1
|
Villarroel-Campos D, Rhymes ER, Tosolini AP, Malik B, Vagnoni A, Schiavo G, Sleigh JN. Processivity and BDNF-dependent modulation of signalling endosome axonal transport are impaired in mice with advanced age. Neurobiol Aging 2025; 153:1-9. [PMID: 40449249 DOI: 10.1016/j.neurobiolaging.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/24/2025] [Accepted: 05/24/2025] [Indexed: 06/03/2025]
Abstract
A healthy nervous system is reliant upon an efficient transport network to deliver essential cargoes throughout the extensive and polarised architecture of neurons. The trafficking of cargoes, such as organelles and proteins, is particularly challenging within the long projections of neurons, which, in the case of axons, can be more than four orders of magnitude longer than cell bodies. It is therefore unsurprising that disruptions in axonal transport have been reported across neurological diseases. A decline in this essential process has also been identified in many aging models, perhaps compounding age-related neurodegeneration. Via intravital imaging, we recently determined that, despite a reduction in overall motility, the run speed and displacement of anterograde mitochondrial transport were unexpectedly enhanced in 19-22 month-old mouse peripheral nerves. Here, to determine how aging impacts a different axonal cargo, we evaluated in vivo trafficking of signalling endosomes in motor axons of mouse sciatic nerves from 3 to 22 months. Contrasting with mitochondria, we did not detect alterations in signalling endosome speed, but found a consistent rise in pausing that manifested after 18 months. We then treated muscles with brain-derived neurotrophic factor (BDNF), which regulates axonal transport of signalling endosomes in motor neurons; however, we observed no change in the processivity defect at 22 months, consistent with downregulation of the BDNF receptor TrkB at the neuromuscular junction. Together, these findings indicate that aging negatively impacts signalling endosome trafficking in motor axons, likely through dampened BDNF signalling at the motor neuron-muscle interface.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute, University College London, London, UK
| | - Elena R Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andrew P Tosolini
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK; School of Biomedical Sciences, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, St Lucia, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Australia
| | - Bilal Malik
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MIA-Portugal, Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute, University College London, London, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
2
|
Li Z, Liu J, Ju J, Peng X, Zhao W, Ren J, Jia X, Wang J, Tu Y, Gao F. Contributions of synaptic energetic dysfunction by microtubule dynamics and microtubule-based mitochondrial transport disorder to morphine tolerance. Br J Pharmacol 2025. [PMID: 40361281 DOI: 10.1111/bph.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND AND PURPOSE Morphine is among the most powerful analgesic, but its long-term use can cause tolerance. Synaptic ATP supply is critical for maintaining synaptic transmission. Microtubule-based mitochondrial transport ensures synaptic energy supply. How synaptic energy changes with morphine and the role of microtubule tracks in synaptic mitochondrial energy supply remain elusive. Chronic morphine treatment can destroy microtubule cytoskeletons. We investigated the effect of the microtubule cytoskeleton on synaptic mitochondrial energy supply and the mechanism of microtubule dynamics after morphine exposure. EXPERIMENTAL APPROACH Rats were treated with long-term morphine and the effect on thermal pain thresholds was evaluated by the tail-flick latency test. Various antagonists and agonists were used elucidated the role and mechanism of synaptic mitochondrial energy supply and microtubules in morphine tolerance in vivo and in SH-SY5Y cells. KEY RESULTS Chronic morphine treatment reduced synaptic mitochondrial ATP production. Improving mitochondrial oxidative phosphorylation (OXPHOS) alleviated the downregulation of synaptic ATP levels. Microtubule-stabilizing agents prevented microtubule disruption and ameliorated synaptic energy deficit via microtubule-based microtubule transport. In SH-SY5Y cells, morphine exposure reduced microtubule expression. And re-opening the synaptic Ca2+ channel by agonist alleviated microtubule decrease by calcium/calmodulin-dependent protein kinase 2 (CAMKK2)/AMP-activated protein kinase (AMPK) pathway. CONCLUSION AND IMPLICATIONS This study demonstrates that the microtubule cytoskeleton regulated by the Ca2+-CAMKK2-AMPK axis is critical for synaptic mitochondrial transport and ATP production, explaining an interplay between chronic morphine-induced abnormal neuroadaptation and synaptic energetic dysfunction. These findings implicated a potential clinical strategy for prolonging the opioid antinociceptive effect during long-term pain control.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jie Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihao Ren
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Tu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Kirwan KR, Puerta-Alvarado V, Waites CL. Axonal transport of CHMP2b is regulated by kinesin-binding protein and disrupted by CHMP2b intron5. Life Sci Alliance 2025; 8:e202402934. [PMID: 40021219 PMCID: PMC11871287 DOI: 10.26508/lsa.202402934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
CHMP2b is a core component of the ESCRT pathway that catalyzes formation of multivesicular bodies for endolysosomal protein degradation. Although mutation/loss-of-function of CHMP2b promotes presynaptic dysfunction and degeneration, indicating its critical role in presynaptic protein homeostasis, the mechanisms responsible for CHMP2b localization and recruitment to synapses remain unclear. Here, we characterize CHMP2b axonal trafficking and show that its transport and recruitment to presynaptic boutons, as well as its cotransport with other ESCRT proteins, are regulated by neuronal activity. In contrast, the frontotemporal dementia-causative CHMP2bintron5 mutation exhibits little processive movement or presynaptic localization in the presence or absence of neuronal activity. Instead, CHMP2bintron5 transport vesicles exhibit oscillatory behavior reminiscent of a tug-of-war between kinesin and dynein motor proteins. We show that this phenotype is caused by deficient binding of CHMP2bintron5 to kinesin-binding protein, which we identify as a key regulator of CHMP2b transport. These findings shed light on the mechanisms of CHMP2b axonal trafficking and synaptic localization, and their disruption by CHMP2bintron5.
Collapse
Affiliation(s)
- Konner R Kirwan
- Neurobiology and Behavior PhD Program, Columbia University, New York, NY, USA
| | | | - Clarissa L Waites
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Li L, Wang S, Fu S, Chen Z, Wang P, Zhao Y. Human ATP-binding proteins: Structural features, functional diversity, and pharmacotherapeutic potential in disease: A review. Int J Biol Macromol 2025; 308:142303. [PMID: 40118416 DOI: 10.1016/j.ijbiomac.2025.142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
ATP-binding proteins (ABPs) form diverse and essential protein families across living organisms. Early life forms likely relied on simple chemical reactions for energy, but with the emergence of ABPs and their evolving functions, organisms became capable of more efficient energy storage and utilization, which drove the complexity of metabolic and life processes. By binding and hydrolyzing ATP through conserved structural motifs such as the Walker motifs, ABPs play critical roles in material transport, signal transduction, cellular structure maintenance, motility, and cell cycle regulation. Dysfunctions arising from mutations, deletions, or misregulation of ABPs are linked to a variety of human diseases, including cancer, neurodegenerative disorders, and cardiovascular diseases. The growing recognition of ABPs' significance in disease progression highlights their relevance not only in basic biology but also in clinical applications, particularly as biomarkers and therapeutic targets. This review provides a comprehensive overview of human ABPs, detailing their structural and functional roles, their involvement in disease mechanisms, and the latest advances in understanding their clinical relevance. Additionally, it identifies current research gaps and offers new perspectives for future investigations and therapeutic strategies.
Collapse
Affiliation(s)
- Letong Li
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, PR China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Shanshan Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Zhen Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
5
|
Abraham JN, Rawat D, Srikanth P, Sunny LP, Abraham NM. Alpha-synuclein pathology and Parkinson's disease-related olfactory dysfunctions: an update on preclinical models and therapeutic approaches. Mamm Genome 2025:10.1007/s00335-025-10128-w. [PMID: 40293510 DOI: 10.1007/s00335-025-10128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Olfactory dysfunction (OD) is considered one of the early signs of Parkinson's disease (PD), affecting over 90% of PD patients. OD often appears several years before the onset of motor symptoms and is therefore considered an early biomarker of PD. Recent studies have shown that COVID-19 infection might lead to worsening of symptoms and acceleration of disease progression in neurodegenerative disorders, where OD is a common symptom to both. Hence, it is essential to accurately monitor olfactory fitness in clinical settings using any of the currently available olfactory function tests. Even after a quarter of a century of the discovery of α-synuclein (α-syn) pathogenesis in PD, many aspects related to the α-syn pathogenesis in OD remain unknown. Currently, there is no definitive cure for PD; the disease management options include dopaminergic medications, deep brain stimulations, stem cells, and immunotherapy. Generating reliable PD animal models is critical for understanding the molecular pathways and neural circuits affected by disease conditions. This might contribute to the development and validation of new therapeutic approaches. This review discusses the known mechanisms of α-syn aggregated forms causing neuronal death, the recent developments in the PD preclinical models with ODs, and the treatment strategies employed.
Collapse
Affiliation(s)
- Jancy Nixon Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India.
- Department of Life Sciences, Centre of Excellence in Epigenetics, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India.
| | - Devesh Rawat
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Priyadharshini Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Lisni P Sunny
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Nixon M Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India.
| |
Collapse
|
6
|
Zhang W, Mittal S, Thomas R, Foroughishafiei A, Nunes Bastos R, Chung WK, Skourti-Stathaki K, Crooke ST. A toxic gain-of-function variant in MAPK8IP3 provides insights into JIP3 cellular roles. JCI Insight 2025; 10:e187199. [PMID: 40111412 PMCID: PMC12016931 DOI: 10.1172/jci.insight.187199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Mitogen-activated protein kinase 8 interacting protein 3 (MAPK8IP3) gene encoding a protein called JIP3 is an adaption protein of the kinesin-1 complex known to play a role in axonal transport of cargo. Mutations in the gene have been linked to severe neurodevelopmental disorders, resulting in developmental delay, intellectual disability, ataxia, tremor, autism, seizures, and visual impairment. A patient who has a missense mutation in the MAPK8IP3 gene (c. 1714 C>T, Arg578Cys) (R578C) manifests dystonia, gross motor delay, and developmental delay. Here, we showed that the mutation was a toxic gain-of-function mutation that altered the interactome of JIP3; disrupted axonal transport of late endosomes; increased signaling via c-Jun N-terminal kinase, resulting in apoptosis; and disrupted dopamine receptor 1 signaling while not affecting dopamine receptor 2 signaling. Furthermore, in the presence of the mutant protein, we showed that an 80% reduction of mutant JIP3 and a 60% reduction of WT JIP3 by non-allele-selective phosphorothioate-modified antisense oligonucleotides was well tolerated by several types of cells in vitro. Our study identifies what we believe to be several important new roles for JIP3 and provides important insights for therapeutic approaches, including antisense oligonucleotide reduction of JIP3.
Collapse
Affiliation(s)
- Wei Zhang
- n-Lorem Foundation, Carlsbad, California, USA
| | | | - Ria Thomas
- n-Lorem Foundation, Carlsbad, California, USA
| | | | | | - Wendy K. Chung
- Boston Children’s Hospital, Harvard Medical School, Brookline, Massachusetts, USA
| | | | | |
Collapse
|
7
|
Doerksen AH, Herath NN, Sanders SS. Fat traffic control: S-acylation in axonal transport. Mol Pharmacol 2025; 107:100039. [PMID: 40349611 DOI: 10.1016/j.molpha.2025.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Neuronal axons serve as a conduit for the coordinated transport of essential molecular cargo between structurally and functionally distinct subcellular compartments via axonal molecular machinery. Long-distance, efficient axonal transport of membrane-bound organelles enables signal transduction and neuronal homeostasis. Efficient axonal transport is conducted by dynein and kinesin ATPase motors that use a local ATP supply from metabolic enzymes tethered to transport vesicles. Molecular motor adaptor proteins promote the processive motility and cargo selectivity of fast axonal transport. Axonal transport impairments are directly causative or associated with many neurodegenerative diseases and neuropathologies. Cargo specificity, cargo-adaptor proteins, and posttranslational modifications of cargo, adaptor proteins, microtubules, or the motor protein subunits all contribute to the precise regulation of vesicular transit. One posttranslational lipid modification that is particularly important in neurons in regulating protein trafficking, protein-protein interactions, and protein association with lipid membranes is S-acylation. Interestingly, many fast axonal transport cargos, cytoskeletal-associated proteins, motor protein subunits, and adaptors are S-acylated to modulate axonal transport. Here, we review the established regulatory role of S-acylation in fast axonal transport and provide evidence for a broader role of S-acylation in regulating the motor-cargo complex machinery, adaptor proteins, and metabolic enzymes from low-throughput studies and S-acyl-proteomic data sets. We propose that S-acylation regulates fast axonal transport and vesicular motility through localization of the proteins required for the motile cargo-complex machinery and relate how perturbed S-acylation contributes to transport impairments in neurological disorders. SIGNIFICANCE STATEMENT: This review investigates the regulatory role of S-acylation in fast axonal transport and its connection to neurological diseases, with a focus on the emerging connections between S-acylation and the molecular motors, adaptor proteins, and metabolic enzymes that make up the trafficking machinery.
Collapse
Affiliation(s)
- Amelia H Doerksen
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Nisandi N Herath
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Shaun S Sanders
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada.
| |
Collapse
|
8
|
Schenone A, Massucco S, Schenone C, Venturi CB, Nozza P, Prada V, Pomili T, Di Patrizi I, Capodivento G, Nobbio L, Grandis M. Basic Pathological Mechanisms in Peripheral Nerve Diseases. Int J Mol Sci 2025; 26:3377. [PMID: 40244242 PMCID: PMC11989557 DOI: 10.3390/ijms26073377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Pathological changes and the cellular and molecular mechanisms underlying axonopathy and myelinopathy are key to understanding a wide range of inherited and acquired peripheral nerve disorders. While the clinical indications for nerve biopsy have diminished over time, its diagnostic value remains significant in select conditions, offering a unique window into the pathophysiological processes of peripheral neuropathies. Evidence highlights the symbiotic relationship between axons and myelinating Schwann cells, wherein disruptions in axo-glial interactions contribute to neuropathogenesis. This review synthesizes recent insights into the pathological and molecular underpinnings of axonopathy and myelinopathy. Axonopathy encompasses Wallerian degeneration, axonal atrophy, and dystrophy. Although extensively studied in traumatic nerve injury, the mechanisms of axonal degeneration and Schwann cell-mediated repair are increasingly recognized as pivotal in non-traumatic disorders, including dying-back neuropathies. We briefly outline key transcription factors, signaling pathways, and epigenetic changes driving axonal regeneration. For myelinopathy, we discuss primary segmental demyelination and dysmyelination, characterized by defective myelin development. We describe paranodal demyelination in light of recent findings in nodopathies, emphasizing that it is not an exclusive indicator of demyelinating disorders. This comprehensive review provides a framework to enhance our understanding of peripheral nerve pathology and its implications for developing targeted therapies.
Collapse
Affiliation(s)
- Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Sara Massucco
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
| | - Cristina Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
| | - Consuelo Barbara Venturi
- IRCCS Ospedale Policlinico San Martino, UO Patologia, Largo R. Benzi 10, 16132 Genova, Italy; (C.B.V.); (P.N.)
| | - Paolo Nozza
- IRCCS Ospedale Policlinico San Martino, UO Patologia, Largo R. Benzi 10, 16132 Genova, Italy; (C.B.V.); (P.N.)
| | - Valeria Prada
- Italian Multiple Sclerosis Foundation (FISM), Scientific Research Area, Via Operai 40, 16149 Genoa, Italy;
| | - Tania Pomili
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Irene Di Patrizi
- IRCCS Ospedale Policlinico San Martino, UO Radiologia, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Giovanna Capodivento
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Lucilla Nobbio
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences (DINOGMI), University of Genoa, Largo P. Daneo 3, 16132 Genova, Italy; (A.S.); (C.S.); (M.G.)
- IRCCS Ospedale Policlinico San Martino, UO Clinica Neurologica, Largo R. Benzi 10, 16132 Genova, Italy; (G.C.); (L.N.)
| |
Collapse
|
9
|
Lee H, Kang J, Lee SH, Lee D, Chung CH, Lee J. Neuroprotective role of Hippo signaling by microtubule stability control in Caenorhabditis elegans. eLife 2025; 13:RP102001. [PMID: 40178516 PMCID: PMC11968107 DOI: 10.7554/elife.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.
Collapse
Affiliation(s)
- Hanee Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Junsu Kang
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Sang-Hee Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Dowoon Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Christine H Chung
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| | - Junho Lee
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
10
|
Pal-Ghosh S, Datta-Majumdar H, Datta S, Dimri S, Hally J, Wehmeyer H, Chen Z, Watsky M, Ma JX, Liang W, Stepp MA. Corneal epithelial cells upregulate macropinocytosis to engulf metabolically active axonal mitochondria released by injured axons. Ocul Surf 2025; 37:173-188. [PMID: 40180030 DOI: 10.1016/j.jtos.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE To determine the mechanisms used to internalize mitochondria by corneal epithelial cells after in vivo corneal trephine injury and in vitro in corneal epithelial cells. METHODS Male and female mice were subjected to trephine injury and euthanized immediately, 6, and 24 h after injury. Macropinocytosis was quantified in vivo using 70 kD fluorescent dextran. Mitochondrial content was assessed by immunofluorescence and metabolic activity quantified by Seahorse assay immediately and 6 h after injury. In vitro experiments using human corneal and limbal epithelial (HCLE) cells and isolated mitochondria were performed to assess mitochondrial transfer in the presence of the gap junction inhibitor 18α-glycyrrhetinc acid and the macropincytosis inhibitor ethylisopropylamiloride. RESULTS Mitochondria accumulate within apical epithelial cell layers within minutes of trephine injury. Macropinocytosis also increases within minutes of trephine injury. Oxygen Consumption Rates increase in the corneal epithelium 6 h after trephine injury in males and females. Inhibiting gap junctions increases mitochondrial engulfment while inhibiting macropinocytosis prevents engulfment of mitochondria by corneal epithelial cells in vitro. CONCLUSIONS Molecules released by injured cells and severed axons induce macropinocytosis in corneal epithelial cells within minutes of trephine injury. An increase in oxygen consumption rate in the corneal epithelium after trephine injury indicates that axonal mitochondria can evade lysosomal degradation for at least 6 h. In vitro studies using isolated labeled and unlabeled mitochondria and control and mechanically stressed human corneal epithelial cells confirm the involvement of macropinocytosis in the engulfment of free and vesicle bound mitochondria by corneal epithelial cells.
Collapse
Affiliation(s)
- Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Himani Datta-Majumdar
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Soneha Datta
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Shelly Dimri
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Jordan Hally
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Hugo Wehmeyer
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Zhong Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mitchell Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Wentao Liang
- Department of Biochemistry, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA; Department of Ophthalmology, GW School of Medicine and Health Sciences, Washington DC, 20037, USA.
| |
Collapse
|
11
|
Mizuno K, Sugahara M, Kutomi O, Kato R, Itoh T, Fujita S, Yamada M. Direct observation of importin α family member KPNA1 in axonal transport with or without a schizophrenia-related mutation. J Biol Chem 2025; 301:108343. [PMID: 40010609 PMCID: PMC11982482 DOI: 10.1016/j.jbc.2025.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Karyopherin α1 (KPNA1)/(human importin α5; mouse importin α1) facilitates cargo transport into the nucleus by forming a complex with a nuclear localization sequence containing cargo and importin β1 (IPOB1). The elevated KPNA1 expression in neurons and the correlation between mutations and psychiatric disorders suggest its broader significance beyond nucleocytoplasmic transport. Although KPNA1 is localized in the neurites of neurons, its role in axonal transport mechanisms remains unclear, and data on the connection between psychiatric disorders and signaling at the periphery of neurons remain limited. To address this knowledge gap, we investigated the dynamics of KPNA1 and related factors within axons. Our results showed that many of the axonal KPNA1 did not form a complex with IPOB1 in noninjured steady-state neurons. Axonal KPNA1 exhibited relatively stationary mobility and some showed bidirectional motility with fluctuating motion. KPNA1 partly comigrated with endosome/lysosome-associated factors, suggesting the presence of novel mechanisms underlie axonal transport and nucleocytoplasmic shuttling involving KPNA1 and IPOB1. Mutated KPNA1, which has been shown to be associated with psychiatric disorders (KPNA1E448X), was predominantly localized to the nucleus and lost from the axon. Incorporating a nuclear export signal (KPNA1E448X-NES) enhanced its subcellular localization and dynamics in the axon. Our findings demonstrate that KPNA1 functions not only as a shuttle between the cytoplasm and nucleus but also as a transporter in neuronal axons, relying on the endosomes for movement away from the nucleus with relatively slow net motions. Furthermore, a mutation in the Kpna1 gene can affect the dynamics of axonal transport. The insights from these mutations provide valuable knowledge for expanding our understanding of psychiatric disorders and facilitate the development of novel treatment strategies.
Collapse
Affiliation(s)
- Katsutoshi Mizuno
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Masaki Sugahara
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Osamu Kutomi
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Ryota Kato
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-gun, Fukui Prefecture, Japan
| | - Satoshi Fujita
- Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan; Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan.
| |
Collapse
|
12
|
Garg V, Möbius W, Heinrich R, Ruhwedel T, Perera RP, Scholz P, Ischebeck T, Salinas G, Dullin C, Göpfert MC, Engelmann J, Dosch R, Geurten BRH. Patient-specific mutation of contact site protein Tomm70 causes neurodegeneration. Dis Model Mech 2025; 18:dmm052029. [PMID: 40151845 PMCID: PMC12067081 DOI: 10.1242/dmm.052029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
TOMM70 is a receptor at the contact site between mitochondria and the endoplasmic reticulum, and TOMM70 has been identified as a risk gene for hereditary spastic paraplegia. Furthermore, de novo missense variants of TOMM70 have been identified to cause neurological impairments in two unrelated patients. Here, we show that mutant zebrafish ruehreip25ca also harbour a missense mutation in tomm70, affecting the same conserved isoleucine residue as in one of the human patients. Using this model, we demonstrate how loss of Tomm70 function leads to impairment. At the molecular level, the mutation affected the interaction of Tomm70 with the endoplasmic reticulum protein Lam6, a known sterol transporter. At the neuronal level, the mutation impaired mitochondrial transport to the axons and dendrites, leading to demyelination of large calibre axons in the spinal cord. These neurodegenerative defects in zebrafish were associated with reduced endurance and swimming efficiency, and alterations in the C-start escape response, which correlated with decreased spiking in giant Mauthner neurons. Thus, in zebrafish, a mutation in the endoplasmic reticulum-mitochondria contact site protein Tomm70 recreates some of the neurodegenerative phenotypes characteristic of hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
| | | | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Gottingen Center for Molecular Biosciences (GZMB) Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Gottingen Center for Molecular Biosciences (GZMB) Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Gabriela Salinas
- Institute of Human Genetics, University Medical Center, Göttingen Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Christian Dullin
- Department of Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Jacob Engelmann
- Faculty of Biology, Bielefeld University33615 Bielefeld, Germany
| | - Roland Dosch
- Institute of Human Genetics, University Medical Center, Göttingen Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
- Department of Zoology, University of Otago39054 Dunedin, New Zealand
| |
Collapse
|
13
|
Lu S, Shen J, Jin X, Zhang C, Wang B, Liu X, Bai M, Xu E, Yan X, Li Y. A novel antidepressant mechanism of baicalin: enhancing KIF5A-mediated axoplasmic transport and vesicular trafficking in glutamatergic neurons. Front Pharmacol 2025; 16:1577676. [PMID: 40290440 PMCID: PMC12023265 DOI: 10.3389/fphar.2025.1577676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Dysfunction of axoplasmic transport is closely linked to depression. Baicalin, a major flavonoid in Scutellaria baicalensis, a well-known traditional Chinese medicine used in depression treatment, has demonstrated antidepressant-like effects in previous studies. However, its potential role in regulating axoplasmic transport has not been explored. This study aims to investigate the antidepressant mechanisms of baicalin through modulation of axoplasmic transport in hippocampal neurons. Methods Male C57BL/6N mice were exposed to chronic unpredictable mild stress (CUMS) and treated with baicalin (10, 20, 40 mg/kg) or fluoxetine (20 mg/kg). Depression-like behaviors were assessed using the sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST), and locomotor activity test (LAT). Hippocampal neuronal pathology was examined using transmission electron microscopy (TEM), Nissl, and Golgi staining. Transcriptomic analysis was conducted to explore the molecular mechanisms of baicalin. HT22 cells were cultured in vitro and treated with corticosterone (CORT) and baicalin. FM1-43 was used to label vesicles and track vesicular movement. mRNA and protein levels were measured by qRT-PCR, Western blotting, and immunofluorescence. Results Baicalin significantly alleviated CUMS-induced depressive behaviors, increasing sucrose preference, reducing immobility time in TST and FST, and increasing food intake without affecting locomotor activity. It improved hippocampal CA3 neuronal damage, increased dendritic spine density, and promoted presynaptic vesicle accumulation, particularly in glutamatergic neurons. Transcriptomic analysis revealed that baicalin upregulated vGLUT2 (encoded by the Slc17a6 gene) and significantly increased the expression of GluN2B, GluA1, and PSD95. Moreover, baicalin upregulated the expression of kinesin family member 5A (KIF5A) both in vivo and in vitro, enhancing vesicle movement along axons and increasing vesicle-associated membrane protein 2 (VAMP2) enrichment in synaptosomes. Discussion These findings suggest that baicalin enhances anterograde axoplasmic transport by upregulating KIF5A expression, facilitating vesicular trafficking and improving synaptic function in glutamatergic neurons. This study provides novel insights into the molecular mechanisms of antidepressant effects of baicalin, highlighting KIF5A as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Shuaifei Lu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiduo Shen
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaohui Jin
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Changjing Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Baoying Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xianghua Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Ming Bai
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Erping Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiangli Yan
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yucheng Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain for Yu-Yao of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Lindamood HL, Liu TM, Read TA, Vitriol EA. Using ALS to understand profilin 1's diverse roles in cellular physiology. Cytoskeleton (Hoboken) 2025; 82:111-129. [PMID: 39056295 PMCID: PMC11762371 DOI: 10.1002/cm.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.
Collapse
Affiliation(s)
- Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
15
|
Rahman N, Oelz DB. Stretch-induced recruitment of myosin into transversal actin rings stabilises axonal large cargo transport. Math Biosci 2025; 381:109400. [PMID: 39954942 DOI: 10.1016/j.mbs.2025.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/05/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
We study the axonal transport of large cargo vesicles and its feedback with contractile transversal actomyosin rings in axons through modelling and simulation. To this end, we simulate a mathematical model that integrates forces generated by the molecular motors and forces exerted by transversal actin rings. Our results predict that cargo vesicles exhibit bidirectional movement along with pauses in agreement with observations. It has been observed that during predominantly retrograde axonal cargo transport, blebbistatin treatment prolongs the periods spent by the cargo in anterograde transport. Our simulations show that this can be explained by mechanotransductive stretch-induced recruitment of myosin motors into transversal actin rings. These findings offer valuable insights into the complex dynamics of axonal cargo transport and propose potential avenues for further experimental research.
Collapse
Affiliation(s)
- Nizhum Rahman
- School of Mathematics and Physics, The University of Queensland, QLD, 4072, Australia; Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Dietmar B Oelz
- School of Mathematics and Physics, The University of Queensland, QLD, 4072, Australia
| |
Collapse
|
16
|
Sébastien M, Paquette AL, Prowse ENP, Hendricks AG, Brouhard GJ. Doublecortin restricts neuronal branching by regulating tubulin polyglutamylation. Nat Commun 2025; 16:1749. [PMID: 39966472 PMCID: PMC11836384 DOI: 10.1038/s41467-025-56951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Doublecortin is a neuronal microtubule-associated protein that regulates microtubule structure in neurons. Mutations in Doublecortin cause lissencephaly and subcortical band heterotopia by impairing neuronal migration. We use CRISPR/Cas9 to knock-out the Doublecortin gene in induced pluripotent stem cells and differentiate the cells into cortical neurons. DCX-KO neurons show reduced velocities of nuclear movements and an increased number of neurites early in neuronal development, consistent with previous findings. Neurite branching is regulated by a host of microtubule-associated proteins, as well as by microtubule polymerization dynamics. However, EB comet dynamics are unchanged in DCX-KO neurons. Rather, we observe a significant reduction in α-tubulin polyglutamylation in DCX-KO neurons. Polyglutamylation levels and neuronal branching are rescued by expression of Doublecortin or of TTLL11, an α-tubulin glutamylase. Using U2OS cells as an orthogonal model system, we show that DCX and TTLL11 act synergistically to promote polyglutamylation. We propose that Doublecortin acts as a positive regulator of α-tubulin polyglutamylation and restricts neurite branching. Our results indicate an unexpected role for Doublecortin in the homeostasis of the tubulin code.
Collapse
Affiliation(s)
- Muriel Sébastien
- Department of Biology, McGill University, Montréal, QC, Canada
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | | | - Emily N P Prowse
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Gary J Brouhard
- Department of Biology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
17
|
Garat J, Di Paolo A, Eastman G, Castillo PE, Sotelo-Silveira J. The Trail of Axonal Protein Synthesis: Origins and Current Functional Landscapes. Neuroscience 2025; 567:195-208. [PMID: 39755230 DOI: 10.1016/j.neuroscience.2024.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/03/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions. However, compelling evidence supports its essential and pervasive role in axonal function in the mature nervous system. Remarkably, in the last five decades, Uruguayan neuroscientists have contributed significantly to demonstrating axonal LPS by studying motor and sensory axons of the peripheral nervous system of mammals, as well as giant axons of the squid and the Mauthner cell of fish. For LPS to occur, a highly regulated transport system must deliver the necessary macromolecules, such as mRNAs and ribosomes. This review discusses key findings related to the localization and abundance of axonal mRNAs and their translation levels, both in basal states and in response to physiological processes, such as learning and memory consolidation, as well as neurodevelopmental and neurodegenerative disorders, including Alzheimer's disease, autism spectrum disorder, and axonal injury. Moreover, we discuss the current understanding of axonal ribosomes, from their localization to the potential roles of locally translated ribosomal proteins, in the context of emerging research that highlights the regulatory roles of the ribosome in translation. Lastly, we address the main challenges and open questions for future studies.
Collapse
Affiliation(s)
- Joaquin Garat
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Andres Di Paolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay.
| |
Collapse
|
18
|
Jiang YQ, Chen QZ, Yang Y, Zang CX, Ma JW, Wang JR, Dong YR, Zhou N, Yang X, Li FF, Bao XQ, Zhang D. White matter lesions contribute to motor and non-motor disorders in Parkinson's disease: a critical review. GeroScience 2025; 47:591-609. [PMID: 39576561 PMCID: PMC11872850 DOI: 10.1007/s11357-024-01428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/08/2024] [Indexed: 03/04/2025] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease, characterized by movement disorders and non-motor symptoms like cognitive impairment and depression. Degeneration of dopaminergic neurons in the substantia nigra and Lewy bodies have long been considered as main neuropathological changes. However, recent magnetic resonance imaging (MRI) studies have shown that white matter lesions (WMLs) were present in PD patients. WMLs are characterized by loss or impairment of myelin sheath in central nerve fibers, which are closely correlated with motor and cognitive dysfunction in PD. WMLs alterations precede nigrostriatal neuronal losses and can independently affect the clinical severity or characteristics of motor coordination in PD patients. Currently, the exact mechanism of WMLs involvement in the occurrence and development of PD remains unclear. It is speculated that WMLs may participate in the pathogenesis of PD by disrupting important connections in brain or promoting axonal degeneration. In this review, we will discuss the pathological changes and mechanisms of WMLs, elaborate the impact of WMLs on the progression of PD, clarify the importance of WMLs in PD pathogenesis, and thus provide novel targets for PD treatments.
Collapse
Affiliation(s)
- Yue-Qi Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Qiu-Zhu Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Yang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Cai-Xia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Jing-Wei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Jin-Rong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Yi-Rong Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Ning Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Xing Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Fang-Fang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China.
| |
Collapse
|
19
|
Wijegunawardana D, Nayak A, Vishal SS, Venkatesh N, Gopal PP. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43 ribonucleoprotein condensates disrupting mRNA transport and local translation in neurons. Dev Cell 2025; 60:253-269.e5. [PMID: 39419034 PMCID: PMC12063900 DOI: 10.1016/j.devcel.2024.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Altered RNA metabolism and misregulation of transactive response DNA-binding protein of 43 kDa (TDP-43), an essential RNA-binding protein (RBP), define amyotrophic lateral sclerosis (ALS). Intermediate-length polyglutamine (polyQ) expansions of Ataxin-2, a like-Sm (LSm) RBP, are associated with increased risk for ALS, but the underlying biological mechanisms remain unknown. Here, we studied the spatiotemporal dynamics and mRNA regulatory functions of TDP-43 and Ataxin-2 ribonucleoprotein (RNP) condensates in rodent (rat) primary cortical neurons and mouse motor neuron axons in vivo. We report that Ataxin-2 polyQ expansions aberrantly sequester TDP-43 within RNP condensates and disrupt both its motility along the axon and liquid-like properties. We provide evidence that Ataxin-2 governs motility and translation of neuronal RNP condensates and that Ataxin-2 polyQ expansions fundamentally perturb spatial localization of mRNA and suppress local translation. Overall, our results support a model in which Ataxin-2 polyQ expansions disrupt stability, localization, and/or translation of critical axonal and cytoskeletal mRNAs, particularly important for motor neuron integrity.
Collapse
Affiliation(s)
- Denethi Wijegunawardana
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Asima Nayak
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sonali S Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Neha Venkatesh
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Pallavi P Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
20
|
Hussein MN. Labeling of the serotonergic neuronal circuits emerging from the raphe nuclei via some retrograde tracers. Microsc Res Tech 2024; 87:2894-2914. [PMID: 39041701 DOI: 10.1002/jemt.24662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a very important neurotransmitter emerging from the raphe nuclei to several brain regions. Serotonergic neuronal connectivity has multiple functions in the brain. In this study, several techniques were used to trace serotonergic neurons in the dorsal raphe (DR) and median raphe (MnR) that project toward the arcuate nucleus of the hypothalamus (Arc), dorsomedial hypothalamic nucleus (DM), lateral hypothalamic area (LH), paraventricular hypothalamic nucleus (PVH), ventromedial hypothalamic nucleus (VMH), fasciola cinereum (FC), and medial habenular nucleus (MHb). Cholera toxin subunit B (CTB), retro-adeno-associated virus (rAAV-CMV-mCherry), glycoprotein-deleted rabies virus (RV-ΔG), and simultaneous microinjection of rAAV2-retro-Cre-tagBFP with AAV-dio-mCherry in C57BL/6 mice were used in this study. In addition, rAAV2-retro-Cre-tagBFP was microinjected into Ai9 mice. Serotonin immunohistochemistry was used for the detection of retrogradely traced serotonergic neurons in the raphe nuclei. The results indicated that rAAV2-retro-Cre-tagBFP microinjection in Ai9 mice was the best method for tracing serotonergic neuron circuits. All of the previously listed nuclei exhibited serotonergic neuronal projections from the DR and MnR, with the exception of the FC, which had very few projections from the DR. The serotonergic neuronal projections were directed toward the Arc by the subpeduncular tegmental (SPTg) nuclei. Moreover, the RV-ΔG tracer revealed monosynaptic non-serotonergic neuronal projections from the DR that were directed toward the Arc. Furthermore, rAAV tracers revealed monosynaptic serotonergic neuronal connections from the raphe nuclei toward Arc. These findings validate the variations in neurotropism among several retrograde tracers. The continued discovery of several novel serotonergic neural circuits is crucial for the future discovery of the functions of these circuits. RESEARCH HIGHLIGHTS: Various kinds of retrograde tracers were microinjected into C57BL/6 and Ai9 mice. The optimum method for characterizing serotonergic neuronal circuits is rAAV2-retro-Cre-tagBFP microinjection in Ai9 mice. The DR, MnR, and SPTg nuclei send monosynaptic serotonergic neuronal projections toward the arcuate nucleus of the hypothalamus. Whole-brain quantification analysis of retrograde-labeled neurons in different brain nuclei following rAAV2-retro-Cre-tagBFP microinjection in the Arc, DM, LH, and VMH is shown. Differential quantitative analysis of median and dorsal raphe serotonergic neurons emerging toward the PVH, DM, LH, Arc, VMH, MHb, and FC is shown.
Collapse
Affiliation(s)
- Mona N Hussein
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Histology and Cytology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
21
|
Tosolini AP, Abatecola F, Negro S, Sleigh JN, Schiavo G. The node of Ranvier influences the in vivo axonal transport of mitochondria and signaling endosomes. iScience 2024; 27:111158. [PMID: 39524336 PMCID: PMC11544082 DOI: 10.1016/j.isci.2024.111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Efficient long-range axonal transport is essential for maintaining neuronal function, and perturbations in this process underlie severe neurological diseases. Nodes of Ranvier (NoR) are short, specialized unmyelinated axonal domains with a unique molecular and structural composition. Currently, it remains unresolved how the distinct molecular structures of the NoR impact axonal transport dynamics. Using intravital time-lapse microscopy of sciatic nerves in live, anesthetized mice, we reveal (1) similar morphologies of the NoR in fast and slow motor axons, (2) signaling endosomes and mitochondria accumulate specifically at the distal node, and (3) unique axonal transport profiles of signaling endosomes and mitochondria transiting through the NoR. Collectively, these findings provide important insights into the fundamental physiology of peripheral nerve axons, motor neuron subtypes, and diverse organelle dynamics at the NoR. Furthermore, this work has relevance for several pathologies affecting peripheral nerves and the NoR.
Collapse
Affiliation(s)
- Andrew P. Tosolini
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4067, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Federico Abatecola
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
- U.O.C. Clinica Neurologica, Azienda Ospedale, University of Padua, 35128 Padua, Italy
| | - James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
22
|
Zhou C, Wu YK, Ishidate F, Fujiwara TK, Kengaku M. Nesprin-2 coordinates opposing microtubule motors during nuclear migration in neurons. J Cell Biol 2024; 223:e202405032. [PMID: 39115447 PMCID: PMC11310688 DOI: 10.1083/jcb.202405032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 09/13/2024] Open
Abstract
Nuclear migration is critical for the proper positioning of neurons in the developing brain. It is known that bidirectional microtubule motors are required for nuclear transport, yet the mechanism of the coordination of opposing motors is still under debate. Using mouse cerebellar granule cells, we demonstrate that Nesprin-2 serves as a nucleus-motor adaptor, coordinating the interplay of kinesin-1 and dynein. Nesprin-2 recruits dynein-dynactin-BicD2 independently of the nearby kinesin-binding LEWD motif. Both motor binding sites are required to rescue nuclear migration defects caused by the loss of function of Nesprin-2. In an intracellular cargo transport assay, the Nesprin-2 fragment encompassing the motor binding sites generates persistent movements toward both microtubule minus and plus ends. Nesprin-2 drives bidirectional cargo movements over a prolonged period along perinuclear microtubules, which advance during the migration of neurons. We propose that Nesprin-2 keeps the nucleus mobile by coordinating opposing motors, enabling continuous nuclear transport along advancing microtubules in migrating cells.
Collapse
Affiliation(s)
- Chuying Zhou
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - You Kure Wu
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Fumiyoshi Ishidate
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Mineko Kengaku
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Usmanova DR, Plata G, Vitkup D. Functional Optimization in Distinct Tissues and Conditions Constrains the Rate of Protein Evolution. Mol Biol Evol 2024; 41:msae200. [PMID: 39431545 PMCID: PMC11523136 DOI: 10.1093/molbev/msae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 10/22/2024] Open
Abstract
Understanding the main determinants of protein evolution is a fundamental challenge in biology. Despite many decades of active research, the molecular and cellular mechanisms underlying the substantial variability of evolutionary rates across cellular proteins are not currently well understood. It also remains unclear how protein molecular function is optimized in the context of multicellular species and why many proteins, such as enzymes, are only moderately efficient on average. Our analysis of genomics and functional datasets reveals in multiple organisms a strong inverse relationship between the optimality of protein molecular function and the rate of protein evolution. Furthermore, we find that highly expressed proteins tend to be substantially more functionally optimized. These results suggest that cellular expression costs lead to more pronounced functional optimization of abundant proteins and that the purifying selection to maintain high levels of functional optimality significantly slows protein evolution. We observe that in multicellular species both the rate of protein evolution and the degree of protein functional efficiency are primarily affected by expression in several distinct cell types and tissues, specifically, in developed neurons with upregulated synaptic processes in animals and in young and fast-growing tissues in plants. Overall, our analysis reveals how various constraints from the molecular, cellular, and species' levels of biological organization jointly affect the rate of protein evolution and the level of protein functional adaptation.
Collapse
Affiliation(s)
- Dinara R Usmanova
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Germán Plata
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- BiomEdit, Fishers, IN 46037, USA
| | - Dennis Vitkup
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
24
|
Wu W, Zhang J, Chen Y, Chen Q, Liu Q, Zhang F, Li S, Wang X. Genes in Axonal Regeneration. Mol Neurobiol 2024; 61:7431-7447. [PMID: 38388774 DOI: 10.1007/s12035-024-04049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
This review explores the molecular and genetic underpinnings of axonal regeneration and functional recovery post-nerve injury, emphasizing its significance in reversing neurological deficits. It presents a systematic exploration of the roles of various genes in axonal regrowth across peripheral and central nerve injuries. Initially, it highlights genes and gene families critical for axonal growth and guidance, delving into their roles in regeneration. It then examines the regenerative microenvironment, focusing on the role of glial cells in neural repair through dedifferentiation, proliferation, and migration. The concept of "traumatic microenvironments" within the central nervous system (CNS) and peripheral nervous system (PNS) is discussed, noting their impact on regenerative capacities and their importance in therapeutic strategy development. Additionally, the review delves into axonal transport mechanisms essential for accurate growth and reinnervation, integrating insights from proteomics, genome-wide screenings, and gene editing advancements. Conclusively, it synthesizes these insights to offer a comprehensive understanding of axonal regeneration's molecular orchestration, aiming to inform effective nerve injury therapies and contribute to regenerative neuroscience.
Collapse
Affiliation(s)
- Wenshuang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fuchao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
25
|
Abstract
Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes' exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Current affiliation: Graduate School of Biomedical Science and Engineering and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Katrin Karbstein
- Current affiliation: Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
26
|
Cavarischia-Rega C, Sharma K, Fitzgerald JC, Macek B. Proteome Dynamics in iPSC-Derived Human Dopaminergic Neurons. Mol Cell Proteomics 2024; 23:100838. [PMID: 39251023 PMCID: PMC11474371 DOI: 10.1016/j.mcpro.2024.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024] Open
Abstract
Dopaminergic neurons participate in fundamental physiological processes and are the cell type primarily affected in Parkinson's disease. Their analysis is challenging due to the intricate nature of their function, involvement in diverse neurological processes, and heterogeneity and localization in deep brain regions. Consequently, most of the research on the protein dynamics of dopaminergic neurons has been performed in animal cells ex vivo. Here we use iPSC-derived human mid-brain-specific dopaminergic neurons to study general features of their proteome biology and provide datasets for protein turnover and dynamics, including a human axonal translatome. We cover the proteome to a depth of 9409 proteins and use dynamic SILAC to measure the half-life of more than 4300 proteins. We report uniform turnover rates of conserved cytosolic protein complexes such as the proteasome and map the variable rates of turnover of the respiratory chain complexes in these cells. We use differential dynamic SILAC labeling in combination with microfluidic devices to analyze local protein synthesis and transport between axons and soma. We report 105 potentially novel axonal markers and detect translocation of 269 proteins between axons and the soma in the time frame of our analysis (120 h). Importantly, we provide evidence for local synthesis of 154 proteins in the axon and their retrograde transport to the soma, among them several proteins involved in RNA editing such as ADAR1 and the RNA helicase DHX30, involved in the assembly of mitochondrial ribosomes. Our study provides a workflow and resource for the future applications of quantitative proteomics in iPSC-derived human neurons.
Collapse
Affiliation(s)
- Claudia Cavarischia-Rega
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Karan Sharma
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julia C Fitzgerald
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Boris Macek
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
27
|
Schleske JM, Hubrich J, Wirth JO, D’Este E, Engelhardt J, Hell SW. MINFLUX reveals dynein stepping in live neurons. Proc Natl Acad Sci U S A 2024; 121:e2412241121. [PMID: 39254993 PMCID: PMC11420169 DOI: 10.1073/pnas.2412241121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Dynein is the primary molecular motor responsible for retrograde intracellular transport of a variety of cargoes, performing successive nanometer-sized steps within milliseconds. Due to the limited spatiotemporal precision of established methods for molecular tracking, current knowledge of dynein stepping is essentially limited to slowed-down measurements in vitro. Here, we use MINFLUX fluorophore localization to directly track CRISPR/Cas9-tagged endogenous dynein with nanometer/millisecond precision in living primary neurons. We show that endogenous dynein primarily takes 8 nm steps, including frequent sideways steps but few backward steps. Strikingly, the majority of direction reversals between retrograde and anterograde movement occurred on the time scale of single steps (16 ms), suggesting a rapid regulatory reversal mechanism. Tug-of-war-like behavior during pauses or reversals was unexpectedly rare. By analyzing the dwell time between steps, we concluded that a single rate-limiting process underlies the dynein stepping mechanism, likely arising from just one adenosine 5'-triphosphate hydrolysis event being required during each step. Our study underscores the power of MINFLUX localization to elucidate the spatiotemporal changes underlying protein function in living cells.
Collapse
Affiliation(s)
- Jonas M. Schleske
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Jasmine Hubrich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Jan Otto Wirth
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Elisa D’Este
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Johann Engelhardt
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
| | - Stefan W. Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg69120, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| |
Collapse
|
28
|
Eun SH, Noh SH, Lee MG. Specific kinesin and dynein molecules participate in the unconventional protein secretion of transmembrane proteins. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:435-447. [PMID: 39198224 PMCID: PMC11362002 DOI: 10.4196/kjpp.2024.28.5.435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 09/01/2024]
Abstract
Secretory proteins, including plasma membrane proteins, are generally known to be transported to the plasma membrane through the endoplasmic reticulum- to-Golgi pathway. However, recent studies have revealed that several plasma membrane proteins and cytosolic proteins lacking a signal peptide are released via an unconventional protein secretion (UcPS) route, bypassing the Golgi during their journey to the cell surface. For instance, transmembrane proteins such as the misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein and the Spike protein of coronaviruses have been observed to reach the cell surface through a UcPS pathway under cell stress conditions. Nevertheless, the precise mechanisms of the UcPS pathway, particularly the molecular machineries involving cytosolic motor proteins, remain largely unknown. In this study, we identified specific kinesins, namely KIF1A and KIF5A, along with cytoplasmic dynein, as critical players in the unconventional trafficking of CFTR and the SARS-CoV-2 Spike protein. Gene silencing results demonstrated that knockdown of KIF1A, KIF5A, and the KIF-associated adaptor protein SKIP, FYCO1 significantly reduced the UcPS of △F508-CFTR. Moreover, gene silencing of these motor proteins impeded the UcPS of the SARS-CoV-2 Spike protein. However, the same gene silencing did not affect the conventional Golgimediated cell surface trafficking of wild-type CFTR and Spike protein. These findings suggest that specific motor proteins, distinct from those involved in conventional trafficking, are implicated in the stress-induced UcPS of transmembrane proteins.
Collapse
Affiliation(s)
- Sung Ho Eun
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
29
|
Gavrilova A, Boström A, Korabel N, Fedotov S, Poulin GB, Allan VJ. The role of kinesin-1 in neuronal dense core vesicle transport, locomotion and lifespan regulation in C. elegans. J Cell Sci 2024; 137:jcs262148. [PMID: 39171448 PMCID: PMC11423817 DOI: 10.1242/jcs.262148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Fast axonal transport is crucial for neuronal function and is driven by kinesins and cytoplasmic dynein. Here, we investigated the role of kinesin-1 in dense core vesicle (DCV) transport in C. elegans, using mutants in the kinesin light chains (klc-1 and klc-2) and the motor subunit (unc-116) expressing an ida-1::gfp transgene that labels DCVs. DCV transport in both directions was greatly impaired in an unc-116 mutant and had reduced velocity in a klc-2 mutant. In contrast, the speed of retrograde DCV transport was increased in a klc-1 mutant whereas anterograde transport was unaffected. We identified striking differences between the klc mutants in their effects on worm locomotion and responses to drugs affecting neuromuscular junction activity. We also determined lifespan, finding that unc-116 mutant was short-lived whereas the klc single mutant lifespan was wild type. The ida-1::gfp transgenic strain was also short-lived, but surprisingly, klc-1 and klc-2 extended the ida-1::gfp lifespan beyond that of wild type. Our findings suggest that kinesin-1 not only influences anterograde and retrograde DCV transport but is also involved in regulating lifespan and locomotion, with the two kinesin light chains playing distinct roles.
Collapse
Affiliation(s)
- Anna Gavrilova
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Astrid Boström
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Nickolay Korabel
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Sergei Fedotov
- Department of Mathematics, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Gino B Poulin
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| | - Victoria J Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Rumford St, Manchester M13 9PT, UK
| |
Collapse
|
30
|
Hervoso JL, Amoah K, Dodson J, Choudhury M, Bhattacharya A, Quinones-Valdez G, Pasaniuc B, Xiao X. Splicing-specific transcriptome-wide association uncovers genetic mechanisms for schizophrenia. Am J Hum Genet 2024; 111:1573-1587. [PMID: 38925119 PMCID: PMC11339621 DOI: 10.1016/j.ajhg.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies have highlighted the essential role of RNA splicing, a key mechanism of alternative RNA processing, in establishing connections between genetic variations and disease. Genetic loci influencing RNA splicing variations show considerable influence on complex traits, possibly surpassing those affecting total gene expression. Dysregulated RNA splicing has emerged as a major potential contributor to neurological and psychiatric disorders, likely due to the exceptionally high prevalence of alternatively spliced genes in the human brain. Nevertheless, establishing direct associations between genetically altered splicing and complex traits has remained an enduring challenge. We introduce Spliced-Transcriptome-Wide Associations (SpliTWAS) to integrate alternative splicing information with genome-wide association studies to pinpoint genes linked to traits through exon splicing events. We applied SpliTWAS to two schizophrenia (SCZ) RNA-sequencing datasets, BrainGVEX and CommonMind, revealing 137 and 88 trait-associated exons (in 84 and 67 genes), respectively. Enriched biological functions in the associated gene sets converged on neuronal function and development, immune cell activation, and cellular transport, which are highly relevant to SCZ. SpliTWAS variants impacted RNA-binding protein binding sites, revealing potential disruption of RNA-protein interactions affecting splicing. We extended the probabilistic fine-mapping method FOCUS to the exon level, identifying 36 genes and 48 exons as putatively causal for SCZ. We highlight VPS45 and APOPT1, where splicing of specific exons was associated with disease risk, eluding detection by conventional gene expression analysis. Collectively, this study supports the substantial role of alternative splicing in shaping the genetic basis of SCZ, providing a valuable approach for future investigations in this area.
Collapse
Affiliation(s)
- Jonatan L Hervoso
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kofi Amoah
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jack Dodson
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giovanni Quinones-Valdez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Moreira-Gomes T, Nóbrega C. From the disruption of RNA metabolism to the targeting of RNA-binding proteins: The case of polyglutamine spinocerebellar ataxias. J Neurochem 2024; 168:1442-1459. [PMID: 37990934 DOI: 10.1111/jnc.16010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Polyglutamine spinocerebellar ataxias (PolyQ SCAs) represent a group of monogenetic diseases in which the expanded polyglutamine repeats give rise to a mutated protein. The abnormally expanded polyglutamine protein produces aggregates and toxic species, causing neuronal dysfunction and neuronal death. The main symptoms of these disorders include progressive ataxia, motor dysfunction, oculomotor impairment, and swallowing problems. Nowadays, the current treatments are restricted to symptomatic alleviation, and no existing therapeutic strategies can reduce or stop the disease progression. Even though the origin of these disorders has been associated with polyglutamine-induced toxicity, RNA toxicity has recently gained relevance in polyQ SCAs molecular pathogenesis. Therefore, the research's focus on RNA metabolism has been increasing, especially on RNA-binding proteins (RBPs). The present review summarizes RNA metabolism, exposing the different processes and the main RBPs involved. We also explore the mechanisms by which RBPs are dysregulated in PolyQ SCAs. Finally, possible therapies targeting the RNA metabolism are presented as strategies to reverse neuropathological anomalies and mitigate physical symptoms.
Collapse
Affiliation(s)
- Tiago Moreira-Gomes
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
32
|
Kemfack AM, Hernández-Morato I, Moayedi Y, Pitman MJ. Transcriptome Analysis of Left Versus Right Intrinsic Laryngeal Muscles Associated with Innervation. Laryngoscope 2024; 134:3741-3753. [PMID: 38721727 PMCID: PMC11245368 DOI: 10.1002/lary.31487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
OBJECTIVES/HYPOTHESIS Recurrent laryngeal nerve injury diagnosed as idiopathic or due to short-term surgery-related intubation exhibits a higher incidence of left-sided paralysis. While this is often attributed to nerve length, it is hypothesized there are asymmetric differences in the expression of genes related to neuromuscular function that may impact reinnervation and contribute to this laterality phenomenon. To test this hypothesis, this study analyzes the transcriptome profiles of the intrinsic laryngeal muscles (ILMs), comparing gene expression in the left versus right, with particular attention to genetic pathways associated with neuromuscular function. STUDY DESIGN Laboratory experiment. METHODS RNA was extracted from the left and right sides of the rat posterior cricoarytenoid (PCA), lateral thyroarytenoid (LTA), and medial thyroarytenoid (MTA), respectively. After high-throughput RNA-Sequencing, 88 samples were organized into 12 datasets according to their age (P15/adult), sex (male/female), and muscle type (PCA/LTA/MTA). A comprehensive bioinformatics analysis was conducted to compare the left-right ILMs across different conditions. RESULTS A total of 774 differentially expressed genes were identified across the 12 experimental groups, revealing age, sex, and muscle-specific differences between the left versus right ILMs. Enrichment analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways implicated several genes with a left-right laryngeal muscle asymmetry. These genes are associated with neuronal and muscular physiology, immune/inflammatory response, and hormone control. CONCLUSION Bioinformatics analysis confirmed divergent transcriptome profiles between the left-right ILMs. This preliminary study identifies putative gene targets that will characterize ILM laterality. LEVEL OF EVIDENCE N/A Laryngoscope, 134:3741-3753, 2024.
Collapse
Affiliation(s)
- Angela M. Kemfack
- The Center for Voice and Swallowing, Department of Otolaryngology-Head & Neck Surgery, Columbia University Irving Medical Center. New York, NY
| | - Ignacio Hernández-Morato
- The Center for Voice and Swallowing, Department of Otolaryngology-Head & Neck Surgery, Columbia University Irving Medical Center. New York, NY
- Department of Anatomy and Embryology, School of Medicine, Complutense University of Madrid. Madrid (Spain)
| | - Yalda Moayedi
- The Center for Voice and Swallowing, Department of Otolaryngology-Head & Neck Surgery, Columbia University Irving Medical Center. New York, NY
- Department of Neurology, Columbia University Irving Medical Center. New York, NY
- Pain Research Center, New York University College of Dentistry, New York University. New York, NY
| | - Michael J. Pitman
- The Center for Voice and Swallowing, Department of Otolaryngology-Head & Neck Surgery, Columbia University Irving Medical Center. New York, NY
| |
Collapse
|
33
|
Lesport E, Commeau L, Genet M, Baulieu EE, Tawk M, Giustiniani J. A decrease in Fkbp52 alters autophagosome maturation and A152T-tau clearance in vivo. Front Cell Neurosci 2024; 18:1425222. [PMID: 39119047 PMCID: PMC11306173 DOI: 10.3389/fncel.2024.1425222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
The failure of the autophagy-lysosomal pathway to clear the pathogenic forms of Tau exacerbates the pathogenesis of tauopathies. We have previously shown that the immunophilin FKBP52 interacts both physically and functionally with Tau, and that a decrease in FKBP52 protein levels is associated with Tau deposition in affected human brains. We have also shown that FKBP52 is physiologically present within the lysosomal system in healthy human neurons and that a decrease in FKBP52 expression alters perinuclear lysosomal positioning and Tau clearance during Tau-induced proteotoxic stress in vitro. In this study, we generate a zebrafish fkbp4 loss of function mutant and show that axonal retrograde trafficking of Lamp1 vesicles is altered in this mutant. Moreover, using our transgenic HuC::mCherry-EGFP-LC3 line, we demonstrate that the autophagic flux is impaired in fkbp4 mutant embryos, suggesting a role for Fkbp52 in the maturation of autophagic vesicles. Alterations in both axonal transport and autophagic flux are more evident in heterozygous rather than homozygous fkbp4 mutants. Finally, taking advantage of the previously described A152T-Tau transgenic fish, we show that the clearance of pathogenic A152T-Tau mutant proteins is slower in fkbp4 +/- mutants in comparison to fkbp4 +/+ larvae. Altogether, these results indicate that Fkbp52 is required for the normal trafficking and maturation of lysosomes and autophagic vacuoles along axons, and that its decrease is sufficient to hinder the clearance of pathogenic Tau in vivo.
Collapse
Affiliation(s)
- Emilie Lesport
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Lucie Commeau
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
| | - Mélanie Genet
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
| | - Etienne-Emile Baulieu
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Marcel Tawk
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Julien Giustiniani
- Institut Professeur Baulieu, INSERM U1195, Kremlin-Bicêtre, France
- INSERM U1195, Université Paris-Saclay, Kremlin-Bicêtre, France
| |
Collapse
|
34
|
Zhang Y, Kunii M, Taniguchi M, Yoshimura SI, Harada A. Rab6-Mediated Polarized Transport of Synaptic Vesicle Precursors Is Essential for the Establishment of Neuronal Polarity and Brain Formation. J Neurosci 2024; 44:e2334232024. [PMID: 38830762 PMCID: PMC11223463 DOI: 10.1523/jneurosci.2334-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
Neurons are highly polarized cells that are composed of a single axon and multiple dendrites. Axon-dendrite polarity is essential for proper tissue formation and brain functions. Intracellular protein transport plays an important role in the establishment of neuronal polarity. However, the regulatory mechanism of polarized transport remains unclear. Here, we show that Rab6, a small GTPase that acts on the regulation of intracellular vesicular trafficking, plays key roles in neuronal polarization and brain development. Central nervous system-specific Rab6a/b double knock-out (Rab6 DKO) mice of both sexes exhibit severe dysplasia of the neocortex and the cerebellum. In the Rab6 DKO neocortex, impaired axonal extension of neurons results in hypoplasia of the intermediate zone. In vitro, deletion of Rab6a and Rab6b in cultured neurons from both sexes causes the abnormal accumulation of synaptic vesicle precursors (SVPs) adjacent to the Golgi apparatus, which leads to defects in axonal extension and the loss of axon-dendrite polarity. Moreover, Rab6 DKO causes significant expansion of lysosomes in the soma in neurons. Overall, our results reveal that Rab6-mediated polarized transport of SVPs is crucial for neuronal polarization and subsequent brain formation.
Collapse
Affiliation(s)
- Yu Zhang
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masataka Kunii
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Manabu Taniguchi
- Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shin-Ichiro Yoshimura
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Akihiro Harada
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Badal KK, Zhao Y, Raveendra BL, Lozano-Villada S, Miller KE, Puthanveettil SV. PKA Activity-Driven Modulation of Bidirectional Long-Distance transport of Lysosomal vesicles During Synapse Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601272. [PMID: 38979384 PMCID: PMC11230415 DOI: 10.1101/2024.06.28.601272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The bidirectional long-distance transport of organelles is crucial for cell body-synapse communication. However, the mechanisms by which this transport is modulated for synapse formation, maintenance, and plasticity are not fully understood. Here, we demonstrate through quantitative analyses that maintaining sensory neuron-motor neuron synapses in the Aplysia gill-siphon withdrawal reflex is linked to a sustained reduction in the retrograde transport of lysosomal vesicles in sensory neurons. Interestingly, while mitochondrial transport in the anterograde direction increases within 12 hours of synapse formation, the reduction in lysosomal vesicle retrograde transport appears three days after synapse formation. Moreover, we find that formation of new synapses during learning induced by neuromodulatory neurotransmitter serotonin further reduces lysosomal vesicle transport within 24 hours, whereas mitochondrial transport increases in the anterograde direction within one hour of exposure. Pharmacological inhibition of several signaling pathways pinpoints PKA as a key regulator of retrograde transport of lysosomal vesicles during synapse maintenance. These results demonstrate that synapse formation leads to organelle-specific and direction specific enduring changes in long-distance transport, offering insights into the mechanisms underlying synapse maintenance and plasticity.
Collapse
Affiliation(s)
- Kerriann. K. Badal
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
- Integrative Biology PhD Program, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Yibo. Zhao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Bindu L Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Sebastian Lozano-Villada
- Harriet L. Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Kyle. E. Miller
- Harriet L. Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Sathyanarayanan V. Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
36
|
Singh MK, Shin Y, Ju S, Han S, Kim SS, Kang I. Comprehensive Overview of Alzheimer's Disease: Etiological Insights and Degradation Strategies. Int J Mol Sci 2024; 25:6901. [PMID: 39000011 PMCID: PMC11241648 DOI: 10.3390/ijms25136901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and affects millions of individuals globally. AD is associated with cognitive decline and memory loss that worsens with aging. A statistical report using U.S. data on AD estimates that approximately 6.9 million individuals suffer from AD, a number projected to surge to 13.8 million by 2060. Thus, there is a critical imperative to pinpoint and address AD and its hallmark tau protein aggregation early to prevent and manage its debilitating effects. Amyloid-β and tau proteins are primarily associated with the formation of plaques and neurofibril tangles in the brain. Current research efforts focus on degrading amyloid-β and tau or inhibiting their synthesis, particularly targeting APP processing and tau hyperphosphorylation, aiming to develop effective clinical interventions. However, navigating this intricate landscape requires ongoing studies and clinical trials to develop treatments that truly make a difference. Genome-wide association studies (GWASs) across various cohorts identified 40 loci and over 300 genes associated with AD. Despite this wealth of genetic data, much remains to be understood about the functions of these genes and their role in the disease process, prompting continued investigation. By delving deeper into these genetic associations, novel targets such as kinases, proteases, cytokines, and degradation pathways, offer new directions for drug discovery and therapeutic intervention in AD. This review delves into the intricate biological pathways disrupted in AD and identifies how genetic variations within these pathways could serve as potential targets for drug discovery and treatment strategies. Through a comprehensive understanding of the molecular underpinnings of AD, researchers aim to pave the way for more effective therapies that can alleviate the burden of this devastating disease.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
37
|
Coppini A, Falconieri A, Mualem O, Nasrin SR, Roudon M, Saper G, Hess H, Kakugo A, Raffa V, Shefi O. Can repetitive mechanical motion cause structural damage to axons? Front Mol Neurosci 2024; 17:1371738. [PMID: 38912175 PMCID: PMC11191579 DOI: 10.3389/fnmol.2024.1371738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Biological structures have evolved to very efficiently generate, transmit, and withstand mechanical forces. These biological examples have inspired mechanical engineers for centuries and led to the development of critical insights and concepts. However, progress in mechanical engineering also raises new questions about biological structures. The past decades have seen the increasing study of failure of engineered structures due to repetitive loading, and its origin in processes such as materials fatigue. Repetitive loading is also experienced by some neurons, for example in the peripheral nervous system. This perspective, after briefly introducing the engineering concept of mechanical fatigue, aims to discuss the potential effects based on our knowledge of cellular responses to mechanical stresses. A particular focus of our discussion are the effects of mechanical stress on axons and their cytoskeletal structures. Furthermore, we highlight the difficulty of imaging these structures and the promise of new microscopy techniques. The identification of repair mechanisms and paradigms underlying long-term stability is an exciting and emerging topic in biology as well as a potential source of inspiration for engineers.
Collapse
Affiliation(s)
| | | | - Oz Mualem
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Syeda Rubaiya Nasrin
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | - Marine Roudon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Akira Kakugo
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | | | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
38
|
Trovò L, Kouvaros S, Schwenk J, Fernandez-Fernandez D, Fritzius T, Rem PD, Früh S, Gassmann M, Fakler B, Bischofberger J, Bettler B. Synaptotagmin-11 facilitates assembly of a presynaptic signaling complex in post-Golgi cargo vesicles. EMBO Rep 2024; 25:2610-2634. [PMID: 38698221 PMCID: PMC11169412 DOI: 10.1038/s44319-024-00147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.
Collapse
Affiliation(s)
- Luca Trovò
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | | | - Simon Früh
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Center for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Freiburg, Germany
| | | | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
39
|
Luo X, Zhang J, Tolö J, Kügler S, Michel U, Bähr M, Koch JC. Axonal autophagic vesicle transport in the rat optic nerve in vivo under normal conditions and during acute axonal degeneration. Acta Neuropathol Commun 2024; 12:82. [PMID: 38812004 PMCID: PMC11134632 DOI: 10.1186/s40478-024-01791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Neurons pose a particular challenge to degradative processes like autophagy due to their long and thin processes. Autophagic vesicles (AVs) are formed at the tip of the axon and transported back to the soma. This transport is essential since the final degradation of the vesicular content occurs only close to or in the soma. Here, we established an in vivo live-imaging model in the rat optic nerve using viral vector mediated LC3-labeling and two-photon-microscopy to analyze axonal transport of AVs. Under basal conditions in vivo, 50% of the AVs are moving with a majority of 85% being transported in the retrograde direction. Transport velocity is higher in the retrograde than in the anterograde direction. A crush lesion of the optic nerve results in a rapid breakdown of retrograde axonal transport while the anterograde transport stays intact over several hours. Close to the lesion site, the formation of AVs is upregulated within the first 6 h after crush, but the clearance of AVs and the levels of lysosomal markers in the adjacent axon are reduced. Expression of p150Glued, an adaptor protein of dynein, is significantly reduced after crush lesion. In vitro, fusion and colocalization of the lysosomal marker cathepsin D with AVs are reduced after axotomy. Taken together, we present here the first in vivo analysis of axonal AV transport in the mammalian CNS using live-imaging. We find that axotomy leads to severe defects of retrograde motility and a decreased clearance of AVs via the lysosomal system.
Collapse
Affiliation(s)
- Xiaoyue Luo
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Jiong Zhang
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Johan Tolö
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Uwe Michel
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Jan Christoph Koch
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany.
| |
Collapse
|
40
|
Tempes A, Bogusz K, Brzozowska A, Weslawski J, Macias M, Tkaczyk O, Orzoł K, Lew A, Calka-Kresa M, Bernas T, Szczepankiewicz AA, Mlostek M, Kumari S, Liszewska E, Machnicka K, Bakun M, Rubel T, Malik AR, Jaworski J. Autophagy initiation triggers p150 Glued-AP-2β interaction on the lysosomes and facilitates their transport. Cell Mol Life Sci 2024; 81:218. [PMID: 38758395 PMCID: PMC11101406 DOI: 10.1007/s00018-024-05256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
The endocytic adaptor protein 2 (AP-2) complex binds dynactin as part of its noncanonical function, which is necessary for dynein-driven autophagosome transport along microtubules in neuronal axons. The absence of this AP-2-dependent transport causes neuronal morphology simplification and neurodegeneration. The mechanisms that lead to formation of the AP-2-dynactin complex have not been studied to date. However, the inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) enhances the transport of newly formed autophagosomes by influencing the biogenesis and protein interactions of Rab-interacting lysosomal protein (RILP), another dynein cargo adaptor. We tested effects of mTORC1 inhibition on interactions between the AP-2 and dynactin complexes, with a focus on their two essential subunits, AP-2β and p150Glued. We found that the mTORC1 inhibitor rapamycin enhanced p150Glued-AP-2β complex formation in both neurons and non-neuronal cells. Additional analysis revealed that the p150Glued-AP-2β interaction was indirect and required integrity of the dynactin complex. In non-neuronal cells rapamycin-driven enhancement of the p150Glued-AP-2β interaction also required the presence of cytoplasmic linker protein 170 (CLIP-170), the activation of autophagy, and an undisturbed endolysosomal system. The rapamycin-dependent p150Glued-AP-2β interaction occurred on lysosomal-associated membrane protein 1 (Lamp-1)-positive organelles but without the need for autolysosome formation. Rapamycin treatment also increased the acidification and number of acidic organelles and increased speed of the long-distance retrograde movement of Lamp-1-positive organelles. Altogether, our results indicate that autophagy regulates the p150Glued-AP-2β interaction, possibly to coordinate sufficient motor-adaptor complex availability for effective lysosome transport.
Collapse
Affiliation(s)
- Aleksandra Tempes
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Karolina Bogusz
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Agnieszka Brzozowska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Jan Weslawski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Matylda Macias
- Microscopy and Flow Cytometry Core Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Oliver Tkaczyk
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Katarzyna Orzoł
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Aleksandra Lew
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | | | - Tytus Bernas
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Microscopy Facility, Department of Anatomy and Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Magdalena Mlostek
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Shiwani Kumari
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Ewa Liszewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Katarzyna Machnicka
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Magdalena Bakun
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tymon Rubel
- Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland
| | - Anna R Malik
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland.
- Cellular Neurobiology Research Group, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa St. 1, 02-096, Warsaw, Poland.
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland.
| |
Collapse
|
41
|
Fellows AD, Bruntraeger M, Burgold T, Bassett AR, Carter AP. Dynein and dynactin move long-range but are delivered separately to the axon tip. J Cell Biol 2024; 223:e202309084. [PMID: 38407313 PMCID: PMC10896695 DOI: 10.1083/jcb.202309084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Axonal transport is essential for neuronal survival. This is driven by microtubule motors including dynein, which transports cargo from the axon tip back to the cell body. This function requires its cofactor dynactin and regulators LIS1 and NDEL1. Due to difficulties imaging dynein at a single-molecule level, it is unclear how this motor and its regulators coordinate transport along the length of the axon. Here, we use a neuron-inducible human stem cell line (NGN2-OPTi-OX) to endogenously tag dynein components and visualize them at a near-single molecule regime. In the retrograde direction, we find that dynein and dynactin can move the entire length of the axon (>500 µm). Furthermore, LIS1 and NDEL1 also undergo long-distance movement, despite being mainly implicated with the initiation of dynein transport. Intriguingly, in the anterograde direction, dynein/LIS1 moves faster than dynactin/NDEL1, consistent with transport on different cargos. Therefore, neurons ensure efficient transport by holding dynein/dynactin on cargos over long distances but keeping them separate until required.
Collapse
Affiliation(s)
- Alexander D. Fellows
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Thomas Burgold
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Andrew P. Carter
- Division of Structural Studies, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
42
|
Hu Y, Chen W, Wei C, Jiang S, Li S, Wang X, Xu R. Pathological mechanisms of amyotrophic lateral Sclerosis. Neural Regen Res 2024; 19:1036-1044. [PMID: 37862206 PMCID: PMC10749610 DOI: 10.4103/1673-5374.382985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis refers to a neurodegenerative disease involving the motor system, the cause of which remains unexplained despite several years of research. Thus, the journey to understanding or treating amyotrophic lateral sclerosis is still a long one. According to current research, amyotrophic lateral sclerosis is likely not due to a single factor but rather to a combination of mechanisms mediated by complex interactions between molecular and genetic pathways. The progression of the disease involves multiple cellular processes and the interaction between different complex mechanisms makes it difficult to identify the causative factors of amyotrophic lateral sclerosis. Here, we review the most common amyotrophic lateral sclerosis-associated pathogenic genes and the pathways involved in amyotrophic lateral sclerosis, as well as summarize currently proposed potential mechanisms responsible for amyotrophic lateral sclerosis disease and their evidence for involvement in amyotrophic lateral sclerosis. In addition, we discuss current emerging strategies for the treatment of amyotrophic lateral sclerosis. Studying the emergence of these new therapies may help to further our understanding of the pathogenic mechanisms of the disease.
Collapse
Affiliation(s)
- Yushu Hu
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Wenzhi Chen
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Caihui Wei
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shishi Jiang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shu Li
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Xinxin Wang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College; The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
43
|
Sabharwal V, Boyanapalli SPP, Shee A, Nonet ML, Nandi A, Chaudhuri D, Koushika SP. F-box protein FBXB-65 regulates anterograde transport of the kinesin-3 motor UNC-104 through a PTM near its cargo-binding PH domain. J Cell Sci 2024; 137:jcs261553. [PMID: 38477340 PMCID: PMC11058344 DOI: 10.1242/jcs.261553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Axonal transport in neurons is essential for cargo movement between the cell body and synapses. Caenorhabditis elegans UNC-104 and its homolog KIF1A are kinesin-3 motors that anterogradely transport precursors of synaptic vesicles (pre-SVs) and are degraded at synapses. However, in C. elegans, touch neuron-specific knockdown of the E1 ubiquitin-activating enzyme, uba-1, leads to UNC-104 accumulation at neuronal ends and synapses. Here, we performed an RNAi screen and identified that depletion of fbxb-65, which encodes an F-box protein, leads to UNC-104 accumulation at neuronal distal ends, and alters UNC-104 net anterograde movement and levels of UNC-104 on cargo without changing synaptic UNC-104 levels. Split fluorescence reconstitution showed that UNC-104 and FBXB-65 interact throughout the neuron. Our theoretical model suggests that UNC-104 might exhibit cooperative cargo binding that is regulated by FBXB-65. FBXB-65 regulates an unidentified post-translational modification (PTM) of UNC-104 in a region beside the cargo-binding PH domain. Both fbxb-65 and UNC-104, independently of FBXB-65, regulate axonal pre-SV distribution, transport of pre-SVs at branch points and organismal lifespan. FBXB-65 regulates a PTM of UNC-104 and the number of motors on the cargo surface, which can fine-tune cargo transport to the synapse.
Collapse
Affiliation(s)
- Vidur Sabharwal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | | | - Amir Shee
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Northwestern Institute on Complex Systems and ESAM, Northwestern University, Evanston, IL 60208, USA
| | - Michael L. Nonet
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
44
|
Albin B, Adhikari P, Tiwari AP, Qubbaj K, Yang IH. Electrical stimulation enhances mitochondrial trafficking as a neuroprotective mechanism against chemotherapy-induced peripheral neuropathy. iScience 2024; 27:109052. [PMID: 38375222 PMCID: PMC10875116 DOI: 10.1016/j.isci.2024.109052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Electrical stimulation (ESTIM) has shown to be an effective symptomatic treatment to treat pain associated with peripheral nerve damage. However, the neuroprotective mechanism of ESTIM on peripheral neuropathies is still unknown. In this study, we identified that ESTIM has the ability to enhance mitochondrial trafficking as a neuroprotective mechanism against chemotherapy-induced peripheral neuropathies (CIPNs). CIPN is a debilitating and painful sequalae of anti-cancer chemotherapy treatment which results in degeneration of peripheral nerves. Mitochondrial dynamics were analyzed within axons in response to two different antineoplastic mechanisms by chemotherapy drug treatments paclitaxel and oxaliplatin in vitro. Mitochondrial trafficking response to chemotherapy drug treatment was observed to decrease in conjunction with degeneration of distal axons. Using low-frequency ESTIM, we observed enhanced mitochondrial trafficking to be a neuroprotective mechanism against CIPN. This study confirms ESTIM enhances regeneration of peripheral nerves by increased mitochondrial trafficking.
Collapse
Affiliation(s)
- Bayne Albin
- Center for Biomedical Engineering and Science, Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Prashant Adhikari
- Center for Biomedical Engineering and Science, Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Arjun Prasad Tiwari
- Center for Biomedical Engineering and Science, Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Khayzaran Qubbaj
- Center for Biomedical Engineering and Science, Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - In Hong Yang
- Center for Biomedical Engineering and Science, Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
45
|
Fredrikson JP, Domanico LF, Pratt SL, Loveday EK, Taylor MP, Chang CB. Single-cell herpes simplex virus type 1 infection of neurons using drop-based microfluidics reveals heterogeneous replication kinetics. SCIENCE ADVANCES 2024; 10:eadk9185. [PMID: 38416818 PMCID: PMC10901367 DOI: 10.1126/sciadv.adk9185] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Single-cell analyses of viral infections reveal heterogeneity that is not detected by traditional population-level studies. This study applies drop-based microfluidics to investigate the dynamics of herpes simplex virus type 1 (HSV-1) infection of neurons at the single-cell level. We used micrometer-scale Matrigel beads, termed microgels, to culture individual murine superior cervical ganglia (SCG) neurons or epithelial cells. Microgel-cultured cells are encapsulated in individual media-in-oil droplets with a dual-fluorescent reporter HSV-1, enabling real-time observation of viral gene expression and replication. Infection within drops revealed that the kinetics of initial viral gene expression and replication were dependent on the inoculating dose. Notably, increasing inoculating doses led to earlier onset of viral gene expression and more frequent productive viral replication. These observations provide crucial insights into the complexity of HSV-1 infection in neurons and emphasize the importance of studying single-cell outcomes of viral infection. These techniques for cell culture and infection in drops provide a foundation for future virology and neurobiology investigations.
Collapse
Affiliation(s)
- Jacob P. Fredrikson
- Department of Chemical and Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Luke F. Domanico
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Shawna L. Pratt
- Department of Chemical and Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Emma K. Loveday
- Department of Chemical and Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
| | - Matthew P. Taylor
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, USA
| | - Connie B. Chang
- Department of Chemical and Biological Engineering, Montana State University, P.O. Box 173920, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT 59717, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
46
|
Wang YZ, Castillon CCM, Gebis KK, Bartom ET, d'Azzo A, Contractor A, Savas JN. Notch receptor-ligand binding facilitates extracellular vesicle-mediated neuron-to-neuron communication. Cell Rep 2024; 43:113680. [PMID: 38241148 PMCID: PMC10976296 DOI: 10.1016/j.celrep.2024.113680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024] Open
Abstract
Extracellular vesicles (EVs) facilitate intercellular communication by transferring cargo between cells in a variety of tissues. However, how EVs achieve cell-type-specific intercellular communication is still largely unknown. We found that Notch1 and Notch2 proteins are expressed on the surface of neuronal EVs that have been generated in response to neuronal excitatory synaptic activity. Notch ligands bind these EVs on the neuronal plasma membrane, trigger their internalization, activate the Notch signaling pathway, and drive the expression of Notch target genes. The generation of these neuronal EVs requires the endosomal sorting complex required for transport-associated protein Alix. Adult Alix conditional knockout mice have reduced hippocampal Notch signaling activation and glutamatergic synaptic protein expression. Thus, EVs facilitate neuron-to-neuron communication via the Notch receptor-ligand system in the brain.
Collapse
Affiliation(s)
- Yi-Zhi Wang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Charlotte C M Castillon
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kamil K Gebis
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alessandra d'Azzo
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anis Contractor
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
47
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
48
|
Han SW, Choi J, Ryu KY. Recent progress and future directions of the research on nanoplastic-induced neurotoxicity. Neural Regen Res 2024; 19:331-335. [PMID: 37488886 PMCID: PMC10503636 DOI: 10.4103/1673-5374.379016] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 07/26/2023] Open
Abstract
Many types of plastic products, including polystyrene, have long been used in commercial and industrial applications. Microplastics and nanoplastics, plastic particles derived from these plastic products, are emerging as environmental pollutants that can pose health risks to a wide variety of living organisms, including humans. However, it is not well understood how microplastics and nanoplastics affect cellular functions and induce stress responses. Humans can be exposed to polystyrene-microplastics and polystyrene-nanoplastics through ingestion, inhalation, or skin contact. Most ingested plastics are excreted from the body, but inhaled plastics may accumulate in the lungs and can even reach the brain via the nose-to-brain route. Small-sized polystyrene-nanoplastics can enter cells by endocytosis, accumulate in the cytoplasm, and cause various cellular stresses, such as inflammation with increased pro-inflammatory cytokine production, oxidative stress with generation of reactive oxygen species, and mitochondrial dysfunction. They induce autophagy activation and autophagosome formation, but autophagic flux may be impaired due to lysosomal dysfunction. Unless permanently exposed to polystyrene-nanoplastics, they can be removed from cells by exocytosis and subsequently restore cellular function. However, neurons are very susceptible to this type of stress, thus even acute exposure can lead to neurodegeneration without recovery. This review focuses specifically on recent advances in research on polystyrene-nanoplastic-induced cytotoxicity and neurotoxicity. Furthermore, in this review, based on mechanistic studies of polystyrene-nanoplastics at the cellular level other than neurons, future directions for overcoming the negative effects of polystyrene-nanoplastics on neurons were suggested.
Collapse
Affiliation(s)
- Seung-Woo Han
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Seoul, South Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, South Korea
| |
Collapse
|
49
|
Chai Y, Li D, Gong W, Ke J, Tian D, Chen Z, Guo A, Guo Z, Li W, Feng W, Ou G. A plant flavonol and genetic suppressors rescue a pathogenic mutation associated with kinesin in neurons. Proc Natl Acad Sci U S A 2024; 121:e2311936121. [PMID: 38271337 PMCID: PMC10835061 DOI: 10.1073/pnas.2311936121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/14/2023] [Indexed: 01/27/2024] Open
Abstract
KIF1A, a microtubule-based motor protein responsible for axonal transport, is linked to a group of neurological disorders known as KIF1A-associated neurological disorder (KAND). Current therapeutic options for KAND are limited. Here, we introduced the clinically relevant KIF1A(R11Q) variant into the Caenorhabditis elegans homolog UNC-104, resulting in uncoordinated animal behaviors. Through genetic suppressor screens, we identified intragenic mutations in UNC-104's motor domain that rescued synaptic vesicle localization and coordinated movement. We showed that two suppressor mutations partially recovered motor activity in vitro by counteracting the structural defect caused by R11Q at KIF1A's nucleotide-binding pocket. We found that supplementation with fisetin, a plant flavonol, improved KIF1A(R11Q) worms' movement and morphology. Notably, our biochemical and single-molecule assays revealed that fisetin directly restored the ATPase activity and processive movement of human KIF1A(R11Q) without affecting wild-type KIF1A. These findings suggest fisetin as a potential intervention for enhancing KIF1A(R11Q) activity and alleviating associated defects in KAND.
Collapse
Affiliation(s)
- Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and Ministry of Education Key Laboratory for Protein Science, Tsinghua University, Beijing100084, China
| | - Dong Li
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jingyi Ke
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and Ministry of Education Key Laboratory for Protein Science, Tsinghua University, Beijing100084, China
| | - Dianzhe Tian
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and Ministry of Education Key Laboratory for Protein Science, Tsinghua University, Beijing100084, China
| | - Zhe Chen
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and Ministry of Education Key Laboratory for Protein Science, Tsinghua University, Beijing100084, China
| | - Angel Guo
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and Ministry of Education Key Laboratory for Protein Science, Tsinghua University, Beijing100084, China
| | - Zhengyang Guo
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and Ministry of Education Key Laboratory for Protein Science, Tsinghua University, Beijing100084, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing100084, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and Ministry of Education Key Laboratory for Protein Science, Tsinghua University, Beijing100084, China
| |
Collapse
|
50
|
Veeraraghavan P, Engmann AK, Hatch JJ, Itoh Y, Nguyen D, Addison T, Macklis JD. Dynamic subtype- and context-specific subcellular RNA regulation in growth cones of developing neurons of the cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.24.559186. [PMID: 38328182 PMCID: PMC10849483 DOI: 10.1101/2023.09.24.559186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Molecular mechanisms that cells employ to compartmentalize function via localization of function-specific RNA and translation are only partially elucidated. We investigate long-range projection neurons of the cerebral cortex as highly polarized exemplars to elucidate dynamic regulation of RNA localization, stability, and translation within growth cones (GCs), leading tips of growing axons. Comparison of GC-localized transcriptomes between two distinct subtypes of projection neurons- interhemispheric-callosal and corticothalamic- across developmental stages identifies both distinct and shared subcellular machinery, and intriguingly highlights enrichment of genes associated with neurodevelopmental and neuropsychiatric disorders. Developmental context-specific components of GC-localized transcriptomes identify known and novel potential regulators of distinct phases of circuit formation: long-distance growth, target area innervation, and synapse formation. Further, we investigate mechanisms by which transcripts are enriched and dynamically regulated in GCs, and identify GC-enriched motifs in 3' untranslated regions. As one example, we identify cytoplasmic adenylation element binding protein 4 (CPEB4), an RNA binding protein regulating localization and translation of mRNAs encoding molecular machinery important for axonal branching and complexity. We also identify RNA binding motif single stranded interacting protein 1 (RBMS1) as a dynamically expressed regulator of RNA stabilization that enables successful callosal circuit formation. Subtly aberrant associative and integrative cortical circuitry can profoundly affect cortical function, often causing neurodevelopmental and neuropsychiatric disorders. Elucidation of context-specific subcellular RNA regulation for GC- and soma-localized molecular controls over precise circuit development, maintenance, and function offers generalizable insights for other polarized cells, and might contribute substantially to understanding neurodevelopmental and behavioral-cognitive disorders and toward targeted therapeutics.
Collapse
Affiliation(s)
- Priya Veeraraghavan
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Anne K. Engmann
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - John J. Hatch
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Duane Nguyen
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Thomas Addison
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|