1
|
Wang PZ, Ge MH, Su P, Wu PP, Wang L, Zhu W, Li R, Liu H, Wu JJ, Xu Y, Zhao JL, Li SJ, Wang Y, Chen LM, Wu TH, Wu ZX. Sensory plasticity caused by up-down regulation encodes the information of short-term learning and memory. iScience 2025; 28:112215. [PMID: 40224011 PMCID: PMC11987006 DOI: 10.1016/j.isci.2025.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Learning and memory are essential for animals' well-being and survival. The underlying mechanisms are a major task of neuroscience studies. In this study, we identified a circuit consisting of ASER, RIC, RIS, and AIY, is required for short-term salt chemotaxis learning (SCL) in C. elegans. ASER NaCl-sensation possesses are remodeled by salt/food-deprivation pared conditioning. RIC integrates the sensory information of NaCl and food availability. It excites ASER and inhibits AIY by tyramine/TYRA-2 and octopamine/OCTR-1 signaling pathways, respectively. By the salt conditioning, RIC NaCl calcium response to NaCl is depressed, thus, the RIC excitation of ASER and inhibition of AIY are suppressed. ASER excites RIS by FLP-14/FRPR-10 signaling. RIS inhibits ASER via PDF-2/PDFR-1 signaling in negative feedback. ASER sensory plasticity caused by RIC plasticity and RIS negative feedback are required for both learning and memory recall. Thus, the sensation plasticity encodes the information of the short-term SCL that facilitates animal adaptation to dynamic environments.
Collapse
Affiliation(s)
- Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Piao-Ping Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Jia Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Hong Wu
- Hunan Research Center of the Basic Discipline for Cell Signaling, State Key Laboratory of Chemo and Biosensing, College of Biology, Hunan University, Changsha, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Pradhan S, Madan GK, Kang D, Bueno E, Atanas AA, Kramer TS, Dag U, Lage JD, Gomes MA, Lu AKY, Park J, Flavell SW. Pathogen infection induces sickness behaviors through neuromodulators linked to stress and satiety in C. elegans. Nat Commun 2025; 16:3200. [PMID: 40180949 PMCID: PMC11968842 DOI: 10.1038/s41467-025-58478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
When animals are infected by a pathogen, peripheral sensors of infection signal to the brain to induce adaptive behavioral changes known as sickness behaviors. While the pathways that signal from the periphery to the brain have been intensively studied, how central circuits are reconfigured to elicit these behavioral changes is not well understood. Here we find that neuromodulatory systems linked to stress and satiety are recruited during chronic pathogen infection to alter the behavior of Caenorhabditis elegans. Upon infection by the bacterium Pseudomonas aeruginosa PA14, C. elegans decrease feeding, then display reversible bouts of quiescence, and eventually die. The ALA neuron and its neuropeptides FLP-7, FLP-24, and NLP-8, which control stress-induced sleep in uninfected animals, promote the PA14-induced feeding reduction. However, the ALA neuropeptide FLP-13 instead delays quiescence and death in infected animals. Cell-specific genetic perturbations show that the neurons that release FLP-13 to delay quiescence in infected animals are distinct from ALA. A brain-wide imaging screen reveals that infection-induced quiescence involves ASI and DAF-7/TGF-beta, which control satiety-induced quiescence in uninfected animals. Our results suggest that a common set of neuromodulators are recruited across different physiological states, acting from distinct neural sources and in distinct combinations to drive state-dependent behaviors.
Collapse
Affiliation(s)
- Sreeparna Pradhan
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gurrein K Madan
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Di Kang
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam A Atanas
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Talya S Kramer
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ugur Dag
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica D Lage
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew A Gomes
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alicia Kun-Yang Lu
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jungyeon Park
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W Flavell
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Wang X, Liu C, Zhao M, Zhang K, Di Z, Liu H. An Artificial Neural Network for Image Classification Inspired by the Aversive Olfactory Learning Neural Circuit in Caenorhabditis elegans. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410637. [PMID: 39679791 PMCID: PMC11831476 DOI: 10.1002/advs.202410637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/11/2024] [Indexed: 12/17/2024]
Abstract
This study introduces an artificial neural network (ANN) for image classification task, inspired by the aversive olfactory learning neural circuit in Caenorhabditis elegans (C. elegans). Although artificial neural networks (ANNs) have demonstrated remarkable performance in various tasks, they still encounter challenges including excessive parameterization, high training costs and limited generalization capabilities, etc. C. elegans, boasting a simple nervous system consisting of merely 302 neurons, is capable of exhibiting complex behaviors such as aversive olfactory learning. This research pinpoints key neural circuit related to aversive olfactory learning in C. elegans by means of behavioral experiment and high-throughput RNA sequencing, and then translates it into an architecture of ANN for image classification. Furthermore, other ANNs for image classification with different architectures are constructed for comparative performance analysis to underscore the advantages of the bio-inspired designed architecture. The results show that the ANN inspired by the aversive olfactory learning neural circuit in C. elegans attains higher accuracy, greater consistency and faster convergence rate in the image classification task, particularly when dealing with more complex classification challenges. This study not only demonstrates the potential of bio-inspired design in improving the capabilities of ANNs but also offers a novel perspective and methodology for future ANNs design.
Collapse
Affiliation(s)
- Xuebin Wang
- Department of Systems ScienceFaculty of Arts and SciencesBeijing Normal UniversityZhuhai519087China
- International Academic Center of Complex SystemsBeijing Normal UniversityZhuhai519087China
- School of Systems ScienceBeijing Normal UniversityBeijing100875China
| | - Chunxiuzi Liu
- Department of Systems ScienceFaculty of Arts and SciencesBeijing Normal UniversityZhuhai519087China
- International Academic Center of Complex SystemsBeijing Normal UniversityZhuhai519087China
- School of Systems ScienceBeijing Normal UniversityBeijing100875China
| | - Meng Zhao
- School of Computer Science and EngineeringTianjin University of TechnologyTianjin300384China
| | - Ke Zhang
- Department of Systems ScienceFaculty of Arts and SciencesBeijing Normal UniversityZhuhai519087China
- International Academic Center of Complex SystemsBeijing Normal UniversityZhuhai519087China
| | - Zengru Di
- Department of Systems ScienceFaculty of Arts and SciencesBeijing Normal UniversityZhuhai519087China
- International Academic Center of Complex SystemsBeijing Normal UniversityZhuhai519087China
- School of Systems ScienceBeijing Normal UniversityBeijing100875China
| | - He Liu
- Department of Systems ScienceFaculty of Arts and SciencesBeijing Normal UniversityZhuhai519087China
- International Academic Center of Complex SystemsBeijing Normal UniversityZhuhai519087China
| |
Collapse
|
4
|
Peedikayil-Kurien S, Haque R, Gat A, Oren-Suissa M. Modulation by NPY/NPF-like receptor underlies experience-dependent, sexually dimorphic learning. Nat Commun 2025; 16:662. [PMID: 39809755 PMCID: PMC11733012 DOI: 10.1038/s41467-025-55950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
The evolutionary paths taken by each sex within a given species sometimes diverge, resulting in behavioral differences. Given their distinct needs, the mechanism by which each sex learns from a shared experience is still an open question. Here, we reveal sexual dimorphism in learning: C. elegans males do not learn to avoid the pathogenic bacteria PA14 as efficiently and rapidly as hermaphrodites. Notably, neuronal activity following pathogen exposure was dimorphic: hermaphrodites generate robust representations, while males, in line with their behavior, exhibit contrasting representations. Transcriptomic and behavioral analysis revealed that the neuropeptide receptor npr-5, an ortholog of the mammalian NPY/NPF-like receptor, regulates male learning by modulating neuronal activity. Furthermore, we show the dependency of the males' decision-making on their sexual status and demonstrate the role of npr-5 as a modulator of incoming sensory cues. Taken together, these findings illustrate how neuromodulators drive sex-specific behavioral plasticity in response to a shared experience.
Collapse
Affiliation(s)
- Sonu Peedikayil-Kurien
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rizwanul Haque
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
5
|
Khan MZ, Zugaza JL, Torres Aleman I. The signaling landscape of insulin-like growth factor 1. J Biol Chem 2025; 301:108047. [PMID: 39638246 PMCID: PMC11748690 DOI: 10.1016/j.jbc.2024.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
The sheer amplitude of biological actions of insulin-like growth factor I (IGF-1) affecting all types of cells in all tissues suggests a vast signaling landscape for this ubiquitous humoral signal. While the canonical signaling pathways primarily involve the Ras/MAPK and PI3K/AKT cascades, the evolutionary conservation of insulin-like peptides (ILPs) and their pathways hints at the potential for novel functions to emerge over time. Indeed, the evolutionary trajectory of ILPs opens the possibility of either novel functions for these two pathways, novel downstream routes, or both. Evidence supporting this notion includes observations of neofunctionalization in bony fishes or crustaceans, and the involvement of ILPs pathways in invertebrate eusociality or in vertebrate bone physiology, respectively. Such evolutionary processes likely contribute to the rich diversity of ILPs signaling observed today. Moreover, the interplay between conserved signaling pathways, such as those implicated in aging (predominantly involving the PI3K-AKT route), and lesser known pathways, such as those mediated by biased G-protein coupled receptors and others even less known, may underpin the context-dependent actions characteristic of ILPs signaling. While canonical IGF-1 signaling is often assumed to account for the intracellular pathways utilized by this growth factor, a comprehensive analysis of all the pathways mediated by the IGF-1 receptor (IGF-1R) remains lacking. This review aims to explore both canonical and non-canonical routes of IGF-1R action across various cell types, offering a detailed examination of the mechanisms underlying IGF-1 signaling and highlighting the significant gaps in our current understanding.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain
| | - Jose Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque Science Foundation, Bilbao, Spain
| | - Ignacio Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain; CIBERNED, Madrid, Spain; Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
6
|
Veuthey T, Florman JT, Giunti S, Romussi S, De Rosa MJ, Alkema MJ, Rayes D. The neurohormone tyramine stimulates the secretion of an insulin-like peptide from the Caenorhabditis elegans intestine to modulate the systemic stress response. PLoS Biol 2025; 23:e3002997. [PMID: 39874242 PMCID: PMC11774402 DOI: 10.1371/journal.pbio.3002997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, insulin-3 (INS-3), plays a crucial role in modulating the response to various environmental stressors in C. elegans. ins-3 mutants display increased resistance to heat, oxidative stress, and starvation; however, this advantage is countered by slower reproductive development under favorable conditions. We find that ins-3 expression is downregulated in response to environmental stressors, whereas, the neurohormone tyramine, which is released during the acute flight response, increases ins-3 expression. We show that tyramine induces intestinal calcium (Ca2+) transients through the activation of the TYRA-3 receptor. Our data support a model in which tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine via the activation of a TYRA-3-Gαq-IP3 pathway. The release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO. These studies offer mechanistic insights into a brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stressors.
Collapse
Affiliation(s)
- Tania Veuthey
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Jeremy T. Florman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Stefano Romussi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Mark J. Alkema
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
7
|
St Ange J, Weng Y, Kaletsky R, Stevenson ME, Moore RS, Zhou S, Murphy CT. Adult single-nucleus neuronal transcriptomes of insulin signaling mutants reveal regulators of behavior and learning. CELL GENOMICS 2024; 4:100720. [PMID: 39637862 DOI: 10.1016/j.xgen.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/16/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Gene expression in individual neurons can change during development to adulthood and can have large effects on behavior. Additionally, the insulin/insulin-like signaling (IIS) pathway regulates many of the adult functions of Caenorhabditis elegans, including learning and memory, via transcriptional changes. We used the deep resolution of single-nucleus RNA sequencing to define the adult transcriptome of each neuron in wild-type and daf-2 mutants, revealing expression differences between L4 larval and adult neurons in chemoreceptors, synaptic genes, and learning/memory genes. We used these data to identify adult new AWC-specific regulators of chemosensory function that emerge upon adulthood. daf-2 gene expression changes correlate with improved cognitive functions, particularly in the AWC sensory neuron that controls learning and associative memory; behavioral assays of AWC-specific daf-2 genes revealed their roles in cognitive function. Combining technology and functional validation, we identified conserved genes that function in specific adult neurons to control behavior, including learning and memory.
Collapse
Affiliation(s)
- Jonathan St Ange
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yifei Weng
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rachel Kaletsky
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Morgan E Stevenson
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca S Moore
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Shiyi Zhou
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
8
|
Hallacy T, Yonar A, Ringstad N, Ramanathan S. Compressed sensing based approach identifies modular neural circuitry driving learned pathogen avoidance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588911. [PMID: 39464156 PMCID: PMC11507717 DOI: 10.1101/2024.04.10.588911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
An animal's survival hinges on its ability to integrate past information to modify future behavior. The nematode C. elegans adapts its behavior based on prior experiences with pathogen exposure, transitioning from attraction to avoidance of the pathogen. A systematic screen for the neural circuits that integrate the information of previous pathogen exposure to modify behavior has not been feasible because of the lack of tools for neuron type specific perturbations. We overcame this challenge using methods based on compressed sensing to efficiently determine the roles of individual neuron types in learned avoidance behavior. Our screen revealed that distinct sets of neurons drive exit from lawns of pathogenic bacteria and prevent lawn re-entry. Using calcium imaging of freely behaving animals and optogenetic perturbations, we determined the neural dynamics that regulate one key behavioral transition after infection: stalled re-entry into bacterial lawns. We find that key neuron types govern pathogen lawn specific stalling but allow the animal to enter nonpathogenic E. coli lawns. Our study shows that learned pathogen avoidance requires coordinated transitions in discrete neural circuits and reveals the modular structure of this complex adaptive behavioral response to infection.
Collapse
Affiliation(s)
| | - Abdullah Yonar
- Departments of Molecular and Cellular Biology, and of Stem Cell and Regenerative Biology, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sharad Ramanathan
- Departments of Molecular and Cellular Biology, and of Stem Cell and Regenerative Biology, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Lead contact
| |
Collapse
|
9
|
Wang Y, Sun X, Feng L, Zhang K, Yang W. Nervous system guides behavioral immunity in Caenorhabditis elegans. PeerJ 2024; 12:e18289. [PMID: 39430568 PMCID: PMC11488496 DOI: 10.7717/peerj.18289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Caenorhabditis elegans is a versatile model organism for exploring complex biological systems. Microbes and the external environment can affect the nervous system and drive behavioral changes in C. elegans. For better survival, C. elegans may develop behavioral immunity to avoid potential environmental pathogens. However, the molecular and cellular mechanisms underlying this avoidance behavior are not fully understood. The dissection of sensorimotor circuits in behavioral immunity may promote advancements in research on the neuronal connectome in uncovering neuronal regulators of behavioral immunity. In this review, we discuss how the nervous system coordinates behavioral immunity by translating various pathogen-derived cues and physiological damage to motor output in response to pathogenic threats in C. elegans. This understanding may provide insights into the fundamental principles of immune strategies that can be applied across species and potentially contribute to the development of novel therapies for immune-related diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xuehong Sun
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lixiang Feng
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Kui Zhang
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wenxing Yang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Poole RJ, Flames N, Cochella L. Neurogenesis in Caenorhabditis elegans. Genetics 2024; 228:iyae116. [PMID: 39167071 PMCID: PMC11457946 DOI: 10.1093/genetics/iyae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024] Open
Abstract
Animals rely on their nervous systems to process sensory inputs, integrate these with internal signals, and produce behavioral outputs. This is enabled by the highly specialized morphologies and functions of neurons. Neuronal cells share multiple structural and physiological features, but they also come in a large diversity of types or classes that give the nervous system its broad range of functions and plasticity. This diversity, first recognized over a century ago, spurred classification efforts based on morphology, function, and molecular criteria. Caenorhabditis elegans, with its precisely mapped nervous system at the anatomical level, an extensive molecular description of most of its neurons, and its genetic amenability, has been a prime model for understanding how neurons develop and diversify at a mechanistic level. Here, we review the gene regulatory mechanisms driving neurogenesis and the diversification of neuron classes and subclasses in C. elegans. We discuss our current understanding of the specification of neuronal progenitors and their differentiation in terms of the transcription factors involved and ensuing changes in gene expression and chromatin landscape. The central theme that has emerged is that the identity of a neuron is defined by modules of gene batteries that are under control of parallel yet interconnected regulatory mechanisms. We focus on how, to achieve these terminal identities, cells integrate information along their developmental lineages. Moreover, we discuss how neurons are diversified postembryonically in a time-, genetic sex-, and activity-dependent manner. Finally, we discuss how the understanding of neuronal development can provide insights into the evolution of neuronal diversity.
Collapse
Affiliation(s)
- Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia 46012, Spain
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Zhao H, Chen L, Liu M, Zhao S, Ma W, Jiang Y. Insulin receptor participates in the peripheral olfactory processes of honey bees (Apis cerana cerana). INSECT SCIENCE 2024; 31:1477-1488. [PMID: 38302859 DOI: 10.1111/1744-7917.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 02/03/2024]
Abstract
Insulin receptors (InR) are an integral component of the insulin/insulin-like growth factor signaling pathway, which plays a vital role in insect development, lifespan, reproduction, and olfactory sensitivity. However, whether InR participate in the peripheral olfactory system of insects remains unclear. Recently, we found that 2-heptanone (2-HT) affects AcerInR expression, the gene for an InR protein, in Apis cerana cerana. We then examined the spatiotemporal expression profile of the gene in A. cerana cerana. The mRNA of AcerInR was primarily expressed in the antennae, wings, and legs of forager bees, which are probable chemosensory tissues. The results of fluorescence competitive binding assays, combined with site-directed mutagenesis, demonstrated that AcerOBP6 and AcerOBP14 exhibit strong binding affinities to 2-HT. Furthermore, after foragers were fed with double-stranded AcerInR, the expression levels of AcerOBP6 and AcerOBP14 decreased significantly, as did the electroantennogram responsiveness to 2-HT and some other odorants. In conclusion, our findings provide a foundation for understanding the involvement of AcerInR in the odor perception of A. cerana cerana. Moreover, they offer novel insights into the olfactory recognition mechanism in insects.
Collapse
Affiliation(s)
- Huiting Zhao
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Longlong Chen
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Miaomiao Liu
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Shuguo Zhao
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
12
|
Nair T, Weathers BA, Stuhr NL, Nhan JD, Curran SP. Serotonin deficiency from constitutive SKN-1 activation drives pathogen apathy. Nat Commun 2024; 15:8129. [PMID: 39285192 PMCID: PMC11405893 DOI: 10.1038/s41467-024-52233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024] Open
Abstract
When an organism encounters a pathogen, the host innate immune system activates to defend against pathogen colonization and toxic xenobiotics produced. C. elegans employ multiple defense systems to ensure survival when exposed to Pseudomonas aeruginosa including activation of the cytoprotective transcription factor SKN-1/NRF2. Although wildtype C. elegans quickly learn to avoid pathogens, here we describe a peculiar apathy-like behavior towards PA14 in animals with constitutive activation of SKN-1, whereby animals choose not to leave and continue to feed on the pathogen even when a non-pathogenic and healthspan-promoting food option is available. Although lacking the urgency to escape the infectious environment, animals with constitutive SKN-1 activity are not oblivious to the presence of the pathogen and display the typical pathogen-induced intestinal distension and eventual demise. SKN-1 activation, specifically in neurons and intestinal tissues, orchestrates a unique transcriptional program which leads to defects in serotonin signaling that is required from both neurons and non-neuronal tissues. Serotonin depletion from SKN-1 activation limits pathogen defenses capacity, drives the pathogen-associated apathy behaviors and induces a synthetic sensitivity to selective serotonin reuptake inhibitors. Taken together, our work reveals interesting insights into how animals perceive environmental pathogens and subsequently alter behavior and cellular programs to promote survival.
Collapse
Affiliation(s)
- Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brandy A Weathers
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Nicole L Stuhr
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - James D Nhan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Gavrilova A, Boström A, Korabel N, Fedotov S, Poulin GB, Allan VJ. The role of kinesin-1 in neuronal dense core vesicle transport, locomotion and lifespan regulation in C. elegans. J Cell Sci 2024; 137:jcs262148. [PMID: 39171448 PMCID: PMC11423817 DOI: 10.1242/jcs.262148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Fast axonal transport is crucial for neuronal function and is driven by kinesins and cytoplasmic dynein. Here, we investigated the role of kinesin-1 in dense core vesicle (DCV) transport in C. elegans, using mutants in the kinesin light chains (klc-1 and klc-2) and the motor subunit (unc-116) expressing an ida-1::gfp transgene that labels DCVs. DCV transport in both directions was greatly impaired in an unc-116 mutant and had reduced velocity in a klc-2 mutant. In contrast, the speed of retrograde DCV transport was increased in a klc-1 mutant whereas anterograde transport was unaffected. We identified striking differences between the klc mutants in their effects on worm locomotion and responses to drugs affecting neuromuscular junction activity. We also determined lifespan, finding that unc-116 mutant was short-lived whereas the klc single mutant lifespan was wild type. The ida-1::gfp transgenic strain was also short-lived, but surprisingly, klc-1 and klc-2 extended the ida-1::gfp lifespan beyond that of wild type. Our findings suggest that kinesin-1 not only influences anterograde and retrograde DCV transport but is also involved in regulating lifespan and locomotion, with the two kinesin light chains playing distinct roles.
Collapse
Affiliation(s)
- Anna Gavrilova
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Astrid Boström
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Nickolay Korabel
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Sergei Fedotov
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Gino B Poulin
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Victoria J Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| |
Collapse
|
15
|
Liu CC, Khan A, Seban N, Littlejohn N, Shah A, Srinivasan S. A homeostatic gut-to-brain insulin antagonist restrains neuronally stimulated fat loss. Nat Commun 2024; 15:6869. [PMID: 39127676 PMCID: PMC11316803 DOI: 10.1038/s41467-024-51077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In C. elegans mechanisms by which peripheral organs relay internal state information to the nervous system remain unknown, although strong evidence suggests that such signals do exist. Here we report the discovery of a peptide of the ancestral insulin superfamily called INS-7 that functions as an enteroendocrine peptide and is secreted from specialized cells of the intestine. INS-7 secretion is stimulated by food withdrawal, increases during fasting and acts as a bona fide gut-to-brain peptide that attenuates the release of a neuropeptide that drives fat loss in the periphery. Thus, INS-7 functions as a homeostatic signal from the intestine that gates the neuronal drive to stimulate fat loss during food shortage. Mechanistically, INS-7 functions as an antagonist at the canonical DAF-2 receptor and functions via FOXO and AMPK signaling in ASI neurons. Phylogenetic analysis suggests that INS-7 bears greater resemblance to members of the broad insulin/relaxin superfamily than to conventional mammalian insulin and IGF peptides. The discovery of an endogenous insulin antagonist secreted by specialized intestinal cells with enteroendocrine functions suggests unexpected and important properties of the intestine and its role in directing neuronal functions.
Collapse
Affiliation(s)
- Chung-Chih Liu
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, San Diego, CA, USA
| | - Ayub Khan
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
| | - Nicolas Seban
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
| | - Nicole Littlejohn
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
| | - Aayushi Shah
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
| | - Supriya Srinivasan
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA.
| |
Collapse
|
16
|
Staum M, Abraham AC, Arbid R, Birari VS, Dominitz M, Rabinowitch I. Behavioral adjustment of C. elegans to mechanosensory loss requires intact mechanosensory neurons. PLoS Biol 2024; 22:e3002729. [PMID: 39024405 PMCID: PMC11288434 DOI: 10.1371/journal.pbio.3002729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/30/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Sensory neurons specialize in detecting and signaling the presence of diverse environmental stimuli. Neuronal injury or disease may undermine such signaling, diminishing the availability of crucial information. Can animals distinguish between a stimulus not being present and the inability to sense that stimulus in the first place? To address this question, we studied Caenorhabditis elegans nematode worms that lack gentle body touch sensation due to genetic mechanoreceptor dysfunction. We previously showed that worms can compensate for the loss of touch by enhancing their sense of smell, via an FLP-20 neuropeptide pathway. Here, we find that touch-deficient worms exhibit, in addition to sensory compensation, also cautious-like behavior, as if preemptively avoiding potential undetectable hazards. Intriguingly, these behavioral adjustments are abolished when the touch neurons are removed, suggesting that touch neurons are required for signaling the unavailability of touch information, in addition to their conventional role of signaling touch stimulation. Furthermore, we found that the ASE taste neurons, which similarly to the touch neurons, express the FLP-20 neuropeptide, exhibit altered FLP-20 expression levels in a touch-dependent manner, thus cooperating with the touch circuit. These results imply a novel form of neuronal signaling that enables C. elegans to distinguish between lack of touch stimulation and loss of touch sensation, producing adaptive behavioral adjustments that could overcome the inability to detect potential threats.
Collapse
Affiliation(s)
- Michal Staum
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayelet-Chen Abraham
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reema Arbid
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Varun Sanjay Birari
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Matanel Dominitz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
17
|
Weng Y, Zhou S, Morillo K, Kaletsky R, Lin S, Murphy CT. The neuron-specific IIS/FOXO transcriptome in aged animals reveals regulatory mechanisms of cognitive aging. eLife 2024; 13:RP95621. [PMID: 38922671 PMCID: PMC11208049 DOI: 10.7554/elife.95621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Cognitive decline is a significant health concern in our aging society. Here, we used the model organism C. elegans to investigate the impact of the IIS/FOXO pathway on age-related cognitive decline. The daf-2 Insulin/IGF-1 receptor mutant exhibits a significant extension of learning and memory span with age compared to wild-type worms, an effect that is dependent on the DAF-16 transcription factor. To identify possible mechanisms by which aging daf-2 mutants maintain learning and memory with age while wild-type worms lose neuronal function, we carried out neuron-specific transcriptomic analysis in aged animals. We observed downregulation of neuronal genes and upregulation of transcriptional regulation genes in aging wild-type neurons. By contrast, IIS/FOXO pathway mutants exhibit distinct neuronal transcriptomic alterations in response to cognitive aging, including upregulation of stress response genes and downregulation of specific insulin signaling genes. We tested the roles of significantly transcriptionally-changed genes in regulating cognitive functions, identifying novel regulators of learning and memory. In addition to other mechanistic insights, a comparison of the aged vs young daf-2 neuronal transcriptome revealed that a new set of potentially neuroprotective genes is upregulated; instead of simply mimicking a young state, daf-2 may enhance neuronal resilience to accumulation of harm and take a more active approach to combat aging. These findings suggest a potential mechanism for regulating cognitive function with age and offer insights into novel therapeutic targets for age-related cognitive decline.
Collapse
Affiliation(s)
- Yifei Weng
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Shiyi Zhou
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Katherine Morillo
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Rachel Kaletsky
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- Princeton UniversityPrincetonUnited States
| | - Sarah Lin
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- Princeton UniversityPrincetonUnited States
| |
Collapse
|
18
|
Lei M, Tan Y, Tu H, Tan W. Neuronal basis and diverse mechanisms of pathogen avoidance in Caenorhabditis elegans. Front Immunol 2024; 15:1353747. [PMID: 38751431 PMCID: PMC11094273 DOI: 10.3389/fimmu.2024.1353747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pathogen avoidance behaviour has been observed across animal taxa as a vital host-microbe interaction mechanism. The nematode Caenorhabditis elegans has evolved multiple diverse mechanisms for pathogen avoidance under natural selection pressure. We summarise the current knowledge of the stimuli that trigger pathogen avoidance, including alterations in aerotaxis, intestinal bloating, and metabolites. We then survey the neural circuits involved in pathogen avoidance, transgenerational epigenetic inheritance of pathogen avoidance, signalling crosstalk between pathogen avoidance and innate immunity, and C. elegans avoidance of non-Pseudomonas bacteria. In this review, we highlight the latest advances in understanding host-microbe interactions and the gut-brain axis.
Collapse
Affiliation(s)
- Ming Lei
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yanheng Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Weihong Tan
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Zhu R, Chin-Sang ID. C. elegans insulin-like peptides. Mol Cell Endocrinol 2024; 585:112173. [PMID: 38346555 DOI: 10.1016/j.mce.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
Insulin-like peptides are a group of hormones crucial for regulating metabolism, growth, and development in animals. Invertebrates, such as C. elegans, have been instrumental in understanding the molecular mechanisms of insulin-like peptides. Here, we review the 40 insulin-like peptide genes encoded in the C. elegans genome. Despite the large number, there is only one C. elegans insulin-like peptide receptor, called DAF-2. The insulin and insulin-like growth factor signaling (IIS) pathway is evolutionarily conserved from worms to humans. Thus C. elegans provides an excellent model to understand how these insulin-like peptides function. C. elegans is unique in that it possesses insulin-like peptides that have antagonistic properties, unlike all human insulin-like peptides, which are agonists. This review provides an overview of the current literature on C. elegans insulin-like peptide structures, processing, tissue localization, and regulation. We will also provide examples of insulin-like peptide signaling in C. elegans during growth, development, germline development, learning/memory, and longevity.
Collapse
Affiliation(s)
- Rain Zhu
- Department of Biology, Queen's University, Kingston ON Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston ON Canada.
| |
Collapse
|
20
|
Pop M, Klemke AL, Seidler L, Wernet N, Steudel PL, Baust V, Wohlmann E, Fischer R. Caenorhabditis elegans neuropeptide NLP-27 enhances neurodegeneration and paralysis in an opioid-like manner during fungal infection. iScience 2024; 27:109484. [PMID: 38784855 PMCID: PMC11112505 DOI: 10.1016/j.isci.2024.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/26/2023] [Accepted: 03/08/2024] [Indexed: 05/25/2024] Open
Abstract
The nervous system of metazoans is involved in host-pathogen interactions to control immune activation. In Caenorhabditis elegans, this includes sleep induction, mediated by neuropeptide-like proteins (NLPs), which increases the chance of survival after wounding. Here we analyzed the role of NLP-27 in the infection of C. elegans with the nematode-trapping fungus Arthrobotrys flagrans. Early responses of C. elegans were the upregulation of nlp-27, the induction of paralysis (sleep), and neurodegeneration of the mechanosensing PVD (Posterior Ventral Process D) neurons. Deletion of nlp-27 reduced neurodegeneration during fungal attack. Induction of nlp-27 was independent of the MAP kinase PMK-1, and expression of nlp-27 in the hypodermis was sufficient to induce paralysis, although NLP-27 was also upregulated in head neurons. NLP-27 contains the pentapeptide YGGYG sequence known to bind the human μ- and κ-type opioid receptors suggesting NLP-27 or peptides thereof act on opioid receptors. The opioid receptor antagonist naloxone shortened the paralysis time like overexpression of NLP-27.
Collapse
Affiliation(s)
- Maria Pop
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Anna-Lena Klemke
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Lena Seidler
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Nicole Wernet
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Pietrina Loredana Steudel
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Vanessa Baust
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Elke Wohlmann
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Pandey T, Wang B, Wang C, Zu J, Deng H, Shen K, do Vale GD, McDonald JG, Ma DK. LPD-3 as a megaprotein brake for aging and insulin-mTOR signaling in C. elegans. Cell Rep 2024; 43:113899. [PMID: 38446666 PMCID: PMC11019932 DOI: 10.1016/j.celrep.2024.113899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/21/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Insulin-mechanistic target of rapamycin (mTOR) signaling drives anabolic growth during organismal development; its late-life dysregulation contributes to aging and limits lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here, we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin, INS-7, is drastically overproduced from early life and shortens lifespan in lpd-3 mutants. LPD-3 forms a bridge-like tunnel megaprotein to facilitate non-vesicular cellular lipid trafficking. Lipidomic profiling reveals increased hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1. Reducing the abundance of HYL-1, insulin receptor/DAF-2 or mTOR/LET-363, normalizes INS-7 levels and rescues the lifespan of lpd-3 mutants. LPD-3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age. We propose that LPD-3 acts as a megaprotein brake for organismal aging and that its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jenny Zu
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Huichao Deng
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Goncalo Dias do Vale
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
22
|
Nair T, Weathers BA, Stuhr NL, Nhan JD, Curran SP. Serotonin deficiency from constitutive SKN-1 activation drives pathogen apathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579755. [PMID: 38405962 PMCID: PMC10888766 DOI: 10.1101/2024.02.10.579755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
When an organism encounters a pathogen, the host innate immune system activates to defend against pathogen colonization and toxic xenobiotics produced. C. elegans employ multiple defense systems to ensure survival when exposed to Pseudomonas aeruginosa including activation of the cytoprotective transcription factor SKN-1/NRF2. Although wildtype C. elegans quickly learn to avoid pathogens, here we describe a peculiar apathy-like behavior towards PA14 in animals with constitutive activation of SKN-1, whereby animals choose not to leave and continue to feed on the pathogen even when a non-pathogenic and healthspan-promoting food option is available. Although lacking the urgency to escape the infectious environment, animals with constitutive SKN-1 activity are not oblivious to the presence of the pathogen and display the typical pathogen-induced intestinal distension and eventual demise. SKN-1 activation, specifically in neurons and intestinal tissues, orchestrates a unique transcriptional program which leads to defects in serotonin signaling that is required from both neurons and non-neuronal tissues. Serotonin depletion from SKN-1 activation limits pathogen defense capacity, drives the pathogen-associated apathy behaviors and induces a synthetic sensitivity to selective serotonin reuptake inhibitors. Taken together, our work reveals new insights into how animals perceive environmental pathogens and subsequently alter behavior and cellular programs to promote survival. KEY POINTS Identify an apathy-like behavioral response for pathogens resulting from the constitutive activation of the cytoprotective transcription factor SKN-1.Uncover the obligate role for serotonin synthesis in both neuronal and non-neuronal cells for the apathy-like state and ability of serotonin treatment to restore normal behaviors.Characterize the timing and tissue specificity of SKN-1 nuclear localization in neurons and intestinal cells in response to pathogen exposure.Define the unique and context-specific transcriptional signatures of animals with constitutive SKN-1 activation when exposed to pathogenic environments.Reveal necessity for both neuronal and non-neuronal serotonin signaling in host survival from pathogen infection.
Collapse
|
23
|
Veuthey T, Giunti S, De Rosa MJ, Alkema M, Rayes D. The neurohormone tyramine stimulates the secretion of an Insulin-Like Peptide from the intestine to modulate the systemic stress response in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579207. [PMID: 38370834 PMCID: PMC10871264 DOI: 10.1101/2024.02.06.579207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, lifespan, and stress resistance. In C. elegans , DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, INS-3, plays a crucial role in modulating the response to different types of stressors in C. elegans . ins-3 mutants display increased resistance to both heat and oxidative stress; however, under favorable conditions, this advantage is countered by slower reproductive development. ins-3 expression in both neurons and the intestine is downregulated in response to environmental stressors. Conversely, the neurohormone tyramine, which is released during the acute flight response, triggers an upregulation in ins-3 expression. Moreover, we found that tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine. The subsequent release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO and HSF-1. These studies offer mechanistic insights into the brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stress scenarios.
Collapse
|
24
|
Ange JS, Weng Y, Stevenson ME, Kaletsky R, Moore RS, Zhou S, Murphy CT. Adult Single-nucleus Neuronal Transcriptomes of Insulin Signaling Mutants Reveal Regulators of Behavior and Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579364. [PMID: 38370779 PMCID: PMC10871314 DOI: 10.1101/2024.02.07.579364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The insulin/insulin-like signaling (IIS) pathway regulates many of C. elegans' adult functions, including learning and memory 1 . While whole-worm and tissue-specific transcriptomic analyses have identified IIS targets 2,3 , a higher-resolution single-cell approach is required to identify changes that confer neuron-specific improvements in the long-lived insulin receptor mutant, daf-2 . To understand how behaviors that are controlled by a small number of neurons change in daf-2 mutants, we used the deep resolution of single-nucleus RNA sequencing to define each neuron type's transcriptome in adult wild-type and daf-2 mutants. First, we found surprising differences between wild-type L4 larval neurons and young adult neurons in chemoreceptor expression, synaptic genes, and learning and memory genes. These Day 1 adult neuron transcriptomes allowed us to identify adult AWC-specific regulators of chemosensory function and to predict neuron-to-neuron peptide/receptor pairs. We then identified gene expression changes that correlate with daf-2's improved cognitive functions, particularly in the AWC sensory neuron that controls learning and associative memory 4 , and used behavioral assays to test their roles in cognitive function. Combining deep single-neuron transcriptomics, genetic manipulation, and behavioral analyses enabled us to identify genes that may function in a single adult neuron to control behavior, including conserved genes that function in learning and memory. One-Sentence Summary Single-nucleus sequencing of adult wild-type and daf-2 C. elegans neurons reveals functionally relevant transcriptional changes, including regulators of chemosensation, learning, and memory.
Collapse
|
25
|
Zhao Y, Zhong C, Li Y, Zhou W, Huang X. Novel Genes and Key Signaling Molecules Involved in the Repulsive Response of Meloidogyne incognita against Biocontrol Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19445-19456. [PMID: 38033160 DOI: 10.1021/acs.jafc.3c06074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The ability of the model organism, Caenorhabditis elegans, to distinguish and escape from pathogenic bacteria has been extensively studied; however, studies on the repulsive response of Meloidogyne incognita are still in their infancy. We have recently demonstrated that biocontrol bacteria induce a repulsive response in M. incognita via two classical signaling pathways. The present study aimed to identify the novel genes and signaling molecules of M. incognita that potentially contribute to its defense reaction. Analysis of the transcriptome data of M. incognita with and without a repulsive response against Bacillus nematocida B16 obtained 15 candidate genes, of which the novel genes Minc3s01748g26034 and Minc3s02548g30585 were found to regulate the aversive behavior of M. incognita, and their functions were further validated. To further confirm the neuronal localization of the two novel genes in M. incognita, in situ hybridization was conducted using the digoxin-labeled probes of ten tag genes, and preferentially profiled the localization of amphid sensory neurons of M. incognita. Analysis of the overviewed neuronal map suggested that Minc3s01748g26034 and Minc3s02548g30585 functioned in ASK/ASI and CEPD/V neurons, respectively. During their interactions, the volatile compounds 3-methyl-butyric acid and 2-methyl-butyric acid produced by the biocontrol bacteria were predicted as the primary signaling molecules that promoted the repulsive behavior of M. incognita against biocontrol bacteria. The findings provided novel insights into the mechanisms underlying the repulsive response of M. incognita that are different from the canonical molecular pathways previously found in C. elegans and can aid in developing novel strategies for controlling root-knot nematodes.
Collapse
Affiliation(s)
- Yanli Zhao
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Chidi Zhong
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Yixin Li
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Wenhui Zhou
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| | - Xiaowei Huang
- School of Medicine, and State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
26
|
Wu M, Jiang H, Li Q, Liu Y, Zhang H, Li X, Shao Z. OGT-1 regulates synaptic assembly through the insulin signaling pathway. J Cell Biochem 2023; 124:1919-1930. [PMID: 37991448 DOI: 10.1002/jcb.30497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
The formation and maintenance of synapses are precisely regulated, and the misregulation often leads to neurodevelopmental or neurodegenerative disorders. Besides intrinsic genetically encoded signaling pathways, synaptic structure and function are also regulated by extrinsic factors, such as nutrients. O-GlcNAc transferase (OGT), a nutrient sensor, is abundant in the nervous system and required for synaptic plasticity, learning, and memory. However, whether OGT is involved in synaptic development and the mechanism underlying the process are largely unknown. In this study, we found that OGT-1, the OGT homolog in C. elegans, regulates the presynaptic assembly in AIY interneurons. The insulin receptor DAF-2 acts upstream of OGT-1 to promote the presynaptic assembly by positively regulating the expression of ogt-1. This insulin-OGT-1 axis functions most likely by regulating neuronal activity. In this study, we elucidated a novel mechanism for synaptic development, and provided a potential link between synaptic development and insulin-related neurological disorders.
Collapse
Affiliation(s)
- Mengting Wu
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huihui Jiang
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian Li
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunhe Liu
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongjun Zhang
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuekun Li
- School of Medicine, The Children's Hospital, Zhejiang University, Hangzhou, China
- School of Medicine, The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhiyong Shao
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Mishra S, Dabaja M, Akhlaq A, Pereira B, Marbach K, Rovcanin M, Chandra R, Caballero A, Fernandes de Abreu D, Ch'ng Q, Alcedo J. Specific sensory neurons and insulin-like peptides modulate food type-dependent oogenesis and fertilization in Caenorhabditis elegans. eLife 2023; 12:e83224. [PMID: 37975568 PMCID: PMC10665013 DOI: 10.7554/elife.83224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
An animal's responses to environmental cues are critical for its reproductive program. Thus, a mechanism that allows the animal to sense and adjust to its environment should make for a more efficient reproductive physiology. Here, we demonstrate that in Caenorhabditis elegans specific sensory neurons influence onset of oogenesis through insulin signaling in response to food-derived cues. The chemosensory neurons ASJ modulate oogenesis onset through the insulin-like peptide (ILP) INS-6. In contrast, other sensory neurons, the olfactory neurons AWA, regulate food type-dependent differences in C. elegans fertilization rates, but not onset of oogenesis. AWA modulates fertilization rates at least partly in parallel to insulin receptor signaling, since the insulin receptor DAF-2 regulates fertilization independently of food type, which requires ILPs other than INS-6. Together our findings suggest that optimal reproduction requires the integration of diverse food-derived inputs through multiple neuronal signals acting on the C. elegans germline.
Collapse
Affiliation(s)
- Shashwat Mishra
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Mohamed Dabaja
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Asra Akhlaq
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Bianca Pereira
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Kelsey Marbach
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Mediha Rovcanin
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Rashmi Chandra
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Antonio Caballero
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
| | | | - QueeLim Ch'ng
- Centre for Developmental Neurobiology, King’s College LondonLondonUnited Kingdom
| | - Joy Alcedo
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| |
Collapse
|
28
|
Liu CC, Khan A, Seban N, Littlejohn N, Srinivasan S. A homeostatic gut-to-brain insulin antagonist restrains neuronally stimulated fat loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563330. [PMID: 37961386 PMCID: PMC10634694 DOI: 10.1101/2023.10.20.563330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In C. elegans mechanisms by which peripheral organs relay internal state information to the nervous system remain unknown, although strong evidence suggests that such signals do exist. Here we report the discovery of a peptide of the ancestral insulin superfamily called INS-7 that functions as an enteroendocrine peptide and is secreted from specialized cells of the intestine. INS-7 secretion increases during fasting, and acts as a bona fide gut-to-brain homeostatic signal that attenuates neuronally induced fat loss during food shortage. INS-7 functions as an antagonist at the canonical DAF-2 receptor in the nervous system, and phylogenetic analysis suggests that INS-7 bears greater resemblance to members of the broad insulin/relaxin superfamily than to conventional mammalian insulin and IGF peptides. The discovery of an endogenous insulin antagonist secreted by specialized intestinal cell with enteroendocrine functions suggests that much remains to be learned about the intestine and its role in directing neuronal functions.
Collapse
|
29
|
Tang LTH, Lee GA, Cook SJ, Ho J, Potter CC, Bülow HE. Anatomical restructuring of a lateralized neural circuit during associative learning by asymmetric insulin signaling. Curr Biol 2023; 33:3835-3850.e6. [PMID: 37591249 PMCID: PMC10639090 DOI: 10.1016/j.cub.2023.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Studies of neuronal connectivity in model organisms, i.e., of their connectomes, have been instrumental in dissecting the structure-function relationship of nervous systems. However, the limited sample size of these studies has impeded analyses into how variation of connectivity across populations may influence circuit architecture and behavior. Moreover, little is known about how experiences induce changes in circuit architecture. Here, we show that an asymmetric salt-sensing circuit in the nematode Caenorhabditis elegans exhibits variation that predicts the animals' salt preferences and undergoes restructuring during salt associative learning. Naive worms memorize and prefer the salt concentration they experience in the presence of food through a left-biased neural network architecture. However, animals conditioned at elevated salt concentrations change this left-biased network to a right-biased network. This change in circuit architecture occurs through the addition of new synapses in response to asymmetric, paracrine insulin signaling. Therefore, experience-dependent changes in an animal's neural connectome are induced by insulin signaling and are fundamental to learning and behavior.
Collapse
Affiliation(s)
- Leo T H Tang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Garrett A Lee
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven J Cook
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jacquelin Ho
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cassandra C Potter
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
30
|
Tsai YT, Chang CH, Tsai HY. Rege-1 promotes C. elegans survival by modulating IIS and TOR pathways. PLoS Genet 2023; 19:e1010869. [PMID: 37556491 PMCID: PMC10441803 DOI: 10.1371/journal.pgen.1010869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/21/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
Metabolic pathways are known to sense the environmental stimuli and result in physiological adjustments. The responding processes need to be tightly controlled. Here, we show that upon encountering P. aeruginosa, C. elegans upregulate the transcription factor ets-4, but this upregulation is attenuated by the ribonuclease, rege-1. As such, mutants with defective REGE-1 ribonuclease activity undergo ets-4-dependent early death upon challenge with P. aeruginosa. Furthermore, mRNA-seq analysis revealed associated global changes in two key metabolic pathways, the IIS (insulin/IGF signaling) and TOR (target of rapamycin) kinase signaling pathways. In particular, failure to degrade ets-4 mRNA in activity-defective rege-1 mutants resulted in upregulation of class II longevity genes, which are suppressed during longevity, and activation of TORC1 kinase signaling pathway. Genetic inhibition of either pathway way was sufficient to abolish the poor survival phenotype in rege-1 worms. Further analysis of ETS-4 ChIP data from ENCODE and characterization of one upregulated class II gene, ins-7, support that the Class II genes are activated by ETS-4. Interestingly, deleting an upregulated Class II gene, acox-1.5, a peroxisome β-oxidation enzyme, largely rescues the fat lost phenotype and survival difference between rege-1 mutants and wild-types. Thus, rege-1 appears to be crucial for animal survival due to its tight regulation of physiological responses to environmental stimuli. This function is reminiscent of its mammalian ortholog, Regnase-1, which modulates the intestinal mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Hsi Chang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yue Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Nuñez A, Zegarra-Valdivia J, Fernandez de Sevilla D, Pignatelli J, Torres Aleman I. The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states. Mol Psychiatry 2023; 28:3220-3230. [PMID: 37353586 DOI: 10.1038/s41380-023-02136-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
After decades of research in the neurobiology of IGF-I, its role as a prototypical neurotrophic factor is undisputed. However, many of its actions in the adult brain indicate that this growth factor is not only involved in brain development or in the response to injury. Following a three-layer assessment of its role in the central nervous system, we consider that at the cellular level, IGF-I is indeed a bona fide neurotrophic factor, modulating along ontogeny the generation and function of all the major types of brain cells, contributing to sculpt brain architecture and adaptive responses to damage. At the circuit level, IGF-I modulates neuronal excitability and synaptic plasticity at multiple sites, whereas at the system level, IGF-I intervenes in energy allocation, proteostasis, circadian cycles, mood, and cognition. Local and peripheral sources of brain IGF-I input contribute to a spatially restricted, compartmentalized, and timed modulation of brain activity. To better define these variety of actions, we consider IGF-I a modulator of brain states. This definition aims to reconcile all aspects of IGF-I neurobiology, and may provide a new conceptual framework in the design of future research on the actions of this multitasking neuromodulator in the brain.
Collapse
Affiliation(s)
- A Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Madrid, Spain
- Universidad Señor de Sipán, Chiclayo, Perú
| | - D Fernandez de Sevilla
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Pignatelli
- CIBERNED, Madrid, Spain
- Cajal Institute (CSIC), Madrid, Spain
| | - I Torres Aleman
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- CIBERNED, Madrid, Spain.
- Ikerbasque Science Foundation, Bilbao, Spain.
| |
Collapse
|
32
|
Pandey T, Wang B, Wang C, Zu J, Deng H, Shen K, do Vale GD, McDonald JG, Ma DK. LPD-3 as a megaprotein brake for aging and insulin-mTOR signaling in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528431. [PMID: 36824874 PMCID: PMC9949100 DOI: 10.1101/2023.02.14.528431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Insulin-mTOR signaling drives anabolic growth during organismal development, while its late-life dysregulation may detrimentally contribute to aging and limit lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin INS-7 is drastically over-produced in early life and shortens lifespan in lpd-3 mutants, a C. elegans model of human Alkuraya-Kučinskas syndrome. LPD-3 forms a bridge-like tunnel megaprotein to facilitate phospholipid trafficking to plasma membranes. Lipidomic profiling reveals increased abundance of hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1 (Homolog of Yeast Longevity). Reducing HYL-1 activity decreases INS-7 levels and rescues the lifespan of lpd-3 mutants through insulin receptor/DAF-2 and mTOR/LET-363. LPD3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age in wild type animals. We propose that LPD-3 acts as a megaprotein brake for aging and its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Jenny Zu
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Huichao Deng
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Goncalo Dias do Vale
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
- Innovative Genomics Institute, University of California, Berkeley, USA
| |
Collapse
|
33
|
Ghaddar A, Armingol E, Huynh C, Gevirtzman L, Lewis NE, Waterston R, O’Rourke EJ. Whole-body gene expression atlas of an adult metazoan. SCIENCE ADVANCES 2023; 9:eadg0506. [PMID: 37352352 PMCID: PMC10289653 DOI: 10.1126/sciadv.adg0506] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/17/2023] [Indexed: 06/25/2023]
Abstract
Gene activity defines cell identity, drives intercellular communication, and underlies the functioning of multicellular organisms. We present the single-cell resolution atlas of gene activity of a fertile adult metazoan: Caenorhabditis elegans. This compendium comprises 180 distinct cell types and 19,657 expressed genes. We predict 7541 transcription factor expression profile associations likely responsible for defining cellular identity. We predict thousands of intercellular interactions across the C. elegans body and the ligand-receptor pairs that mediate them, some of which we experimentally validate. We identify 172 genes that show consistent expression across cell types, are involved in basic and essential functions, and are conserved across phyla; therefore, we present them as experimentally validated housekeeping genes. We developed the WormSeq application to explore these data. In addition to the integrated gene-to-systems biology, we present genome-scale single-cell resolution testable hypotheses that we anticipate will advance our understanding of the molecular mechanisms, underlying the functioning of a multicellular organism and the perturbations that lead to its malfunction.
Collapse
Affiliation(s)
- Abbas Ghaddar
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Erick Armingol
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Louis Gevirtzman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Waterston
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eyleen J. O’Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
34
|
Roman A, Palanski K, Nemenman I, Ryu WS. A dynamical model of C. elegans thermal preference reveals independent excitatory and inhibitory learning pathways. Proc Natl Acad Sci U S A 2023; 120:e2215191120. [PMID: 36940330 PMCID: PMC10068832 DOI: 10.1073/pnas.2215191120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/19/2023] [Indexed: 03/22/2023] Open
Abstract
Caenorhabditis elegans is capable of learning and remembering behaviorally relevant cues such as smells, tastes, and temperature. This is an example of associative learning, a process in which behavior is modified by making associations between various stimuli. Since the mathematical theory of conditioning does not account for some of its salient aspects, such as spontaneous recovery of extinguished associations, accurate modeling of behavior of real animals during conditioning has turned out difficult. Here, we do this in the context of the dynamics of the thermal preference of C. elegans. We quantify C. elegans thermotaxis in response to various conditioning temperatures, starvation durations, and genetic perturbations using a high-resolution microfluidic droplet assay. We model these data comprehensively, within a biologically interpretable, multi-modal framework. We find that the strength of the thermal preference is composed of two independent, genetically separable contributions and requires a model with at least four dynamical variables. One pathway positively associates the experienced temperature independently of food and the other negatively associates with the temperature when food is absent. The multidimensional structure of the association strength provides an explanation for the apparent classical temperature-food association of C. elegans thermal preference and a number of longstanding questions in animal learning, including spontaneous recovery, asymmetric response to appetitive vs. aversive cues, latent inhibition, and generalization among similar cues.
Collapse
Affiliation(s)
- Ahmed Roman
- Department of Physics, Emory University, Atlanta, GA30322
| | | | - Ilya Nemenman
- Department of Physics, Emory University, Atlanta, GA30322
- Department of Biology, Emory University, Atlanta, GA30322
- Initiative in Theory and Modeling of Living Systems, Emory University, Atlanta, GA30322
| | - William S. Ryu
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
35
|
Wu N, Chen YA, Zhu Q, Son CH, Gu KZ, Zou CG, Wu QY, Ma YC. The EGL-30 pathway regulates experience-dependent aversive behavior of Caenorhabditis elegans to the pathogenic bacterium Pseudomonas aeruginosa. Biochem Biophys Res Commun 2023; 642:107-112. [PMID: 36566561 DOI: 10.1016/j.bbrc.2022.12.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Avoidance of harmful substances is survival strategy used cross invertebrates and vertebrates. For example, the nematode Caenorhabditis elegans evolves a sufficient avoidance response to pathogenic bacteria. Despite G protein has been found to exert neural plasticity for avoidance behaviours in C. elegans, the function of Gi/o and Gq subunit signalling in experience-dependent aversive behaviour remains unclear. In this study, we show that EGL-30/Gq coupled with EGL-8/UNC-13 regulates aversive behaviour of C. elegans to pathogenic bacterium Pseudomonas aeruginosa PA01 via acetylcholine and its receptor nAChR. Pyocyanin, a toxin secreted from P. aeruginosa, acts as a signal molecule to trigger aversive behaviour. ODR-3 and ODR-7 in AWA and AWC neurons function as upstream of EGL-30 to induce experience-dependent aversive behaviour to P. aeruginosa, respectively. These results suggested that a novel signalling pathway to regulate a behavioural response.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Yu-An Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Qian Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Cai-Hua Son
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Kun-Ze Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Cheng-Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Qin-Yi Wu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
| | - Yi-Cheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
36
|
Cheng D, Lee JS, Brown M, Ebert MS, McGrath PT, Tomioka M, Iino Y, Bargmann CI. Insulin/IGF signaling regulates presynaptic glutamate release in aversive olfactory learning. Cell Rep 2022; 41:111685. [DOI: 10.1016/j.celrep.2022.111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/06/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
|
37
|
Filipowicz A, Lalsiamthara J, Aballay A. Dissection of a sensorimotor circuit underlying pathogen aversion in C. elegans. BMC Biol 2022; 20:229. [PMID: 36209082 PMCID: PMC9548130 DOI: 10.1186/s12915-022-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altering animal behavior to reduce pathogen exposure is a key line of defense against pathogen attack. In Caenorhabditis elegans, alterations in intestinal physiology caused by pathogen colonization and sensation of microbial metabolites may lead to activation of pathogen aversive behaviors ranging from aversive reflexes to learned avoidance. However, the neural circuitry between chemosensory neurons that sense pathogenic bacterial cues and the motor neurons responsible for avoidance-associated locomotion remains unknown. RESULTS Using C. elegans, we found that backward locomotion was a component of learned pathogen avoidance, as animals pre-exposed to Pseudomonas aeruginosa or Enterococcus faecalis showed reflexive aversion to drops of the bacteria driven by chemosensory neurons, including the olfactory AWB neurons. This response also involved intestinal distention and, for E. faecalis, required expression of TRPM channels in the intestine and excretory system. Additionally, we uncovered a circuit composed of olfactory neurons, interneurons, and motor neurons that controls the backward locomotion crucial for learned reflexive aversion to pathogenic bacteria, learned avoidance, and the repulsive odor 2-nonanone. CONCLUSIONS Using whole-brain simulation and functional assays, we uncovered a novel sensorimotor circuit governing learned reflexive aversion. The discovery of a complete sensorimotor circuit for reflexive aversion demonstrates the utility of using the C. elegans connectome and computational modeling in uncovering new neuronal regulators of behavior.
Collapse
Affiliation(s)
- Adam Filipowicz
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jonathan Lalsiamthara
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
38
|
Invited review: Unearthing the mechanisms of age-related neurodegenerative disease using Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111166. [PMID: 35176489 DOI: 10.1016/j.cbpa.2022.111166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
As human life expectancy increases, neurodegenerative diseases present a growing public health threat, for which there are currently few effective treatments. There is an urgent need to understand the molecular and genetic underpinnings of these disorders so new therapeutic targets can be identified. Here we present the argument that the simple nematode worm Caenorhabditis elegans is a powerful tool to rapidly study neurodegenerative disorders due to their short lifespan and vast array of genetic tools, which can be combined with characterization of conserved neuronal processes and behavior orthologous to those disrupted in human disease. We review how pre-existing C. elegans models provide insight into human neurological disease as well as an overview of current tools available to study neurodegenerative diseases in the worm, with an emphasis on genetics and behavior. We also discuss open questions that C. elegans may be particularly well suited for in future studies and how worms will be a valuable preclinical model to better understand these devastating neurological disorders.
Collapse
|
39
|
Liu H, Wu T, Canales XG, Wu M, Choi MK, Duan F, Calarco JA, Zhang Y. Forgetting generates a novel state that is reactivatable. SCIENCE ADVANCES 2022; 8:eabi9071. [PMID: 35148188 PMCID: PMC8836790 DOI: 10.1126/sciadv.abi9071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/21/2021] [Indexed: 05/21/2023]
Abstract
Forgetting is defined as a time-dependent decline of a memory. However, it is not clear whether forgetting reverses the learning process to return the brain to the naive state. Here, using the aversive olfactory learning of pathogenic bacteria in C. elegans, we show that forgetting generates a novel state of the nervous system that is distinct from the naive state or the learned state. A transient exposure to the training condition or training odorants reactivates this novel state to elicit the previously learned behavior. An AMPA receptor and a type II serotonin receptor act in the central neuron of the learning circuit to decrease and increase the speed to reach this novel state, respectively. Together, our study systematically characterizes forgetting and uncovers conserved mechanisms underlying the rate of forgetting.
Collapse
Affiliation(s)
- He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Xicotencatl Gracida Canales
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Min Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Fengyun Duan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - John A. Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
40
|
Tomioka M, Jang MS, Iino Y. DAF-2c signaling promotes taste avoidance after starvation in Caenorhabditis elegans by controlling distinct phospholipase C isozymes. Commun Biol 2022; 5:30. [PMID: 35017611 PMCID: PMC8752840 DOI: 10.1038/s42003-021-02956-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Previously, we reported that DAF-2c, an axonal insulin receptor isoform in Caenorhabditis elegans, acts in the ASER gustatory neuron to regulate taste avoidance learning, a process in which worms learn to avoid salt concentrations experienced during starvation. Here, we show that secretion of INS-1, an insulin-like peptide, after starvation conditioning is sufficient to drive taste avoidance via DAF-2c signaling. Starvation conditioning enhances the salt-triggered activity of AIA neurons, the main sites of INS-1 release, which potentially promotes feedback signaling to ASER to maintain DAF-2c activity during taste avoidance. Genetic studies suggest that DAF-2c-Akt signaling promotes high-salt avoidance via a decrease in PLCβ activity. On the other hand, the DAF-2c pathway promotes low-salt avoidance via PLCε and putative Akt phosphorylation sites on PLCε are essential for taste avoidance. Our findings imply that animals disperse from the location at which they experience starvation by controlling distinct PLC isozymes via DAF-2c.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Moon Sun Jang
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
41
|
Bhat US, Shahi N, Surendran S, Babu K. Neuropeptides and Behaviors: How Small Peptides Regulate Nervous System Function and Behavioral Outputs. Front Mol Neurosci 2021; 14:786471. [PMID: 34924955 PMCID: PMC8674661 DOI: 10.3389/fnmol.2021.786471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
One of the reasons that most multicellular animals survive and thrive is because of the adaptable and plastic nature of their nervous systems. For an organism to survive, it is essential for the animal to respond and adapt to environmental changes. This is achieved by sensing external cues and translating them into behaviors through changes in synaptic activity. The nervous system plays a crucial role in constantly evaluating environmental cues and allowing for behavioral plasticity in the organism. Multiple neurotransmitters and neuropeptides have been implicated as key players for integrating sensory information to produce the desired output. Because of its simple nervous system and well-established neuronal connectome, C. elegans acts as an excellent model to understand the mechanisms underlying behavioral plasticity. Here, we critically review how neuropeptides modulate a wide range of behaviors by allowing for changes in neuronal and synaptic signaling. This review will have a specific focus on feeding, mating, sleep, addiction, learning and locomotory behaviors in C. elegans. With a view to understand evolutionary relationships, we explore the functions and associated pathophysiology of C. elegans neuropeptides that are conserved across different phyla. Further, we discuss the mechanisms of neuropeptidergic signaling and how these signals are regulated in different behaviors. Finally, we attempt to provide insight into developing potential therapeutics for neuropeptide-related disorders.
Collapse
Affiliation(s)
- Umer Saleem Bhat
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Navneet Shahi
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Siju Surendran
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
42
|
Pujol N, Ewbank JJ. C. elegans: out on an evolutionary limb. Immunogenetics 2021; 74:63-73. [PMID: 34761293 DOI: 10.1007/s00251-021-01231-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
The natural environment of the free-living nematode Caenorhabditis elegans is rich in pathogenic microbes. There is now ample evidence to indicate that these pathogens exert a strong selection pressure on C. elegans, and have shaped its genome, physiology, and behaviour. In this short review, we concentrate on how C. elegans stands out from other animals in terms of its immune repertoire and innate immune signalling pathways. We discuss how C. elegans often detects pathogens because of their effects on essential cellular processes, or organelle integrity, in addition to direct microbial recognition. We illustrate the extensive molecular plasticity that is characteristic of immune defences in C. elegans and highlight some remarkable instances of lineage-specific innovation in innate immune mechanisms.
Collapse
Affiliation(s)
- Nathalie Pujol
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France.
| | - Jonathan J Ewbank
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
43
|
Morud J, Hardege I, Liu H, Wu T, Choi MK, Basu S, Zhang Y, Schafer WR. Deorphanization of novel biogenic amine-gated ion channels identifies a new serotonin receptor for learning. Curr Biol 2021; 31:4282-4292.e6. [PMID: 34388373 PMCID: PMC8536830 DOI: 10.1016/j.cub.2021.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Pentameric ligand-gated ion channels (LGICs) play conserved, critical roles in both excitatory and inhibitory synaptic transmission and can be activated by diverse neurochemical ligands. We have performed a characterization of orphan channels from the nematode C. elegans, identifying five new monoamine-gated LGICs with diverse functional properties and expression postsynaptic to aminergic neurons. These include polymodal anion channels activated by both dopamine and tyramine, which may mediate inhibitory transmission by both molecules in vivo. Intriguingly, we also find that a novel serotonin-gated cation channel, LGC-50, is essential for aversive olfactory learning of pathogenic bacteria, a process known to depend on serotonergic neurotransmission. Remarkably, the redistribution of LGC-50 to neuronal processes is modulated by olfactory conditioning, and lgc-50 point mutations that cause misregulation of receptor membrane expression interfere with olfactory learning. Thus, the intracellular trafficking and localization of these receptors at synapses may represent a molecular cornerstone of the learning mechanism.
Collapse
Affiliation(s)
- Julia Morud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Iris Hardege
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Centre for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Centre for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Centre for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Swaraj Basu
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Medicinaregatan 9A, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA; Centre for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - William R Schafer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
44
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
45
|
Filipowicz A, Lalsiamthara J, Aballay A. TRPM channels mediate learned pathogen avoidance following intestinal distention. eLife 2021; 10:65935. [PMID: 34032213 PMCID: PMC8177887 DOI: 10.7554/elife.65935] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Upon exposure to harmful microorganisms, hosts engage in protective molecular and behavioral immune responses, both of which are ultimately regulated by the nervous system. Using the nematode Caenorhabditis elegans, we show that ingestion of Enterococcus faecalis leads to a fast pathogen avoidance behavior that results in aversive learning. We have identified multiple sensory mechanisms involved in the regulation of avoidance of E. faecalis. The G-protein coupled receptor NPR-1-dependent oxygen-sensing pathway opposes this avoidance behavior, while an ASE neuron-dependent pathway and an AWB and AWC neuron-dependent pathway are directly required for avoidance. Colonization of the anterior part of the intestine by E. faecalis leads to AWB and AWC mediated olfactory aversive learning. Finally, two transient receptor potential melastatin (TRPM) channels, GON-2 and GTL-2, mediate this newly described rapid pathogen avoidance. These results suggest a mechanism by which TRPM channels may sense the intestinal distension caused by bacterial colonization to elicit pathogen avoidance and aversive learning by detecting changes in host physiology.
Collapse
Affiliation(s)
- Adam Filipowicz
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, United States
| | - Jonathan Lalsiamthara
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, United States
| | - Alejandro Aballay
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
46
|
Wibisono P, Sun J. Neuro-immune communication in C. elegans defense against pathogen infection. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:60-65. [PMID: 34368754 PMCID: PMC8344176 DOI: 10.1016/j.crimmu.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The innate immune system is a complex collection of physical barriers and physiological defense responses to internal and external environmental assaults. Recent studies in the model organism Caenorhabditis elegans have highlighted how the nervous system interacts with the innate immune system to generate coordinated protective responses. Indeed, studies on neuro-immune interaction pathways have provided mechanistic insights into the roles of neuro-immune communication in modulating both immune and behavioral responses to pathogen attacks. The nervous system releases a variety of neurotransmitters, peptides, and hormones that regulate the innate immune response, while the innate immune system also relays information to the nervous system to affect learning and behavioral responses. Although these interactions still need further investigation, the knowledge that we have gained thus far has improved our understanding of how separate biological systems can act collectively for the survival and well-being of an organism. Here, we review recent studies on neuro-immune communication related to the survival and defense of C. elegans against pathogens. Neuro-immune communication is essential for generating coordinated defense against pathogen infection to improve host survival. Neuro-immune communication modulates both immune and behavioral responses to pathogen attacks. C.elegans is an excellent model system for studying neuro-immune communication.
Collapse
Affiliation(s)
- Phillip Wibisono
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Jingru Sun
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
47
|
Abstract
In its natural habitat, C. elegans encounters a wide variety of microbes, including food, commensals and pathogens. To be able to survive long enough to reproduce, C. elegans has developed a complex array of responses to pathogens. These activities are coordinated on scales that range from individual organelles to the entire organism. Often, the response is triggered within cells, by detection of infection-induced damage, mainly in the intestine or epidermis. C. elegans has, however, a capacity for cell non-autonomous regulation of these responses. This frequently involves the nervous system, integrating pathogen recognition, altering host biology and governing avoidance behavior. Although there are significant differences with the immune system of mammals, some mechanisms used to limit pathogenesis show remarkable phylogenetic conservation. The past 20 years have witnessed an explosion of host-pathogen interaction studies using C. elegans as a model. This review will discuss the broad themes that have emerged and highlight areas that remain to be fully explored.
Collapse
Affiliation(s)
- Céline N Martineau
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | | | - Nathalie Pujol
- Aix Marseille Université, Inserm, CNRS, CIML, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
48
|
Yeon J, Takeishi A, Sengupta P. Chronic vs acute manipulations reveal degeneracy in a thermosensory neuron network. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000355. [PMID: 33474527 PMCID: PMC7812381 DOI: 10.17912/micropub.biology.000355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/04/2022]
Abstract
Degenerate networks can drive similar circuit outputs. Via acute manipulation of individual neurons, we previously identified circuit components that are necessary and sufficient to drive starvation-dependent plasticity in C. elegans thermotaxis behavior. Here we find that when these components are instead silenced chronically, degenerate mechanisms compensate to drive this behavior. Our results indicate that degeneracy in neuronal network function can be revealed under specific experimental conditions.
Collapse
Affiliation(s)
- Jihye Yeon
- Department of Biology, Brandeis University, Waltham, MA
| | - Asuka Takeishi
- Department of Biology, Brandeis University, Waltham, MA
- RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, RIKEN Center for Brain Science, Wako, Japan
| | | |
Collapse
|
49
|
Van Damme S, De Fruyt N, Watteyne J, Kenis S, Peymen K, Schoofs L, Beets I. Neuromodulatory pathways in learning and memory: Lessons from invertebrates. J Neuroendocrinol 2021; 33:e12911. [PMID: 33350018 DOI: 10.1111/jne.12911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
In an ever-changing environment, animals have to continuously adapt their behaviour. The ability to learn from experience is crucial for animals to increase their chances of survival. It is therefore not surprising that learning and memory evolved early in evolution and are mediated by conserved molecular mechanisms. A broad range of neuromodulators, in particular monoamines and neuropeptides, have been found to influence learning and memory, although our knowledge on their modulatory functions in learning circuits remains fragmentary. Many neuromodulatory systems are evolutionarily ancient and well-conserved between vertebrates and invertebrates. Here, we highlight general principles and mechanistic insights concerning the actions of monoamines and neuropeptides in learning circuits that have emerged from invertebrate studies. Diverse neuromodulators have been shown to influence learning and memory in invertebrates, which can have divergent or convergent actions at different spatiotemporal scales. In addition, neuromodulators can regulate learning dependent on internal and external states, such as food and social context. The strong conservation of neuromodulatory systems, the extensive toolkit and the compact learning circuits in invertebrate models make these powerful systems to further deepen our understanding of neuromodulatory pathways involved in learning and memory.
Collapse
Affiliation(s)
- Sara Van Damme
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Katleen Peymen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Liu M, Xiong Y, Shan S, Zhu Y, Zeng D, Shi Y, Zhang Y, Lu W. Eleutheroside E Enhances the Long-Term Memory of Radiation-Damaged C. elegans through G-Protein-Coupled Receptor and Neuropeptide Signaling Pathways. JOURNAL OF NATURAL PRODUCTS 2020; 83:3315-3323. [PMID: 33196193 DOI: 10.1021/acs.jnatprod.0c00650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eleutheroside E (EE), a principal active compound of Acanthopanax senticosus, has been shown to have a certain neuromodulation effect. Our previous study indicates that EE protects nerve damage caused by radiation. However, its specific function and underlying mechanism remain unknown. Therefore, the objective of this study is to apply the C. elegans model to illuminate the property and mechanism of EE protecting against nerve damage caused by radiation. Here, we found that EE significantly improved the long-term memory of radiation-damaged C. elegans. Through transcriptome sequencing, the results showed that EE protected radiation-damaged C. elegans mainly through G-protein-coupled receptor and neuropeptide signaling pathways. Further research indicated that EE affected the activity of CREB by cAMP-PKA, Gqα-PLC, and neuropeptide signaling pathways to ultimately improve the long-term memory of radiation-damaged C. elegans. In addition, the activity of Gqα and neuropeptides in AWC neurons and the activity of CREB in AIM neurons might be crucial for EE to function.
Collapse
Affiliation(s)
- Mengyao Liu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Yi Xiong
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Shan Shan
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Yuanbing Zhu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Deyong Zeng
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Yudong Shi
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
- Inner Mongolia Mengniu Dairy Co., Ltd., Inner Mongolia 011500, China
| | - Yingchun Zhang
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin 150000, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150000, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|