1
|
Liu X, Lai J, Han C, Zhong H, Huang K, Liu Y, Zhu X, Wei P, Tan L, Xu F, Wang L. Neural circuit underlying individual differences in visual escape habituation. Neuron 2025:S0896-6273(25)00301-0. [PMID: 40347942 DOI: 10.1016/j.neuron.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/28/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025]
Abstract
Emotions like fear help organisms respond to threats. Repeated predator exposure leads to adaptive responses with unclear neural mechanisms behind individual variability. We identify two escape behaviors in mice-persistent escape (T1) and rapid habituation (T2)-linked to unique arousal states under repetitive looming stimuli. Combining multichannel recording, circuit mapping, optogenetics, and behavioral analyses, we find parallel pathways from the superior colliculus (SC) to the basolateral amygdala (BLA) via the ventral tegmental area (VTA) for T1 and via the mediodorsal thalamus (MD) for T2. T1 involves heightened arousal, while T2 features rapid habituation. The MD integrates SC and insular cortex inputs to modulate arousal and defensive behaviors. This work reveals neural circuits underpinning adaptive threat responses and individual variability.
Collapse
Affiliation(s)
- Xuemei Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China; Shenzhen Key Lab of Neuropsychiatric Modulation, Chinese Academy of Sciences, Shenzhen, Gudangdong 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Juan Lai
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chuanliang Han
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hao Zhong
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kang Huang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanming Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xutao Zhu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengfei Wei
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liming Tan
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China; Shenzhen Key Lab of Neuropsychiatric Modulation, Chinese Academy of Sciences, Shenzhen, Gudangdong 518055, China
| | - Fuqiang Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China; Shenzhen Key Lab of Neuropsychiatric Modulation, Chinese Academy of Sciences, Shenzhen, Gudangdong 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Matamoros JA, Rubio-Casado S, Fernández-Albarral JA, Martínez-López MA, Ramírez AI, Salobrar-García E, Marco EM, Paleo-García V, de Hoz R, López-Cuenca I, Elvira-Hurtado L, Sánchez-Puebla L, Ramírez JM, López-Gallardo M, Salazar JJ. Citicoline and Coenzyme Q10: Therapeutic Agents for Glial Activation Reduction in Ocular Hypertension. Pharmaceuticals (Basel) 2025; 18:694. [PMID: 40430513 PMCID: PMC12114817 DOI: 10.3390/ph18050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: The loss of retinal ganglion cells (RGCs) is a hallmark of glaucoma, a major cause of blindness. Glial cell activation due to increased intraocular pressure (IOP) significantly contributes to RGC death. Therefore, substances with anti-inflammatory properties could help prevent that process. This study investigated whether combining Citicoline and Coenzyme Q10 (CoQ10) can reduce glial activation in the retina and the rest of the visual pathway, potentially preventing neurodegeneration in a mouse model of unilateral laser-induced ocular hypertension (OHT). Methods: Four groups of mice were used: vehicle (n = 12), CitiQ10 (n = 12), OHT-vehicle (n = 18), and OHT-CitiQ10 (n = 18). The administration of Citicoline and CoQ10 was performed orally once a day, initiated 15 days prior to the laser treatment and maintained post-treatment until sacrifice (3 days for retina or 7 days for the rest of the visual pathway). The retina, dorsolateral geniculate nucleus, superior colliculus, and visual cortex (V1) were immunohistochemically stained and analyzed. Results: In the laser-CitiQ10 group, the Citicoline + CoQ10 compound revealed (1) an IOP decrease at 24 h and 3 days post-laser; and (2) reduced signs of macroglial (decreased GFAP area) and microglial (soma size, arbor area, microglia number, P2RY12 expression) activation in the retina and in the rest of the visual pathway (reduced activated microglial phenotypes and lower GFAP expression). Conclusions: This study shows that oral administration of Citicoline and CoQ10 can reduce glial activation caused by increased IOP in retina and visual pathway in a mouse model of OHT, potentially protecting RGCs from OHT-induced inflammation.
Collapse
Affiliation(s)
- José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Rubio-Casado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Miguel A. Martínez-López
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Eva M. Marco
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Department of Genetics, Microbiology and Physiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Victor Paleo-García
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Meritxell López-Gallardo
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Gil R, Valente M, Fernandes FF, Shemesh N. Evidence for a push-pull interaction between superior colliculi in monocular dynamic vision mode. Commun Biol 2025; 8:642. [PMID: 40263386 PMCID: PMC12015290 DOI: 10.1038/s42003-025-08081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Visual perception can operate in two distinct vision modes-static and dynamic-that have been associated with different neural activity regimes in the superior colliculus (SC). However, the associated pathway-wide mechanisms remain poorly understood, especially in terms of corticotectal and tectotectal feedback upon encoding the continuity illusion during the dynamic vision mode. Here, we harness functional MRI combined with rat brain lesions to investigate whole-pathway neural interactions in the dynamic vision mode. We find a push-pull mechanism embodying contralateral suppression of SC activity opposing positive ipsilateral neural activation upon monocular visual stimulation. Cortical amplification is confirmed through cortical lesions, while further lesioning the ipsilateral SC leads to a boost in the contralateral SC negative signals, suggesting a tectal origin for the push-pull interaction. These results highlight hitherto unreported frequency-dependent modulations in the tectotectal pathway and further challenge the notion that intertectal connections solely serve as reciprocal inhibitory mechanisms for avoiding visual blur during saccades.
Collapse
Affiliation(s)
- Rita Gil
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mafalda Valente
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
4
|
Broersen R, Thompson G, Thomas F, Stuart GJ. Binocular processing facilitates escape behavior through multiple pathways to the superior colliculus. Curr Biol 2025; 35:1242-1257.e9. [PMID: 39983730 DOI: 10.1016/j.cub.2025.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
The superior colliculus (SC) is the main brain region regulating defensive behaviors to visual threats. Yet, how the SC integrates binocular visual information and to what extent binocular vision drives defensive behaviors remains unknown. Here, we show that SC neurons respond to binocular visual input with diverse synaptic and spiking responses, summating visual inputs largely sublinearly. Using pathway-specific optogenetic silencing, we find that contralateral and ipsilateral visual information is carried to binocular SC neurons through retinal, interhemispheric, and corticotectal pathways. These pathways carry binocular visual input to the SC in a layer-specific manner, with superficial layers receiving visual information through retinal input, whereas intermediate and deep layers rely on interhemispheric and corticotectal pathways. We further show that binocular vision facilitates visually evoked escape behavior. Together, our data shed light on the cellular and circuit mechanisms underlying binocular visual processing in the SC and its role in defensive behaviors to visual threats.
Collapse
Affiliation(s)
- Robin Broersen
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia; Department of Neuroscience, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - Genevieve Thompson
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia
| | - Felix Thomas
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia
| | - Greg J Stuart
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, 131 Garran Rd, Acton, ACT 2601, Australia; Department of Physiology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia.
| |
Collapse
|
5
|
Gu H, Zhao F, Liu Z, Cao P. Defense or death? A review of the neural mechanisms underlying sensory modality-triggered innate defensive behaviors. Curr Opin Neurobiol 2025; 92:102977. [PMID: 40015135 DOI: 10.1016/j.conb.2025.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Defense or death presents a canonical dilemma for animals when encountering predators. Threatening sensory cues provide essential information that signals predator presence, driving the evolution of a spectrum of defensive behaviors. In rodents, these behaviors, as described by the classic "predatory imminence continuum" model, range from risk assessment and freezing to rapid escape responses. During the pre-encounter phase, risk assessment and avoidance responses are crucial for monitoring the environment with vigilance and cautiousness. Once detected during the post-encounter phase or physically attacked during the circa-strike phase, multiple sensory systems are rapidly activated, triggering escape responses to increase the distance from the threat. Although there are species-specific variations, the brain regions underpinning these defensive strategies, including the thalamus, hypothalamus, and midbrain, are evolutionarily conserved. This review aims to provide a comprehensive overview of the universal innate defensive circuit framework to enrich our understanding of how animals respond to life-threatening situations.
Collapse
Affiliation(s)
- Huating Gu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feiran Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhihui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
6
|
Peelman K, Haider B. Environmental context sculpts spatial and temporal visual processing in thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.26.605345. [PMID: 39091887 PMCID: PMC11291113 DOI: 10.1101/2024.07.26.605345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Behavioral state modulates neural activity throughout the visual system1-3. This is largely due to changes in arousal that alter internal brain state4-10. Much is known about how these internal factors influence visual processing7-11, but comparatively less is known about the role of external environmental contexts12. Environmental contexts can promote or prevent certain actions13, and it remains unclear if and how this affects visual processing. Here, we addressed this question in the thalamus of awake head-fixed mice while they viewed stimuli but remained stationary in two different environmental contexts: either a cylindrical tube, or a circular running wheel that enabled locomotion. We made silicon probe recordings in the dorsal lateral geniculate nucleus (dLGN) while simultaneously measuring multiple metrics of arousal changes, so that we could control for them across contexts. We found surprising differences in spatial and temporal processing in dLGN across contexts. The wheel context (versus tube) showed elevated baseline activity, and faster but less spatially selective visual responses; however, these visual processing differences disappeared if the wheel no longer enabled locomotion. Our results reveal an unexpected influence of the physical environmental context on fundamental aspects of early visual processing, even in otherwise identical states of alertness and stillness.
Collapse
Affiliation(s)
- Kayla Peelman
- Dept of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Bilal Haider
- Dept of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Matamoros JA, Rubio-Casado S, Fernández-Albarral JA, Martínez-López MA, Salobrar-García E, Marco EM, Paleo-García V, de Hoz R, López-Cuenca I, Elvira-Hurtado L, Sánchez-Puebla L, Ramírez JM, Salazar JJ, López-Gallardo M, Ramírez AI. Neuroprotective Effect of the Combination of Citicoline and CoQ10 in a Mouse Model of Ocular Hypertension. Antioxidants (Basel) 2024; 14:4. [PMID: 39857338 PMCID: PMC11761561 DOI: 10.3390/antiox14010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs), with intraocular pressure (IOP) being its primary risk factor. Despite controlling IOP, the neurodegenerative process often continues. Therefore, substances with neuroprotective, antioxidant, and anti-inflammatory properties could protect against RGC death. This study investigated the neuroprotective effects on RGCs and visual pathway neurons of a compound consisting of citicoline and coenzyme Q10 (CoQ10) in a mouse model of unilateral, laser-induced ocular hypertension (OHT). Four groups of mice were used: vehicle group (n = 6), citicoline + CoQ10 group (n = 6), laser-vehicle group (n = 6), and laser-citicoline + CoQ10 group (n = 6). The citicoline + CoQ10 was administered orally once a day starting 15 days before laser treatment, continuing until sacrifice (7 days post-laser). Retinas, the dorsolateral geniculate nucleus (dLGN), the superior colliculus (SC), and the visual cortex (V1) were analyzed. The citicoline + CoQ10 compound used in the laser-citicoline + CoQ10 group demonstrated (1) an ocular hypotensive effect only at 24 h post-laser; (2) prevention of Brn3a+ RGC death in OHT eyes; and (3) no changes in NeuN+ neurons in the dLGN. This study demonstrates that the oral administration of the citicoline + CoQ10 combination may exert a neuroprotective effect against RGC death in an established rodent model of OHT.
Collapse
Affiliation(s)
- José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Rubio-Casado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Miguel A. Martínez-López
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Eva M. Marco
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Genetics, Microbiology and Physiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Victor Paleo-García
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ORL, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Meritxell López-Gallardo
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.); (J.J.S.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Yuan M, Tan G, Cai D, Luo X, Shen K, Deng Q, Lei X, Zeng WB, Luo MH, Huang L, Ren C, Shen Y. GABAergic Retinal Ganglion Cells Projecting to the Superior Colliculus Mediate the Looming-Evoked Flight Response. Neurosci Bull 2024; 40:1886-1900. [PMID: 39285154 PMCID: PMC11625033 DOI: 10.1007/s12264-024-01295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/05/2024] [Indexed: 12/08/2024] Open
Abstract
The looming stimulus-evoked flight response to approaching predators is a defensive behavior in most animals. However, how looming stimuli are detected in the retina and transmitted to the brain remains unclear. Here, we report that a group of GABAergic retinal ganglion cells (RGCs) projecting to the superior colliculus (SC) transmit looming signals from the retina to the brain, mediating the looming-evoked flight behavior by releasing GABA. GAD2-Cre and vGAT-Cre transgenic mice were used in combination with Cre-activated anterograde or retrograde tracer viruses to map the inputs to specific GABAergic RGC circuits. Optogenetic technology was used to assess the function of SC-projecting GABAergic RGCs (scpgRGCs) in the SC. FDIO-DTA (Flp-dependent Double-Floxed Inverted Open reading frame-Diphtheria toxin) combined with the FLP (Florfenicol, Lincomycin & Prednisolone) approach was used to ablate or silence scpgRGCs. In the mouse retina, GABAergic RGCs project to different brain areas, including the SC. ScpgRGCs are monosynaptically connected to parvalbumin-positive SC neurons known to be required for the looming-evoked flight response. Optogenetic activation of scpgRGCs triggers GABA-mediated inhibition in SC neurons. Ablation or silencing of scpgRGCs compromises looming-evoked flight responses without affecting image-forming functions. Our study reveals that scpgRGCs control the looming-evoked flight response by regulating SC neurons via GABA, providing novel insight into the regulation of innate defensive behaviors.
Collapse
Affiliation(s)
- Man Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Gao Tan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Danrui Cai
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Xue Luo
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Kejiong Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Qinqin Deng
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Xinlan Lei
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Wuhan, 430071, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Wuhan, 430071, China
| | - Lu Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Shin H, Nam MH, Lee SE, Yang SH, Yang E, Jung JT, Kim H, Woo J, Cho Y, Yoon Y, Cho IJ. Transcranial optogenetic brain modulator for precise bimodal neuromodulation in multiple brain regions. Nat Commun 2024; 15:10423. [PMID: 39613730 PMCID: PMC11607408 DOI: 10.1038/s41467-024-54759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
Transcranial brain stimulation is a promising technology for safe modulation of brain function without invasive procedures. Recent advances in transcranial optogenetic techniques with external light sources, using upconversion particles and highly sensitive opsins, have shown promise for precise neuromodulation with improved spatial resolution in deeper brain regions. However, these methods have not yet been used to selectively excite or inhibit specific neural populations in multiple brain regions. In this study, we created a wireless transcranial optogenetic brain modulator that combines highly sensitive opsins and upconversion particles and allows for precise bimodal neuromodulation of multiple brain regions without optical crosstalk. We demonstrate the feasibility of our approach in freely behaving mice. Furthermore, we demonstrate its usefulness in studies of complex behaviors and brain dysfunction by controlling extorting behavior in mice in food competition tests and alleviating the symptoms of Parkinson's disease. Our approach has potential applications in the study of neural circuits and development of treatments for various brain disorders.
Collapse
Affiliation(s)
- Hyogeun Shin
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Ho Nam
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Soo Hyun Yang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Esther Yang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin Taek Jung
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jiwan Woo
- Research Animal Resources Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yakdol Cho
- Research Animal Resources Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Youngsam Yoon
- Department of Electrical Engineering, Korea Military Academy, Seoul, Republic of Korea
| | - Il-Joo Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea.
- Department of Convergence Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Visser J, Milior G, Breton R, Moulard J, Garnero M, Ezan P, Ribot J, Rouach N. Astroglial networks control visual responses of superior collicular neurons and sensory-motor behavior. Cell Rep 2024; 43:114504. [PMID: 38996064 PMCID: PMC11290320 DOI: 10.1016/j.celrep.2024.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/16/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Astroglial networks closely interact with neuronal populations, but their functional contribution to neuronal representation of sensory information remains unexplored. The superior colliculus (SC) integrates multi-sensory information by generating distinct spatial patterns of neuronal functional responses to specific sensory stimulation. Here, we report that astrocytes from the mouse SC form extensive networks in the retinorecipient layer compared to visual cortex. This strong astroglial connectivity relies on high expression of gap-junction proteins. Genetic disruption of this connectivity functionally impairs SC retinotopic and orientation preference responses. These alterations are region specific, absent in primary visual cortex, and associated at the circuit level with a specific impairment of collicular neurons synaptic transmission. This has implications for SC-related visually induced innate behavior, as disrupting astroglial networks impairs light-evoked temporary arrest. Our results indicate that astroglial networks shape synaptic circuit activity underlying SC functional visual responses and play a crucial role in integrating visual cues to drive sensory-motor behavior.
Collapse
Affiliation(s)
- Josien Visser
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France; Doctoral School No. 158, Sorbonne Université, Paris, France
| | - Giampaolo Milior
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Rachel Breton
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Julien Moulard
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Maina Garnero
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France; Doctoral School No. 158, Sorbonne Université, Paris, France
| | - Pascal Ezan
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Jérôme Ribot
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France.
| |
Collapse
|
11
|
Guan X, Cao P. Brain Mechanisms Underlying Panic Attack and Panic Disorder. Neurosci Bull 2024; 40:795-814. [PMID: 37477800 PMCID: PMC11178723 DOI: 10.1007/s12264-023-01088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/23/2023] [Indexed: 07/22/2023] Open
Abstract
Panic disorder is a psychiatric disorder characterized by recurrent panic attacks, with a prevalence of ~ 4% in the general population, causing heavy personal and socioeconomic burdens. The similarities of animal defense responses to clinical panic attack symptoms in humans make it possible to translate neuroanatomical pathways identified in animal studies to panic disorder in humans. Therefore, in this review we first present a basic overview of panic disorder in humans including the main subtypes, models commonly used to trigger panic attacks, related hypotheses, the neurotransmitter systems that may be involved, and the current clinical treatments to give the reader a comprehensive understanding of panic disorder. The animal section introduces the models that trigger panic-like behavior in animals and the brain regions that may be involved, providing insights for future elucidation of the neural circuit mechanisms behind panic attacks.
Collapse
Affiliation(s)
- Xuyan Guan
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
| | - Peng Cao
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| |
Collapse
|
12
|
de Malmazet D, Kühn NK, Li C, Farrow K. Retinal origin of orientation but not direction selective maps in the superior colliculus. Curr Biol 2024; 34:1222-1233.e7. [PMID: 38417446 PMCID: PMC10980837 DOI: 10.1016/j.cub.2024.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
Neurons in the mouse superior colliculus ("colliculus") are arranged in ordered spatial maps. While orientation-selective (OS) neurons form a concentric map aligned to the center of vision, direction-selective (DS) neurons are arranged in patches with changing preferences across the visual field. It remains unclear whether these maps are a consequence of feedforward input from the retina or local computations in the colliculus. To determine whether these maps originate in the retina, we mapped the local and global distribution of OS and DS retinal ganglion cell axon boutons using in vivo two-photon calcium imaging. We found that OS boutons formed patches that matched the distribution of OS neurons within the colliculus. DS boutons displayed fewer regional specializations, better reflecting the organization of DS neurons in the retina. Both eyes convey similar orientation but different DS inputs to the colliculus, as shown in recordings from retinal explants. These data demonstrate that orientation and direction maps within the colliculus are independent, where orientation maps are likely inherited from the retina, but direction maps require additional computations.
Collapse
Affiliation(s)
- Daniel de Malmazet
- Neuro-Electronics Research Flanders, Leuven 3001, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, Leuven 3000, Belgium; MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Norma K Kühn
- Neuro-Electronics Research Flanders, Leuven 3001, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, Leuven 3000, Belgium; VIB, Leuven 3001, Belgium
| | - Chen Li
- Neuro-Electronics Research Flanders, Leuven 3001, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, Leuven 3000, Belgium
| | - Karl Farrow
- Neuro-Electronics Research Flanders, Leuven 3001, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, Leuven 3000, Belgium; VIB, Leuven 3001, Belgium; imec, Leuven 3001, Belgium.
| |
Collapse
|
13
|
Russell LE, Fişek M, Yang Z, Tan LP, Packer AM, Dalgleish HWP, Chettih SN, Harvey CD, Häusser M. The influence of cortical activity on perception depends on behavioral state and sensory context. Nat Commun 2024; 15:2456. [PMID: 38503769 PMCID: PMC10951313 DOI: 10.1038/s41467-024-46484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
The mechanistic link between neural circuit activity and behavior remains unclear. While manipulating cortical activity can bias certain behaviors and elicit artificial percepts, some tasks can still be solved when cortex is silenced or removed. Here, mice were trained to perform a visual detection task during which we selectively targeted groups of visually responsive and co-tuned neurons in L2/3 of primary visual cortex (V1) for two-photon photostimulation. The influence of photostimulation was conditional on two key factors: the behavioral state of the animal and the contrast of the visual stimulus. The detection of low-contrast stimuli was enhanced by photostimulation, while the detection of high-contrast stimuli was suppressed, but crucially, only when mice were highly engaged in the task. When mice were less engaged, our manipulations of cortical activity had no effect on behavior. The behavioral changes were linked to specific changes in neuronal activity. The responses of non-photostimulated neurons in the local network were also conditional on two factors: their functional similarity to the photostimulated neurons and the contrast of the visual stimulus. Functionally similar neurons were increasingly suppressed by photostimulation with increasing visual stimulus contrast, correlating with the change in behavior. Our results show that the influence of cortical activity on perception is not fixed, but dynamically and contextually modulated by behavioral state, ongoing activity and the routing of information through specific circuits.
Collapse
Affiliation(s)
- Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mehmet Fişek
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Zidan Yang
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Lynn Pei Tan
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
14
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
15
|
Li X, You J, Pan Y, Song C, Li H, Ji X, Liang F. Effective Regulation of Auditory Processing by Parvalbumin Interneurons in the Tail of the Striatum. J Neurosci 2024; 44:e1171232023. [PMID: 38296650 PMCID: PMC10860494 DOI: 10.1523/jneurosci.1171-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 02/02/2024] Open
Abstract
Parvalbumin (PV) interneurons in the auditory cortex (AC) play a crucial role in shaping auditory processing, including receptive field formation, temporal precision enhancement, and gain regulation. PV interneurons are also the primary inhibitory neurons in the tail of the striatum (TS), which is one of the major descending brain regions in the auditory nervous system. However, the specific roles of TS-PV interneurons in auditory processing remain elusive. In this study, morphological and slice recording experiments in both male and female mice revealed that TS-PV interneurons, compared with AC-PV interneurons, were present in fewer numbers but exhibited longer projection distances, which enabled them to provide sufficient inhibitory inputs to spiny projection neurons (SPNs). Furthermore, TS-PV interneurons received dense auditory input from both the AC and medial geniculate body (MGB), particularly from the MGB, which rendered their auditory responses comparable to those of AC-PV interneurons. Optogenetic manipulation experiments demonstrated that TS-PV interneurons were capable of bidirectionally regulating the auditory responses of SPNs. Our findings suggest that PV interneurons can effectively modulate auditory processing in the TS and may play a critical role in auditory-related behaviors.
Collapse
Affiliation(s)
- Xuan Li
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Jiapeng You
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Yidi Pan
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
| | - Changbao Song
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
| | - Haifu Li
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
| | - Xuying Ji
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Feixue Liang
- Guangdong-Hong Kong-Macaoh Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220 China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Hu G, Chen A, Ye J, Liu Q, Wang J, Fan C, Wang X, Huang M, Dai M, Shi X, Gu Y. A developmental critical period for ocular dominance plasticity of binocular neurons in mouse superior colliculus. Cell Rep 2024; 43:113667. [PMID: 38184852 DOI: 10.1016/j.celrep.2023.113667] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/29/2023] [Accepted: 12/25/2023] [Indexed: 01/09/2024] Open
Abstract
Detecting visual features in the environment is crucial for animals' survival. The superior colliculus (SC) is implicated in motion detection and processing, whereas how the SC integrates visual inputs from the two eyes remains unclear. Using in vivo electrophysiology, we show that mouse SC contains many binocular neurons that display robust ocular dominance (OD) plasticity in a critical period during early development, which is similar to, but not dependent on, the primary visual cortex. NR2A- and NR2B-containing N-methyl-D-aspartate (NMDA) receptors play an essential role in the regulation of SC plasticity. Blocking NMDA receptors can largely prevent the impairment of predatory hunting caused by monocular deprivation, indicating that maintaining the binocularity of SC neurons is required for efficient hunting behavior. Together, our studies reveal the existence and function of OD plasticity in SC, which broadens our understanding of the development of subcortical visual circuitry relating to motion detection and predatory hunting.
Collapse
Affiliation(s)
- Guanglei Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; School of Life Sciences, Westlake University, Hangzhou 310000, China
| | - Ailin Chen
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Jingjing Ye
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Qiong Liu
- School of Life Sciences, Westlake University, Hangzhou 310000, China
| | - Jiafeng Wang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Cunxiu Fan
- Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Huangjiahuayuan Road, Shanghai 201803, China
| | - Xiaoqing Wang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mengqi Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Menghan Dai
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xuefeng Shi
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China; Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Institute of Ophthalmology, Nankai University, Tianjin 300020, China.
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
17
|
Liu J, He Y, Lavoie A, Bouvier G, Liu BH. A direction-selective cortico-brainstem pathway adaptively modulates innate behaviors. Nat Commun 2023; 14:8467. [PMID: 38123558 PMCID: PMC10733370 DOI: 10.1038/s41467-023-42910-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/25/2023] [Indexed: 12/23/2023] Open
Abstract
Sensory cortices modulate innate behaviors through corticofugal projections targeting phylogenetically-old brainstem nuclei. However, the principles behind the functional connectivity of these projections remain poorly understood. Here, we show that in mice visual cortical neurons projecting to the optic-tract and dorsal-terminal nuclei (NOT-DTN) possess distinct response properties and anatomical connectivity, supporting the adaption of an essential innate eye movement, the optokinetic reflex (OKR). We find that these corticofugal neurons are enriched in specific visual areas, and they prefer temporo-nasal visual motion, matching the direction bias of downstream NOT-DTN neurons. Remarkably, continuous OKR stimulation selectively enhances the activity of these temporo-nasally biased cortical neurons, which can efficiently promote OKR plasticity. Lastly, we demonstrate that silencing downstream NOT-DTN neurons, which project specifically to the inferior olive-a key structure in oculomotor plasticity, impairs the cortical modulation of OKR and OKR plasticity. Our results unveil a direction-selective cortico-brainstem pathway that adaptively modulates innate behaviors.
Collapse
Affiliation(s)
- Jiashu Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Yingtian He
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Andreanne Lavoie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Guy Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Bao-Hua Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
18
|
Wu K, Wang D, Wang Y, Tang P, Li X, Pan Y, Tao HW, Zhang LI, Liang F. Distinct circuits in anterior cingulate cortex encode safety assessment and mediate flexibility of fear reactions. Neuron 2023; 111:3650-3667.e6. [PMID: 37652003 PMCID: PMC10990237 DOI: 10.1016/j.neuron.2023.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/15/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023]
Abstract
Safety assessment and threat evaluation are crucial for animals to live and survive in the wilderness. However, neural circuits underlying safety assessment and their transformation to mediate flexibility of fear-induced defensive behaviors remain largely unknown. Here, we report that distinct neuronal populations in mouse anterior cingulate cortex (ACC) encode safety status by selectively responding under different contexts of auditory threats, with one preferably activated when an animal staysing in a self-deemed safe zone and another specifically activated in more dangerous environmental settings that led to escape behavior. The safety-responding neurons preferentially target the zona incerta (ZI), which suppresses the superior colliculus (SC) via its GABAergic projection, while the danger-responding neurons preferentially target and excite SC. These distinct corticofugal pathways antagonistically modulate SC responses to threat, resulting in context-dependent expression of fear reactions. Thus, ACC serves as a critical node to encode safety/danger assessment and mediate behavioral flexibility through differential top-down circuits.
Collapse
Affiliation(s)
- Kaibin Wu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Dijia Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Yuwei Wang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Peiwen Tang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China
| | - Xuan Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yidi Pan
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Huizhong W Tao
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Center for Neural Circuits & Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Feixue Liang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510220, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China; Department of Psychology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
19
|
Li Z, Peng B, Huang JJ, Zhang Y, Seo MB, Fang Q, Zhang GW, Zhang X, Zhang LI, Tao HW. Enhancement and contextual modulation of visuospatial processing by thalamocollicular projections from ventral lateral geniculate nucleus. Nat Commun 2023; 14:7278. [PMID: 37949869 PMCID: PMC10638288 DOI: 10.1038/s41467-023-43147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
In the mammalian visual system, the ventral lateral geniculate nucleus (vLGN) of the thalamus receives salient visual input from the retina and sends prominent GABAergic axons to the superior colliculus (SC). However, whether and how vLGN contributes to fundamental visual information processing remains largely unclear. Here, we report in mice that vLGN facilitates visually-guided approaching behavior mediated by the lateral SC and enhances the sensitivity of visual object detection. This can be attributed to the extremely broad spatial integration of vLGN neurons, as reflected in their much lower preferred spatial frequencies and broader spatial receptive fields than SC neurons. Through GABAergic thalamocollicular projections, vLGN specifically exerts prominent surround suppression of visuospatial processing in SC, leading to a fine tuning of SC preferences to higher spatial frequencies and smaller objects in a context-dependent manner. Thus, as an essential component of the central visual processing pathway, vLGN serves to refine and contextually modulate visuospatial processing in SC-mediated visuomotor behaviors via visually-driven long-range feedforward inhibition.
Collapse
Affiliation(s)
- Zhong Li
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bo Peng
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
| | - Junxiang J Huang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Biological and Biomedical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yuan Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michelle B Seo
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qi Fang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
| | - Guang-Wei Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Li I Zhang
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Huizhong Whit Tao
- Center for Neural Circuits and Sensory Processing Disorders, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
20
|
Jiang S, Honnuraiah S, Stuart GJ. Characterization of primary visual cortex input to specific cell types in the superior colliculus. Front Neuroanat 2023; 17:1282941. [PMID: 38020214 PMCID: PMC10667433 DOI: 10.3389/fnana.2023.1282941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The superior colliculus is a critical brain region involved in processing visual information. It receives visual input directly from the retina, as well as via a projection from primary visual cortex. Here we determine which cell types in the superficial superior colliculus receive visual input from primary visual cortex in mice. Neurons in the superficial layers of the superior colliculus were classified into four groups - Wide-field, narrow-field, horizontal and stellate - based on their morphological and electrophysiological properties. To determine functional connections between V1 and these four different cell types we expressed Channelrhodopsin2 in primary visual cortex and then optically stimulated these axons while recording from different neurons in the superficial superior colliculus using whole-cell patch-clamp recording in vitro. We found that all four cell types in the superficial layers of the superior colliculus received monosynaptic (direct) input from V1. Wide-field neurons were more likely than other cell types to receive primary visual cortex input. Our results provide information on the cell specificity of the primary visual cortex to superior colliculus projection, increasing our understanding of how visual information is processed in the superior colliculus at the single cell level.
Collapse
Affiliation(s)
- Shuang Jiang
- Eccles Institute for Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Suraj Honnuraiah
- Eccles Institute for Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Greg J. Stuart
- Eccles Institute for Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
21
|
Li C, Kühn NK, Alkislar I, Sans-Dublanc A, Zemmouri F, Paesmans S, Calzoni A, Ooms F, Reinhard K, Farrow K. Pathway-specific inputs to the superior colliculus support flexible responses to visual threat. SCIENCE ADVANCES 2023; 9:eade3874. [PMID: 37647395 PMCID: PMC10468139 DOI: 10.1126/sciadv.ade3874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Behavioral flexibility requires directing feedforward sensory information to appropriate targets. In the superior colliculus, divergent outputs orchestrate different responses to visual threats, but the circuit organization enabling the flexible routing of sensory information remains unknown. To determine this structure, we focused on inhibitory projection (Gad2) neurons. Trans-synaptic tracing and neuronal recordings revealed that Gad2 neurons projecting to the lateral geniculate nucleus (LGN) and the parabigeminal nucleus (PBG) form two separate populations, each receiving a different set of non-retinal inputs. Inhibiting the LGN- or PBG-projecting Gad2 neurons resulted in opposing effects on behavior; increasing freezing or escape probability to visual looming, respectively. Optogenetic activation of selected inputs to the LGN- and PBG-projecting Gad2 cells predictably regulated responses to visual threat. These data suggest that projection-specific sampling of brain-wide inputs provides a circuit design principle that enables visual inputs to be selectively routed to produce context-specific behavior.
Collapse
Affiliation(s)
- Chen Li
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Norma K. Kühn
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Ilayda Alkislar
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Northeastern University, Boston, MA, USA
| | - Arnau Sans-Dublanc
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Firdaouss Zemmouri
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Soraya Paesmans
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alex Calzoni
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Frédérique Ooms
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Imec, Leuven, Belgium
| | - Katja Reinhard
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Karl Farrow
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
- Imec, Leuven, Belgium
| |
Collapse
|
22
|
Brenner JM, Beltramo R, Gerfen CR, Ruediger S, Scanziani M. A genetically defined tecto-thalamic pathway drives a system of superior-colliculus-dependent visual cortices. Neuron 2023; 111:2247-2257.e7. [PMID: 37172584 PMCID: PMC10524301 DOI: 10.1016/j.neuron.2023.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Cortical responses to visual stimuli are believed to rely on the geniculo-striate pathway. However, recent work has challenged this notion by showing that responses in the postrhinal cortex (POR), a visual cortical area, instead depend on the tecto-thalamic pathway, which conveys visual information to the cortex via the superior colliculus (SC). Does POR's SC-dependence point to a wider system of tecto-thalamic cortical visual areas? What information might this system extract from the visual world? We discovered multiple mouse cortical areas whose visual responses rely on SC, with the most lateral showing the strongest SC-dependence. This system is driven by a genetically defined cell type that connects the SC to the pulvinar thalamic nucleus. Finally, we show that SC-dependent cortices distinguish self-generated from externally generated visual motion. Hence, lateral visual areas comprise a system that relies on the tecto-thalamic pathway and contributes to processing visual motion as animals move through the environment.
Collapse
Affiliation(s)
- Joshua M Brenner
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Riccardo Beltramo
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA; University of Cambridge, Cambridge, UK
| | | | - Sarah Ruediger
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Martín-Cortecero J, Isaías-Camacho EU, Boztepe B, Ziegler K, Mease RA, Groh A. Monosynaptic trans-collicular pathways link mouse whisker circuits to integrate somatosensory and motor cortical signals. PLoS Biol 2023; 21:e3002126. [PMID: 37205722 DOI: 10.1371/journal.pbio.3002126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
The superior colliculus (SC), a conserved midbrain node with extensive long-range connectivity throughout the brain, is a key structure for innate behaviors. Descending cortical pathways are increasingly recognized as central control points for SC-mediated behaviors, but how cortico-collicular pathways coordinate SC activity at the cellular level is poorly understood. Moreover, despite the known role of the SC as a multisensory integrator, the involvement of the SC in the somatosensory system is largely unexplored in comparison to its involvement in the visual and auditory systems. Here, we mapped the connectivity of the whisker-sensitive region of the SC in mice with trans-synaptic and intersectional tracing tools and in vivo electrophysiology. The results reveal a novel trans-collicular connectivity motif in which neurons in motor- and somatosensory cortices impinge onto the brainstem-SC-brainstem sensory-motor arc and onto SC-midbrain output pathways via only one synapse in the SC. Intersectional approaches and optogenetically assisted connectivity quantifications in vivo reveal convergence of motor and somatosensory cortical input on individual SC neurons, providing a new framework for sensory-motor integration in the SC. More than a third of the cortical recipient neurons in the whisker SC are GABAergic neurons, which include a hitherto unknown population of GABAergic projection neurons targeting thalamic nuclei and the zona incerta. These results pinpoint a whisker region in the SC of mice as a node for the integration of somatosensory and motor cortical signals via parallel excitatory and inhibitory trans-collicular pathways, which link cortical and subcortical whisker circuits for somato-motor integration.
Collapse
Affiliation(s)
- Jesús Martín-Cortecero
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | | | - Berin Boztepe
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Katharina Ziegler
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Rebecca Audrey Mease
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Alexander Groh
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
24
|
Xiao C, Wei J, Zhang GW, Tao C, Huang JJ, Shen L, Wickersham IR, Tao HW, Zhang LI. Glutamatergic and GABAergic neurons in pontine central gray mediate opposing valence-specific behaviors through a global network. Neuron 2023; 111:1486-1503.e7. [PMID: 36893756 PMCID: PMC10164086 DOI: 10.1016/j.neuron.2023.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Extracting the valence of environmental cues is critical for animals' survival. How valence in sensory signals is encoded and transformed to produce distinct behavioral responses remains not well understood. Here, we report that the mouse pontine central gray (PCG) contributes to encoding both negative and positive valences. PCG glutamatergic neurons were activated selectively by aversive, but not reward, stimuli, whereas its GABAergic neurons were preferentially activated by reward signals. The optogenetic activation of these two populations resulted in avoidance and preference behavior, respectively, and was sufficient to induce conditioned place aversion/preference. Suppression of them reduced sensory-induced aversive and appetitive behaviors, respectively. These two functionally opponent populations, receiving a broad range of inputs from overlapping yet distinct sources, broadcast valence-specific information to a distributed brain network with distinguishable downstream effectors. Thus, PCG serves as a critical hub to process positive and negative valences of incoming sensory signals and drive valence-specific behaviors with distinct circuits.
Collapse
Affiliation(s)
- Cuiyu Xiao
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinxing Wei
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Can Tao
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Graduate Program in Biological and Biomedical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Li Shen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
25
|
Reynaert B, Morales C, Mpodozis J, Letelier JC, Marín GJ. A blinking focal pattern of re-entrant activity in the avian tectum. Curr Biol 2023; 33:1-14.e4. [PMID: 36446352 DOI: 10.1016/j.cub.2022.10.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Re-entrant connections are inherent to nervous system organization; however, a comprehensive understanding of their operation is still lacking. In birds, topographically organized re-entrant signals, carried by axons from the nucleus-isthmi-parvocellularis (Ipc), are distinctly recorded as bursting discharges across the optic tectum (TeO). Here, we used up to 48 microelectrodes regularly spaced on the superficial tectal layers of anesthetized pigeons to characterize the spatial-temporal pattern of this axonal re-entrant activity in response to different visual stimulation. We found that a brief luminous spot triggered repetitive waves of bursting discharges that, appearing from initial sources, propagated horizontally to areas representing up to 28° of visual space, widely exceeding the area activated by the retinal fibers. In response to visual motion, successive burst waves started along and around the stimulated tectal path, tracking the stimulus in discontinuous steps. When two stimuli were presented, the burst-wave sources alternated between the activated tectal loci, as if only one source could be active at any given time. Because these re-entrant signals boost the retinal input to higher visual areas, their peculiar dynamics mimic a blinking "spotlight," similar to the internal searching mechanism classically used to explain spatial attention. Tectal re-entry from Ipc is thus highly structured and intrinsically discontinuous, and higher tectofugal areas, which lack retinotopic organization, will thus receive incoming visual activity in a sequential and piecemeal fashion. We anticipate that analogous re-entrant patterns, perhaps hidden in less bi-dimensionally organized topographies, may organize the flow of neural activity in other parts of the brain as well.
Collapse
Affiliation(s)
- Bryan Reynaert
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Cristian Morales
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Juan Carlos Letelier
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Gonzalo J Marín
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile.
| |
Collapse
|
26
|
Lanjewar AL, Jagetia S, Khan ZM, Eagleson KL, Levitt P. Subclass-specific expression patterns of MET receptor tyrosine kinase during development in medial prefrontal and visual cortices. J Comp Neurol 2023; 531:132-148. [PMID: 36201439 PMCID: PMC9691614 DOI: 10.1002/cne.25418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Met encodes a receptor tyrosine kinase (MET) that is expressed during development and regulates cortical synapse maturation. Conditional deletion of Met in the nervous system during embryonic development leads to deficits in adult contextual fear learning, a medial prefrontal cortex (mPFC)-dependent cognitive task. MET also regulates the timing of critical period plasticity for ocular dominance in primary visual cortex (V1). However, the underlying circuitry responsible remains unknown. Therefore, this study determines the broad expression patterns of MET throughout postnatal development in mPFC and V1 projection neurons (PNs), providing insight into similarities and differences in the neuronal subtypes and temporal patterns of MET expression between cortical areas. Using a transgenic mouse line that expresses green fluorescent protein (GFP) in Met+ neurons, immunofluorescence and confocal microscopy were performed to visualize MET-GFP+ cell bodies and PN subclass-specific protein markers. Analyses reveal that the MET expression is highly enriched in infragranular layers of mPFC, but in supragranular layers of V1. Interestingly, temporal regulation of the percentage of MET+ neurons across development not only differs between cortical regions but also is distinct between lamina within a cortical region. Further, MET is expressed predominantly in the subcerebral PN subclass in mPFC, but the intratelencephalic PN subclass in V1. The data suggest that MET signaling influences the development of distinct circuits in mPFC and V1 that underlie subcerebral and intracortical functional deficits following Met deletion, respectively.
Collapse
Affiliation(s)
- Alexandra L. Lanjewar
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA,Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sonum Jagetia
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zuhayr M. Khan
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kathie L. Eagleson
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Pat Levitt
- Program in Developmental Neuroscience and Neurogenetics, Children's Hospital Los AngelesThe Saban Research InstituteLos AngelesCaliforniaUSA,Department of PediatricsKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
27
|
Cruz KG, Leow YN, Le NM, Adam E, Huda R, Sur M. Cortical-subcortical interactions in goal-directed behavior. Physiol Rev 2023; 103:347-389. [PMID: 35771984 PMCID: PMC9576171 DOI: 10.1152/physrev.00048.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022] Open
Abstract
Flexibly selecting appropriate actions in response to complex, ever-changing environments requires both cortical and subcortical regions, which are typically described as participating in a strict hierarchy. In this traditional view, highly specialized subcortical circuits allow for efficient responses to salient stimuli, at the cost of adaptability and context specificity, which are attributed to the neocortex. Their interactions are often described as the cortex providing top-down command signals for subcortical structures to implement; however, as available technologies develop, studies increasingly demonstrate that behavior is represented by brainwide activity and that even subcortical structures contain early signals of choice, suggesting that behavioral functions emerge as a result of different regions interacting as truly collaborative networks. In this review, we discuss the field's evolving understanding of how cortical and subcortical regions in placental mammals interact cooperatively, not only via top-down cortical-subcortical inputs but through bottom-up interactions, especially via the thalamus. We describe our current understanding of the circuitry of both the cortex and two exemplar subcortical structures, the superior colliculus and striatum, to identify which information is prioritized by which regions. We then describe the functional circuits these regions form with one another, and the thalamus, to create parallel loops and complex networks for brainwide information flow. Finally, we challenge the classic view that functional modules are contained within specific brain regions; instead, we propose that certain regions prioritize specific types of information over others, but the subnetworks they form, defined by their anatomical connections and functional dynamics, are the basis of true specialization.
Collapse
Affiliation(s)
- K Guadalupe Cruz
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yi Ning Leow
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nhat Minh Le
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Elie Adam
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Rafiq Huda
- W. M. Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
28
|
Gowda SB, Banu A, Salim S, Peker KA, Mohammad F. Serotonin distinctly controls behavioral states in restrained and freely moving Drosophila. iScience 2022; 26:105886. [PMID: 36654863 PMCID: PMC9840979 DOI: 10.1016/j.isci.2022.105886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
When trapped in a physical restraint, animals must select an escape strategy to increase their chances of survival. After falling into an inescapable trap, they react with stereotypical behaviors that differ from those displayed in escapable situations. Such behaviors involve either a wriggling response to unlock the trap or feigning death to fend off a predator attack. The neural mechanisms that regulate animal behaviors have been well characterized for escapable situations but not for inescapable traps. We report that restrained vinegar flies exhibit alternating flailing and immobility to free themselves from the trap. We used optogenetics and intersectional genetic approaches to show that, while broader serotonin activation promotes immobility, serotonergic cells in the ventral nerve cord (VNC) regulate immobility states majorly via 5-HT7 receptors. Restrained and freely moving locomotor states are controlled by distinct mechanisms. Taken together, our study has identified serotonergic switches of the VNC that promote environment-specific adaptive behaviors.
Collapse
Affiliation(s)
- Swetha B.M. Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| | - Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar
| | | | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar,Corresponding author
| |
Collapse
|
29
|
Bhandiwad AA, Chu NC, Semenova SA, Holmes GA, Burgess HA. A cerebellar-prepontine circuit for tonic immobility triggered by an inescapable threat. SCIENCE ADVANCES 2022; 8:eabo0549. [PMID: 36170356 PMCID: PMC9519051 DOI: 10.1126/sciadv.abo0549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Sudden changes in the environment are frequently perceived as threats and provoke defensive behavioral states. One such state is tonic immobility, a conserved defensive strategy characterized by powerful suppression of movement and motor reflexes. Tonic immobility has been associated with multiple brainstem regions, but the underlying circuit is unknown. Here, we demonstrate that a strong vibratory stimulus evokes tonic immobility in larval zebrafish defined by suppressed locomotion and sensorimotor responses. Using a circuit-breaking screen and targeted neuron ablations, we show that cerebellar granule cells and a cluster of glutamatergic ventral prepontine neurons (vPPNs) that express key stress-associated neuropeptides are critical components of the circuit that suppresses movement. The complete sensorimotor circuit transmits information from sensory ganglia through the cerebellum to vPPNs to regulate reticulospinal premotor neurons. These results show that cerebellar regulation of a neuropeptide-rich prepontine structure governs a conserved and ancestral defensive behavior that is triggered by an inescapable threat.
Collapse
Affiliation(s)
- Ashwin A. Bhandiwad
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | - Svetlana A. Semenova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - George A. Holmes
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | |
Collapse
|
30
|
Chan RW, Cron GO, Asaad M, Edelman BJ, Lee HJ, Adesnik H, Feinberg D, Lee JH. Distinct local and brain-wide networks are activated by optogenetic stimulation of neurons specific to each layer of motor cortex. Neuroimage 2022; 263:119640. [PMID: 36176220 PMCID: PMC10025169 DOI: 10.1016/j.neuroimage.2022.119640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Primary motor cortex (M1) consists of a stack of interconnected but distinct layers (L1-L6) which affect motor control through large-scale networks. However, the brain-wide functional influence of each layer is poorly understood. We sought to expand our knowledge of these layers' circuitry by combining Cre-driver mouse lines, optogenetics, fMRI, and electrophysiology. Neuronal activities initiated in Drd3 neurons (within L2/3) were mainly confined within M1, while stimulation of Scnn1a, Rbp4, and Ntsr1 neurons (within L4, L5, and L6, respectively) evoked distinct responses in M1 and motor-related subcortical regions, including striatum and motor thalamus. We also found that fMRI responses from targeted stimulations correlated with both local field potentials (LFPs) and spike changes. This study represents a step forward in our understanding of how different layers of primary motor cortex are embedded in brain-wide circuitry.
Collapse
Affiliation(s)
- Russell W Chan
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Greg O Cron
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Mazen Asaad
- Department of Molecular and Cellular Physiology, Stanford University, CA 94305, USA
| | - Bradley J Edelman
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Hyun Joo Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Hillel Adesnik
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - David Feinberg
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA; Department of Bioengineering, Stanford University, CA 94305, USA; Department of Neurosurgery, Stanford University, CA 94305, USA; Department of Electrical Engineering, Stanford University, CA 94305, USA.
| |
Collapse
|
31
|
Adam EM, Johns T, Sur M. Dynamic control of visually guided locomotion through corticosubthalamic projections. Cell Rep 2022; 40:111139. [PMID: 35905719 PMCID: PMC9395210 DOI: 10.1016/j.celrep.2022.111139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 11/08/2022] Open
Abstract
Goal-directed locomotion requires control signals that propagate from higher order areas to regulate spinal mechanisms. The corticosubthalamic hyperdirect pathway offers a short route for cortical information to reach locomotor centers in the brainstem. We developed a task in which head-fixed mice run to a visual landmark and then stop and wait to collect the reward and examined the role of secondary motor cortex (M2) projections to the subthalamic nucleus (STN) in controlling locomotion. Our behavioral modeling, calcium imaging, and optogenetics manipulation results suggest that the M2-STN pathway can be recruited during visually guided locomotion to rapidly and precisely control the pedunculopontine nucleus (PPN) of the mesencephalic locomotor region through the basal ganglia. By capturing the physiological dynamics through a feedback control model and analyzing neuronal signals in M2, PPN, and STN, we find that the corticosubthalamic projections potentially control PPN activity by differentiating an M2 error signal to ensure fast input-output dynamics. Using a combination of optogenetics, 2-photon imaging, extracellular recordings, and control theoretic models in behaving mice, Adam et al. find that the M2-STN projection sends stop signals to halt visually guided locomotion and potentially controls the MLR/PPN through SNr by differentiating an M2 error signal for the rapid control of locomotion.
Collapse
Affiliation(s)
- Elie M Adam
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Taylor Johns
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Wheatcroft T, Saleem AB, Solomon SG. Functional Organisation of the Mouse Superior Colliculus. Front Neural Circuits 2022; 16:792959. [PMID: 35601532 PMCID: PMC9118347 DOI: 10.3389/fncir.2022.792959] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
The superior colliculus (SC) is a highly conserved area of the mammalian midbrain that is widely implicated in the organisation and control of behaviour. SC receives input from a large number of brain areas, and provides outputs to a large number of areas. The convergence and divergence of anatomical connections with different areas and systems provides challenges for understanding how SC contributes to behaviour. Recent work in mouse has provided large anatomical datasets, and a wealth of new data from experiments that identify and manipulate different cells within SC, and their inputs and outputs, during simple behaviours. These data offer an opportunity to better understand the roles that SC plays in these behaviours. However, some of the observations appear, at first sight, to be contradictory. Here we review this recent work and hypothesise a simple framework which can capture the observations, that requires only a small change to previous models. Specifically, the functional organisation of SC can be explained by supposing that three largely distinct circuits support three largely distinct classes of simple behaviours-arrest, turning towards, and the triggering of escape or capture. These behaviours are hypothesised to be supported by the optic, intermediate and deep layers, respectively.
Collapse
Affiliation(s)
| | | | - Samuel G. Solomon
- Institute of Behavioural Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
33
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
34
|
Abstract
Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences; Department of Neuroscience; Department of Biomedical Engineering; and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA;
| |
Collapse
|
35
|
Kondo S, Kiyohara Y, Ohki K. Response Selectivity of the Lateral Posterior Nucleus Axons Projecting to the Mouse Primary Visual Cortex. Front Neural Circuits 2022; 16:825735. [PMID: 35296036 PMCID: PMC8918919 DOI: 10.3389/fncir.2022.825735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Neurons in the mouse primary visual cortex (V1) exhibit characteristic response selectivity to visual stimuli, such as orientation, direction and spatial frequency selectivity. Since V1 receives thalamic visual inputs from the lateral geniculate nucleus (LGN) and lateral posterior nucleus (LPN), the response selectivity of the V1 neurons could be influenced mostly by these inputs. However, it remains unclear how these two thalamic inputs contribute to the response selectivity of the V1 neurons. In this study, we examined the orientation, direction and spatial frequency selectivity of the LPN axons projecting to V1 and compared their response selectivity with our previous results of the LGN axons in mice. For this purpose, the genetically encoded calcium indicator, GCaMP6s, was locally expressed in the LPN using the adeno-associated virus (AAV) infection method. Visual stimulations were presented, and axonal imaging was conducted in V1 by two-photon calcium imaging in vivo. We found that LPN axons primarily terminate in layers 1 and 5 and, to a lesser extent, in layers 2/3 and 4 of V1, while LGN axons mainly terminate in layer 4 and, to a lesser extent, in layers 1 and 2/3 of V1. LPN axons send highly orientation- and direction-selective inputs to all the examined layers in V1, whereas LGN axons send highly orientation- and direction-selective inputs to layers 1 and 2/3 but low orientation and direction selective inputs to layer 4 in V1. The distribution of preferred orientation and direction was strongly biased toward specific orientations and directions in LPN axons, while weakly biased to cardinal orientations and directions in LGN axons. In spatial frequency tuning, both the LPN and LGN axons send selective inputs to V1. The distribution of preferred spatial frequency was more diverse in the LPN axons than in the LGN axons. In conclusion, LPN inputs to V1 are functionally different from LGN inputs and may have different roles in the orientation, direction and spatial frequency tuning of the V1 neurons.
Collapse
Affiliation(s)
- Satoru Kondo
- Department of Physiology, School of Medicine, The University of Tokyo, Tokyo, Japan
- World Premier International Research Center – International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
- *Correspondence: Satoru Kondo,
| | - Yuko Kiyohara
- Department of Physiology, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Ohki
- Department of Physiology, School of Medicine, The University of Tokyo, Tokyo, Japan
- World Premier International Research Center – International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Kenichi Ohki,
| |
Collapse
|
36
|
An S, Li X, Deng L, Zhao P, Ding Z, Han Y, Luo Y, Liu X, Li A, Luo Q, Feng Z, Gong H. A Whole-Brain Connectivity Map of VTA and SNc Glutamatergic and GABAergic Neurons in Mice. Front Neuroanat 2022; 15:818242. [PMID: 35002641 PMCID: PMC8733212 DOI: 10.3389/fnana.2021.818242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
The glutamatergic and GABAergic neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) mediated diverse brain functions. However, their whole-brain neural connectivity has not been comprehensively mapped. Here we used the virus tracers to characterize the whole-brain inputs and outputs of glutamatergic and GABAergic neurons in VTA and SNc. We found that these neurons received similar inputs from upstream brain regions, but some quantitative differences were also observed. Neocortex and dorsal striatum provided a greater share of input to VTA glutamatergic neurons. Periaqueductal gray and lateral hypothalamic area preferentially innervated VTA GABAergic neurons. Specifically, superior colliculus provided the largest input to SNc glutamatergic neurons. Compared to input patterns, the output patterns of glutamatergic and GABAergic neurons in the VTA and SNc showed significant preference to different brain regions. Our results laid the anatomical foundation for understanding the functions of cell-type-specific neurons in VTA and SNc.
Collapse
Affiliation(s)
- Sile An
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,Huazhong University of Science and Technology (HUST)-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, China
| | - Lei Deng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Peilin Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangheng Ding
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Yutong Han
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,Huazhong University of Science and Technology (HUST)-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, China
| | - Qingming Luo
- School of Biomedical Engineering, Hainan University, Haikou, China
| | - Zhao Feng
- Huazhong University of Science and Technology (HUST)-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,Huazhong University of Science and Technology (HUST)-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou, China
| |
Collapse
|
37
|
Resulaj A. Projections of the Mouse Primary Visual Cortex. Front Neural Circuits 2021; 15:751331. [PMID: 34867213 PMCID: PMC8641241 DOI: 10.3389/fncir.2021.751331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Lesion or damage to the primary visual cortex (V1) results in a profound loss of visual perception in humans. Similarly, in mice, optogenetic silencing of V1 profoundly impairs discrimination of orientated gratings. V1 is thought to have such a critical role in perception in part due to its position in the visual processing hierarchy. It is the first brain area in the neocortex to receive visual input, and it distributes this information to more than 18 brain areas. Here I review recent advances in our understanding of the organization and function of the V1 projections in the mouse. This progress is in part due to new anatomical and viral techniques that allow for efficient labeling of projection neurons. In the final part of the review, I conclude by highlighting challenges and opportunities for future research.
Collapse
Affiliation(s)
- Arbora Resulaj
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
A cell-ECM mechanism for connecting the ipsilateral eye to the brain. Proc Natl Acad Sci U S A 2021; 118:2104343118. [PMID: 34654745 PMCID: PMC8545493 DOI: 10.1073/pnas.2104343118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Distinct features of the visual world are transmitted from the retina to the brain through anatomically segregated circuits. Despite this being an organizing principle of visual pathways in mammals, we lack an understanding of the signaling mechanisms guiding axons of different types of retinal neurons into segregated layers of brain regions. We explore this question by identifying how axons from the ipsilateral retina innervate a specific lamina of the superior colliculus. Our studies reveal a unique cell–extracellular matrix recognition mechanism that specifies precise targeting of these axons to the superior colliculus. Loss of this mechanism not only resulted in the absence of this eye-specific visual circuit, but it led to an impairment of innate predatory visual behavior as well. Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell–extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.
Collapse
|
39
|
Salay LD, Huberman AD. Divergent outputs of the ventral lateral geniculate nucleus mediate visually evoked defensive behaviors. Cell Rep 2021; 37:109792. [PMID: 34610302 PMCID: PMC10954303 DOI: 10.1016/j.celrep.2021.109792] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/24/2021] [Accepted: 09/12/2021] [Indexed: 11/21/2022] Open
Abstract
Rapid alternations between exploration and defensive reactions require ongoing risk assessment. How visual cues and internal states flexibly modulate the selection of behaviors remains incompletely understood. Here, we show that the ventral lateral geniculate nucleus (vLGN)-a major retinorecipient structure-is a critical node in the network controlling defensive behaviors to visual threats. We find that vLGNGABA neuron activity scales with the intensity of environmental illumination and is modulated by behavioral state. Chemogenetic activation of vLGNGABA neurons reduces freezing, whereas inactivation dramatically extends the duration of freezing to visual threats. Perturbations of vLGN activity disrupt exploration in brightly illuminated environments. We describe both a vLGN→nucleus reuniens (Re) circuit and a vLGN→superior colliculus (SC) circuit, which exert opposite influences on defensive responses. These findings reveal roles for genetic- and projection-defined vLGN subpopulations in modulating the expression of behavioral threat responses according to internal state.
Collapse
Affiliation(s)
- Lindsey D Salay
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA 94305, USA; BioX, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Hannah R, Aron AR. Towards real-world generalizability of a circuit for action-stopping. Nat Rev Neurosci 2021; 22:538-552. [PMID: 34326532 PMCID: PMC8972073 DOI: 10.1038/s41583-021-00485-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Two decades of cross-species neuroscience research on rapid action-stopping in the laboratory has provided motivation for an underlying prefrontal-basal ganglia circuit. Here we provide an update of key studies from the past few years. We conclude that this basic neural circuit is on increasingly firm ground, and we move on to consider whether the action-stopping function implemented by this circuit applies beyond the simple laboratory stop signal task. We advance through a series of studies of increasing 'real-worldness', starting with laboratory tests of stopping of speech, gait and bodily functions, and then going beyond the laboratory to consider neural recordings and stimulation during moments of control presumably required in everyday activities such as walking and driving. We end by asking whether stopping research has clinical relevance, focusing on movement disorders such as stuttering, tics and freezing of gait. Overall, we conclude there are hints that the prefrontal-basal ganglia action-stopping circuit that is engaged by the basic stop signal task is recruited in myriad scenarios; however, truly proving this for real-world scenarios requires a new generation of studies that will need to overcome substantial technical and inferential challenges.
Collapse
Affiliation(s)
- Ricci Hannah
- Department of Psychology, University of California San Diego, San Diego, CA, USA.
| | - Adam R Aron
- Department of Psychology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
41
|
Shen J, Yao PT, Ge S, Xiong Q. Dentate granule cells encode auditory decisions after reinforcement learning in rats. Sci Rep 2021; 11:14360. [PMID: 34257342 PMCID: PMC8277790 DOI: 10.1038/s41598-021-93721-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022] Open
Abstract
Auditory-cued goal-oriented behaviors requires the participation of cortical and subcortical brain areas, but how neural circuits associate sensory-based decisions with goal locations through learning remains poorly understood. The hippocampus is critical for spatial coding, suggesting its possible involvement in transforming sensory inputs to the goal-oriented decisions. Here, we developed an auditory discrimination task in which rats learned to navigate to goal locations based on the frequencies of auditory stimuli. Using in vivo calcium imaging in freely behaving rats over the course of learning, we found that dentate granule cells became more active, spatially tuned, and responsive to task-related variables as learning progressed. Furthermore, only after task learning, the activity of dentate granule cell ensembles represented the navigation path and predicts auditory decisions as early as when rats began to approach the goals. Finally, chemogenetic silencing of dentate gyrus suppressed task learning. Our results demonstrate that dentate granule cells gain task-relevant firing pattern through reinforcement learning and could be a potential link of sensory decisions to spatial navigation.
Collapse
Affiliation(s)
- Jia Shen
- The Program of Genetics, SUNY Stony Brook, Stony Brook, NY, 11794, USA
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY, 11794, USA
| | - Pan-Tong Yao
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY, 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY, 11794, USA.
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY, 11794, USA.
| |
Collapse
|
42
|
Niell CM, Scanziani M. How Cortical Circuits Implement Cortical Computations: Mouse Visual Cortex as a Model. Annu Rev Neurosci 2021; 44:517-546. [PMID: 33914591 PMCID: PMC9925090 DOI: 10.1146/annurev-neuro-102320-085825] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mouse, as a model organism to study the brain, gives us unprecedented experimental access to the mammalian cerebral cortex. By determining the cortex's cellular composition, revealing the interaction between its different components, and systematically perturbing these components, we are obtaining mechanistic insight into some of the most basic properties of cortical function. In this review, we describe recent advances in our understanding of how circuits of cortical neurons implement computations, as revealed by the study of mouse primary visual cortex. Further, we discuss how studying the mouse has broadened our understanding of the range of computations performed by visual cortex. Finally, we address how future approaches will fulfill the promise of the mouse in elucidating fundamental operations of cortex.
Collapse
Affiliation(s)
- Cristopher M. Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | - Massimo Scanziani
- Department of Physiology and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California 94158, USA;
| |
Collapse
|
43
|
van der Zouwen CI, Boutin J, Fougère M, Flaive A, Vivancos M, Santuz A, Akay T, Sarret P, Ryczko D. Freely Behaving Mice Can Brake and Turn During Optogenetic Stimulation of the Mesencephalic Locomotor Region. Front Neural Circuits 2021; 15:639900. [PMID: 33897379 PMCID: PMC8062873 DOI: 10.3389/fncir.2021.639900] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
A key function of the mesencephalic locomotor region (MLR) is to control the speed of forward symmetrical locomotor movements. However, the ability of freely moving mammals to integrate environmental cues to brake and turn during MLR stimulation is poorly documented. Here, we investigated whether freely behaving mice could brake or turn, based on environmental cues during MLR stimulation. We photostimulated the cuneiform nucleus (part of the MLR) in mice expressing channelrhodopsin in Vglut2-positive neurons in a Cre-dependent manner (Vglut2-ChR2-EYFP) using optogenetics. We detected locomotor movements using deep learning. We used patch-clamp recordings to validate the functional expression of channelrhodopsin and neuroanatomy to visualize the stimulation sites. In the linear corridor, gait diagram and limb kinematics were similar during spontaneous and optogenetic-evoked locomotion. In the open-field arena, optogenetic stimulation of the MLR evoked locomotion, and increasing laser power increased locomotor speed. Mice could brake and make sharp turns (~90°) when approaching a corner during MLR stimulation in the open-field arena. The speed during the turn was scaled with the speed before the turn, and with the turn angle. Patch-clamp recordings in Vglut2-ChR2-EYFP mice show that blue light evoked short-latency spiking in MLR neurons. Our results strengthen the idea that different brainstem neurons convey braking/turning and MLR speed commands in mammals. Our study also shows that Vglut2-positive neurons of the cuneiform nucleus are a relevant target to increase locomotor activity without impeding the ability to brake and turn when approaching obstacles, thus ensuring smooth and adaptable navigation. Our observations may have clinical relevance since cuneiform nucleus stimulation is increasingly considered to improve locomotion function in pathological states such as Parkinson's disease, spinal cord injury, or stroke.
Collapse
Affiliation(s)
- Cornelis Immanuel van der Zouwen
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joël Boutin
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Fougère
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Aurélie Flaive
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Vivancos
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alessandro Santuz
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada.,Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, NS, Canada
| | - Philippe Sarret
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Centre d'excellence en neurosciences de l'Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de pharmacologie de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitri Ryczko
- Département de pharmacologie-physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Centre d'excellence en neurosciences de l'Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de pharmacologie de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
44
|
Jin H, Fishman ZH, Ye M, Wang L, Zuker CS. Top-Down Control of Sweet and Bitter Taste in the Mammalian Brain. Cell 2021; 184:257-271.e16. [PMID: 33417862 DOI: 10.1016/j.cell.2020.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Hardwired circuits encoding innate responses have emerged as an essential feature of the mammalian brain. Sweet and bitter evoke opposing predetermined behaviors. Sweet drives appetitive responses and consumption of energy-rich food sources, whereas bitter prevents ingestion of toxic chemicals. Here we identified and characterized the neurons in the brainstem that transmit sweet and bitter signals from the tongue to the cortex. Next we examined how the brain modulates this hardwired circuit to control taste behaviors. We dissect the basis for bitter-evoked suppression of sweet taste and show that the taste cortex and amygdala exert strong positive and negative feedback onto incoming bitter and sweet signals in the brainstem. Finally we demonstrate that blocking the feedback markedly alters responses to ethologically relevant taste stimuli. These results illustrate how hardwired circuits can be finely regulated by top-down control and reveal the neural basis of an indispensable behavioral response for all animals.
Collapse
Affiliation(s)
- Hao Jin
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Z Hershel Fishman
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mingyu Ye
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Li Wang
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Charles S Zuker
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics and Department of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
45
|
Yu Q, Fu H, Wang G, Zhang J, Yan B. Short-Term Visual Experience Leads to Potentiation of Spontaneous Activity in Mouse Superior Colliculus. Neurosci Bull 2021; 37:353-368. [PMID: 33394455 DOI: 10.1007/s12264-020-00622-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
Spontaneous activity in the brain maintains an internal structured pattern that reflects the external environment, which is essential for processing information and developing perception and cognition. An essential prerequisite of spontaneous activity for perception is the ability to reverberate external information, such as by potentiation. Yet its role in the processing of potentiation in mouse superior colliculus (SC) neurons is less studied. Here, we used electrophysiological recording, optogenetics, and drug infusion methods to investigate the mechanism of potentiation in SC neurons. We found that visual experience potentiated SC neurons several minutes later in different developmental stages, and the similarity between spontaneous and visually-evoked activity increased with age. Before eye-opening, activation of retinal ganglion cells that expressed ChR2 also induced the potentiation of spontaneous activity in the mouse SC. Potentiation was dependent on stimulus number and showed feature selectivity for direction and orientation. Optogenetic activation of parvalbumin neurons in the SC attenuated the potentiation induced by visual experience. Furthermore, potentiation in SC neurons was blocked by inhibiting the glutamate transporter GLT1. These results indicated that the potentiation induced by a visual stimulus might play a key role in shaping the internal representation of the environment, and serves as a carrier for short-term memory consolidation.
Collapse
Affiliation(s)
- Qingpeng Yu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Hang Fu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Gang Wang
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, No. 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Biao Yan
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
46
|
Storchi R, Milosavljevic N, Allen AE, Zippo AG, Agnihotri A, Cootes TF, Lucas RJ. A High-Dimensional Quantification of Mouse Defensive Behaviors Reveals Enhanced Diversity and Stimulus Specificity. Curr Biol 2020; 30:4619-4630.e5. [PMID: 33007242 PMCID: PMC7728163 DOI: 10.1016/j.cub.2020.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Instinctive defensive behaviors, consisting of stereotyped sequences of movements and postures, are an essential component of the mouse behavioral repertoire. Since defensive behaviors can be reliably triggered by threatening sensory stimuli, the selection of the most appropriate action depends on the stimulus property. However, since the mouse has a wide repertoire of motor actions, it is not clear which set of movements and postures represent the relevant action. So far, this has been empirically identified as a change in locomotion state. However, the extent to which locomotion alone captures the diversity of defensive behaviors and their sensory specificity is unknown. To tackle this problem, we developed a method to obtain a faithful 3D reconstruction of the mouse body that enabled to quantify a wide variety of motor actions. This higher dimensional description revealed that defensive behaviors are more stimulus specific than indicated by locomotion data. Thus, responses to distinct stimuli that were equivalent in terms of locomotion (e.g., freezing induced by looming and sound) could be discriminated along other dimensions. The enhanced stimulus specificity was explained by a surprising diversity. A clustering analysis revealed that distinct combinations of movements and postures, giving rise to at least 7 different behaviors, were required to account for stimulus specificity. Moreover, each stimulus evoked more than one behavior, revealing a robust one-to-many mapping between sensations and behaviors that was not apparent from locomotion data. Our results indicate that diversity and sensory specificity of mouse defensive behaviors unfold in a higher dimensional space, spanning multiple motor actions.
Collapse
Affiliation(s)
- Riccardo Storchi
- Division of Neuroscience and Experimental Psychology, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Nina Milosavljevic
- Division of Neuroscience and Experimental Psychology, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Annette E Allen
- Division of Neuroscience and Experimental Psychology, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Antonio G Zippo
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Aayushi Agnihotri
- Division of Neuroscience and Experimental Psychology, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Timothy F Cootes
- Division of Informatics, Imaging & Data Science, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
47
|
Ruediger S, Scanziani M. Learning speed and detection sensitivity controlled by distinct cortico-fugal neurons in visual cortex. eLife 2020; 9:e59247. [PMID: 33284107 PMCID: PMC7748414 DOI: 10.7554/elife.59247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022] Open
Abstract
Vertebrates can change their behavior upon detection of visual stimuli according to the outcome their actions produce. Such goal-directed behavior involves evolutionary conserved brain structures like the striatum and optic tectum, which receive ascending visual input from the periphery. In mammals, however, these structures also receive descending visual input from visual cortex (VC), via neurons that give rise to cortico-fugal projections. The function of cortico-fugal neurons in visually guided, goal-directed behavior remains unclear. Here, we address the impact of two populations of cortico-fugal neurons in mouse VC in the learning and performance of a visual detection task. We show that the ablation of striatal projecting neurons reduces learning speed, whereas the ablation of superior colliculus projecting neurons does not impact learning but reduces detection sensitivity. This functional dissociation between distinct cortico-fugal neurons in controlling learning speed and detection sensitivity suggests an adaptive contribution of cortico-fugal pathways even in simple goal-directed behavior.
Collapse
Affiliation(s)
- Sarah Ruediger
- Center for Neural Circuits and Behavior, Neurobiology Section and Department of Neuroscience, University of California, San DiegoLa JollaUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Massimo Scanziani
- Center for Neural Circuits and Behavior, Neurobiology Section and Department of Neuroscience, University of California, San DiegoLa JollaUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
48
|
Huda R, Sipe GO, Breton-Provencher V, Cruz KG, Pho GN, Adam E, Gunter LM, Sullins A, Wickersham IR, Sur M. Distinct prefrontal top-down circuits differentially modulate sensorimotor behavior. Nat Commun 2020; 11:6007. [PMID: 33243980 PMCID: PMC7691329 DOI: 10.1038/s41467-020-19772-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023] Open
Abstract
Sensorimotor behaviors require processing of behaviorally relevant sensory cues and the ability to select appropriate responses from a vast behavioral repertoire. Modulation by the prefrontal cortex (PFC) is thought to be key for both processes, but the precise role of specific circuits remains unclear. We examined the sensorimotor function of anatomically distinct outputs from a subdivision of the mouse PFC, the anterior cingulate cortex (ACC). Using a visually guided two-choice behavioral paradigm with multiple cue-response mappings, we dissociated the sensory and motor response components of sensorimotor control. Projection-specific two-photon calcium imaging and optogenetic manipulations show that ACC outputs to the superior colliculus, a key midbrain structure for response selection, principally coordinate specific motor responses. Importantly, ACC outputs exert control by reducing the innate response bias of the superior colliculus. In contrast, ACC outputs to the visual cortex facilitate sensory processing of visual cues. Our results ascribe motor and sensory roles to ACC projections to the superior colliculus and the visual cortex and demonstrate for the first time a circuit motif for PFC function wherein anatomically non-overlapping output pathways coordinate complementary but distinct aspects of visual sensorimotor behavior. The neural circuit mechanisms for sensorimotor control by the prefrontal cortex (PFC) are unclear. Here, the authors show that PFC outputs to the visual cortex and superior colliculus respectively facilitate sensory processing and action selection, allowing the PFC to independently control complementary but distinct behavioral functions.
Collapse
Affiliation(s)
- Rafiq Huda
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Grayson O Sipe
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vincent Breton-Provencher
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - K Guadalupe Cruz
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gerald N Pho
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elie Adam
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Liadan M Gunter
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Austin Sullins
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
49
|
Johnson KO, Triplett JW. Wiring subcortical image-forming centers: Topography, laminar targeting, and map alignment. Curr Top Dev Biol 2020; 142:283-317. [PMID: 33706920 DOI: 10.1016/bs.ctdb.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Efficient sensory processing is a complex and important function for species survival. As such, sensory circuits are highly organized to facilitate rapid detection of salient stimuli and initiate motor responses. For decades, the retina's projections to image-forming centers have served as useful models to elucidate the mechanisms by which such exquisite circuitry is wired. In this chapter, we review the roles of molecular cues, neuronal activity, and axon-axon competition in the development of topographically ordered retinal ganglion cell (RGC) projections to the superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN). Further, we discuss our current state of understanding regarding the laminar-specific targeting of subclasses of RGCs in the SC and its homolog, the optic tectum (OT). Finally, we cover recent studies examining the alignment of projections from primary visual cortex with RGCs that monitor the same region of space in the SC.
Collapse
Affiliation(s)
- Kristy O Johnson
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States; Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, DC, United States
| | - Jason W Triplett
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States; Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, United States.
| |
Collapse
|
50
|
Parmhans N, Fuller AD, Nguyen E, Chuang K, Swygart D, Wienbar SR, Lin T, Kozmik Z, Dong L, Schwartz GW, Badea TC. Identification of retinal ganglion cell types and brain nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knock-in allele. J Comp Neurol 2020; 529:1926-1953. [PMID: 33135183 DOI: 10.1002/cne.25065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Members of the POU4F/Brn3 transcription factor family have an established role in the development of retinal ganglion cell (RGCs) types, the main transducers of visual information from the mammalian eye to the brain. Our previous work using sparse random recombination of a conditional knock-in reporter allele expressing alkaline phosphatase (AP) and intersectional genetics had identified three types of Brn3c positive (Brn3c+ ) RGCs. Here, we describe a novel Brn3cCre mouse allele generated by serial Dre to Cre recombination and use it to explore the expression overlap of Brn3c with Brn3a and Brn3b and the dendritic arbor morphologies and visual stimulus response properties of Brn3c+ RGC types. Furthermore, we explore brain nuclei that express Brn3c or receive input from Brn3c+ neurons. Our analysis reveals a much larger number of Brn3c+ RGCs and more diverse set of RGC types than previously reported. Most RGCs expressing Brn3c during development are still Brn3c positive in the adult, and all express Brn3a while only about half express Brn3b. Genetic Brn3c-Brn3b intersection reveals an area of increased RGC density, extending from dorsotemporal to ventrolateral across the retina and overlapping with the mouse binocular field of view. In addition, we report a Brn3c+ RGC projection to the thalamic reticular nucleus, a visual nucleus that was not previously shown to receive retinal input. Furthermore, Brn3c+ neurons highlight a previously unknown subdivision of the deep mesencephalic nucleus. Thus, our newly generated allele provides novel biological insights into RGC type classification, brain connectivity, and cytoarchitectonic.
Collapse
Affiliation(s)
- Nadia Parmhans
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Anne Drury Fuller
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Eileen Nguyen
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Katherine Chuang
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - David Swygart
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sophia Rose Wienbar
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tyger Lin
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Gregory William Schwartz
- Departments of Ophthalmology and Physiology Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tudor Constantin Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|