhang CL. Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease. Mol Neurodegener 2020; 15:61. [PMID: 33087140 PMCID: PMC7579825 DOI: 10.1186/s13024-020-00411-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background Alzheimer’s disease (AD) is an adult-onset mental disorder with aging as a major risk factor. Early and progressive degeneration of basal forebrain cholinergic neurons (BFCNs) contributes substantially to cognitive impairments of AD. An aging-relevant cell model of BFCNs will critically help understand AD and identify potential therapeutics. Recent studies demonstrate that induced neurons directly reprogrammed from adult human skin fibroblasts retain aging-associated features. However, human induced BFCNs (hiBFCNs) have yet to be achieved. Methods We examined a reprogramming procedure for the generation of aging-relevant hiBFCNs through virus-mediated expression of fate-determining transcription factors. Skin fibroblasts were obtained from healthy young persons, healthy adults and sporadic AD patients. Properties of the induced neurons were examined by immunocytochemistry, qRT-PCR, western blotting, and electrophysiology. Results We established a protocol for efficient generation of hiBFCNs from adult human skin fibroblasts. They show electrophysiological properties of mature neurons and express BFCN-specific markers, such as CHAT, p75NTR, ISL1, and VACHT. As a proof-of-concept, our preliminary results further reveal that hiBFCNs from sporadic AD patients exhibit time-dependent TAU hyperphosphorylation in the soma and dysfunctional nucleocytoplasmic transport activities. Conclusions Aging-relevant BFCNs can be directly reprogrammed from human skin fibroblasts of healthy adults and sporadic AD patients. They show promises as an aging-relevant cell model for understanding AD pathology and may be employed for therapeutics identification for AD.
Collapse
Affiliation(s)
- Shuaipeng Ma
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Tong Zang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Meng-Lu Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA. .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
16
|
Sepehrimanesh M, Ding B. Generation and optimization of highly pure motor neurons from human induced pluripotent stem cells via lentiviral delivery of transcription factors. Am J Physiol Cell Physiol 2020; 319:C771-C780. [PMID: 32783653 PMCID: PMC7654652 DOI: 10.1152/ajpcell.00279.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Generation of neurons from human induced pluripotent stem cells (hiPSCs) overcomes the limited access to human brain samples and greatly facilitates the progress of research in neurological diseases. However, it is still a challenge to generate a particular neuronal subtype with high purity and yield for determining the pathogenesis of diseased neurons using biochemical approaches. Motor neurons (MNs) are a specialized neuronal subtype responsible for governing both autonomic and volitional movement. Dysfunctions in MNs are implicated in a variety of movement diseases, such as amyotrophic lateral sclerosis (ALS). In this study, we generated functional MNs from human iPSCs via lentiviral delivery of transcription factors. Moreover, we optimized induction conditions by using different combinations of transcription factors and found that a single lentiviral vector expressing three factors [neurogenin-2 (NGN2), insulin gene enhancer 1 (ISL1), and LIM/homeobox 3 (LHX3)] is necessary and sufficient to induce iPSC-derived MNs (iPSC-MNs). These MNs robustly expressed general neuron markers [microtubule-associated protein 2 (MAP2), neurofilament protein (SMI-32), and tubulin β-3 class III (TUBB3)] and MN-specific markers [HB9 and choline acetyltransferase (ChAT)] and showed electrical maturation and firing of action potentials within 3 wk. This approach significantly improved the neuronal survival, yield, and purity, making it feasible to obtain abundant materials for biochemical studies in modeling movement diseases.
Collapse
Affiliation(s)
- Masood Sepehrimanesh
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana
| | - Baojin Ding
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana
| |
Collapse
|
17
|
Sagner A, Briscoe J. Establishing neuronal diversity in the spinal cord: a time and a place. Development 2019; 146:146/22/dev182154. [DOI: 10.1242/dev.182154] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT
The vertebrate spinal cord comprises multiple functionally distinct neuronal cell types arranged in characteristic positions. During development, these different types of neurons differentiate from transcriptionally distinct neural progenitors that are arrayed in discrete domains along the dorsal-ventral and anterior-posterior axes of the embryonic spinal cord. This organization arises in response to morphogen gradients acting upstream of a gene regulatory network, the architecture of which determines the spatial and temporal pattern of gene expression. In recent years, substantial progress has been made in deciphering the regulatory network that underlies the specification of distinct progenitor and neuronal cell identities. In this Review, we outline how distinct neuronal cell identities are established in response to spatial and temporal patterning systems, and outline novel experimental approaches to study the emergence and function of neuronal diversity in the spinal cord.
Collapse
|
18
|
López-Tobón A, Villa CE, Cheroni C, Trattaro S, Caporale N, Conforti P, Iennaco R, Lachgar M, Rigoli MT, Marcó de la Cruz B, Lo Riso P, Tenderini E, Troglio F, De Simone M, Liste-Noya I, Macino G, Pagani M, Cattaneo E, Testa G. Human Cortical Organoids Expose a Differential Function of GSK3 on Cortical Neurogenesis. Stem Cell Reports 2019; 13:847-861. [PMID: 31607568 PMCID: PMC6893153 DOI: 10.1016/j.stemcr.2019.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
The regulation of the proliferation and polarity of neural progenitors is crucial for the development of the brain cortex. Animal studies have implicated glycogen synthase kinase 3 (GSK3) as a pivotal regulator of both proliferation and polarity, yet the functional relevance of its signaling for the unique features of human corticogenesis remains to be elucidated. We harnessed human cortical brain organoids to probe the longitudinal impact of GSK3 inhibition through multiple developmental stages. Chronic GSK3 inhibition increased the proliferation of neural progenitors and caused massive derangement of cortical tissue architecture. Single-cell transcriptome profiling revealed a direct impact on early neurogenesis and uncovered a selective role of GSK3 in the regulation of glutamatergic lineages and outer radial glia output. Our dissection of the GSK3-dependent transcriptional network in human corticogenesis underscores the robustness of the programs determining neuronal identity independent of tissue architecture. Cortical organoids recapitulate stereotypical neurogenic trajectories GSK3 inhibition disrupts neuroepithelium polarity and cortical tissue organization GSK3 activity controls oRG production and neurogenesis
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Carlo Emanuele Villa
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Cristina Cheroni
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Sebastiano Trattaro
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Nicolò Caporale
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Paola Conforti
- Department of Biosciences, University of Milan, Milan 20133, Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy
| | - Raffaele Iennaco
- Department of Biosciences, University of Milan, Milan 20133, Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy
| | - Maria Lachgar
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marco Tullio Rigoli
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Berta Marcó de la Cruz
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Pietro Lo Riso
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Erika Tenderini
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Flavia Troglio
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Marco De Simone
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Isabel Liste-Noya
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Giuseppe Macino
- Department of Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Massimiliano Pagani
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan 20133, Italy; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
| |
Collapse
|
19
|
Zhang X, McGrath PS, Salomone J, Rahal M, McCauley HA, Schweitzer J, Kovall R, Gebelein B, Wells JM. A Comprehensive Structure-Function Study of Neurogenin3 Disease-Causing Alleles during Human Pancreas and Intestinal Organoid Development. Dev Cell 2019; 50:367-380.e7. [PMID: 31178402 DOI: 10.1016/j.devcel.2019.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/25/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
Neurogenin3 (NEUROG3) is required for endocrine lineage formation of the pancreas and intestine. Patients with NEUROG3 mutations are born with congenital malabsorptive diarrhea due to complete loss of enteroendocrine cells, whereas endocrine pancreas development varies in an allele-specific manner. These findings suggest a context-dependent requirement for NEUROG3 in pancreas versus intestine. We utilized human tissue differentiated from NEUROG3-/- pluripotent stem cells for functional analyses. Most disease-associated alleles had hypomorphic or null phenotype in both tissues, whereas the S171fsX68 mutation had reduced activity in the pancreas but largely null in the intestine. Biochemical studies revealed NEUROG3 variants have distinct molecular defects with altered protein stability, DNA binding, and gene transcription. Moreover, NEUROG3 was highly unstable in the intestinal epithelium, explaining the enhanced sensitivity of intestinal defects relative to the pancreas. These studies emphasize that studies of human mutations in the endogenous tissue context may be required to assess structure-function relationships.
Collapse
Affiliation(s)
- Xinghao Zhang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Patrick S McGrath
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph Salomone
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mohamed Rahal
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jamie Schweitzer
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rhett Kovall
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
20
|
Ko E, Yu SJ, Pagan‐Diaz GJ, Mahmassani Z, Boppart MD, Im SG, Bashir R, Kong H. Matrix Topography Regulates Synaptic Transmission at the Neuromuscular Junction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801521. [PMID: 30937256 PMCID: PMC6425454 DOI: 10.1002/advs.201801521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/26/2018] [Indexed: 05/19/2023]
Abstract
Recreation of a muscle that can be controlled by the nervous system would provide a major breakthrough for treatments of injury and diseases. However, the underlying basis of how neuron-muscle interfaces are formed is still not understood sufficiently. Here, it is hypothesized that substrate topography regulates neural innervation and synaptic transmission by mediating the cross-talk between neurons and muscles. This hypothesis is examined by differentiating neural stem cells on the myotubes, formed on the substrate with controlled groove width. The substrate with the groove width of 1600 nm, a similar size to the myofibril diameter, serves to produce larger and aligned myotubes than the flat substrate. The myotubes formed on the grooved substrate display increases in the acetylcholine receptor expression. Reciprocally, motor neuron progenitor cells differentiated from neural stem cells innervate the larger and aligned myotubes more actively than randomly oriented myotubes. As a consequence, mature and aligned myotubes respond to glutamate (i.e., an excitatory neurotransmitter) and curare (i.e., a neuromuscular antagonist) more rapidly and homogeneously than randomly oriented myotubes. The results of this study will be broadly useful for improving the quality of engineered muscle used in a series of applications including drug screening, regeneration therapies, and biological machinery assembly.
Collapse
Affiliation(s)
- Eunkyung Ko
- Department of BioengineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of BioengineeringMicro and Nanotechnology LaboratoryUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Seung Jung Yu
- Department of Chemical and Biomolecular Engineering and KI for the Nano CenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701Republic of Korea
| | - Gelson J. Pagan‐Diaz
- Department of BioengineeringMicro and Nanotechnology LaboratoryUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Ziad Mahmassani
- Department of Kinesiology and Community HealthBeckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Marni D. Boppart
- Department of Kinesiology and Community HealthBeckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering and KI for the Nano CenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon305‐701Republic of Korea
| | - Rashid Bashir
- Department of BioengineeringMicro and Nanotechnology LaboratoryUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic Biology and Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Carle Illinois College of MedicineUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Hyunjoon Kong
- Department of BioengineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic Biology and Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Carle Illinois College of MedicineUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| |
Collapse
|
21
|
Mattiske T, Tan MH, Dearsley O, Cloosterman D, Hii CS, Gécz J, Shoubridge C. Regulating transcriptional activity by phosphorylation: A new mechanism for the ARX homeodomain transcription factor. PLoS One 2018; 13:e0206914. [PMID: 30419043 PMCID: PMC6231642 DOI: 10.1371/journal.pone.0206914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/22/2018] [Indexed: 01/08/2023] Open
Abstract
Aristaless-related homeobox (ARX) gene encodes a paired-type homeodomain transcription factor with critical roles in development. Here we identify that ARX protein is phosphorylated. Using mass spectrometry and in vitro kinase assays we identify phosphorylation at serines 37, 67 and 174. Through yeast-2-hybrid and CoIP we identified PICK1 (Protein interacting with C kinase 1) binding with the C-terminal region of ARX. PICK1 is a scaffold protein known to facilitate phosphorylation of protein partners by protein kinase C alpha (PRKCA). We confirm that ARX is phosphorylated by PRKCA and demonstrate phosphorylation at serine 174. We demonstrate that phosphorylation is required for correct transcriptional activity of the ARX protein using transcriptome-wide analysis of gene expression of phospho-null mutants (alanines replacing serines) compared to ARX wild-type (ARX-WT) overexpressed in pancreatic alpha TC cells. Compared to untransfected cells, ARX-WT overexpression significantly altered expression of 70 genes (Log2FC >+/-1.0, P-value <0.05). There were fewer genes with significantly altered expression compared to untransfected cells with the double phospho-null mutant Ser37Ala+Ser67Ala (26%) and Ser174Ala (39%), respectively. We demonstrate that the c-terminal region of ARX required to bind PICK1 causes a shift in PICK1 subcellular localisation to the nucleus to co-locate with the ARX protein, and truncation of this C-terminal region leads to the same loss of transcriptional activation as S174A mutant. In conclusion, we show that ARX is phosphorylated at several sites and that this modification affects its transcriptional activity.
Collapse
Affiliation(s)
- Tessa Mattiske
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - May H. Tan
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Oliver Dearsley
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | | | - Charles S. Hii
- Department of Immunopathology, SA-Pathology, Adelaide, Australia
| | - Jozef Gécz
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Healthy Mothers and Babies, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Cheryl Shoubridge
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
22
|
Hardwick LJ, Philpott A. Interaction between opposing modes of phospho-regulation of the proneural proteins Ascl1 and Ngn2. Wellcome Open Res 2018; 3:129. [PMID: 30430141 PMCID: PMC6206610 DOI: 10.12688/wellcomeopenres.14848.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Abstract
From the relatively simple nervous system of Drosophila to the elaborate mammalian cortex, neurogenesis requires exceptional spatial and temporal precision to co-ordinate progenitor cell proliferation and subsequent differentiation to a diverse range of neurons and glia. A limited number of transiently expressed proneural basic-helix-loop-helix (bHLH) transcription factors, for example achaete-scute-complex (as-c) and atonal (ato) in Drosophila and the vertebrate homologues Ascl1 and Neurogenin2 (Ngn2), are able to orchestrate the onset of neuronal determination, context-dependent subtype selection and even influence later aspects of neuronal migration and maturation. Within the last decade, two models have emerged to explain how the temporal activity of proneural determination factors is regulated by phosphorylation at distinct sites. One model describes how cell-cycle associated phosphorylation on multiple sites in the N and C termini of vertebrate proneural proteins limits neuronal differentiation in cycling progenitor cells. A second model describes phosphorylation on a single site in the bHLH domain of Drosophila atonal that acts as a binary switch, where phosphorylation terminates proneural activity. Here we combine activating mutations of phosphorylation sites in the N- and C- termini with an inhibitory phospho-mimetic mutation in the bHLH domain of Ascl1 and Ngn2 proteins, and test their functions in vivo using Xenopus embryos to determine which mode of phospho-regulation dominates. Enhancing activity by preventing N- and C terminal phosphorylation cannot overcome the inhibitory effect of mimicking phosphorylation of the bHLH domain. Thus we have established a hierarchy between these two modes of proneural protein control and suggest a model of temporal regulation for proneural protein activity.
Collapse
Affiliation(s)
- Laura J.A. Hardwick
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
- Peterhouse, University of Cambridge, Cambridge, CB2 1RD, UK
| | - Anna Philpott
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
| |
Collapse
|
23
|
Han S, Dennis DJ, Balakrishnan A, Dixit R, Britz O, Zinyk D, Touahri Y, Olender T, Brand M, Guillemot F, Kurrasch D, Schuurmans C. A non-canonical role for the proneural gene Neurog1 as a negative regulator of neocortical neurogenesis. Development 2018; 145:dev157719. [PMID: 30201687 PMCID: PMC6198467 DOI: 10.1242/dev.157719] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/31/2018] [Indexed: 02/05/2023]
Abstract
Neural progenitors undergo temporal identity transitions to sequentially generate the neuronal and glial cells that make up the mature brain. Proneural genes have well-characterised roles in promoting neural cell differentiation and subtype specification, but they also regulate the timing of identity transitions through poorly understood mechanisms. Here, we investigated how the highly related proneural genes Neurog1 and Neurog2 interact to control the timing of neocortical neurogenesis. We found that Neurog1 acts in an atypical fashion as it is required to suppress rather than promote neuronal differentiation in early corticogenesis. In Neurog1-/- neocortices, early born neurons differentiate in excess, whereas, in vitro, Neurog1-/- progenitors have a decreased propensity to proliferate and form neurospheres. Instead, Neurog1-/- progenitors preferentially generate neurons, a phenotype restricted to the Neurog2+ progenitor pool. Mechanistically, Neurog1 and Neurog2 heterodimerise, and while Neurog1 and Neurog2 individually promote neurogenesis, misexpression together blocks this effect. Finally, Neurog1 is also required to induce the expression of neurogenic factors (Dll1 and Hes5) and to repress the expression of neuronal differentiation genes (Fezf2 and Neurod6). Neurog1 thus employs different mechanisms to temper the pace of early neocortical neurogenesis.
Collapse
Affiliation(s)
- Sisu Han
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Daniel J Dennis
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Molecular Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Olivier Britz
- The Francis Crick Institute-Mill Hill Laboratory, London NW7 1AA, UK
| | - Dawn Zinyk
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Thomas Olender
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marjorie Brand
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | | | - Deborah Kurrasch
- Department of Molecular Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
24
|
Cell cycle-dependent phosphorylation and regulation of cellular differentiation. Biochem Soc Trans 2018; 46:1083-1091. [PMID: 30242121 DOI: 10.1042/bst20180276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Embryogenesis requires an exquisite regulation of cell proliferation, cell cycle withdrawal and differentiation into a massively diverse range of cells at the correct time and place. Stem cells also remain to varying extents in different adult tissues, acting in tissue homeostasis and repair. Therefore, regulated proliferation and subsequent differentiation of stem and progenitor cells remains pivotal throughout life. Recent advances have characterised the cell cycle dynamics, epigenetics, transcriptome and proteome accompanying the transition from proliferation to differentiation, revealing multiple bidirectional interactions between the cell cycle machinery and factors driving differentiation. Here, we focus on a direct mechanistic link involving phosphorylation of differentiation-associated transcription factors by cell cycle-associated Cyclin-dependent kinases. We discuss examples from the three embryonic germ layers to illustrate this regulatory mechanism that co-ordinates the balance between cell proliferation and differentiation.
Collapse
|
25
|
Baker NE, Brown NL. All in the family: proneural bHLH genes and neuronal diversity. Development 2018; 145:145/9/dev159426. [PMID: 29720483 DOI: 10.1242/dev.159426] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proneural basic Helix-Loop-Helix (bHLH) proteins are required for neuronal determination and the differentiation of most neural precursor cells. These transcription factors are expressed in vastly divergent organisms, ranging from sponges to primates. Here, we review proneural bHLH gene evolution and function in the Drosophila and vertebrate nervous systems, arguing that the Drosophila gene atonal provides a useful platform for understanding proneural gene structure and regulation. We also discuss how functional equivalency experiments using distinct proneural genes can reveal how proneural gene duplication and divergence are interwoven with neuronal complexity.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
26
|
Dennis DJ, Han S, Schuurmans C. bHLH transcription factors in neural development, disease, and reprogramming. Brain Res 2018; 1705:48-65. [PMID: 29544733 DOI: 10.1016/j.brainres.2018.03.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/16/2023]
Abstract
The formation of functional neural circuits in the vertebrate central nervous system (CNS) requires that appropriate numbers of the correct types of neuronal and glial cells are generated in their proper places and times during development. In the embryonic CNS, multipotent progenitor cells first acquire regional identities, and then undergo precisely choreographed temporal identity transitions (i.e. time-dependent changes in their identity) that determine how many neuronal and glial cells of each type they will generate. Transcription factors of the basic-helix-loop-helix (bHLH) family have emerged as key determinants of neural cell fate specification and differentiation, ensuring that appropriate numbers of specific neuronal and glial cell types are produced. Recent studies have further revealed that the functions of these bHLH factors are strictly regulated. Given their essential developmental roles, it is not surprising that bHLH mutations and de-regulated expression are associated with various neurological diseases and cancers. Moreover, the powerful ability of bHLH factors to direct neuronal and glial cell fate specification and differentiation has been exploited in the relatively new field of cellular reprogramming, in which pluripotent stem cells or somatic stem cells are converted to neural lineages, often with a transcription factor-based lineage conversion strategy that includes one or more of the bHLH genes. These concepts are reviewed herein.
Collapse
Affiliation(s)
- Daniel J Dennis
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada
| | - Sisu Han
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Sagner A, Gaber ZB, Delile J, Kong JH, Rousso DL, Pearson CA, Weicksel SE, Melchionda M, Mousavy Gharavy SN, Briscoe J, Novitch BG. Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics. PLoS Biol 2018; 16:e2003127. [PMID: 29389974 PMCID: PMC5811045 DOI: 10.1371/journal.pbio.2003127] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 02/13/2018] [Accepted: 01/05/2018] [Indexed: 12/30/2022] Open
Abstract
During tissue development, multipotent progenitors differentiate into specific cell types in characteristic spatial and temporal patterns. We addressed the mechanism linking progenitor identity and differentiation rate in the neural tube, where motor neuron (MN) progenitors differentiate more rapidly than other progenitors. Using single cell transcriptomics, we defined the transcriptional changes associated with the transition of neural progenitors into MNs. Reconstruction of gene expression dynamics from these data indicate a pivotal role for the MN determinant Olig2 just prior to MN differentiation. Olig2 represses expression of the Notch signaling pathway effectors Hes1 and Hes5. Olig2 repression of Hes5 appears to be direct, via a conserved regulatory element within the Hes5 locus that restricts expression from MN progenitors. These findings reveal a tight coupling between the regulatory networks that control patterning and neuronal differentiation and demonstrate how Olig2 acts as the developmental pacemaker coordinating the spatial and temporal pattern of MN generation.
Collapse
Affiliation(s)
| | - Zachary B. Gaber
- Department of Neurobiology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California, United States of America
| | | | - Jennifer H. Kong
- Department of Neurobiology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California, United States of America
| | - David L. Rousso
- Department of Neurobiology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Caroline A. Pearson
- Department of Neurobiology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Steven E. Weicksel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | | | | | | | - Bennett G. Novitch
- Department of Neurobiology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
28
|
Sandberg M, Flandin P, Silberberg S, Su-Feher L, Price JD, Hu JS, Kim C, Visel A, Nord AS, Rubenstein JLR. Transcriptional Networks Controlled by NKX2-1 in the Development of Forebrain GABAergic Neurons. Neuron 2017; 91:1260-1275. [PMID: 27657450 DOI: 10.1016/j.neuron.2016.08.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/01/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022]
Abstract
The embryonic basal ganglia generates multiple projection neurons and interneuron subtypes from distinct progenitor domains. Combinatorial interactions of transcription factors and chromatin are thought to regulate gene expression. In the medial ganglionic eminence, the NKX2-1 transcription factor controls regional identity and, with LHX6, is necessary to specify pallidal projection neurons and forebrain interneurons. Here, we dissected the molecular functions of NKX2-1 by defining its chromosomal binding, regulation of gene expression, and epigenetic state. NKX2-1 binding at distal regulatory elements led to a repressed epigenetic state and transcriptional repression in the ventricular zone. Conversely, NKX2-1 is required to establish a permissive chromatin state and transcriptional activation in the sub-ventricular and mantle zones. Moreover, combinatorial binding of NKX2-1 and LHX6 promotes transcriptionally permissive chromatin and activates genes expressed in cortical migrating interneurons. Our integrated approach provides a foundation for elucidating transcriptional networks guiding the development of the MGE and its descendants.
Collapse
Affiliation(s)
- Magnus Sandberg
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pierre Flandin
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shanni Silberberg
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Linda Su-Feher
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95817, USA; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - James D Price
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jia Sheng Hu
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carol Kim
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Alex S Nord
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95817, USA; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA.
| | - John L R Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
29
|
Krentz NAJ, van Hoof D, Li Z, Watanabe A, Tang M, Nian C, German MS, Lynn FC. Phosphorylation of NEUROG3 Links Endocrine Differentiation to the Cell Cycle in Pancreatic Progenitors. Dev Cell 2017; 41:129-142.e6. [PMID: 28441528 DOI: 10.1016/j.devcel.2017.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/28/2016] [Accepted: 02/09/2017] [Indexed: 02/08/2023]
Abstract
During pancreatic development, proliferating pancreatic progenitors activate the proendocrine transcription factor neurogenin 3 (NEUROG3), exit the cell cycle, and differentiate into islet cells. The mechanisms that direct robust NEUROG3 expression within a subset of progenitor cells control the size of the endocrine population. Here we demonstrate that NEUROG3 is phosphorylated within the nucleus on serine 183, which catalyzes its hyperphosphorylation and proteosomal degradation. During progression through the progenitor cell cycle, NEUROG3 phosphorylation is driven by the actions of cyclin-dependent kinases 2 and 4/6 at G1/S cell-cycle checkpoint. Using models of mouse and human pancreas development, we show that lengthening of the G1 phase of the pancreatic progenitor cell cycle is essential for proper induction of NEUROG3 and initiation of endocrine cell differentiation. In sum, these studies demonstrate that progenitor cell-cycle G1 lengthening, through its actions on stabilization of NEUROG3, is an essential variable in normal endocrine cell genesis.
Collapse
Affiliation(s)
- Nicole A J Krentz
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada
| | - Dennis van Hoof
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and Diabetes Center, University of California San Francisco, San Francisco, CA 94143-0669, USA
| | - Zhongmei Li
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and Diabetes Center, University of California San Francisco, San Francisco, CA 94143-0669, USA
| | - Akie Watanabe
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada
| | - Mei Tang
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada
| | - Cuilan Nian
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada
| | - Michael S German
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and Diabetes Center, University of California San Francisco, San Francisco, CA 94143-0669, USA; Department of Medicine, University of California San Francisco, 35 Medical Center Way, RMB 1025, San Francisco, CA 94143-0669, USA.
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
30
|
One-Step piggyBac Transposon-Based CRISPR/Cas9 Activation of Multiple Genes. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:64-76. [PMID: 28918057 PMCID: PMC5485764 DOI: 10.1016/j.omtn.2017.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 11/26/2022]
Abstract
Neural cell fate is determined by a tightly controlled transcription regulatory network during development. The ability to manipulate the expression of multiple transcription factors simultaneously is required to delineate the complex picture of neural cell development. Because of the limited carrying capacity of the commonly used viral vectors, such as lentiviral or retroviral vectors, it is often challenging to perform perturbation experiments on multiple transcription factors. Here we have developed a piggyBac (PB) transposon-based CRISPR activation (CRISPRa) all-in-one system, which allows for simultaneous and stable endogenous transactivation of multiple transcription factors and long non-coding RNAs. As a proof of principle, we showed that the PB-CRISPRa system could accelerate the differentiation of human induced pluripotent stem cells into neurons and astrocytes by triggering endogenous expression of different sets of transcription factors. The PB-CRISPRa system has the potential to become a convenient and robust tool in neuroscience, which can meet the needs of a variety of in vitro and in vivo gain-of-function applications.
Collapse
|
31
|
Smith DK, Yang J, Liu ML, Zhang CL. Small Molecules Modulate Chromatin Accessibility to Promote NEUROG2-Mediated Fibroblast-to-Neuron Reprogramming. Stem Cell Reports 2016; 7:955-969. [PMID: 28157484 PMCID: PMC5106529 DOI: 10.1016/j.stemcr.2016.09.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022] Open
Abstract
Pro-neural transcription factors and small molecules can induce the reprogramming of fibroblasts into functional neurons; however, the immediate-early molecular events that catalyze this conversion have not been well defined. We previously demonstrated that neurogenin 2 (NEUROG2), forskolin (F), and dorsomorphin (D) can reprogram fibroblasts into functional neurons with high efficiency. Here, we used this model to define the genetic and epigenetic events that initiate an acquisition of neuronal identity. We demonstrate that NEUROG2 is a pioneer factor, FD enhances chromatin accessibility and H3K27 acetylation, and synergistic transcription activated by these factors is essential to successful reprogramming. CREB1 promotes neuron survival and acts with NEUROG2 to upregulate SOX4, which co-activates NEUROD1 and NEUROD4. In addition, SOX4 targets SWI/SNF subunits and SOX4 knockdown results in extensive loss of open chromatin and abolishes reprogramming. Applying these insights, adult human glioblastoma cell and skin fibroblast reprogramming can be improved using SOX4 or chromatin-modifying chemicals. NEUROG2 acts as a pioneer factor to drive neuronal reprogramming ATAC-, ChIP-, and RNA-seq profiling reveals genome-wide mechanisms for reprogramming SOX4 is a critical mediator of chromatin remodeling during reprogramming SOX4 or FK228 can enhance adult human glioblastoma and skin fibroblast reprogramming
Collapse
Affiliation(s)
- Derek K Smith
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Jianjing Yang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Meng-Lu Liu
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.
| |
Collapse
|
32
|
Shirakawa M, Ueda H, Shimada T, Hara-Nishimura I. FAMA: A Molecular Link between Stomata and Myrosin Cells. TRENDS IN PLANT SCIENCE 2016; 21:861-871. [PMID: 27477926 DOI: 10.1016/j.tplants.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 05/04/2023]
Abstract
Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Although the molecular mechanisms underlying myrosin cell development are largely unknown, recent studies have revealed that two key components, a basic helix-loop-helix (bHLH) transcription factor (FAMA) and vesicle trafficking factors (such as SYNTAXIN OF PLANTS 22), regulate the differentiation and fate determination of myrosin cells. FAMA also functions as a master regulator of guard cell (GC) differentiation. In this review, we discuss how FAMA operates two distinct genetic programs: the generation of myrosin cells in inner plant tissue and GCs in the epidermis.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Haruko Ueda
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
33
|
Quan XJ, Yuan L, Tiberi L, Claeys A, De Geest N, Yan J, van der Kant R, Xie W, Klisch T, Shymkowitz J, Rousseau F, Bollen M, Beullens M, Zoghbi H, Vanderhaeghen P, Hassan B. Post-translational Control of the Temporal Dynamics of Transcription Factor Activity Regulates Neurogenesis. Cell 2016; 164:460-75. [DOI: 10.1016/j.cell.2015.12.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/12/2015] [Accepted: 12/22/2015] [Indexed: 11/28/2022]
|
34
|
Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods 2015; 101:113-24. [PMID: 26626326 DOI: 10.1016/j.ymeth.2015.11.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of somatic reprogramming, human induced pluripotent stem cells (hiPSCs) have been exploited to model a variety of neurological and psychiatric disorders. Because hiPSCs represent an almost limitless source of patient-derived neurons that retain the genetic variations thought to contribute to disease etiology, they have been heralded as a patient-specific platform for high throughput drug screening. However, the utility of current protocols for generating neurons from hiPSCs remains limited by protracted differentiation timelines and heterogeneity of the neuronal phenotypes produced. Neuronal induction via the forced expression of exogenous transcription factors rapidly induces defined populations of functional neurons from fibroblasts and hiPSCs. Here, we describe an adapted protocol that accelerates maturation of functional excitatory neurons from hiPSC-derived neural progenitor cells (NPCs) via lentiviral transduction of Neurogenin 2 (using both mNgn2 and hNGN2). This methodology, relying upon a robust and scalable starting population of hiPSC NPCs, should be readily amenable to scaling for hiPSC-based high-throughput drug screening.
Collapse
|
35
|
Li S, Xue H, Wu J, Rao MS, Kim DH, Deng W, Liu Y. Human Induced Pluripotent Stem Cell NEUROG2 Dual Knockin Reporter Lines Generated by the CRISPR/Cas9 System. Stem Cells Dev 2015; 24:2925-42. [PMID: 26414932 DOI: 10.1089/scd.2015.0131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼ 33% correctly targeted clones) compared to conventional targeting protocol (∼ 3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations.
Collapse
Affiliation(s)
- Shenglan Li
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Haipeng Xue
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Jianbo Wu
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Mahendra S Rao
- 3 The New York Stem Cell Foundation , New York, New York
| | - Dong H Kim
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| | - Wenbin Deng
- 4 Department of Biochemistry and Molecular Medicine, School of Medicine, University of California , Davis, California.,5 Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children , Sacramento, California
| | - Ying Liu
- 1 Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,2 Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas.,6 The Senator Lloyd and B.A. Bentsen Center for Stroke Research, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston , Houston, Texas
| |
Collapse
|
36
|
Ben-Shushan E, Feldman E, Reubinoff BE. Notch signaling regulates motor neuron differentiation of human embryonic stem cells. Stem Cells 2015; 33:403-15. [PMID: 25335858 DOI: 10.1002/stem.1873] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 08/26/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022]
Abstract
In the pMN domain of the spinal cord, Notch signaling regulates the balance between motor neuron differentiation and maintenance of the progenitor state for later oligodendrocyte differentiation. Here, we sought to study the role of Notch signaling in regulation of the switch from the pMN progenitor state to differentiated motor neurons in a human model system. Human embryonic stem cells (hESCs) were directed to differentiate to pMN-like progenitor cells by the inductive action of retinoic acid and a Shh agonist, purmorphamine. We found that the expression of the Notch signaling effector Hes5 was induced in hESC-derived pMN-like progenitors and remained highly expressed when they were cultured under conditions favoring motor neuron differentiation. Inhibition of Notch signaling by a γ-secretase inhibitor in the differentiating pMN-like progenitor cells decreased Hes5 expression and enhanced the differentiation toward motor neurons. Conversely, over-expression of Hes5 in pMN-like progenitor cells during the differentiation interfered with retinoic acid- and purmorphamine-induced motor neuron differentiation and inhibited the emergence of motor neurons. Inhibition of Notch signaling had a permissive rather than an inductive effect on motor neuron differentiation. Our results indicate that Notch signaling has a regulatory role in the switch from the pMN progenitor to the differentiated motor neuron state. Inhibition of Notch signaling can be harnessed to enhance the differentiation of hESCs toward motor neurons.
Collapse
Affiliation(s)
- Etti Ben-Shushan
- The Sidney and Judy Swartz Embryonic Stem Cell Research Center of The Goldyne Savad Institute of Gene Therapy, Hadassah University Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
37
|
Hami J, Karimi R, Haghir H, Gholamin M, Sadr-Nabavi A. Diabetes in Pregnancy Adversely Affects the Expression of Glycogen Synthase Kinase-3β in the Hippocampus of Rat Neonates. J Mol Neurosci 2015; 57:273-81. [PMID: 26242887 DOI: 10.1007/s12031-015-0617-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022]
Abstract
Diabetes during pregnancy causes a wide range of neurodevelopmental and neurocognitive abnormalities in offspring. Glycogen synthase kinase-3 (GSK-3) is widely expressed during brain development and regulates multiple cellular processes, and its dysregulation is implicated in the pathogenesis of diverse neurodegenerative and psychological diseases. This study was designed to examine the effects of maternal diabetes on GSK-3β messenger RNA (mRNA) expression and phosphorylation in the developing rat hippocampus. Female rats were maintained diabetic from a week before pregnancy through parturition, and male offspring was killed immediately after birth. We found a significant bilateral upregulation of GSK-3β mRNA expression in the hippocampus of pups born to diabetic mothers at P0, compared to controls. Moreover, at the same time point, there was a marked bilateral increase in the phosphorylation level of GSK-3β in the diabetic group. Unlike phosphorylation levels, there was a significant upregulation in hippocampal GSK-3β mRNA expression in the insulin-treated group, when compared to controls. The present study revealed that diabetes during pregnancy strongly influences the regulation of GSK-3β in the right/left developing hippocampi. These dysregulations may be part of the cascade of events through which diabetes during pregnancy affects the newborn's hippocampal structure and function.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Razieh Karimi
- Medical Genetics Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences (MUMS), Azadi Square, Mashhad, Iran
| | - Hossein Haghir
- Medical Genetics Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.,Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran
| | - Mehran Gholamin
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr-Nabavi
- Medical Genetics Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran. .,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences (MUMS), Azadi Square, Mashhad, Iran. .,Molecular Medicine Research Department, Iranian Academic Centers for Education, Culture and Research (ACECR)-Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
38
|
Huettl RE, Eckstein S, Stahl T, Petricca S, Ninkovic J, Götz M, Huber AB. Functional dissection of the Pax6 paired domain: Roles in neural tube patterning and peripheral nervous system development. Dev Biol 2015; 413:86-103. [PMID: 26187199 DOI: 10.1016/j.ydbio.2015.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/21/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
During development of the CNS, stem and progenitor cell proliferation, cell fate designation, and patterning decisions are tightly regulated by interdependent networks of key transcriptional regulators. In a genetic approach we analyzed divergent functionality of the PAI and RED sub-domains of the Pax6 Paired domain (PD) during progenitor zone formation, motor and interneuron development, and peripheral connectivity at distinct levels within the neural tube: within the hindbrain, mutation of the PAI sub-domain severely affected patterning of the p3 and pMN domains and establishment of the corresponding motor neurons. Exit point designation of hypoglossal axons was disturbed in embryos harboring either mutations in the PD sub-domains or containing a functional Pax6 Null allele. At brachial spinal levels, we propose a selective involvement of the PAI sub-domain during patterning of ventral p2 and pMN domains, critically disturbing generation of specific motor neuron subtypes and increasing V2 interneuron numbers. Our findings present a novel aspect of how Pax6 not only utilizes its modular structure to perform distinct functions via its paired and homeodomain. Individual sub-domains can exert distinct functions, generating a new level of complexity for transcriptional regulation by one single transcription factor not only in dorso-ventral, but also rostro-caudal neural tube patterning.
Collapse
Affiliation(s)
- Rosa-Eva Huettl
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Simone Eckstein
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Tessa Stahl
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefania Petricca
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Andrea B Huber
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
39
|
Hardwick LJA, Philpott A. Multi-site phosphorylation regulates NeuroD4 activity during primary neurogenesis: a conserved mechanism amongst proneural proteins. Neural Dev 2015; 10:15. [PMID: 26084567 PMCID: PMC4494719 DOI: 10.1186/s13064-015-0044-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/10/2015] [Indexed: 02/04/2023] Open
Abstract
Background Basic Helix Loop Helix (bHLH) proneural transcription factors are master regulators of neurogenesis that act at multiple stages in this process. We have previously demonstrated that multi-site phosphorylation of two members of the proneural protein family, Ngn2 and Ascl1, limits their ability to drive neuronal differentiation when cyclin-dependent kinase levels are high, as would be found in rapidly cycling cells. Here we investigate potential phospho-regulation of proneural protein NeuroD4 (also known as Xath3), the Xenopus homologue of Math3/NeuroM, that functions downstream of Ngn2 in the neurogenic cascade. Results Using the developing Xenopus embryo system, we show that NeuroD4 is expressed and phosphorylated during primary neurogenesis, and this phosphorylation limits its ability to drive neuronal differentiation. Phosphorylation of up to six serine/threonine-proline sites contributes additively to regulation of NeuroD4 proneural activity without altering neuronal subtype specification, and number rather than location of available phospho-sites is the key for limiting NeuroD4 activity. Mechanistically, a phospho-mutant NeuroD4 displays increased protein stability and enhanced chromatin binding relative to wild-type NeuroD4, resulting in transcriptional up-regulation of a range of target genes that further promote neuronal differentiation. Conclusions Multi-site phosphorylation on serine/threonine-proline pairs is a widely conserved mechanism of limiting proneural protein activity, where it is the number of phosphorylated sites, rather than their location that determines protein activity. Hence, multi-site phosphorylation is very well suited to allow co-ordination of proneural protein activity with the cellular proline-directed kinase environment. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
40
|
Kiparaki M, Zarifi I, Delidakis C. bHLH proteins involved in Drosophila neurogenesis are mutually regulated at the level of stability. Nucleic Acids Res 2015; 43:2543-59. [PMID: 25694512 PMCID: PMC4357701 DOI: 10.1093/nar/gkv083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proneural bHLH activators are expressed in all neuroectodermal regions prefiguring events of central and peripheral neurogenesis. Drosophila Sc is a prototypical proneural activator that heterodimerizes with the E-protein Daughterless (Da) and is antagonized by, among others, the E(spl) repressors. We determined parameters that regulate Sc stability in Drosophila S2 cells. We found that Sc is a very labile phosphoprotein and its turnover takes place via at least three proteasome-dependent mechanisms. (i) When Sc is in excess of Da, its degradation is promoted via its transactivation domain (TAD). (ii) In a DNA-bound Da/Sc heterodimer, Sc degradation is promoted via an SPTSS phosphorylation motif and the AD1 TAD of Da; Da is spared in the process. (iii) When E(spl)m7 is expressed, it complexes with Sc or Da/Sc and promotes their degradation in a manner that requires the corepressor Groucho and the Sc SPTSS motif. Da/Sc reciprocally promotes E(spl)m7 degradation. Since E(spl)m7 is a direct target of Notch, the mutual destabilization of Sc and E(spl) may contribute in part to the highly conserved anti-neural activity of Notch. Sc variants lacking the SPTSS motif are dramatically stabilized and are hyperactive in transgenic flies. Our results propose a novel mechanism of regulation of neurogenesis, involving the stability of key players in the process.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Ioanna Zarifi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| |
Collapse
|
41
|
Melo-Braga MN, Meyer M, Zeng X, Larsen MR. Characterization of human neural differentiation from pluripotent stem cells using proteomics/PTMomics--current state-of-the-art and challenges. Proteomics 2015; 15:656-674. [PMID: 25418965 DOI: 10.1002/pmic.201400388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2025]
Abstract
Stem cells are unspecialized cells capable of self-renewal and to differentiate into the large variety of cells in the body. The possibility to differentiate these cells into neural precursors and neural cells in vitro provides the opportunity to study neural development, nerve cell biology, neurological disease as well as contributing to clinical research. The neural differentiation process is associated with changes at protein and their post-translational modifications (PTMs). PTMs are important regulators of proteins physicochemical properties, function, activity, and interaction with other proteins, DNA/RNA, and complexes. Moreover, the interplay between PTMs is essential to regulate a range of cellular processes that abnormalities in PTM signaling are associated with several diseases. Altogether, this makes PTMs very relevant to study in order to uncover disease pathogenesis and increase the understanding of molecular processes in cells. Substantial advances in PTM enrichment methods and mass spectrometry has allowed the characterization of a subset of PTMs in large-scale studies. This review focuses on the current state-of-the-art of proteomic, as well as PTMomic studies related to human neural differentiation from pluripotent stem cells. Moreover, some of the challenges in stem cell biology, differentiation, and proteomics/PTMomics that are not exclusive to neural development will be discussed.
Collapse
Affiliation(s)
- Marcella Nunes Melo-Braga
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Center for Clinical Proteomics, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
42
|
McDowell GS, Hindley CJ, Lippens G, Landrieu I, Philpott A. Phosphorylation in intrinsically disordered regions regulates the activity of Neurogenin2. BMC BIOCHEMISTRY 2014; 15:24. [PMID: 25374254 PMCID: PMC4422318 DOI: 10.1186/s12858-014-0024-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/18/2014] [Indexed: 11/10/2022]
Abstract
Background Neuronal differentiation is largely under the control of basic Helix-Loop-Helix (bHLH) proneural transcription factors that play key roles during development of the embryonic nervous system. In addition to well-characterised regulation of their expression, increasing evidence is emerging for additional post-translational regulation of proneural protein activity. Of particular interest is the bHLH proneural factor Neurogenin2 (Ngn2), which orchestrates progression from neural progenitor to differentiated neuron in several regions of the central nervous system. Previous studies have demonstrated a key role for cell cycle-dependent multi-site phosphorylation of Ngn2 protein at Serine-Proline (SP) sites for regulation of its neuronal differentiation activity, although the potential structural and functional consequences of phosphorylation at different regions of the protein are unclear. Results Here we characterise the role of phosphorylation of specific regions of Ngn2 on the stability of Ngn2 protein and on its neuronal differentiation activity in vivo in the developing embryo, demonstrating clearly that the location of SP sites is less important than the number of SP sites available for control of Ngn2 activity in vivo. We also provide structural evidence that Ngn2 contains large, intrinsically disordered regions that undergo phosphorylation by cyclin-dependent kinases (cdks). Conclusions Phosphorylation of Ngn2 occurs in both the N- and C-terminal regions, either side of the conserved basic Helix-Loop-Helix domain. While these phosphorylation events do not change the intrinsic stability of Ngn2, phosphorylation on multiple sites acts to limit its ability to drive neuronal differentiation in vivo. Phosphorylated regions of Ngn2 are predicted to be intrinsically disordered and cdk-dependent phosphorylation of these intrinsically disordered regions contributes to Ngn2 regulation.
Collapse
Affiliation(s)
- Gary S McDowell
- Department of Oncology, MRC/Hutchison Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK. .,Current address: Center for Regenerative and Developmental Biology, Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA.
| | - Christopher J Hindley
- Department of Oncology, MRC/Hutchison Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK. .,Current address: The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | - Guy Lippens
- CNRS, Université de Lille 1, UMR 8576, Villeneuve d'Ascq, France.
| | | | - Anna Philpott
- Department of Oncology, MRC/Hutchison Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
43
|
Bolós M, Hu Y, Young KM, Foa L, Small DH. Neurogenin 2 mediates amyloid-β precursor protein-stimulated neurogenesis. J Biol Chem 2014; 289:31253-61. [PMID: 25217641 DOI: 10.1074/jbc.m114.581918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid-β precursor protein (APP) is well studied for its role in Alzheimer disease, although its normal function remains uncertain. It has been reported that APP stimulates the proliferation and neuronal differentiation of neural stem/progenitor cells (NSPCs). In this study we examined the role of APP in NSPC differentiation. To identify proteins that may mediate the effect of APP on NSPC differentiation, we used a gene array approach to find genes whose expression correlated with APP-induced neurogenesis. We found that the expression of neurogenin 2 (Ngn2), a basic helix-loop-helix transcription factor, was significantly down-regulated in NSPCs from APP knock-out mice (APPKO) and increased in APP transgenic (Tg2576) mice. Ngn2 overexpression in APPKO NSPCs promoted neuronal differentiation, whereas siRNA knockdown of Ngn2 expression in wild-type NSPCs decreased neuronal differentiation. The results demonstrate that APP-stimulated neuronal differentiation of NSPCs is mediated by Ngn2.
Collapse
Affiliation(s)
- Marta Bolós
- From the Menzies Research Institute Tasmania and
| | - Yanling Hu
- From the Menzies Research Institute Tasmania and
| | | | - Lisa Foa
- From the Menzies Research Institute Tasmania and School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | | |
Collapse
|
44
|
Huang HS, Redmond TM, Kubish GM, Gupta S, Thompson RC, Turner DL, Uhler MD. Transcriptional regulatory events initiated by Ascl1 and Neurog2 during neuronal differentiation of P19 embryonic carcinoma cells. J Mol Neurosci 2014; 55:684-705. [PMID: 25189318 DOI: 10.1007/s12031-014-0408-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/20/2014] [Indexed: 11/25/2022]
Abstract
As members of the proneural basic-helix-loop-helix (bHLH) family of transcription factors, Ascl1 and Neurog2 direct the differentiation of specific populations of neurons at various times and locations within the developing nervous system. In order to characterize the mechanisms employed by these two bHLH factors, we generated stable, doxycycline-inducible lines of P19 embryonic carcinoma cells that express comparable levels of Ascl1 and Neurog2. Upon induction, both Ascl1 and Neurog2 directed morphological and immunocytochemical changes consistent with initiation of neuronal differentiation. Comparison of Ascl1- and Neurog2-regulated genes by microarray analyses showed both shared and distinct transcriptional changes for each bHLH protein. In both Ascl1- and Neurog2-differentiating cells, repression of Oct4 mRNA levels was accompanied by increased Oct4 promoter methylation. However, DNA demethylation was not detected for genes induced by either bHLH protein. Neurog2-induced genes included glutamatergic marker genes while Ascl1-induced genes included GABAergic marker genes. The Neurog2-specific induction of a gene encoding a protein phosphatase inhibitor, Ppp1r14a, was dependent on distinct, canonical E-box sequences within the Ppp1r14a promoter and the nucleotide sequences within these E-boxes were partially responsible for Neurog2-specific regulation. Our results illustrate multiple novel mechanisms by which Ascl1 and Neurog2 regulate gene repression during neuronal differentiation in P19 cells.
Collapse
Affiliation(s)
- Holly S Huang
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 109 Zina Pitcher Pl, Ann Arbor, MI, 48109-2200, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Dev Cell 2014; 29:649-61. [PMID: 24960692 DOI: 10.1016/j.devcel.2014.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/31/2023]
Abstract
Signaling networks controlled by Sonic hedgehog (SHH) and the transcription factor Atoh1 regulate the proliferation and differentiation of cerebellar granule neuron progenitors (GNPs). Deregulations in those developmental processes lead to medulloblastoma formation, the most common malignant brain tumor in childhood. Although the protein Atoh1 is a key factor during both cerebellar development and medulloblastoma formation, up-to-date detailed mechanisms underlying its function and regulation have remained poorly understood. Here, we report that SHH regulates Atoh1 stability by preventing its phosphodependent degradation by the E3 ubiquitin ligase Huwe1. Our results reveal that SHH and Atoh1 contribute to a positive autoregulatory loop promoting neuronal precursor expansion. Consequently, Huwe1 loss in mouse SHH medulloblastoma illustrates the disruption of this developmental mechanism in cancer. Hence, the crosstalk between SHH signaling and Atoh1 during cerebellar development highlights a collaborative network that could be further targeted in medulloblastoma.
Collapse
|
46
|
An amino terminal phosphorylation motif regulates intranuclear compartmentalization of Olig2 in neural progenitor cells. J Neurosci 2014; 34:8507-18. [PMID: 24948806 DOI: 10.1523/jneurosci.0309-14.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bHLH transcription factor Olig2 is expressed in cycling neural progenitor cells but also in terminally differentiated, myelinating oligodendrocytes. Sustained expression of Olig2 is counterintuitive because all known functions of the protein in expansion of neural progenitors and specification of oligodendrocyte progenitors are completed with the formation of mature white matter. How are the biological functions of Olig2 suppressed in terminally differentiated oligodendrocytes? In previous studies, we have shown that a triple serine motif in the amino terminus of Olig2 is phosphorylated in cycling neural progenitors but not in their differentiated progeny. We now show that phosphorylation of the triple serine motif regulates intranuclear compartmentalization of murine Olig2. Phosphorylated Olig2 is preferentially localized to a transcriptionally active "open" chromatin compartment together with coregulator proteins essential for regulation of gene expression. Unphosphorylated Olig2, as seen in mature white matter, is localized mainly within a transcriptionally inactive, chromatin fraction characterized by condensed and inaccessible DNA. Of special note is the observation that the p53 tumor suppressor protein is confined to the open chromatin fraction. Proximity ligation assays show that phosphorylation brings Olig2 within 30 nm of p53 within the open chromatin compartment. The data thus shed light on previously noted promitogenic functions of phosphorylated Olig2, which reflect, at least in part, an oppositional relationship with p53 functions.
Collapse
|
47
|
Ali FR, Cheng K, Kirwan P, Metcalfe S, Livesey FJ, Barker RA, Philpott A. The phosphorylation status of Ascl1 is a key determinant of neuronal differentiation and maturation in vivo and in vitro. Development 2014; 141:2216-24. [DOI: 10.1242/dev.106377] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Generation of neurons from patient fibroblasts using a combination of developmentally defined transcription factors has great potential in disease modelling, as well as ultimately for use in regeneration and repair. However, generation of physiologically mature neurons in vitro remains problematic. Here we demonstrate the cell-cycle-dependent phosphorylation of a key reprogramming transcription factor, Ascl1, on multiple serine-proline sites. This multisite phosphorylation is a crucial regulator of the ability of Ascl1 to drive neuronal differentiation and maturation in vivo in the developing embryo; a phosphomutant form of Ascl1 shows substantially enhanced neuronal induction activity in Xenopus embryos. Mechanistically, we see that this un(der)phosphorylated Ascl1 is resistant to inhibition by both cyclin-dependent kinase activity and Notch signalling, both of which normally limit its neurogenic potential. Ascl1 is a central component of reprogramming transcription factor cocktails to generate neurons from human fibroblasts; the use of phosphomutant Ascl1 in place of the wild-type protein significantly promotes neuronal maturity after human fibroblast reprogramming in vitro. These results demonstrate that cell-cycle-dependent post-translational modification of proneural proteins directly regulates neuronal differentiation in vivo during development, and that this regulatory mechanism can be harnessed to promote maturation of neurons obtained by transdifferentiation of human cells in vitro.
Collapse
Affiliation(s)
- Fahad R. Ali
- University of Cambridge, Department of Oncology, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Kevin Cheng
- University of Cambridge, Department of Oncology, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Peter Kirwan
- Gurdon Institute, Department of Biochemistry and Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Su Metcalfe
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Frederick J. Livesey
- Gurdon Institute, Department of Biochemistry and Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Anna Philpott
- University of Cambridge, Department of Oncology, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
48
|
Hardwick LJA, Ali FR, Azzarelli R, Philpott A. Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell Tissue Res 2014; 359:187-200. [PMID: 24859217 PMCID: PMC4284380 DOI: 10.1007/s00441-014-1895-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/10/2014] [Indexed: 01/07/2023]
Abstract
Formation of the central nervous system requires a period of extensive progenitor cell proliferation, accompanied or closely followed by differentiation; the balance between these two processes in various regions of the central nervous system gives rise to differential growth and cellular diversity. The correlation between cell cycle lengthening and differentiation has been reported across several types of cell lineage and from diverse model organisms, both in vivo and in vitro. Furthermore, different cell fates might be determined during different phases of the preceding cell cycle, indicating direct cell cycle influences on both early lineage commitment and terminal cell fate decisions. Significant advances have been made in the last decade and have revealed multi-directional interactions between the molecular machinery regulating the processes of cell proliferation and neuronal differentiation. Here, we first introduce the modes of proliferation in neural progenitor cells and summarise evidence linking cell cycle length and neuronal differentiation. Second, we describe the manner in which components of the cell cycle machinery can have additional and, sometimes, cell-cycle-independent roles in directly regulating neurogenesis. Finally, we discuss the way that differentiation factors, such as proneural bHLH proteins, can promote either progenitor maintenance or differentiation according to the cellular environment. These intricate connections contribute to precise coordination and the ultimate division versus differentiation decision.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | | | | | | |
Collapse
|
49
|
Sadegh C, Macklis JD. Established monolayer differentiation of mouse embryonic stem cells generates heterogeneous neocortical-like neurons stalled at a stage equivalent to midcorticogenesis. J Comp Neurol 2014; 522:2691-706. [PMID: 24610556 DOI: 10.1002/cne.23576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 02/02/2023]
Abstract
Two existing and widely applied protocols of embryonic stem (ES) cell differentiation have been developed to enable in vitro generation of neurons resembling neocortical projection neurons in monolayer culture and from embryoid bodies. The monolayer approach offers advantages for detailed in vitro characterizations and potential mechanistic and therapeutic screening. We investigated whether mouse ES cells undergoing largely undirected neocortical differentiation in monolayer culture recapitulate progressive developmental programs of in vivo progenitor and postmitotic differentiation and whether they develop into specific neocortical subtypes. We find that ES-derived mitotic cells that have been dorsalized by the sonic hedgehog antagonist cyclopamine, and that express, as a total population, cardinal markers of telencephalic progenitors, are, in fact, molecularly heterogeneous. We next show that these progenitors subsequently generate small numbers of heterogeneous neocortical-like neurons that are "stalled" at an immature stage of differentiation, based on multiple developmental criteria. Although some aspects of neocortical development are recapitulated by existing protocols of ES cell differentiation, these data indicate that mouse ES-derived neocortical progenitors both are more heterogeneous than their in vivo counterparts and seemingly include many incorrectly specified progenitors. Furthermore, these ES-derived progenitors spontaneously differentiate into sparse, and incompletely and largely imprecisely differentiated, neocortical-like neurons that fail to adopt specific neuronal identities in vitro. These results provide both foundation and motivation for refining and enhancing directed differentiation of clinically important neocortical projection neuron subtypes.
Collapse
Affiliation(s)
- Cameron Sadegh
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, and Center for Brain Science, Harvard University, Cambridge, Massachusetts, 02138
| | | |
Collapse
|
50
|
GSK3β promotes the differentiation of oligodendrocyte precursor cells via β-catenin-mediated transcriptional regulation. Mol Neurobiol 2014; 50:507-19. [PMID: 24691545 DOI: 10.1007/s12035-014-8678-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/11/2014] [Indexed: 12/24/2022]
Abstract
Oligodendrocytes are generated by the differentiation and maturation of oligodendrocyte precursor cells (OPCs). The failure of OPC differentiation is a major cause of demyelinating diseases; thus, identifying the molecular mechanisms that affect OPC differentiation is critical for understanding the myelination process and repairing after demyelination. Although prevailing evidence shows that OPC differentiation is a highly coordinated process controlled by multiple extrinsic and intrinsic factors, such as growth factors, axon signals, and transcription factors, the intracellular signaling in OPC differentiation is still unclear. Here, we showed that glycogen synthase kinase 3β (GSK3β) is an essential positive modulator of OPC differentiation. Both pharmacologic inhibition and knockdown of GSK3β remarkably suppressed OPC differentiation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assays and Ki67 staining showed that the effect of GSK3β on OPC differentiation was not via cell death. Conversely, activated GSK3β was sufficient to promote OPC differentiation. Our results also demonstrated that the transcription of myelin genes was regulated by GSK3β inhibition, accompanying accumulated nuclear β-catenin, and reduced the expression of transcriptional factors that are relevant to the expression of myelin genes. Taken together, our study identified GSK3β as a profound positive regulator of OPC differentiation, suggesting that GSK3β may contribute to the inefficient regeneration of oligodendrocytes and myelin repair after demyelination.
Collapse
|