1
|
Eşiyok N, Liutikaite N, Haffner C, Peters J, Heide S, Oegema CE, Huttner WB, Heide M. A dyad of human-specific NBPF14 and NOTCH2NLB orchestrates cortical progenitor abundance crucial for human neocortex expansion. SCIENCE ADVANCES 2025; 11:eads7543. [PMID: 40138416 PMCID: PMC11939065 DOI: 10.1126/sciadv.ads7543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
We determined the roles of two coevolved and coexpressed human-specific genes, NBPF14 and NOTCH2NLB, on the abundance of the cortical progenitors that underlie the evolutionary expansion of the neocortex, the seat of higher cognitive abilities in humans. Using automated microinjection into apical progenitors (APs) of embryonic mouse neocortex and electroporation of APs in chimpanzee cerebral organoids, we show that NBPF14 promotes the delamination of AP progeny, by promoting oblique cleavage plane orientation during AP division, leading to increased abundance of the key basal progenitor type, basal radial glia. In contrast, NOTCH2NLB promotes AP proliferation, leading to expansion of the AP pool. When expressed together, NBPF14 and NOTCH2NLB exert coordinated effects, resulting in expansion of basal progenitors while maintaining self-renewal of APs. Hence, these two human-specific genes orchestrate the behavior of APs, and the lineages of their progeny, in a manner essential for the evolutionary expansion of the human neocortex.
Collapse
Affiliation(s)
- Nesil Eşiyok
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - Neringa Liutikaite
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Sabrina Heide
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - Christina Eugster Oegema
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Michael Heide
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| |
Collapse
|
2
|
Huilgol D, Levine JM, Galbavy W, Wang BS, Huang ZJ. Orderly specification and precise laminar deployment of mouse cortical projection neuron types through intermediate progenitors. Dev Cell 2025:S1534-5807(25)00114-5. [PMID: 40068685 DOI: 10.1016/j.devcel.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis (dNG) or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model, whereby successive generations of PNs sequentially migrate first to deep and then progressively to more superficial layers. However, its biological significance remains unclear, and the role of iNG in this process is unknown. Using genetic strategies linking PN birth dating to projection mapping in mice, we found that the laminar deployment of IP-derived PNs substantially deviates from a stringent inside-out rule: PNs destined to non-consecutive layers are generated at the same time, and different PN types of the same layer are generated at non-contiguous times. The overarching scheme of iNG is the sequential specification and precise laminar deployment of projection-defined PN types, which may contribute to the orderly assembly of cortical output channels and processing streams.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jesse M Levine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, USA
| | - William Galbavy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA; Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Z Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
3
|
Yang Z. The Principle of Cortical Development and Evolution. Neurosci Bull 2025; 41:461-485. [PMID: 39023844 PMCID: PMC11876516 DOI: 10.1007/s12264-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
Collapse
Affiliation(s)
- Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Vasan L, Chinchalongporn V, Saleh F, Zinyk D, Ke C, Suresh H, Ghazale H, Belfiore L, Touahri Y, Oproescu AM, Patel S, Rozak M, Amemiya Y, Han S, Moffat A, Black SE, McLaurin J, Near J, Seth A, Goubran M, Reiner O, Gillis J, Wang C, Okawa S, Schuurmans C. Examining the NEUROG2 lineage and associated gene expression in human cortical organoids. Development 2025; 152:dev202703. [PMID: 39680368 PMCID: PMC11829764 DOI: 10.1242/dev.202703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024]
Abstract
Proneural genes are conserved drivers of neurogenesis across the animal kingdom. How their functions have adapted to guide human-specific neurodevelopmental features is poorly understood. Here, we mined transcriptomic data from human fetal cortices and generated from human embryonic stem cell-derived cortical organoids (COs) to show that NEUROG1 and NEUROG2 are most highly expressed in basal neural progenitor cells, with pseudotime trajectory analyses indicating that NEUROG1-derived lineages predominate early and NEUROG2 lineages later. Using ChIP-qPCR, gene silencing and overexpression studies in COs, we show that NEUROG2 is necessary and sufficient to directly transactivate known target genes (NEUROD1, EOMES, RND2). To identify new targets, we engineered NEUROG2-mCherry knock-in human embryonic stem cells for CO generation. The mCherry-high CO cell transcriptome is enriched in extracellular matrix-associated genes, and two genes associated with human-accelerated regions: PPP1R17 and FZD8. We show that NEUROG2 binds COL1A1, COL3A1 and PPP1R17 regulatory elements, and induces their ectopic expression in COs, although NEUROG2 is not required for this expression. Neurog2 similarly induces Col3a1 and Ppp1r17 in murine P19 cells. These data are consistent with a conservation of NEUROG2 function across mammalian species.
Collapse
Affiliation(s)
- Lakshmy Vasan
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Vorapin Chinchalongporn
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fermisk Saleh
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dawn Zinyk
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cao Ke
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Immunology, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hamsini Suresh
- Department of Physiology, University of Toronto, Medical Sciences Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Hussein Ghazale
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lauren Belfiore
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yacine Touahri
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ana-Maria Oproescu
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shruti Patel
- Department of Medical Biophysics, 101 College St Suite 15-701, Toronto General Hospital, University of Toronto, Toronto, ON M5G 1L7, Canada
- Sunnybrook Research Institute, Physical Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
| | - Matthew Rozak
- Department of Medical Biophysics, 101 College St Suite 15-701, Toronto General Hospital, University of Toronto, Toronto, ON M5G 1L7, Canada
- Sunnybrook Research Institute, Physical Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
| | - Yutaka Amemiya
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sisu Han
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Biochemistry, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexandra Moffat
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sandra E. Black
- Dr. Sandra Black Centre for Brain Resilience & Recovery, LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; Hurvitz Brain Sciences Program
- Department of Medicine (Neurology) (SEB), University of Toronto, Toronto, ON M5S 3H2, Canada
| | - JoAnne McLaurin
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jamie Near
- Department of Medical Biophysics, 101 College St Suite 15-701, Toronto General Hospital, University of Toronto, Toronto, ON M5G 1L7, Canada
- Sunnybrook Research Institute, Physical Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
| | - Arun Seth
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maged Goubran
- Department of Medical Biophysics, 101 College St Suite 15-701, Toronto General Hospital, University of Toronto, Toronto, ON M5G 1L7, Canada
- Sunnybrook Research Institute, Physical Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
| | - Orly Reiner
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Jesse Gillis
- Department of Physiology, University of Toronto, Medical Sciences Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Chao Wang
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Immunology, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Satoshi Okawa
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Hurvitz Brain Sciences Program, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Biochemistry, Medical Sciences Building, 1 King's College Cir, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Hu T, Kong Y, Tan Y, Ma P, Wang J, Sun X, Xiang K, Mao B, Wu Q, Yi SV, Shi L. Cis-Regulatory Evolution of CCNB1IP1 Driving Gradual Increase of Cortical Size and Folding in primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.08.627376. [PMID: 39713381 PMCID: PMC11661109 DOI: 10.1101/2024.12.08.627376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Neocortex expansion has a concerted relationship with folding, underlying evolution of human cognitive functions. However, molecular mechanisms underlying this significant evolutionary process remains unknown. Here, using tree shrew as an outgroup of primates, we identify a new regulator CCNB1IP1, which acquired its expression before the emergence of primates. Following the evolution of cis-regulatory elements, the CCNB1IP1 expression has steadily increased over the course of primate brain evolution, mirroring the gradual increase of neocortex. Mechanistically, we elucidated that CCNB1IP1 expression can cause an increase in neural progenitors through shortening G1 phase. Consistently, the CCNB1IP1 knock-in mouse model exhibited traits associated with enhanced learning and memory abilities. Together, our study reveals how changes in CCNB1IP1 expression may have contributed to the gradual evolution in primate brain.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, P.R. China
| | - Yifan Kong
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, P.R. China
| | - Yulian Tan
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, P.R. China
| | - Pengcheng Ma
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, P.R. China
| | - Jianhong Wang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650201, P.R. China
| | - Xuelian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Kun Xiang
- The First People’s Hospital of Yunnan Province, Kunming, Yunnan, 650034, P.R. China
| | - Bingyu Mao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, P.R. China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing 100045, China
| | - Soojin V. Yi
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lei Shi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, P.R. China
| |
Collapse
|
6
|
Tynianskaia L, Heide M. Human-specific genetic hallmarks in neocortical development: focus on neural progenitors. Curr Opin Genet Dev 2024; 89:102267. [PMID: 39378630 PMCID: PMC7617552 DOI: 10.1016/j.gde.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/07/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
The evolutionary expansion of the neocortex in the ape lineage is the basis for the development of higher cognitive abilities. However, the human brain has uniquely increased in size and degree of folding, forming an essential foundation for advanced cognitive functions. This raises the question: what factors distinguish humans from our closest living primate relatives, such as chimpanzees and bonobos, which exhibit comparatively constrained cognitive capabilities? In this review, we focus on recent studies examining (modern) human-specific genetic traits that influence neural progenitor cells, whose behavior and activity are crucial for shaping cortical morphology. We emphasize the role of human-specific genetic modifications in signaling pathways that enhance the abundance of apical and basal progenitors, as well as the importance of basal progenitor metabolism in their proliferation in human. Additionally, we discuss how changes in neuron morphology contribute to the evolution of human cognition and provide our perspective on future directions in the field.
Collapse
Affiliation(s)
- Lidiia Tynianskaia
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077Göttingen, Germany
| | - Michael Heide
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077Göttingen, Germany
| |
Collapse
|
7
|
Baumgartner M, Ji Y, Noonan JP. Reconstructing human-specific regulatory functions in model systems. Curr Opin Genet Dev 2024; 89:102259. [PMID: 39270593 PMCID: PMC11588545 DOI: 10.1016/j.gde.2024.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Uniquely human physical traits, such as an expanded cerebral cortex and changes in limb morphology that allow us to use tools and walk upright, are in part due to human-specific genetic changes that altered when, where, and how genes are expressed during development. Over 20 000 putative regulatory elements with potential human-specific functions have been discovered. Understanding how these elements contributed to human evolution requires identifying candidates most likely to have shaped human traits, then studying them in genetically modified animal models. Here, we review the progress and challenges in generating and studying such models and propose a pathway for advancing the field. Finally, we highlight that large-scale collaborations across multiple research domains are essential to decipher what makes us human.
Collapse
Affiliation(s)
| | - Yu Ji
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510 USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
8
|
Imamura M, Yoshino M, Kawasaki H. Investigation of the development and evolution of the mammalian cerebrum using gyrencephalic ferrets. Eur J Cell Biol 2024; 103:151466. [PMID: 39546916 DOI: 10.1016/j.ejcb.2024.151466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Mammalian brains have evolved a neocortex, which has diverged in size and morphology in different species over the course of evolution. In some mammals, a substantial increase in the number of neurons and glial cells resulted in the expansion and folding of the cerebrum, and it is believed that these evolutionary changes contributed to the acquisition of higher cognitive abilities in mammals. However, their underlying molecular and cellular mechanisms remain insufficiently elucidated. A major difficulty in addressing these mechanisms stemmed from the lack of appropriate animal models, as conventional experimental animals such as mice and rats have small brains without structurally obvious folds. Therefore, researchers including us have focused on using ferrets instead of mice and rats. Ferrets are domesticated carnivorous mammals with a gyrencephalic cerebrum, and, notably, they are amenable to genetic manipulations including in utero electroporation to knock out genes in the cerebrum. In this review, we highlight recent research into the mechanisms underlying the development and evolution of cortical folds using ferrets.
Collapse
Affiliation(s)
- Masanori Imamura
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Mayuko Yoshino
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
9
|
Lancaster MA. Unraveling mechanisms of human brain evolution. Cell 2024; 187:5838-5857. [PMID: 39423803 PMCID: PMC7617105 DOI: 10.1016/j.cell.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 10/21/2024]
Abstract
Evolutionary changes in human brain structure and function have enabled our specialized cognitive abilities. How these changes have come about genetically and functionally has remained an open question. However, new methods are providing a wealth of information about the genetic, epigenetic, and transcriptomic differences that set the human brain apart. Combined with in vitro models that allow access to developing brain tissue and the cells of our closest living relatives, the puzzle pieces are now coming together to yield a much more complete picture of what is actually unique about the human brain. The challenge now will be linking these observations and making the jump from correlation to causation. However, elegant genetic manipulations are now possible and, when combined with model systems such as organoids, will uncover a mechanistic understanding of how evolutionary changes at the genetic level have led to key differences in development and function that enable human cognition.
Collapse
Affiliation(s)
- Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Sleiman A, Miller KB, Flores D, Kuan J, Altwasser K, Smith BJ, Kozbenko T, Hocking R, Wood SJ, Huff J, Adam-Guillermin C, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to learning and memory impairment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:57-84. [PMID: 39228295 DOI: 10.1002/em.22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Understanding radiation-induced non-cancer effects on the central nervous system (CNS) is essential for the risk assessment of medical (e.g., radiotherapy) and occupational (e.g., nuclear workers and astronauts) exposures. Herein, the adverse outcome pathway (AOP) approach was used to consolidate relevant studies in the area of cognitive decline for identification of research gaps, countermeasure development, and for eventual use in risk assessments. AOPs are an analytical construct describing critical events to an adverse outcome (AO) in a simplified form beginning with a molecular initiating event (MIE). An AOP was constructed utilizing mechanistic information to build empirical support for the key event relationships (KERs) between the MIE of deposition of energy to the AO of learning and memory impairment through multiple key events (KEs). The evidence for the AOP was acquired through a documented scoping review of the literature. In this AOP, the MIE is connected to the AO via six KEs: increased oxidative stress, increased deoxyribonucleic acid (DNA) strand breaks, altered stress response signaling, tissue resident cell activation, increased pro-inflammatory mediators, and abnormal neural remodeling that encompasses atypical structural and functional alterations of neural cells and surrounding environment. Deposition of energy directly leads to oxidative stress, increased DNA strand breaks, an increase of pro-inflammatory mediators and tissue resident cell activation. These KEs, which are themselves interconnected, can lead to abnormal neural remodeling impacting learning and memory processes. Identified knowledge gaps include improving quantitative understanding of the AOP across several KERs and additional testing of proposed modulating factors through experimental work. Broadly, it is envisioned that the outcome of these efforts could be extended to other cognitive disorders and complement ongoing work by international radiation governing bodies in their review of the system of radiological protection.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, St. Paul Lez Durance, Provence, France
| | - Kathleen B Miller
- Department of Health and Exercise Science, Morrison College Family of Health, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Danicia Flores
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jaqueline Kuan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Robyn Hocking
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Janice Huff
- NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Namba T, Huttner WB. What Makes Us Human: Insights from the Evolution and Development of the Human Neocortex. Annu Rev Cell Dev Biol 2024; 40:427-452. [PMID: 39356810 DOI: 10.1146/annurev-cellbio-112122-032521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
"What makes us human?" is a central question of many research fields, notably anthropology. In this review, we focus on the development of the human neocortex, the part of the brain with a key role in cognition, to gain neurobiological insight toward answering this question. We first discuss cortical stem and progenitor cells and human-specific genes that affect their behavior. We thus aim to understand the molecular foundation of the expansion of the neocortex that occurred in the course of human evolution, as this expansion is generally thought to provide a basis for our unique cognitive abilities. We then review the emerging evidence pointing to differences in the development of the neocortex between present-day humans and Neanderthals, our closest relatives. Finally, we discuss human-specific genes that have been implicated in neuronal circuitry and offer a perspective for future studies addressing the question of what makes us human.
Collapse
Affiliation(s)
- Takashi Namba
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany;
| |
Collapse
|
12
|
Noble MA, Ji Y, Yim KM, Yang JW, Morales M, Abu-Shamma R, Pal A, Poulsen R, Baumgartner M, Noonan JP. Human Accelerated Regions regulate gene networks implicated in apical-to-basal neural progenitor fate transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601407. [PMID: 39005466 PMCID: PMC11244942 DOI: 10.1101/2024.06.30.601407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The evolution of the human cerebral cortex involved modifications in the composition and proliferative potential of the neural stem cell (NSC) niche during brain development. Human Accelerated Regions (HARs) exhibit a significant excess of human-specific sequence changes and have been implicated in human brain evolution. Multiple studies support that HARs include neurodevelopmental enhancers with novel activities in humans, but their biological functions in NSCs have not been empirically assessed at scale. Here we conducted a direct-capture Perturb-seq screen repressing 180 neurodevelopmentally active HARs in human iPSC-derived NSCs with single-cell transcriptional readout. After profiling >188,000 NSCs, we identified a set of HAR perturbations with convergent transcriptional effects on gene networks involved in NSC apicobasal polarity, a cellular process whose precise regulation is critical to the developmental emergence of basal radial glia (bRG), a progenitor population that is expanded in humans. Across multiple HAR perturbations, we found convergent dysregulation of specific apicobasal polarity and adherens junction regulators, including PARD3, ABI2, SETD2 , and PCM1 . We found that the repression of one candidate from the screen, HAR181, as well as its target gene CADM1 , disrupted apical PARD3 localization and NSC rosette formation. Our findings reveal interconnected roles for HARs in NSC biology and cortical development and link specific HARs to processes implicated in human cortical expansion.
Collapse
|
13
|
Gkini V, Gómez-Lozano I, Heikinheimo O, Namba T. Dynamic changes in mitochondrial localization in human neocortical basal radial glial cells during cell cycle. J Comp Neurol 2024; 532:e25630. [PMID: 38852043 DOI: 10.1002/cne.25630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024]
Abstract
Mitochondria play critical roles in neural stem/progenitor cell proliferation and fate decisions. The subcellular localization of mitochondria in neural stem/progenitor cells during mitosis potentially influences the distribution of mitochondria to the daughter cells and thus their fates. Therefore, understanding the spatial dynamics of mitochondria provides important knowledge about brain development. In this study, we analyzed the subcellular localization of mitochondria in the fetal human neocortex with a particular focus on the basal radial glial cells (bRGCs), a neural stem/progenitor cell subtype attributed to the evolutionary expansion of the human neocortex. During interphase, bRGCs exhibit a polarized localization of mitochondria that is localized at the base of the process or the proximal part of the process. Thereafter, mitochondria in bRGCs at metaphase show unpolarized distribution in which the mitochondria are randomly localized in the cytoplasm. During anaphase and telophase, mitochondria are still localized evenly, but mainly in the periphery of the cytoplasm. Mitochondria start to accumulate at the cleavage furrow during cytokinesis. These results suggest that the mitochondrial localization in bRGCs is tightly regulated during the cell cycle, which may ensure the proper distribution of mitochondria to the daughter cells and, thus in turn, influence their fates.
Collapse
Affiliation(s)
- Vasiliki Gkini
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Inés Gómez-Lozano
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Coquand L, Brunet Avalos C, Macé AS, Farcy S, Di Cicco A, Lampic M, Wimmer R, Bessières B, Attie-Bitach T, Fraisier V, Sens P, Guimiot F, Brault JB, Baffet AD. A cell fate decision map reveals abundant direct neurogenesis bypassing intermediate progenitors in the human developing neocortex. Nat Cell Biol 2024; 26:698-709. [PMID: 38548890 PMCID: PMC11098750 DOI: 10.1038/s41556-024-01393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/29/2024] [Indexed: 05/03/2024]
Abstract
The human neocortex has undergone strong evolutionary expansion, largely due to an increased progenitor population, the basal radial glial cells. These cells are responsible for the production of a diversity of cell types, but the successive cell fate decisions taken by individual progenitors remain unknown. Here we developed a semi-automated live/fixed correlative imaging method to map basal radial glial cell division modes in early fetal tissue and cerebral organoids. Through the live analysis of hundreds of dividing progenitors, we show that basal radial glial cells undergo abundant symmetric amplifying divisions, and frequent self-consuming direct neurogenic divisions, bypassing intermediate progenitors. These direct neurogenic divisions are more abundant in the upper part of the subventricular zone. We furthermore demonstrate asymmetric Notch activation in the self-renewing daughter cells, independently of basal fibre inheritance. Our results reveal a remarkable conservation of fate decisions in cerebral organoids, supporting their value as models of early human neurogenesis.
Collapse
Affiliation(s)
- Laure Coquand
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
- Sorbonne Université, Ecole Doctorale complexité du vivant, Paris, France
| | | | - Anne-Sophie Macé
- UMR 144-Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS-Institut Curie, Paris, France
| | - Sarah Farcy
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | | | - Marusa Lampic
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Ryszard Wimmer
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
- Sorbonne Université, Ecole Doctorale complexité du vivant, Paris, France
| | - Betina Bessières
- UF Embryofœtopathologie, Hopital Necker-enfants malades, Paris, France
| | | | - Vincent Fraisier
- UMR 144-Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS-Institut Curie, Paris, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - Fabien Guimiot
- UF de Fœtopathologie - Université de Paris et Inserm UMR1141, Hôpital Robert Debré, Paris, France
| | | | - Alexandre D Baffet
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France.
- Institut national de la santé et de la recherche médicale, Paris, France.
| |
Collapse
|
15
|
Krontira AC, Cruceanu C, Dony L, Kyrousi C, Link MH, Rek N, Pöhlchen D, Raimundo C, Penner-Goeke S, Schowe A, Czamara D, Lahti-Pulkkinen M, Sammallahti S, Wolford E, Heinonen K, Roeh S, Sportelli V, Wölfel B, Ködel M, Sauer S, Rex-Haffner M, Räikkönen K, Labeur M, Cappello S, Binder EB. Human cortical neurogenesis is altered via glucocorticoid-mediated regulation of ZBTB16 expression. Neuron 2024; 112:1426-1443.e11. [PMID: 38442714 DOI: 10.1016/j.neuron.2024.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/15/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Glucocorticoids are important for proper organ maturation, and their levels are tightly regulated during development. Here, we use human cerebral organoids and mice to study the cell-type-specific effects of glucocorticoids on neurogenesis. We show that glucocorticoids increase a specific type of basal progenitors (co-expressing PAX6 and EOMES) that has been shown to contribute to cortical expansion in gyrified species. This effect is mediated via the transcription factor ZBTB16 and leads to increased production of neurons. A phenome-wide Mendelian randomization analysis of an enhancer variant that moderates glucocorticoid-induced ZBTB16 levels reveals causal relationships with higher educational attainment and altered brain structure. The relationship with postnatal cognition is also supported by data from a prospective pregnancy cohort study. This work provides a cellular and molecular pathway for the effects of glucocorticoids on human neurogenesis that relates to lasting postnatal phenotypes.
Collapse
Affiliation(s)
- Anthi C Krontira
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry, Munich 80804, Germany.
| | - Cristiana Cruceanu
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Leander Dony
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry, Munich 80804, Germany; Department for Computational Health, Helmholtz Munich, Neuherberg 85764, Germany; TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising 85354, Germany
| | - Christina Kyrousi
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich 80804, Germany; First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens 15784, Greece; University Mental Health, Neurosciences and Precision Medicine Research Institute "Costas Stefanis", Athens 15601, Greece
| | - Marie-Helen Link
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Nils Rek
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry, Munich 80804, Germany
| | - Dorothee Pöhlchen
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry, Munich 80804, Germany
| | - Catarina Raimundo
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Signe Penner-Goeke
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Alicia Schowe
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich 82152, Germany
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Marius Lahti-Pulkkinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland; Finnish Institute for Health and Welfare, Helsinki 00271, Finland; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sara Sammallahti
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki 00014, Finland
| | - Elina Wolford
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Kati Heinonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland; Psychology/Welfare, Faculty of Social Sciences, University of Tampere, Tampere 33014, Finland; Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, ON M5T 1P8, Canada
| | - Simone Roeh
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Vincenza Sportelli
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Barbara Wölfel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Maik Ködel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Monika Rex-Haffner
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Marta Labeur
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Silvia Cappello
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich 80804, Germany; Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich 82152, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany.
| |
Collapse
|
16
|
Xing L, Gkini V, Nieminen AI, Zhou HC, Aquilino M, Naumann R, Reppe K, Tanaka K, Carmeliet P, Heikinheimo O, Pääbo S, Huttner WB, Namba T. Functional synergy of a human-specific and an ape-specific metabolic regulator in human neocortex development. Nat Commun 2024; 15:3468. [PMID: 38658571 PMCID: PMC11043075 DOI: 10.1038/s41467-024-47437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Metabolism has recently emerged as a major target of genes implicated in the evolutionary expansion of human neocortex. One such gene is the human-specific gene ARHGAP11B. During human neocortex development, ARHGAP11B increases the abundance of basal radial glia, key progenitors for neocortex expansion, by stimulating glutaminolysis (glutamine-to-glutamate-to-alpha-ketoglutarate) in mitochondria. Here we show that the ape-specific protein GLUD2 (glutamate dehydrogenase 2), which also operates in mitochondria and converts glutamate-to-αKG, enhances ARHGAP11B's ability to increase basal radial glia abundance. ARHGAP11B + GLUD2 double-transgenic bRG show increased production of aspartate, a metabolite essential for cell proliferation, from glutamate via alpha-ketoglutarate and the TCA cycle. Hence, during human evolution, a human-specific gene exploited the existence of another gene that emerged during ape evolution, to increase, via concerted changes in metabolism, progenitor abundance and neocortex size.
Collapse
Affiliation(s)
- Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Vasiliki Gkini
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Hui-Chao Zhou
- Center for Cancer Biology (CCB), VIB-KU Leuven, B-3000, Leuven, Belgium
| | - Matilde Aquilino
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Katrin Reppe
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, B-3000, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, B-3000, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Human Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Onna-son, Japan
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
17
|
Cubillos P, Ditzer N, Kolodziejczyk A, Schwenk G, Hoffmann J, Schütze TM, Derihaci RP, Birdir C, Köllner JE, Petzold A, Sarov M, Martin U, Long KR, Wimberger P, Albert M. The growth factor EPIREGULIN promotes basal progenitor cell proliferation in the developing neocortex. EMBO J 2024; 43:1388-1419. [PMID: 38514807 PMCID: PMC11021537 DOI: 10.1038/s44318-024-00068-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Neocortex expansion during evolution is linked to higher numbers of neurons, which are thought to result from increased proliferative capacity and neurogenic potential of basal progenitor cells during development. Here, we show that EREG, encoding the growth factor EPIREGULIN, is expressed in the human developing neocortex and in gorilla cerebral organoids, but not in the mouse neocortex. Addition of EPIREGULIN to the mouse neocortex increases proliferation of basal progenitor cells, whereas EREG ablation in human cortical organoids reduces proliferation in the subventricular zone. Treatment of cortical organoids with EPIREGULIN promotes a further increase in proliferation of gorilla but not of human basal progenitor cells. EPIREGULIN competes with the epidermal growth factor (EGF) to promote proliferation, and inhibition of the EGF receptor abrogates the EPIREGULIN-mediated increase in basal progenitor cells. Finally, we identify putative cis-regulatory elements that may contribute to the observed inter-species differences in EREG expression. Our findings suggest that species-specific regulation of EPIREGULIN expression may contribute to the increased neocortex size of primates by providing a tunable pro-proliferative signal to basal progenitor cells in the subventricular zone.
Collapse
Affiliation(s)
- Paula Cubillos
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Nora Ditzer
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Annika Kolodziejczyk
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Gustav Schwenk
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Janine Hoffmann
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Theresa M Schütze
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Razvan P Derihaci
- Department of Gynecology and Obstetrics, TU Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, 01307, Dresden, Germany
| | - Cahit Birdir
- Department of Gynecology and Obstetrics, TU Dresden, 01307, Dresden, Germany
- Center for feto/neonatal Health, TU Dresden, 01307, Dresden, Germany
| | - Johannes Em Köllner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany
- REBIRTH-Cluster of Excellence, Hannover, Germany
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE1 1UL, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, TU Dresden, 01307, Dresden, Germany
- National Center for Tumor Diseases, 01307, Dresden, Germany
| | - Mareike Albert
- Center for Regenerative Therapies TU Dresden, TUD Dresden University of Technology, 01307, Dresden, Germany.
| |
Collapse
|
18
|
Huilgol D, Levine JM, Galbavy W, Wang BS, Josh Huang Z. Orderly specification and precise laminar deployment of cortical glutamatergic projection neuron types through intermediate progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582863. [PMID: 38645016 PMCID: PMC11027211 DOI: 10.1101/2024.03.01.582863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model whereby successive generations of PNs sequentially migrate to deep then progressively more superficial layers, but its biological significance remains unclear; and the role of iNG in this process is unknown. Using genetic strategies linking PN birth-dating to projection mapping in mice, we found that the laminar deployment of IP-derived PNs substantially deviate from an inside-out rule: PNs destined to non-consecutive layers are generated at the same time, and different PN types of the same layer are generated at non-contiguous times. The overarching scheme of iNG is the sequential specification and precise laminar deployment of projection-defined PN types, which may contribute to the orderly assembly of cortical output channels and processing streams. HIGHLIGHTS - Each IP is fate-restricted to generate a pair of near-identical PNs - Corticogenesis involves the orderly generation of fate-restricted IP temporal cohorts - IP temporal cohorts sequentially as well as concurrently specify multiple PN types - The deployment of PN types to specific layers does not follow an inside-out order.
Collapse
|
19
|
Dehay C, Huttner WB. Development and evolution of the primate neocortex from a progenitor cell perspective. Development 2024; 151:dev199797. [PMID: 38369736 DOI: 10.1242/dev.199797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The generation of neurons in the developing neocortex is a major determinant of neocortex size. Crucially, the increase in cortical neuron numbers in the primate lineage, notably in the upper-layer neurons, contributes to increased cognitive abilities. Here, we review major evolutionary changes affecting the apical progenitors in the ventricular zone and focus on the key germinal zone constituting the foundation of neocortical neurogenesis in primates, the outer subventricular zone (OSVZ). We summarize characteristic features of the OSVZ and its key stem cell type, the basal (or outer) radial glia. Next, we concentrate on primate-specific and human-specific genes, expressed in OSVZ-progenitors, the ability of which to amplify these progenitors by targeting the regulation of the cell cycle ultimately underlies the evolutionary increase in upper-layer neurons. Finally, we address likely differences in neocortical development between present-day humans and Neanderthals that are based on human-specific amino acid substitutions in proteins operating in cortical progenitors.
Collapse
Affiliation(s)
- Colette Dehay
- Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, F-69500 Bron, France
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
20
|
Huttner WB, Heide M, Mora-Bermúdez F, Namba T. Neocortical neurogenesis in development and evolution-Human-specific features. J Comp Neurol 2024; 532:e25576. [PMID: 38189676 DOI: 10.1002/cne.25576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
In this review, we focus on human-specific features of neocortical neurogenesis in development and evolution. Two distinct topics will be addressed. In the first section, we discuss the expansion of the neocortex during human evolution and concentrate on the human-specific gene ARHGAP11B. We review the ability of ARHGAP11B to amplify basal progenitors and to expand a primate neocortex. We discuss the contribution of ARHGAP11B to neocortex expansion during human evolution and its potential implications for neurodevelopmental disorders and brain tumors. We then review the action of ARHGAP11B in mitochondria as a regulator of basal progenitor metabolism, and how it promotes glutaminolysis and basal progenitor proliferation. Finally, we discuss the increase in cognitive performance due to the ARHGAP11B-induced neocortical expansion. In the second section, we focus on neocortical development in modern humans versus Neanderthals. Specifically, we discuss two recent findings pointing to differences in neocortical neurogenesis between these two hominins that are due to a small number of amino acid substitutions in certain key proteins. One set of such proteins are the kinetochore-associated proteins KIF18a and KNL1, where three modern human-specific amino acid substitutions underlie the prolongation of metaphase during apical progenitor mitosis. This prolongation in turn is associated with an increased fidelity of chromosome segregation to the apical progenitor progeny during modern human neocortical development, with implications for the proper formation of radial units. Another such key protein is transketolase-like 1 (TKTL1), where a single modern human-specific amino acid substitution endows TKTL1 with the ability to amplify basal radial glia, resulting in an increase in upper-layer neuron generation. TKTL1's ability is based on its action in the pentose phosphate pathway, resulting in increased fatty acid synthesis. The data imply greater neurogenesis during neocortical development in modern humans than Neanderthals due to TKTL1, in particular in the developing frontal lobe.
Collapse
Affiliation(s)
- Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Heide
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Zhuang XL, Shao Y, Chen CY, Zhou L, Yao YG, Cooper DN, Zhang GJ, Wang W, Wu DD. Divergent Evolutionary Rates of Primate Brain Regions as Revealed by Genomics and Transcriptomics. Genome Biol Evol 2024; 16:evae023. [PMID: 38314830 PMCID: PMC10881106 DOI: 10.1093/gbe/evae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Although the primate brain contains numerous functionally distinct structures that have experienced diverse genetic changes during the course of evolution and development, these changes remain to be explored in detail. Here we utilize two classic metrics from evolutionary biology, the evolutionary rate index (ERI) and the transcriptome age index (TAI), to investigate the evolutionary alterations that have occurred in each area and developmental stage of the primate brain. We observed a higher evolutionary rate for those genes expressed in the non-cortical areas during primate evolution, particularly in human, with the highest rate of evolution being exhibited at brain developmental stages between late infancy and early childhood. Further, the transcriptome age of the non-cortical areas was lower than that of the cerebral cortex, with the youngest age apparent at brain developmental stages between late infancy and early childhood. Our exploration of the evolutionary patterns manifest in each brain area and developmental stage provides important reference points for further research into primate brain evolution.
Collapse
Affiliation(s)
- Xiao-Lin Zhuang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | - Yong Shao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | - Chun-Yan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Long Zhou
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310000, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310000, China
| | - Yong-Gang Yao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Guo-Jie Zhang
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310000, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310000, China
| | - Wen Wang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dong-Dong Wu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
22
|
Barresi M, Hickmott RA, Bosakhar A, Quezada S, Quigley A, Kawasaki H, Walker D, Tolcos M. Toward a better understanding of how a gyrified brain develops. Cereb Cortex 2024; 34:bhae055. [PMID: 38425213 DOI: 10.1093/cercor/bhae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
The size and shape of the cerebral cortex have changed dramatically across evolution. For some species, the cortex remains smooth (lissencephalic) throughout their lifetime, while for other species, including humans and other primates, the cortex increases substantially in size and becomes folded (gyrencephalic). A folded cortex boasts substantially increased surface area, cortical thickness, and neuronal density, and it is therefore associated with higher-order cognitive abilities. The mechanisms that drive gyrification in some species, while others remain lissencephalic despite many shared neurodevelopmental features, have been a topic of investigation for many decades, giving rise to multiple perspectives of how the gyrified cerebral cortex acquires its unique shape. Recently, a structurally unique germinal layer, known as the outer subventricular zone, and the specialized cell type that populates it, called basal radial glial cells, were identified, and these have been shown to be indispensable for cortical expansion and folding. Transcriptional analyses and gene manipulation models have provided an invaluable insight into many of the key cellular and genetic drivers of gyrification. However, the degree to which certain biomechanical, genetic, and cellular processes drive gyrification remains under investigation. This review considers the key aspects of cerebral expansion and folding that have been identified to date and how theories of gyrification have evolved to incorporate this new knowledge.
Collapse
Affiliation(s)
- Mikaela Barresi
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
| | - Ryan Alexander Hickmott
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
| | - Abdulhameed Bosakhar
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Sebastian Quezada
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Anita Quigley
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
- School of Engineering, RMIT University, La Trobe Street, Melbourne, VIC 3000, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Regent Street, Fitzroy, VIC 3065, Australia
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan
| | - David Walker
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
23
|
Sokpor G, Kerimoglu C, Ulmke PA, Pham L, Nguyen HD, Brand-Saberi B, Staiger JF, Fischer A, Nguyen HP, Tuoc T. H3 Acetylation-Induced Basal Progenitor Generation and Neocortex Expansion Depends on the Transcription Factor Pax6. BIOLOGY 2024; 13:68. [PMID: 38392287 PMCID: PMC10886678 DOI: 10.3390/biology13020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Enrichment of basal progenitors (BPs) in the developing neocortex is a central driver of cortical enlargement. The transcription factor Pax6 is known as an essential regulator in generation of BPs. H3 lysine 9 acetylation (H3K9ac) has emerged as a crucial epigenetic mechanism that activates the gene expression program required for BP pool amplification. In this current work, we applied immunohistochemistry, RNA sequencing, chromatin immunoprecipitation and sequencing, and the yeast two-hybrid assay to reveal that the BP-genic effect of H3 acetylation is dependent on Pax6 functionality in the developing mouse cortex. In the presence of Pax6, increased H3 acetylation caused BP pool expansion, leading to enhanced neurogenesis, which evoked expansion and quasi-convolution of the mouse neocortex. Interestingly, H3 acetylation activation exacerbates the BP depletion and corticogenesis reduction effect of Pax6 ablation in cortex-specific Pax6 mutants. Furthermore, we found that H3K9 acetyltransferase KAT2A/GCN5 interacts with Pax6 and potentiates Pax6-dependent transcriptional activity. This explains a genome-wide lack of H3K9ac, especially in the promoter regions of BP-genic genes, in the Pax6 mutant cortex. Together, these findings reveal a mechanistic coupling of H3 acetylation and Pax6 in orchestrating BP production and cortical expansion through the promotion of a BP gene expression program during cortical development.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
- Lincoln Medical School, University of Lincoln, Lincoln LN6 7TS, UK
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
| | | | - Linh Pham
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Hoang Duy Nguyen
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| |
Collapse
|
24
|
Shipp S. Computational components of visual predictive coding circuitry. Front Neural Circuits 2024; 17:1254009. [PMID: 38259953 PMCID: PMC10800426 DOI: 10.3389/fncir.2023.1254009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
If a full visual percept can be said to be a 'hypothesis', so too can a neural 'prediction' - although the latter addresses one particular component of image content (such as 3-dimensional organisation, the interplay between lighting and surface colour, the future trajectory of moving objects, and so on). And, because processing is hierarchical, predictions generated at one level are conveyed in a backward direction to a lower level, seeking to predict, in fact, the neural activity at that prior stage of processing, and learning from errors signalled in the opposite direction. This is the essence of 'predictive coding', at once an algorithm for information processing and a theoretical basis for the nature of operations performed by the cerebral cortex. Neural models for the implementation of predictive coding invoke specific functional classes of neuron for generating, transmitting and receiving predictions, and for producing reciprocal error signals. Also a third general class, 'precision' neurons, tasked with regulating the magnitude of error signals contingent upon the confidence placed upon the prediction, i.e., the reliability and behavioural utility of the sensory data that it predicts. So, what is the ultimate source of a 'prediction'? The answer is multifactorial: knowledge of the current environmental context and the immediate past, allied to memory and lifetime experience of the way of the world, doubtless fine-tuned by evolutionary history too. There are, in consequence, numerous potential avenues for experimenters seeking to manipulate subjects' expectation, and examine the neural signals elicited by surprising, and less surprising visual stimuli. This review focuses upon the predictive physiology of mouse and monkey visual cortex, summarising and commenting on evidence to date, and placing it in the context of the broader field. It is concluded that predictive coding has a firm grounding in basic neuroscience and that, unsurprisingly, there remains much to learn.
Collapse
Affiliation(s)
- Stewart Shipp
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
25
|
Eşiyok N, Heide M. The SVZ stem cell niche-components, functions, and in vitro modelling. Front Cell Dev Biol 2023; 11:1332901. [PMID: 38188021 PMCID: PMC10766702 DOI: 10.3389/fcell.2023.1332901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Neocortical development depends on the intrinsic ability of neural stem and progenitor cells to proliferate and differentiate to generate the different kinds of neurons in the adult brain. These progenitor cells can be distinguished into apical progenitors, which occupy a stem cell niche in the ventricular zone and basal progenitors, which occupy a stem cell niche in the subventricular zone (SVZ). During development, the stem cell niche provided in the subventricular zone enables the increased proliferation and self-renewal of basal progenitors, which likely underlie the expansion of the human neocortex. However, the components forming the SVZ stem cell niche in the developing neocortex have not yet been fully understood. In this review, we will discuss potential components of the SVZ stem cell niche, i.e., extracellular matrix composition and brain vasculature, and their possible key role in establishing and maintaining this niche during fetal neocortical development. We will also emphasize the potential role of basal progenitor morphology in maintaining their proliferative capacity within the stem cell niche of the SVZ. Finally, we will focus on the use of brain organoids to i) understand the unique features of basal progenitors, notably basal radial glia; ii) study components of the SVZ stem cell niche; and iii) provide future directions on how to improve brain organoids, notably the organoid SVZ, and make them more reliable models of human neocortical development and evolution studies.
Collapse
Affiliation(s)
| | - Michael Heide
- Research Group Brain Development and Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
26
|
Akula SK, Exposito-Alonso D, Walsh CA. Shaping the brain: The emergence of cortical structure and folding. Dev Cell 2023; 58:2836-2849. [PMID: 38113850 PMCID: PMC10793202 DOI: 10.1016/j.devcel.2023.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/08/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The cerebral cortex-the brain's covering and largest region-has increased in size and complexity in humans and supports higher cognitive functions such as language and abstract thinking. There is a growing understanding of the human cerebral cortex, including the diversity and number of cell types that it contains, as well as of the developmental mechanisms that shape cortical structure and organization. In this review, we discuss recent progress in our understanding of molecular and cellular processes, as well as mechanical forces, that regulate the folding of the cerebral cortex. Advances in human genetics, coupled with experimental modeling in gyrencephalic species, have provided insights into the central role of cortical progenitors in the gyrification and evolutionary expansion of the cerebral cortex. These studies are essential for understanding the emergence of structural and functional organization during cortical development and the pathogenesis of neurodevelopmental disorders associated with cortical malformations.
Collapse
Affiliation(s)
- Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David Exposito-Alonso
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
27
|
Feng G, Chen R, Zhao R, Li Y, Ma L, Wang Y, Men W, Gao J, Tan S, Cheng J, He Y, Qin S, Dong Q, Tao S, Shu N. Longitudinal development of the human white matter structural connectome and its association with brain transcriptomic and cellular architecture. Commun Biol 2023; 6:1257. [PMID: 38087047 PMCID: PMC10716168 DOI: 10.1038/s42003-023-05647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
From childhood to adolescence, the spatiotemporal development pattern of the human brain white matter connectome and its underlying transcriptomic and cellular mechanisms remain largely unknown. With a longitudinal diffusion MRI cohort of 604 participants, we map the developmental trajectory of the white matter connectome from global to regional levels and identify that most brain network properties followed a linear developmental trajectory. Importantly, connectome-transcriptomic analysis reveals that the spatial development pattern of white matter connectome is potentially regulated by the transcriptomic architecture, with positively correlated genes involve in ion transport- and development-related pathways expressed in excitatory and inhibitory neurons, and negatively correlated genes enriches in synapse- and development-related pathways expressed in astrocytes, inhibitory neurons and microglia. Additionally, the macroscale developmental pattern is also associated with myelin content and thicknesses of specific laminas. These findings offer insights into the underlying genetics and neural mechanisms of macroscale white matter connectome development from childhood to adolescence.
Collapse
Affiliation(s)
- Guozheng Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Rui Zhao
- College of Life Sciences, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing, China
| | - Yuanyuan Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jiahong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- BABRI Centre, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| |
Collapse
|
28
|
Seidlitz J, Mallard TT, Vogel JW, Lee YH, Warrier V, Ball G, Hansson O, Hernandez LM, Mandal AS, Wagstyl K, Lombardo MV, Courchesne E, Glessner JT, Satterthwaite TD, Bethlehem RAI, Bernstock JD, Tasaki S, Ng B, Gaiteri C, Smoller JW, Ge T, Gur RE, Gandal MJ, Alexander-Bloch AF. The molecular genetic landscape of human brain size variation. Cell Rep 2023; 42:113439. [PMID: 37963017 PMCID: PMC11694216 DOI: 10.1016/j.celrep.2023.113439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/13/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Human brain size changes dynamically through early development, peaks in adolescence, and varies up to 2-fold among adults. However, the molecular genetic underpinnings of interindividual variation in brain size remain unknown. Here, we leveraged postmortem brain RNA sequencing and measurements of brain weight (BW) in 2,531 individuals across three independent datasets to identify 928 genome-wide significant associations with BW. Genes associated with higher or lower BW showed distinct neurodevelopmental trajectories and spatial patterns that mapped onto functional and cellular axes of brain organization. Expression of BW genes was predictive of interspecies differences in brain size, and bioinformatic annotation revealed enrichment for neurogenesis and cell-cell communication. Genome-wide, transcriptome-wide, and phenome-wide association analyses linked BW gene sets to neuroimaging measurements of brain size and brain-related clinical traits. Cumulatively, these results represent a major step toward delineating the molecular pathways underlying human brain size variation in health and disease.
Collapse
Affiliation(s)
- Jakob Seidlitz
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA 02142, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02142, USA
| | - Jacob W Vogel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Informatics and Neuroimaging Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Younga H Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA 02142, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02142, USA
| | - Varun Warrier
- Department of Psychiatry, University of Cambridge, Cambridge CB2 1TN, UK; Department of Psychology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Gareth Ball
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Melbourne, VIC 3052, Australia
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö P663+Q9, Sweden; Memory Clinic, Skåne University Hospital, Malmö P663+Q9, Sweden
| | - Leanna M Hernandez
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Ayan S Mandal
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Eric Courchesne
- Department of Neuroscience, University of California, San Diego, San Diego, CA 92093, USA; Autism Center of Excellence, University of California, San Diego, San Diego, CA 92093, USA
| | - Joseph T Glessner
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Informatics and Neuroimaging Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard University, Boston, MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital, Harvard University, Boston, MA 02115, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Bernard Ng
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA 02142, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02142, USA; Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA 02142, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02142, USA; Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Raquel E Gur
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Gandal
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron F Alexander-Bloch
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Grochow T, Beck B, Rentería-Solís Z, Schares G, Maksimov P, Strube C, Raqué L, Kacza J, Daugschies A, Fietz SA. Reduced neural progenitor cell count and cortical neurogenesis in guinea pigs congenitally infected with Toxoplasma gondii. Commun Biol 2023; 6:1209. [PMID: 38012384 PMCID: PMC10682419 DOI: 10.1038/s42003-023-05576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Toxoplasma (T.) gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection can lead to severe pathological alterations in the brain. To examine the effects of toxoplasmosis in the fetal brain, pregnant guinea pigs are infected with T. gondii oocysts on gestation day 23 and dissected 10, 17 and 25 days afterwards. We show the neocortex to represent a target region of T. gondii and the parasite to infect neural progenitor cells (NPCs), neurons and astrocytes in the fetal brain. Importantly, we observe a significant reduction in neuron number at end-neurogenesis and find a marked reduction in NPC count, indicating that impaired neurogenesis underlies the neuronal decrease in infected fetuses. Moreover, we observe focal microglioses to be associated with T. gondii in the fetal brain. Our findings expand the understanding of the pathophysiology of congenital toxoplasmosis, especially contributing to the development of cortical malformations.
Collapse
Affiliation(s)
- Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Britta Beck
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lisa Raqué
- Veterinary practice Raqué, Leipzig, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
30
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
31
|
An B, Ando A, Akuta H, Morishita F, Imamura T. Human-biased TMEM25 expression promotes expansion of neural progenitor cells to alter cortical structure in the developing brain. FEBS Lett 2023; 597:2611-2625. [PMID: 37846797 DOI: 10.1002/1873-3468.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Cortical expansion has occurred during human brain evolution. By comparing human and mouse RNA-seq datasets, we found that transmembrane protein 25 (TMEM25) was much more highly expressed in human neural progenitors (NPCs). Overexpression of either human TMEM25 or mouse Tmem25 similarly promoted mouse NPC proliferation in vitro. Mimicking human-type expression of TMEM25 in mouse ventricular cortical progenitors accelerated proliferation of basal radial glia (bRG) and increased the number of upper-layer neurons in vivo. By contrast, RNA-seq analysis, and pharmacological assays showed that knockdown of TMEM25 in cultured human NPCs compromised the effects of extracellular signals, leading to cell cycle inhibition via Akt repression. Thus, TMEM25 can receive extracellular signals to expand bRG in human cortical development.
Collapse
Affiliation(s)
- Boyang An
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Akari Ando
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Hiroto Akuta
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Fumihiro Morishita
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| | - Takuya Imamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Japan
| |
Collapse
|
32
|
Saberi A, Paquola C, Wagstyl K, Hettwer MD, Bernhardt BC, Eickhoff SB, Valk SL. The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity. PLoS Biol 2023; 21:e3002365. [PMID: 37943873 PMCID: PMC10684102 DOI: 10.1371/journal.pbio.3002365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function.
Collapse
Affiliation(s)
- Amin Saberi
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Casey Paquola
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Konrad Wagstyl
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Meike D. Hettwer
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Simon B. Eickhoff
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L. Valk
- Otto Hahn Research Group for Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neurosciences and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
33
|
Mustapha O, Grochow T, Olopade J, Fietz SA. Neocortex neurogenesis and maturation in the African greater cane rat. Neural Dev 2023; 18:7. [PMID: 37833718 PMCID: PMC10571270 DOI: 10.1186/s13064-023-00175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Neocortex development has been extensively studied in altricial rodents such as mouse and rat. Identification of alternative animal models along the "altricial-precocial" spectrum in order to better model and understand neocortex development is warranted. The Greater cane rat (GCR, Thyronomys swinderianus) is an indigenous precocial African rodent. Although basic aspects of brain development in the GCR have been documented, detailed information on neocortex development including the occurrence and abundance of the distinct types of neural progenitor cells (NPCs) in the GCR are lacking. METHODS GCR embryos and fetuses were obtained from timed pregnant dams between gestation days 50-140 and their neocortex was analyzed by immunofluorescence staining using characteristic marker proteins for NPCs, neurons and glia cells. Data were compared with existing data on closely related precocial and altricial species, i.e. guinea pig and dwarf rabbit. RESULTS The primary sequence of neuro- and gliogenesis, and neuronal maturation is preserved in the prenatal GCR neocortex. We show that the GCR exhibits a relatively long period of cortical neurogenesis of 70 days. The subventricular zone becomes the major NPC pool during mid-end stages of neurogenesis with Pax6 + NPCs constituting the major basal progenitor subtype in the GCR neocortex. Whereas dendrite formation in the GCR cortical plate appears to initiate immediately after the onset of neurogenesis, major aspects of axon formation and maturation, and astrogenesis do not begin until mid-neurogenesis. Similar to the guinea pig, the GCR neocortex exhibits a high maturation status, containing neurons with well-developed dendrites and myelinated axons and astrocytes at birth, thus providing further evidence for the notion that a great proportion of neocortex growth and maturation in precocial mammals occurs before birth. CONCLUSIONS Together, this work has deepened our understanding of neocortex development of the GCR, of the timing and the cellular differences that regulate brain growth and development within the altricial-precocial spectrum and its suitability as a research model for neurodevelopmental studies. The timelines of brain development provided by this study may serve as empirical reference data and foundation in future studies in order to model and better understand neurodevelopment and associated alterations.
Collapse
Affiliation(s)
- Oluwaseun Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta, Abeokuta, Ogun State, Nigeria
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - James Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
34
|
Zhuang XL, Zhang JJ, Shao Y, Ye Y, Chen CY, Zhou L, Wang ZB, Luo X, Su B, Yao YG, Cooper DN, Hu BX, Wang L, Qi XG, Lin J, Zhang GJ, Wang W, Sheng N, Wu DD. Integrative Omics Reveals Rapidly Evolving Regulatory Sequences Driving Primate Brain Evolution. Mol Biol Evol 2023; 40:msad173. [PMID: 37494289 PMCID: PMC10404817 DOI: 10.1093/molbev/msad173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Although the continual expansion of the brain during primate evolution accounts for our enhanced cognitive capabilities, the drivers of brain evolution have scarcely been explored in these ancestral nodes. Here, we performed large-scale comparative genomic, transcriptomic, and epigenomic analyses to investigate the evolutionary alterations acquired by brain genes and provide comprehensive listings of innovatory genetic elements along the evolutionary path from ancestral primates to human. The regulatory sequences associated with brain-expressed genes experienced rapid change, particularly in the ancestor of the Simiiformes. Extensive comparisons of single-cell and bulk transcriptomic data between primate and nonprimate brains revealed that these regulatory sequences may drive the high expression of certain genes in primate brains. Employing in utero electroporation into mouse embryonic cortex, we show that the primate-specific brain-biased gene BMP7 was recruited, probably in the ancestor of the Simiiformes, to regulate neuronal proliferation in the primate ventricular zone. Our study provides a comprehensive listing of genes and regulatory changes along the brain evolution lineage of ancestral primates leading to human. These data should be invaluable for future functional studies that will deepen our understanding not only of the genetic basis of human brain evolution but also of inherited disease.
Collapse
Affiliation(s)
- Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jin-Jin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yaxin Ye
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chun-Yan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Long Zhou
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, Guangdong, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Guangdong, China
| | - Zheng-bo Wang
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xin Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Ben-Xia Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lu Wang
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Xiao-Guang Qi
- College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Jiangwei Lin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Guo-Jie Zhang
- Center of Evolutionary & Organismal Biology, and Women’s Hospital at Zhejiang University School of Medicine, Hangzhou, Guangdong, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Guangdong, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
35
|
Mann B, Crawford JC, Reddy K, Lott J, Youn YH, Gao G, Guy C, Chou CH, Darnell D, Trivedi S, Bomme P, Loughran AJ, Thomas PG, Han YG, Tuomanen EI. Bacterial TLR2/6 Ligands Block Ciliogenesis, Derepress Hedgehog Signaling, and Expand the Neocortex. mBio 2023; 14:e0051023. [PMID: 37052506 PMCID: PMC10294647 DOI: 10.1128/mbio.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Microbial components have a range of direct effects on the fetal brain. However, little is known about the cellular targets and molecular mechanisms that mediate these effects. Neural progenitor cells (NPCs) control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. We identify ventricular radial glia (vRG), the primary NPC, as the target of bacterial cell wall (BCW) generated during the antibiotic treatment of maternal pneumonia. BCW enhanced proliferative potential of vRGs by shortening the cell cycle and increasing self-renewal. Expanded vRGs propagated to increase neuronal output in all cortical layers. Remarkably, Toll-like receptor 2 (TLR2), which recognizes BCW, localized at the base of primary cilia in vRGs and the BCW-TLR2 interaction suppressed ciliogenesis leading to derepression of Hedgehog (HH) signaling and expansion of vRGs. We also show that TLR6 is an essential partner of TLR2 in this process. Surprisingly, TLR6 alone was required to set the number of cortical neurons under healthy conditions. These findings suggest that an endogenous signal from TLRs suppresses cortical expansion during normal development of the neocortex and that BCW antagonizes that signal through the TLR2/cilia/HH signaling axis changing brain structure and function. IMPORTANCE Fetal brain development in early gestation can be impacted by transplacental infection, altered metabolites from the maternal microbiome, or maternal immune activation. It is less well understood how maternal microbial subcomponents that cross the placenta, such as bacterial cell wall (BCW), directly interact with fetal neural progenitors and neurons and affect development. This scenario plays out in the clinic when BCW debris released during antibiotic therapy of maternal infection traffics to the fetal brain. This study identifies the direct interaction of BCW with TLR2/6 present on the primary cilium, the signaling hub on fetal neural progenitor cells (NPCs). NPCs control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. Within a window of vulnerability before the appearance of fetal immune cells, the BCW-TLR2/6 interaction results in the inhibition of ciliogenesis, derepression of Sonic Hedgehog signaling, excess proliferation of neural progenitors, and abnormal cortical architecture. In the first example of TLR signaling linked to Sonic Hedgehog, BCW/TLR2/6 appears to act during fetal brain morphogenesis to play a role in setting the total cell number in the neocortex.
Collapse
Affiliation(s)
- Beth Mann
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kavya Reddy
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Josi Lott
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yong Ha Youn
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Geli Gao
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Perrine Bomme
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Allister J. Loughran
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Elaine I. Tuomanen
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
36
|
Koo B, Lee KH, Ming GL, Yoon KJ, Song H. Setting the clock of neural progenitor cells during mammalian corticogenesis. Semin Cell Dev Biol 2023; 142:43-53. [PMID: 35644876 PMCID: PMC9699901 DOI: 10.1016/j.semcdb.2022.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Radial glial cells (RGCs) as primary neural stem cells in the developing mammalian cortex give rise to diverse types of neurons and glial cells according to sophisticated developmental programs with remarkable spatiotemporal precision. Recent studies suggest that regulation of the temporal competence of RGCs is a key mechanism for the highly conserved and predictable development of the cerebral cortex. Various types of epigenetic regulations, such as DNA methylation, histone modifications, and 3D chromatin architecture, play a key role in shaping the gene expression pattern of RGCs. In addition, epitranscriptomic modifications regulate temporal pre-patterning of RGCs by affecting the turnover rate and function of cell-type-specific transcripts. In this review, we summarize epigenetic and epitranscriptomic regulatory mechanisms that control the temporal competence of RGCs during mammalian corticogenesis. Furthermore, we discuss various developmental elements that also dynamically regulate the temporal competence of RGCs, including biochemical reaction speed, local environmental changes, and subcellular organelle remodeling. Finally, we discuss the underlying mechanisms that regulate the interspecies developmental tempo contributing to human-specific features of brain development.
Collapse
Affiliation(s)
- Bonsang Koo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki-Heon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Junaković A, Kopić J, Duque A, Rakic P, Krsnik Ž, Kostović I. Laminar dynamics of deep projection neurons and mode of subplate formation are hallmarks of histogenetic subdivisions of the human cingulate cortex before onset of arealization. Brain Struct Funct 2023; 228:613-633. [PMID: 36592215 PMCID: PMC9944618 DOI: 10.1007/s00429-022-02606-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023]
Abstract
The cingulate gyrus, as a prominent part of the human limbic lobe, is involved in the integration and regulation of complex emotional, executive, motivational, and cognitive functions, attributed to several functional regions along the anteroposterior axis. In contrast to increasing knowledge of cingulate function in the adult brain, our knowledge of cingulate development is based primarily on classical neuroembryological studies. We aimed to reveal the laminar and cellular development of the various cingulate regions during the critical period from 7.5 to 15 postconceptional weeks (PCW) before the formation of Brodmann type arealization, employing diverse molecular markers on serial histological sections of postmortem human fetal brains. The study was performed by analysis of: (1) deep projection neuron (DPN) markers laminar dynamics, (2) all transient laminar compartments, and (3) characteristic subplate (SP) formation-expansion phase. We found that DPN markers labeling an incipient cortical plate (CP) were the first sign of regional differentiation of the dorsal isocortical and ventral mesocortical belt. Remarkably, increased width of the fibrillar marginal zone (MZ) towards the limbus, in parallel with the narrowing of CP containing DPN, as well as the diminishment of subventricular zone (SVZ) were reliable landmarks of early mesocortical differentiation. Finally, the SP formation pattern was shown to be a crucial event in the isocortical cingulate portion, given that the mesocortical belt is characterized by an incomplete CP delamination and absence of SP expansion. In conclusion, laminar DPN markers dynamics, together with the SVZ size and mode of SP formation indicate regional belt-like cingulate cortex differentiation before the corpus callosum expansion and several months before Brodmann type arealization.
Collapse
Affiliation(s)
- Alisa Junaković
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Janja Kopić
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Alvaro Duque
- School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Pasko Rakic
- School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Željka Krsnik
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Ivica Kostović
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
38
|
Li S, Hannenhalli S, Ovcharenko I. De novo human brain enhancers created by single-nucleotide mutations. SCIENCE ADVANCES 2023; 9:eadd2911. [PMID: 36791193 PMCID: PMC9931207 DOI: 10.1126/sciadv.add2911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/12/2023] [Indexed: 05/30/2023]
Abstract
Advanced human cognition is attributed to increased neocortex size and complexity, but the underlying evolutionary and regulatory mechanisms are largely unknown. Using human and macaque embryonic neocortical H3K27ac data coupled with a deep learning model of enhancers, we identified ~4000 enhancer gains in humans, which, per our model, can often be attributed to single-nucleotide essential mutations. Our analyses suggest that functional gains in embryonic brain development are associated with de novo enhancers whose putative target genes exhibit increased expression in progenitor cells and interneurons and partake in critical neural developmental processes. Essential mutations alter enhancer activity through altered binding of key transcription factors (TFs) of embryonic neocortex, including ISL1, POU3F2, PITX1/2, and several SOX TFs, and are associated with central nervous system disorders. Overall, our results suggest that essential mutations lead to gain of embryonic neocortex enhancers, which orchestrate expression of genes involved in critical developmental processes associated with human cognition.
Collapse
Affiliation(s)
- Shan Li
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
39
|
Vanderhaeghen P, Polleux F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 2023; 24:213-232. [PMID: 36792753 PMCID: PMC10064077 DOI: 10.1038/s41583-023-00675-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
The brain of modern humans has evolved remarkable computational abilities that enable higher cognitive functions. These capacities are tightly linked to an increase in the size and connectivity of the cerebral cortex, which is thought to have resulted from evolutionary changes in the mechanisms of cortical development. Convergent progress in evolutionary genomics, developmental biology and neuroscience has recently enabled the identification of genomic changes that act as human-specific modifiers of cortical development. These modifiers influence most aspects of corticogenesis, from the timing and complexity of cortical neurogenesis to synaptogenesis and the assembly of cortical circuits. Mutations of human-specific genetic modifiers of corticogenesis have started to be linked to neurodevelopmental disorders, providing evidence for their physiological relevance and suggesting potential relationships between the evolution of the human brain and its sensitivity to specific diseases.
Collapse
Affiliation(s)
- Pierre Vanderhaeghen
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
40
|
Yoshimatsu S, Nakajima M, Sonn I, Natsume R, Sakimura K, Nakatsukasa E, Sasaoka T, Nakamura M, Serizawa T, Sato T, Sasaki E, Deng H, Okano H. Attempts for deriving extended pluripotent stem cells from common marmoset embryonic stem cells. Genes Cells 2023; 28:156-169. [PMID: 36530170 DOI: 10.1111/gtc.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Extended pluripotent stem cells (EPSCs) derived from mice and humans showed an enhanced potential for chimeric formation. By exploiting transcriptomic approaches, we assessed the differences in gene expression profile between extended EPSCs derived from mice and humans, and those newly derived from the common marmoset (marmoset; Callithrix jacchus). Although the marmoset EPSC-like cells displayed a unique colony morphology distinct from murine and human EPSCs, they displayed a pluripotent state akin to embryonic stem cells (ESCs), as confirmed by gene expression and immunocytochemical analyses of pluripotency markers and three-germ-layer differentiation assay. Importantly, the marmoset EPSC-like cells showed interspecies chimeric contribution to mouse embryos, such as E6.5 blastocysts in vitro and E6.5 epiblasts in vivo in mouse development. Also, we discovered that the perturbation of gene expression of the marmoset EPSC-like cells from the original ESCs resembled that of human EPSCs. Taken together, our multiple analyses evaluated the efficacy of the method for the derivation of marmoset EPSCs.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Mayutaka Nakajima
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Iki Sonn
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Rie Natsume
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ena Nakatsukasa
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Toshikuni Sasaoka
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mari Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Serizawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Erika Sasaki
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.,Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Hongkui Deng
- Stem Cell Research Center, Peking University, Beijing, China
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
41
|
Dixon TA, Muotri AR. Advancing preclinical models of psychiatric disorders with human brain organoid cultures. Mol Psychiatry 2023; 28:83-95. [PMID: 35948659 PMCID: PMC9812789 DOI: 10.1038/s41380-022-01708-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/11/2023]
Abstract
Psychiatric disorders are often distinguished from neurological disorders in that the former do not have characteristic lesions or findings from cerebrospinal fluid, electroencephalograms (EEGs), or brain imaging, and furthermore do not have commonly recognized convergent mechanisms. Psychiatric disorders commonly involve clinical diagnosis of phenotypic behavioral disturbances of mood and psychosis, often with a poorly understood contribution of environmental factors. As such, psychiatric disease has been challenging to model preclinically for mechanistic understanding and pharmaceutical development. This review compares commonly used animal paradigms of preclinical testing with evolving techniques of induced pluripotent cell culture with a focus on emerging three-dimensional models. Advances in complexity of 3D cultures, recapitulating electrical activity in utero, and disease modeling of psychosis, mood, and environmentally induced disorders are reviewed. Insights from these rapidly expanding technologies are discussed as they pertain to the utility of human organoid and other models in finding novel research directions, validating pharmaceutical action, and recapitulating human disease.
Collapse
Affiliation(s)
- Thomas Anthony Dixon
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA 92093 USA
| | - Alysson R. Muotri
- grid.266100.30000 0001 2107 4242Department of Pediatrics and Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), La Jolla, CA 92037 USA
| |
Collapse
|
42
|
Ma C, Li C, Ma H, Yu D, Zhang Y, Zhang D, Su T, Wu J, Wang X, Zhang L, Chen CL, Zhang YE. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum. Genome Biol 2022; 23:251. [PMID: 36474250 PMCID: PMC9724437 DOI: 10.1186/s13059-022-02821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite having been extensively studied, it remains largely unclear why humans bear a particularly high risk of cancer. The antagonistic pleiotropy hypothesis predicts that primate-specific genes (PSGs) tend to promote tumorigenesis, while the molecular atavism hypothesis predicts that PSGs involved in tumors may represent recently derived duplicates of unicellular genes. However, these predictions have not been tested. RESULTS By taking advantage of pan-cancer genomic data, we find the upregulation of PSGs across 13 cancer types, which is facilitated by copy-number gain and promoter hypomethylation. Meta-analyses indicate that upregulated PSGs (uPSGs) tend to promote tumorigenesis and to play cell cycle-related roles. The cell cycle-related uPSGs predominantly represent derived duplicates of unicellular genes. We prioritize 15 uPSGs and perform an in-depth analysis of one unicellular gene-derived duplicate involved in the cell cycle, DDX11. Genome-wide screening data and knockdown experiments demonstrate that DDX11 is broadly essential across cancer cell lines. Importantly, non-neutral amino acid substitution patterns and increased expression indicate that DDX11 has been under positive selection. Finally, we find that cell cycle-related uPSGs are also preferentially upregulated in the highly proliferative embryonic cerebrum. CONCLUSIONS Consistent with the predictions of the atavism and antagonistic pleiotropy hypotheses, primate-specific genes, especially those PSGs derived from cell cycle-related genes that emerged in unicellular ancestors, contribute to the early proliferation of the human cerebrum at the cost of hitchhiking by similarly highly proliferative cancer cells.
Collapse
Affiliation(s)
- Chenyu Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Li
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianhan Su
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005, Paris, France
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
43
|
Zhao J, Feng C, Wang W, Su L, Jiao J. Human SERPINA3 induces neocortical folding and improves cognitive ability in mice. Cell Discov 2022; 8:124. [DOI: 10.1038/s41421-022-00469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
AbstractNeocortex expansion and folding are related to human intelligence and cognition, but the molecular and cellular mechanisms underlying cortical folding remain poorly understood. Here, we report that the human gene SERPINA3 is linked to gyrification. Specifically, the overexpression of SERPINA3 induced neocortical folding, increased the abundance of neurons, and improved cognitive abilities. Further, SERPINA3 promoted proliferation of the outer radial glia (oRG, also referred to as the basal radial glia) and increased the number of upper-layer neurons. The downstream target Glo1 was determined to be involved in SERPINA3-induced gyrification. Moreover, SERPINA3 increased the proliferation of oRG by binding to the Glo1 promoter. Assessment of behavior performance showed enhanced cognitive abilities in SERPINA3 knock-in mice. Our findings will enrich the understanding of neocortical expansion and gyrification and provide insights into possible treatments for intellectual disability and lissencephaly syndrome.
Collapse
|
44
|
Wang J, Weatheritt R, Voineagu I. Alu-minating the Mechanisms Underlying Primate Cortex Evolution. Biol Psychiatry 2022; 92:760-771. [PMID: 35981906 DOI: 10.1016/j.biopsych.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
The higher-order cognitive functions observed in primates correlate with the evolutionary enhancement of cortical volume and folding, which in turn are driven by the primate-specific expansion of cellular diversity in the developing cortex. Underlying these changes is the diversification of molecular features including the creation of human and/or primate-specific genes, the activation of specific molecular pathways, and the interplay of diverse layers of gene regulation. We review and discuss evidence for connections between Alu elements and primate brain evolution, the evolutionary milestones of which are known to coincide along primate lineages. Alus are repetitive elements that contribute extensively to the acquisition of novel genes and the expansion of diverse gene regulatory layers, including enhancers, alternative splicing, RNA editing, and microRNA pathways. By reviewing the impact of Alus on molecular features linked to cortical expansions or gyrification or implications in cognitive deficits, we suggest that future research focusing on the role of Alu-derived molecular events in the context of brain development may greatly advance our understanding of higher-order cognitive functions and neurologic disorders.
Collapse
Affiliation(s)
- Juli Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.
| | - Robert Weatheritt
- St Vincent Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, EMBL Australia, Sydney, New South Wales, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia.
| |
Collapse
|
45
|
Fischer J, Fernández Ortuño E, Marsoner F, Artioli A, Peters J, Namba T, Eugster Oegema C, Huttner WB, Ladewig J, Heide M. Human-specific ARHGAP11B ensures human-like basal progenitor levels in hominid cerebral organoids. EMBO Rep 2022; 23:e54728. [PMID: 36098218 PMCID: PMC9646322 DOI: 10.15252/embr.202254728] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 02/06/2023] Open
Abstract
The human-specific gene ARHGAP11B has been implicated in human neocortex expansion. However, the extent of ARHGAP11B's contribution to this expansion during hominid evolution is unknown. Here we address this issue by genetic manipulation of ARHGAP11B levels and function in chimpanzee and human cerebral organoids. ARHGAP11B expression in chimpanzee cerebral organoids doubles basal progenitor levels, the class of cortical progenitors with a key role in neocortex expansion. Conversely, interference with ARHGAP11B's function in human cerebral organoids decreases basal progenitors down to the chimpanzee level. Moreover, ARHGAP11A or ARHGAP11B rescue experiments in ARHGAP11A plus ARHGAP11B double-knockout human forebrain organoids indicate that lack of ARHGAP11B, but not of ARHGAP11A, decreases the abundance of basal radial glia-the basal progenitor type thought to be of particular relevance for neocortex expansion. Taken together, our findings demonstrate that ARHGAP11B is necessary and sufficient to ensure the elevated basal progenitor levels that characterize the fetal human neocortex, suggesting that this human-specific gene was a major contributor to neocortex expansion during human evolution.
Collapse
Affiliation(s)
- Jan Fischer
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- Present address:
Institute for Clinical GeneticsUniversity Hospital Carl Gustav CarusDresdenGermany
| | | | - Fabio Marsoner
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Annasara Artioli
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- Present address:
Neuroscience Center, HiLIFE ‐ Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | | | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
| | - Julia Ladewig
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Michael Heide
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- German Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| |
Collapse
|
46
|
Massimo M, Long KR. Orchestrating human neocortex development across the scales; from micro to macro. Semin Cell Dev Biol 2022; 130:24-36. [PMID: 34583893 DOI: 10.1016/j.semcdb.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
How our brains have developed to perform the many complex functions that make us human has long remained a question of great interest. Over the last few decades, many scientists from a wide range of fields have tried to answer this question by aiming to uncover the mechanisms that regulate the development of the human neocortex. They have approached this on different scales, focusing microscopically on individual cells all the way up to macroscopically imaging entire brains within living patients. In this review we will summarise these key findings and how they fit together.
Collapse
Affiliation(s)
- Marco Massimo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
47
|
A kinase-independent function of cyclin-dependent kinase 6 promotes outer radial glia expansion and neocortical folding. Proc Natl Acad Sci U S A 2022; 119:e2206147119. [PMID: 36095192 PMCID: PMC9499540 DOI: 10.1073/pnas.2206147119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neocortex, the center for higher brain function, first emerged in mammals and has become massively expanded and folded in humans, constituting almost half the volume of the human brain. Primary microcephaly, a developmental disorder in which the brain is smaller than normal at birth, results mainly from there being fewer neurons in the neocortex because of defects in neural progenitor cells (NPCs). Outer radial glia (oRGs), NPCs that are abundant in gyrencephalic species but rare in lissencephalic species, are thought to play key roles in the expansion and folding of the neocortex. However, how oRGs expand, whether they are necessary for neocortical folding, and whether defects in oRGs cause microcephaly remain important questions in the study of brain development, evolution, and disease. Here, we show that oRG expansion in mice, ferrets, and human cerebral organoids requires cyclin-dependent kinase 6 (CDK6), the mutation of which causes primary microcephaly via an unknown mechanism. In a mouse model in which increased Hedgehog signaling expands oRGs and intermediate progenitor cells and induces neocortical folding, CDK6 loss selectively decreased oRGs and abolished neocortical folding. Remarkably, this function of CDK6 in oRG expansion did not require its kinase activity, was not shared by the highly similar CDK4 and CDK2, and was disrupted by the mutation causing microcephaly. Therefore, our results indicate that CDK6 is conserved to promote oRG expansion, that oRGs are necessary for neocortical folding, and that defects in oRG expansion may cause primary microcephaly.
Collapse
|
48
|
Barbas H, Zikopoulos B, John YJ. The inevitable inequality of cortical columns. Front Syst Neurosci 2022; 16:921468. [PMID: 36203745 PMCID: PMC9532056 DOI: 10.3389/fnsys.2022.921468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The idea of columns as an organizing cortical unit emerged from physiologic studies in the sensory systems. Connectional studies and molecular markers pointed to widespread presence of modular label that necessitated revision of the classical concept of columns. The general principle of cortical systematic variation in laminar structure is at the core of cortical organization. Systematic variation can be traced to the phylogenetically ancient limbic cortices, which have the simplest laminar structure, and continues through eulaminate cortices that show sequential elaboration of their six layers. Connections are governed by relational rules, whereby columns or modules with a vertical organization represent the feedforward mode of communication from earlier- to later processing cortices. Conversely, feedback connections are laminar-based and connect later- with earlier processing areas; both patterns are established in development. Based on studies in primates, the columnar/modular pattern of communication appears to be newer in evolution, while the broadly based laminar pattern represents an older system. The graded variation of cortices entails a rich variety of patterns of connections into modules, layers, and mixed arrangements as the laminar and modular patterns of communication intersect in the cortex. This framework suggests an ordered architecture poised to facilitate seamless recruitment of areas in behavior, in patterns that are affected in diseases of developmental origin.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, MA, United States
- *Correspondence: Helen Barbas,
| | - Basilis Zikopoulos
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, MA, United States
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Yohan J. John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, MA, United States
| |
Collapse
|
49
|
Fischer J, Fernández Ortuño E, Marsoner F, Artioli A, Peters J, Namba T, Eugster Oegema C, Huttner WB, Ladewig J, Heide M. Human-specific ARHGAP11B ensures human-like basal progenitor levels in hominid cerebral organoids. EMBO Rep 2022; 23:e54728. [PMID: 36381990 PMCID: PMC9646322 DOI: 10.1101/2020.10.01.322792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023] Open
Abstract
The human-specific gene ARHGAP11B has been implicated in human neocortex expansion. However, the extent of ARHGAP11B's contribution to this expansion during hominid evolution is unknown. Here we address this issue by genetic manipulation of ARHGAP11B levels and function in chimpanzee and human cerebral organoids. ARHGAP11B expression in chimpanzee cerebral organoids doubles basal progenitor levels, the class of cortical progenitors with a key role in neocortex expansion. Conversely, interference with ARHGAP11B's function in human cerebral organoids decreases basal progenitors down to the chimpanzee level. Moreover, ARHGAP11A or ARHGAP11B rescue experiments in ARHGAP11A plus ARHGAP11B double-knockout human forebrain organoids indicate that lack of ARHGAP11B, but not of ARHGAP11A, decreases the abundance of basal radial glia - the basal progenitor type thought to be of particular relevance for neocortex expansion. Taken together, our findings demonstrate that ARHGAP11B is necessary and sufficient to ensure the elevated basal progenitor levels that characterize the fetal human neocortex, suggesting that this human-specific gene was a major contributor to neocortex expansion during human evolution.
Collapse
Affiliation(s)
- Jan Fischer
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- Present address:
Institute for Clinical GeneticsUniversity Hospital Carl Gustav CarusDresdenGermany
| | | | - Fabio Marsoner
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Annasara Artioli
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- Present address:
Neuroscience Center, HiLIFE ‐ Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | | | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
| | - Julia Ladewig
- Central Institute of Mental HealthUniversity of Heidelberg/Medical Faculty MannheimMannheimGermany
- Hector Institute for Translational Brain Research (HITBR gGmbH)MannheimGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Michael Heide
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstrasse 108DresdenGermany
- German Primate CenterLeibniz Institute for Primate ResearchGöttingenGermany
| |
Collapse
|
50
|
Procyk E, Meunier M. BioSimia, France CNRS network for nonhuman primate biomedical research in infectiology, immunology, and neuroscience. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100051. [PMID: 36685763 PMCID: PMC9846450 DOI: 10.1016/j.crneur.2022.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 01/25/2023] Open
Abstract
Research and developments based on nonhuman primate models have a specific place in biomedical sciences, and nonhuman primate species also have a specific place in the public opinion on the use of animal in research. While nonhuman primates are used in very limited number compared to other animal models, they are rightly the focus of deep ethical concerns. The importance of nonhuman primates in neuroscientific fundamental and preclinical discoveries together with the targeting of such research by activist groups well illustrate this fact. Nonhuman primates also highly contribute to other biomedical fields including immunology, virology, or metabolic and respiratory physiology. In all these fields, researchers, engineers and technicians face similar matters and share the same needs for optimal animal welfare, handling, and veterinary care, the same quest for first-rate research infrastructure and funding, and the same yearning for more public understanding and support. In this article, we give an overview of the evolution of human-animal relationships and public attitudes to animal research in France, and we recount the creation of BioSimia, France network for nonhuman primate biomedical research which now links all academic laboratories nationwide in all the domains for which nonhuman primates remain essential. We explain the principles as well as the outcomes of networking across disciplines. As a perspective, we outline the potential benefits of extending such network to a European scale.
Collapse
Affiliation(s)
- Emmanuel Procyk
- University of Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France,Corresponding author.
| | - Martine Meunier
- University of Lyon 1, Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France
| |
Collapse
|