1
|
Chen X, Peng Y, Liu XS. DNA Methylation in Long-Term Memory. Physiology (Bethesda) 2025; 40:0. [PMID: 39907057 DOI: 10.1152/physiol.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/06/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Understanding the neural mechanisms of memory has been one of the key questions in biology. Long-term memory, specifically, allows one to travel mentally without constraints of time and space. A long-term memory must have gone through a series of temporal processes: encoding, consolidation, storage, and retrieval. Decades of studies have revealed cellular and molecular mechanisms underlying each process. In this article, we first review the emerging concept of memory engrams and technologies of engram labeling, as these methods provide a new avenue to study the molecular mechanisms for memory. Then, we focus on DNA methylation and its role in long-term memory. Finally, we discuss some key remaining questions in this field and their implications in memory-related disease.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Neuroscience, Columbia University, New York, New York, United States
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, New York, United States
- Department of Neurology, Columbia University Medical Center, Columbia University, New York, New York, United States
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, Columbia University, New York, New York, United States
| | - Yueqing Peng
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, New York, United States
- Department of Neurology, Columbia University Medical Center, Columbia University, New York, New York, United States
| | - X Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, Columbia University, New York, New York, United States
| |
Collapse
|
2
|
Wolcott NS, Redman WT, Karpinska M, Jacobs EG, Goard MJ. The estrous cycle modulates hippocampal spine dynamics, dendritic processing, and spatial coding. Neuron 2025:S0896-6273(25)00297-1. [PMID: 40367943 DOI: 10.1016/j.neuron.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/21/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025]
Abstract
Histological evidence suggests that the estrous cycle exerts a powerful influence on CA1 neurons in the mammalian hippocampus. Decades have passed since this landmark observation, yet how the estrous cycle shapes dendritic spine dynamics and hippocampal spatial coding in vivo remains a mystery. Here, we used a custom hippocampal microperiscope and two-photon calcium imaging to track CA1 pyramidal neurons in female mice across multiple cycles. Estrous cycle stage had a potent effect on spine dynamics, with spine density peaking during proestrus when estradiol levels are highest. These morphological changes coincided with greater somatodendritic coupling and increased infiltration of back-propagating action potentials into the apical dendrite. Finally, tracking CA1 response properties during navigation revealed greater place field stability during proestrus, evident at both the single-cell and population levels. These findings demonstrate that the estrous cycle drives large-scale structural and functional plasticity in hippocampal neurons essential for learning and memory.
Collapse
Affiliation(s)
- Nora S Wolcott
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William T Redman
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Intelligent Systems Center, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Marie Karpinska
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Ann S. Bowers Women's Brain Health Initiative, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael J Goard
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
3
|
Iguchi Y, Benton R, Kobayashi K. A chemogenetic technology using insect Ionotropic Receptors to stimulate target cell populations in the mammalian brain. Neurosci Res 2025; 214:56-61. [PMID: 39532176 DOI: 10.1016/j.neures.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Chemogenetics uses artificially-engineered proteins to modify the activity of cells, notably neurons, in response to small molecules. Although a common set of chemogenetic tools are the G protein-coupled receptor-based DREADDs, there has been great hope for ligand-gated, ion channel-type chemogenetic tools that directly impact neuronal excitability. We have devised such a technology by exploiting insect Ionotropic Receptors (IRs), a highly divergent subfamily of ionotropic glutamate receptors that evolved to detect diverse environmental chemicals. Here, we review a series of studies developing and applying this "IR-mediated neuronal activation" (IRNA) technology with the Drosophila melanogaster IR84a/IR8a complex, which detects phenyl-containing ligands. We also discuss how variants of IRNA could be produced by modifying the composition of the IR complex, using natural or engineered subunits, which would enable artificial activation of different cell populations in the brain in response to distinct chemicals.
Collapse
Affiliation(s)
- Yoshio Iguchi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan.
| |
Collapse
|
4
|
Muñoz Zamora A, Douglas A, Conway PB, Urrieta E, Moniz T, O'Leary JD, Marks L, Denny CA, Ortega-de San Luis C, Lynch L, Ryan TJ. Cold memories control whole-body thermoregulatory responses. Nature 2025; 641:942-951. [PMID: 40269165 PMCID: PMC12095059 DOI: 10.1038/s41586-025-08902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/14/2025] [Indexed: 04/25/2025]
Abstract
Environmental thermal challenges trigger the brain to coordinate both autonomic and behavioural responses to maintain optimal body temperature1-4. It is unknown how temperature information is precisely stored and retrieved in the brain and how it is converted into a physiological response. Here we investigated whether memories could control whole-body metabolism by training mice to remember a thermal challenge. Mice were conditioned to associate a context with a specific temperature by combining thermoregulatory Pavlovian conditioning with engram-labelling technology, optogenetics and chemogenetics. We report that if mice are returned to an environment in which they previously experienced a 4 °C cold challenge, they increase their metabolic rates regardless of the actual environmental temperature. Furthermore, we show that mice have increased hypothalamic activity when they are exposed to the cold, and that a specific network emerges between the hippocampus and the hypothalamus during the recall of a cold memory. Both natural retrieval and artificial reactivation of cold-sensitive memory engrams in the hippocampus mimic the physiological responses that are seen during a cold challenge. These ensembles are necessary for cold-memory retrieval. These findings show that retrieval of a cold memory causes whole-body autonomic and behavioural responses that enable mice to maintain thermal homeostasis.
Collapse
Affiliation(s)
- Andrea Muñoz Zamora
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Aaron Douglas
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Paul B Conway
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Esteban Urrieta
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Taylor Moniz
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
| | - James D O'Leary
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Lydia Marks
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Allen Institute, Seattle, WA, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene (RFMH), New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Cancer Research Institute, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland.
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Liu C, Liu Z, Liu K, Zhang T, Wang G, Xie H, Guan JS. Hippocampus alters visual representation to encode new memory. Cell Rep 2025; 44:115594. [PMID: 40244845 DOI: 10.1016/j.celrep.2025.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/27/2025] [Accepted: 03/30/2025] [Indexed: 04/19/2025] Open
Abstract
Hippocampal-cortical interaction is crucial for episodic memory encoding and retaining, but when and how this interaction occurs remains elusive. Here, within the trace eyeblink conditioning paradigm, we found a neuronal ensemble in layer II of mouse visual cortex (VIS) that responded to the paired stimulus of light flash (cue, or conditioned stimulus [CS]) and air puff (unconditioned stimulus [US]), but not discrete stimuli, resembling an associative event during learning. This neuronal representation in VIS is dependent on the hippocampus and contributes to encoding the association. Optogenetic activation of hippocampus can promote the emerging representation to allow the association of separated cues. Mechanistically, fos+ engram cells, modulated by VIP+ neurons, are hubs of the association-activated ensemble in VIS. The hippocampus-modulated memory ensemble emerging in VIS at an early stage implicates the structural organization of the memory network to encode new memory.
Collapse
Affiliation(s)
- Chenhui Liu
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhen Liu
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Kaiyuan Liu
- Institute of Photonic Chips, School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tianfu Zhang
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Guangyu Wang
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hong Xie
- Institute of Photonic Chips, School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ji-Song Guan
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
6
|
Eom K, Kim D, Hyun JH. Engram and behavior: How memory is stored in the brain. Neurobiol Learn Mem 2025; 219:108047. [PMID: 40074071 DOI: 10.1016/j.nlm.2025.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
During the processing of information in humans, activated neurons behave in a specific way. The activity of these neurons leaves traces on the neurons, such as changes in synaptic or intrinsic properties. Formation of the memory traces is associated with molecular changes in the neurons. Hence, monitoring collective neural activities and following the trace of neural activities are important to neuroscience research. This collective or group of neurons is described as a 'neural ensemble', while the neural trace is described as a 'neural engram'. Both terms have been used and studied by neuroscientists for a long time. In this article, we discuss the development of these concepts, current research methods, and future areas of development.
Collapse
Affiliation(s)
- Kisang Eom
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Donguk Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung Ho Hyun
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Biomedical Sciences & Engineering Major of Interdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
7
|
Osanai H, Arai M, Kitamura T, Ogawa SK. Automated detection of c-Fos-expressing neurons using inhomogeneous background subtraction in fluorescent images. Neurobiol Learn Mem 2025; 218:108035. [PMID: 39986434 DOI: 10.1016/j.nlm.2025.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/04/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Although many methods for automated fluorescent-labeled cell detection have been proposed, not all of them assume a highly inhomogeneous background arising from complex biological structures. Here, we propose an automated cell detection algorithm that accounts for and subtracts the inhomogeneous background by avoiding high-intensity pixels in the blur filtering calculation. Cells were detected by intensity thresholding in the background-subtracted image, and the algorithm's performance was tested on NeuN- and c-Fos-stained images in the mouse prefrontal cortex and hippocampal dentate gyrus. In addition, applications in c-Fos positive cell counting and the quantification for the expression level in double-labeled cells were demonstrated. Our method of automated detection after background assumption (ADABA) offers the advantage of high-throughput and unbiased analysis in regions with complex biological structures that produce inhomogeneous background.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Mary Arai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Sachie K Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Jin B, W Gongwer M, A DeNardo L. Developmental changes in brain-wide fear memory networks. Neurobiol Learn Mem 2025; 219:108037. [PMID: 40032133 DOI: 10.1016/j.nlm.2025.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
Memory retrieval involves coordinated activity across multiple brain regions. Yet how the organization of memory networks evolves throughout development remains poorly understood. In this study, we compared whole-brain functional networks that are active during contextual fear memory recall in infant, juvenile, and adult mice. Our analyses revealed that long-term memory networks change significantly across postnatal development. Infant fear memory networks are dense and heterogeneous, whereas adult networks are sparse and have a small-world topology. While hippocampal subregions were highly connected nodes at all ages, the cortex gained many functional connections across development. Different functional connections matured at different rates, but their developmental timing fell into three major categories: stepwise change between two ages, linear change across all ages, or inverted-U, with elevated functional connectivity in juveniles. Our work highlights how a subset of brain regions likely maintain important roles in fear memory encoding, but the functional connectivity of fear memory networks undergoes significant reorganization across development. Together, these results provide a blueprint for studying how correlated cellular activity in key areas distinctly regulates memory storage and retrieval across development.
Collapse
Affiliation(s)
- Benita Jin
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Program in Molecular, Cellular and Integrative Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael W Gongwer
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA; Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laura A DeNardo
- Department of Physiology, University of California, Los Angeles, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Balmer GL, Guha S, Poll S. Engrams across diseases: Different pathologies - unifying mechanisms? Neurobiol Learn Mem 2025; 219:108036. [PMID: 40023216 DOI: 10.1016/j.nlm.2025.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Memories are our reservoir of knowledge and thus, are crucial for guiding decisions and defining our self. The physical correlate of a memory in the brain is termed an engram and since decades helps researchers to elucidate the intricate nature of our imprinted experiences and knowledge. Given the importance that memories have for our lives, their impairment can present a tremendous burden. In this review we aim to discuss engram malfunctioning across diseases, covering dementia-associated pathologies, epilepsy, chronic pain and psychiatric disorders. Current neuroscientific tools allow to witness the emergence and fate of engram cells and enable their manipulation. We further suggest that specific mechanisms of mnemonic malfunction can be derived from engram cell readouts. While depicting the way diseases act on the mnemonic component - specifically, on the cellular engram - we emphasize a differentiation between forms of amnesia and hypermnesia. Finally, we highlight commonalities and distinctions of engram impairments on the cellular level across diseases independent of their pathogenic origins and discuss prospective therapeutic measures.
Collapse
Affiliation(s)
- Greta Leonore Balmer
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Shuvrangshu Guha
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Stefanie Poll
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.
| |
Collapse
|
10
|
Yang M, Singh A, de Araujo A, McDougle M, Ellis H, Décarie-Spain L, Kanoski SE, de Lartigue G. Separate orexigenic hippocampal ensembles shape dietary choice by enhancing contextual memory and motivation. Nat Metab 2025; 7:276-296. [PMID: 39815079 PMCID: PMC11860247 DOI: 10.1038/s42255-024-01194-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/28/2024] [Indexed: 01/18/2025]
Abstract
The hippocampus (HPC) has emerged as a critical player in the control of food intake, beyond its well-known role in memory. While previous studies have primarily associated the HPC with food intake inhibition, recent research suggests a role in appetitive processes. Here we identified spatially distinct neuronal populations within the dorsal HPC (dHPC) that respond to either fats or sugars, potent natural reinforcers that contribute to obesity development. Using activity-dependent genetic capture of nutrient-responsive dHPC neurons, we demonstrate a causal role of both populations in promoting nutrient-specific intake through different mechanisms. Sugar-responsive neurons encoded spatial memory for sugar location, whereas fat-responsive neurons selectively enhanced the preference and motivation for fat intake. Importantly, stimulation of either nutrient-responsive dHPC neurons increased food intake, while ablation differentially impacted obesogenic diet consumption and prevented diet-induced weight gain. Collectively, these findings uncover previously unknown orexigenic circuits underlying macronutrient-specific consumption and provide a foundation for developing potential obesity treatments.
Collapse
Affiliation(s)
- Mingxin Yang
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arashdeep Singh
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan de Araujo
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Molly McDougle
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hillary Ellis
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Léa Décarie-Spain
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Guillaume de Lartigue
- Monell Chemical Senses Center, Philadelphia, PA, USA.
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Curot J, Dornier V, Valton L, Denuelle M, Robin A, Rulquin F, Sol JC, De Barros A, Trébuchon A, Bénar C, Bartolomei F, Barbeau EJ. Complex memories induced by intracranial electrical brain stimulation are related to complex networks. Cortex 2025; 183:349-372. [PMID: 39741056 DOI: 10.1016/j.cortex.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/01/2024] [Accepted: 11/18/2024] [Indexed: 01/02/2025]
Abstract
The precise and fleeting moment of rich recollection triggered by an environmental cue is difficult to reproduce in the lab. However, epilepsy patients can experience sudden reminiscences after intracranial electrical brain stimulation (EBS). In these cases, the transient brain state related to the activation of the engram and its conscious perception can be recorded using intracerebral EEG (iEEG). We collected various EBS-induced reminiscences for iEEG analysis, classifying them as follows: no or weak details (familiarity); moderate details and context (semantic and personal semantic memories); high details and context (episodic). Nine brain areas were selected within the temporal lobes (including the hippocampus and temporal neocortex, ipsi- and contralateral) and the insula, defining a network (each area as a node). Functional connectivity was measured by estimating pair-wise non-linear correlations between signals recorded from these brain regions during different memory events. Seventeen reminiscences in six patients (2 episodic, 10 personal semantic, 2 semantic memories, 5 familiar objects, 1 déjà-rêvé) were compared to 18 control experiential phenomena (unrelated to reminiscence), 18 negative EBS (which failed to elicit memories or other phenomena) in the same locations, and pre-EBS baseline activity. The global functional connectivity in the network was higher following EBS-induced reminiscences than during baseline activity, control phenomena, or negative EBS. The degree of connectivity increased with the complexity of memories; it was higher for detailed and contextualized memories like episodic memories. More significant links compared to baseline (edges with higher non-linear correlation relative to baseline) were observed for episodic memories than for less contextualized memories. These increases in connectivity occurred in all frequency bands, except the delta band. Our results support understanding declarative memory retrieval as having a multiplexed organization. They also show that richer memories activated by intracranial EBS are related to more complex connectivity patterns across medial and neocortical temporal lobe structures.
Collapse
Affiliation(s)
- Jonathan Curot
- Toulouse University Hospital, France; Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France; University of Toulouse, Faculty of Health, France.
| | - Vincent Dornier
- Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France; University of Toulouse, Faculty of Health, France
| | - Luc Valton
- Toulouse University Hospital, France; Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France
| | - Marie Denuelle
- Toulouse University Hospital, France; Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France
| | | | | | - Jean-Christophe Sol
- Toulouse University Hospital, France; University of Toulouse, Faculty of Health, France; INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, France
| | - Amaury De Barros
- Toulouse University Hospital, France; University of Toulouse, Faculty of Health, France; INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, France
| | - Agnès Trébuchon
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; Marseille University Hospital, France
| | - Christian Bénar
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; Marseille University Hospital, France
| | - Emmanuel J Barbeau
- Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France; University of Toulouse, Faculty of Health, France
| |
Collapse
|
12
|
Lesuis SL, Park S, Hoorn A, Rashid AJ, Mocle AJ, Salter EW, Vislavski S, Gray MT, Torelli AM, DeCristofaro A, Driever WPF, van der Stelt M, Zweifel LS, Collingridge GL, Lefebvre JL, Walters BJ, Frankland PW, Hill MN, Josselyn SA. Stress disrupts engram ensembles in lateral amygdala to generalize threat memory in mice. Cell 2025; 188:121-140.e20. [PMID: 39549697 PMCID: PMC11726195 DOI: 10.1016/j.cell.2024.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024]
Abstract
Stress induces aversive memory overgeneralization, a hallmark of many psychiatric disorders. Memories are encoded by a sparse ensemble of neurons active during an event (an engram ensemble). We examined the molecular and circuit processes mediating stress-induced threat memory overgeneralization in mice. Stress, acting via corticosterone, increased the density of engram ensembles supporting a threat memory in lateral amygdala, and this engram ensemble was reactivated by both specific and non-specific retrieval cues (generalized threat memory). Furthermore, we identified a critical role for endocannabinoids, acting retrogradely on parvalbumin-positive (PV+) lateral amygdala interneurons in the formation of a less-sparse engram and memory generalization induced by stress. Glucocorticoid receptor antagonists, endocannabinoid synthesis inhibitors, increasing PV+ neuronal activity, and knocking down cannabinoid receptors in lateral amygdala PV+ neurons restored threat memory specificity and a sparse engram in stressed mice. These findings offer insights into stress-induced memory alterations, providing potential therapeutic avenues for stress-related disorders.
Collapse
Affiliation(s)
- Sylvie L Lesuis
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Cellular and Computational Neuroscience, Swammerdam Institute for Life Science, Amsterdam Neuroscience, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Sungmo Park
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Annelies Hoorn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asim J Rashid
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Andrew J Mocle
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eric W Salter
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, and TANZ Centre for Research in Neurodegenerative Diseases, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Stefan Vislavski
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Madison T Gray
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Angelica M Torelli
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Antonietta DeCristofaro
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Wouter P F Driever
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, 2815 Eastlake Ave E Suite 200, Seattle, WA 98102, USA
| | - Graham L Collingridge
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, and TANZ Centre for Research in Neurodegenerative Diseases, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Julie L Lefebvre
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Brandon J Walters
- Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| | - Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
13
|
Ontiveros-Araiza LF. The Neurobehavioral State hypothesis. Biosystems 2025; 247:105361. [PMID: 39521269 DOI: 10.1016/j.biosystems.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Since the early attempts to understand the brain made by Greek philosophers more than 2000 years ago, one of the main questions in neuroscience has been how the brain perceives all the stimuli in the environment and uses this information to implement a response. Recent hypotheses of the neural code rely on the existence of an ideal observer, whether on specific areas of the cerebral cortex or distributed network composed of cortical and subcortical elements. The Neurobehavioral State hypothesis stipulates that neurons are in a quasi-stable state due to the dynamic interaction of their molecular components. This increases their computational capabilities and electrophysiological behavior further than a binary active/inactive state. Together, neuronal populations across the brain learn to identify and associate internal and external stimuli with actions and emotions. Furthermore, such associations can be stored through the regulation of neuronal components as new quasi-stable states. Using this framework, behavior arises as the result of the dynamic interaction between internal and external stimuli together with previously established quasi-stable states that delineate the behavioral response. Finally, the Neurobehavioral State hypothesis is firmly grounded on present evidence of the complex dynamics within the brain, from the molecular to the network level, and avoids the need for a central observer by proposing the brain configures itself through experience-driven associations.
Collapse
Affiliation(s)
- Luis Fernando Ontiveros-Araiza
- Department of Cognitive Neuroscience, Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
14
|
van Zundert B, Montecino M. Epigenetics in Learning and Memory. Subcell Biochem 2025; 108:51-71. [PMID: 39820860 DOI: 10.1007/978-3-031-75980-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall). But what are the molecular mechanisms that govern the expression of immediate-early genes (IEGs; c-fos, Npas4) and plasticity-related genes (PRGs; Dlg4/PSD95 and Grin2b/NR2B) in memory ensemble? Studies in relatively simple in vitro and in vivo neuronal model systems have demonstrated that synaptic activity during development, or when induced by chemical stimuli (i.e., cLTP, KCl, picrotoxin), activates the NMDAR-Ca2+-CREB signaling pathway that upregulates gene expression through changes in the epigenetic landscape (i.e., histone marks and DNA methylation) and/or 3D chromatin organization. The data support a model in which epigenetic modifications in promoters and enhancers facilitate the priming and activation of these regulatory regions, hence leading to the formation of enhancer-promoter interactions (EPIs) through chromatin looping. The exploration of whether similar molecular mechanisms drive gene expression in learning and memory has presented notable challenges due to the distinct phases of learning and the activation of only sparse population of cells (the engram). Consequently, such studies demand precise temporal and spatial control. By combining activity-dependent engram tagging strategies (i.e., TRAP mice) with multi-omics analyses (i.e., RNA-seq, ChiP-seq, ATAC-seq, and Hi-C), it has been recently possible to associate changes in the epigenomic landscape and/or 3D genome architecture with transcriptional waves in engram cells of mice subjected to contextual fear conditioning (CFC), a relevant one-shot Pavlovian learning task. These studies support the role of specific epigenetic mechanisms and of the 3D chromatin organization during the control of gene transcription waves in engram cells. Advancements in our comprehension of the molecular mechanisms driving memory ensemble will undoubtedly play a crucial role in the development of better-targeted strategies to tackle cognitive diseases, including Alzheimer's disease and frontotemporal dementia, among other information-processing disorders.
Collapse
Affiliation(s)
- Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, USA.
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| |
Collapse
|
15
|
Zhou Y, Wang JL, Qiu L, Torpey J, Wixson JG, Lyon M, Chen X. NMDA Receptors Control Activity Hierarchy in Neural Network: Loss of Control in Hierarchy Leads to Learning Impairments, Dissociation, and Psychosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.06.523038. [PMID: 36712055 PMCID: PMC9881912 DOI: 10.1101/2023.01.06.523038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While it is known that associative memory is preferentially encoded by memory-eligible "primed" neurons, in vivo neural activity hierarchy has not been quantified and little is known about how such a hierarchy is established. Leveraging in vivo calcium imaging of hippocampal neurons on freely behaving mice, we developed the first method to quantify real-time neural activity hierarchy in the CA1 region. Neurons at the top of activity hierarchy are identified as primed neurons. In cilia knockout mice that exhibit severe learning deficits, the percentage of primed neurons is drastically reduced. We developed a simplified neural network model that incorporates simulations of linear and non-linear weighted components, modeling the synaptic ionic conductance of AMPA and NMDA receptors, respectively. We found that moderate non-linear to linear conductance ratios naturally leads a small fraction of neurons to be primed in the simulated neural network. Removal of the non-linear component eliminates the existing activity hierarchy and reinstate it to the network stochastically primes a new pool of neurons. Blockade of NMDA receptors by ketamine not only decreases general neuronal activity causing learning impairments, but also disrupts neural activity hierarchy. Additionally, ketamine-induced super-synchronized slow oscillation during anesthesia can be simulated if the non-linear NMDAR component is removed to flatten activity hierarchy. Together, this study develops a unique method to measure neural activity hierarchy and identifies NMDA receptors as a key factor that controls the hierarchy. It presents the first evidence suggesting that hierarchy disruption by NMDAR blockade causes dissociation and psychosis.
Collapse
|
16
|
Pouget C, Morier F, Treiber N, García PF, Mazza N, Zhang R, Reeves I, Winston S, Brimble MA, Kim CK, Vetere G. Deconstruction of a memory engram reveals distinct ensembles recruited at learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627894. [PMID: 39713328 PMCID: PMC11661170 DOI: 10.1101/2024.12.11.627894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
How are associative memories formed? Which cells represent a memory, and when are they engaged? By visualizing and tagging cells based on their calcium influx with unparalleled temporal precision, we identified non-overlapping dorsal CA1 neuronal ensembles that are differentially active during associative fear memory acquisition. We dissected the acquisition experience into periods during which salient stimuli were presented or certain mouse behaviors occurred and found that cells associated with specific acquisition periods are sufficient alone to drive memory expression and contribute to fear engram formation. This study delineated the different identities of the cell ensembles active during learning, and revealed, for the first time, which ones form the core engram and are essential for memory formation and recall.
Collapse
Affiliation(s)
- Clément Pouget
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Flora Morier
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Nadja Treiber
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Pablo Fernández García
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Nina Mazza
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Run Zhang
- Biomedical Engineering Graduate Group, University of California, Davis; Davis, CA, 95618, USA
| | - Isaiah Reeves
- Dept of Surgery, St Jude Children’s Research Hospital; Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Stephen Winston
- Dept of Surgery, St Jude Children’s Research Hospital; Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Mark A. Brimble
- Dept of Host-Microbe Interactions, St Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Christina K. Kim
- Center for Neuroscience, University of California, Davis; Davis, CA, 95618, USA
- Dept of Neurology, School of Medicine, University of California, Davis; Sacramento, CA, 95817, USA
| | - Gisella Vetere
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| |
Collapse
|
17
|
Wang W, Wang Z, Cao J, Dong Y, Chen Y. Melatonin ameliorates chronic sleep deprivation against memory encoding vulnerability: Involvement of synapse regulation via the mitochondrial-dependent redox homeostasis-induced autophagy inhibition. Free Radic Biol Med 2024; 225:398-414. [PMID: 39396581 DOI: 10.1016/j.freeradbiomed.2024.10.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Voluntary sleep curtailment is increasingly more rampant in modern society and compromises healthy cognition, including memory, to varying degrees. However, whether memory encoding is impaired after chronic sleep deprivation (CSD) and the underlying molecular mechanisms involved remain unclear. Here, using the mice, we tested the impact of CSD on the encoding abilities of social recognition-dependent memory and object recognition-dependent memory. We found that memory encoding was indeed vulnerable to CSD, while memory retrieval remained unaffected. The hippocampal neurons of mice with memory encoding deficits exhibited significant synapse damage and hyperactive autophagy, which dissipates during regular sleep cycles. This excessive autophagy appeared to be triggered by damage to mitochondrial DNA (mtDNA), resulting from oxidative stress within the mitochondria. The relief at the behavioral and molecular biological levels can be achieved with intraperitoneal injections of the antioxidant compound melatonin. Moreover, our in vitro experiments using HT-22 cells demonstrated that oxidative stress induced by hydrogen peroxide led to oxidative damage, including mtDNA damage, and activation of autophagy. Melatonin treatment effectively countered these effects, restoring redox homeostasis and reducing excessive autophagic activity. Notably, this protective effect was not observed when melatonin was administered as a pre-treatment. Together, our findings reveal the vulnerability of memory encoding during chronic sleep curtailment, which is caused by oxidative stress and consequent enhancement of autophagy, suggest a potential therapeutic strategy for addressing these effects following prolonged wakefulness through melatonin intervention, and reiterate the significance of adequate sleep for memory formation and retention.
Collapse
Affiliation(s)
- Wei Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Carbonero D, Noueihed J, Kramer MA, White JA. Nonnegative matrix factorization for analyzing state dependent neuronal network dynamics in calcium recordings. Sci Rep 2024; 14:27899. [PMID: 39537711 PMCID: PMC11560946 DOI: 10.1038/s41598-024-78448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Calcium imaging allows recording from hundreds of neurons in vivo with the ability to resolve single cell activity. Evaluating and analyzing neuronal responses, while also considering all dimensions of the data set to make specific conclusions, is extremely difficult. Often, descriptive statistics are used to analyze these forms of data. These analyses, however, remove variance by averaging the responses of single neurons across recording sessions, or across combinations of neurons, to create single quantitative metrics, losing the temporal dynamics of neuronal activity, and their responses relative to each other. Dimensionally Reduction (DR) methods serve as a good foundation for these analyses because they reduce the dimensions of the data into components, while still maintaining the variance. Nonnegative Matrix Factorization (NMF) is an especially promising DR analysis method for analyzing activity recorded in calcium imaging because of its mathematical constraints, which include positivity and linearity. We adapt NMF for our analyses and compare its performance to alternative dimensionality reduction methods on both artificial and in vivo data. We find that NMF is well-suited for analyzing calcium imaging recordings, accurately capturing the underlying dynamics of the data, and outperforming alternative methods in common use.
Collapse
Affiliation(s)
- Daniel Carbonero
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Jad Noueihed
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - John A White
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Neurophotonics Center, Boston University, Boston, MA, USA.
| |
Collapse
|
19
|
Xie H, Liu K, Li D, Zhang CS, Hilgetag CC, Guan JS. Rectified activity-dependent population plasticity implicates cortical adaptation for memory and cognitive functions. Commun Biol 2024; 7:1487. [PMID: 39528683 PMCID: PMC11555404 DOI: 10.1038/s42003-024-07186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Cortical network undergoes rewiring everyday due to learning and memory events. To investigate the trends of population adaptation in neocortex overtime, we record cellular activity of large-scale cortical populations in response to neutral environments and conditioned contexts and identify a general intrinsic cortical adaptation mechanism, naming rectified activity-dependent population plasticity (RAPP). Comparing each adjacent day, the previously activated neurons reduce activity, but remain with residual potentiation, and increase population variability in proportion to their activity during previous recall trials. RAPP predicts both the decay of context-induced activity patterns and the emergence of sparse memory traces. Simulation analysis reveal that the local inhibitory connections might account for the residual potentiation in RAPP. Intriguingly, introducing the RAPP phenomenon in the artificial neural network show promising improvement in small sample size pattern recognition tasks. Thus, RAPP represents a phenomenon of cortical adaptation, contributing to the emergence of long-lasting memory and high cognitive functions.
Collapse
Affiliation(s)
- Hong Xie
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, China.
| | - Kaiyuan Liu
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Dong Li
- Institut für Computational Neuroscience, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| | - Chang-Shui Zhang
- Department of Automation, Tsinghua University, Beijing, China
- State Key Lab of Intelligent Technologies and Systems, Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing, P.R. China
| | - Claus C Hilgetag
- Institut für Computational Neuroscience, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| | - Ji-Song Guan
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
20
|
Jin B, Gongwer MW, Kearney BP, Ohanian L, Holden-Wingate L, Le B, Darmawan A, Nakayama Y, Mora SAR, DeNardo LA. A developmental brain-wide screen identifies retrosplenial cortex as a key player in the emergence of persistent memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574554. [PMID: 38260633 PMCID: PMC10802387 DOI: 10.1101/2024.01.07.574554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Memories formed early in life are short-lived while those formed later persist. Recent work revealed that infant memories are stored in a latent state. But why they fail to be retrieved is poorly understood. Here we investigated brain-wide circuit mechanisms underlying infantile amnesia. We performed a screen that combined contextual fear conditioning, activity-dependent neuronal tagging at different postnatal ages, tissue clearing and light sheet microscopy. We observed striking developmental changes in regional activity patterns between infant, juvenile, and adult mice, including changes in the retrosplenial cortex (RSP) that aligned with the emergence of persistent memory. We then performed a series of targeted investigations of RSP structure and function across development. Chronic chemogenetic reactivation of tagged RSP ensembles during the week after learning enhanced memory in adults and juveniles, but not in infants. However, after 33 days, reactivating infant-tagged RSP ensembles recovered forgotten memories. Changes in the developmental functions of RSP memory ensembles were accompanied by changes in dendritic spine density and the likelihood that those ensembles could be reactivated by contextual cues. These studies show that RSP ensembles store latent infant memories, reveal the time course of RSP functional maturation, and suggest that immature RSP functional networks contribute to infantile amnesia.
Collapse
|
21
|
Chen B, Zhang Y, Xiao H, Wang L, Li J, Xu Y, Wang JH. Associative memory cells of encoding fear signals and anxiety are recruited by neuroligin-3-mediated synapse formation. Commun Biol 2024; 7:1464. [PMID: 39511365 PMCID: PMC11543854 DOI: 10.1038/s42003-024-07170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Acute severe stress may induce fear memory and anxiety. Their mechanisms are expectedly revealed to explore therapeutic strategies. We have investigated the recruitment of associative memory cells that encode stress signals to cause fear memory and anxiety by multidisciplinary approaches. In addition to fear memory and anxiety, the social stress by the resident/intruder paradigm leads to synapse interconnections between somatosensory S1-Tr and auditory cortical neurons in intruder mice. These S1-Tr cortical neurons become to receive convergent synapse innervations newly from the auditory cortex and innately from the thalamus as well as encode the stress signals including battle sound and somatic pain, i.e., associative memory neurons. Neuroligin-3 mRNA knockdown in the S1-Tr cortex precludes the recruitment of associative memory neurons and the onset of fear memory and anxiety. The stress-induced recruitment of associative memory cells in sensory cortices for stress-relevant fear memory and anxiety is based on neuroligin-3-mediated new synapse formation.
Collapse
Affiliation(s)
- Bingchen Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Zhang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huajuan Xiao
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayi Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Chen B, Zhang Y, Xiao H, Wang L, Li J, Xu Y, Wang JH. Associative memory cells of encoding fear signals and anxiety are recruited by neuroligin-3-mediated synapse formation. Commun Biol 2024; 7:1464. [DOI: :10.1038/s42003-024-07170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
|
23
|
Osanai H, Arai M, Kitamura T, Ogawa SK. Automated cell detection for immediate early gene-expressing neurons using inhomogeneous background subtraction in fluorescent images. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622525. [PMID: 39574706 PMCID: PMC11580981 DOI: 10.1101/2024.11.07.622525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Although many methods for automated fluorescent-labeled cell detection have been proposed, not all of them assume a highly inhomogeneous background arising from complex biological structures. Here, we propose an automated cell detection algorithm that accounts for and subtracts the inhomogeneous background by avoiding high-intensity pixels in the blur filtering calculation. Cells were detected by intensity thresholding in the background-subtracted image, and the algorithm's performance was tested on NeuN- and c-Fos-stained images in the mouse prefrontal cortex and hippocampal dentate gyrus. In addition, applications in c-Fos positive cell counting and the quantification for the expression level in double-labeled cells were demonstrated. Our method of automated detection after background assumption (ADABA) offers the advantage of high-throughput and unbiased analysis in regions with complex biological structures that produce inhomogeneous background. Highlights - We proposed a method to assume and subtract inhomogeneous background pattern. (79/85) - Cells were automatically detected in the background-subtracted image. (71/85) - The automated detection results corresponded with the manual detection. (73/85) - Detection of IEG positive cells and overlapping with neural marker were demonstrated. (85/85).
Collapse
|
24
|
Andonovski N, Sutton J, McCarroll CJ. Eliminating episodic memory? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230413. [PMID: 39278256 PMCID: PMC11449155 DOI: 10.1098/rstb.2023.0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 09/18/2024] Open
Abstract
In Tulving's initial characterization, episodic memory was one of multiple memory systems. It was postulated, in pursuit of explanatory depth, as displaying proprietary operations, representations and substrates such as to explain a range of cognitive, behavioural and experiential phenomena. Yet the subsequent development of this research programme has, paradoxically, introduced surprising doubts about the nature, and indeed existence, of episodic memory. On dominant versions of the 'common system' view, on which a single simulation system underlies both remembering and imagining, there are no processes unique to memory to support robust generalizations with inductive potential. Eliminativism about episodic memory seems to follow from the claim that it has no dedicated neurocognitive system of its own. After identifying this under-noticed threat, we push back against modern eliminativists by surveying recent evidence that still indicates specialized mechanisms, computations and representations that are distinctly mnemic in character. We argue that contemporary realists about episodic memory can retain lessons of the common system approach while resisting the further move to eliminativism. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Nikola Andonovski
- Centre for Philosophy of Memory, IPhiG, Université Grenoble Alpes, Saint-Martin-d’Heres38400, France
| | - John Sutton
- Philosophy, Macquarie University, Sydney, New South Wales, Australia
- Philosophy, University of Stirling, Stirling, UK
| | | |
Collapse
|
25
|
Zaki Y, Cai DJ. Memory engram stability and flexibility. Neuropsychopharmacology 2024; 50:285-293. [PMID: 39300271 PMCID: PMC11525749 DOI: 10.1038/s41386-024-01979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
Many studies have shown that memories are encoded in sparse neural ensembles distributed across the brain. During the post-encoding period, often during sleep, many of the cells that were active during encoding are reactivated, supporting consolidation of this memory. During memory recall, many of the same cells that were active during encoding and reactivated during consolidation are reactivated during recall. These ensembles of cells have been referred to as the memory engram cells, stably representing a specific memory. However, recent studies question the rigidity of the "stable memory engram." Here we review the past literature of how episodic-like memories are encoded, consolidated, and recalled. We also highlight more recent studies (as well as some older literature) that suggest that these stable memories and their representations are much more dynamic and flexible than previously thought. We highlight some of these processes, including memory updating, reconsolidation, forgetting, schema learning, memory-linking, and representational drift.
Collapse
Affiliation(s)
- Yosif Zaki
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise J Cai
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
26
|
Cortese A, Ohata R, Alemany-González M, Kitagawa N, Imamizu H, Koizumi A. Time-dependent neural arbitration between cue associative and episodic fear memories. Nat Commun 2024; 15:8706. [PMID: 39433735 PMCID: PMC11494204 DOI: 10.1038/s41467-024-52733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
After traumatic events, simple cue-threat associative memories strengthen while episodic memories become incoherent. However, how the brain prioritises cue associations over episodic coding of traumatic events remains unclear. Here, we developed an original episodic threat conditioning paradigm in which participants concurrently form two memory representations: cue associations and episodic cue sequence. We discovered that these two distinct memories compete for physiological fear expression, reorganising overnight from an overgeneralised cue-based to a precise sequence-based expression. With multivariate fMRI, we track inter-area communication of the memory representations to reveal that a rebalancing between hippocampal- and prefrontal control of the fear regulatory circuit governs this memory maturation. Critically, this overnight re-organisation is altered with heightened trait anxiety. Together, we show the brain prioritises generalisable associative memories under recent traumatic stress but resorts to selective episodic memories 24 h later. Time-dependent memory competition may provide a unifying account for memory dysfunctions in post-traumatic stress disorders.
Collapse
Affiliation(s)
| | - Ryu Ohata
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| | | | - Norimichi Kitagawa
- Yoshika Institute of Psychology, Shimane, Japan
- BKC Research Organization of Social Sciences, Ritsumeikan University, Shiga, Japan
| | - Hiroshi Imamizu
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan.
- ATR Cognitive Mechanisms Laboratories, Kyoto, Japan.
- The Research into Artifacts, Center for Engineering, The University of Tokyo, Tokyo, Japan.
| | - Ai Koizumi
- Sony Computer Science Laboratories, Inc., Tokyo, Japan.
| |
Collapse
|
27
|
Li M, Yang XK, Yang J, Li TX, Cui C, Peng X, Lei J, Ren K, Ming J, Zhang P, Tian B. Ketamine ameliorates post-traumatic social avoidance by erasing the traumatic memory encoded in VTA-innervated BLA engram cells. Neuron 2024; 112:3192-3210.e6. [PMID: 39032491 DOI: 10.1016/j.neuron.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/21/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Erasing traumatic memory during memory reconsolidation is a promising retrieval-extinction strategy for post-traumatic stress disorder (PTSD). Here, we developed an acute social defeat stress (SDS) mouse model with short-term and re-exposure-evoked long-term social avoidance. SDS-associated traumatic memories were identified to be stored in basolateral amygdala (BLA) engram cells. A single intraperitoneal administration of subanesthetic-dose ketamine within, but not beyond, the re-exposure time window significantly alleviates SDS-induced social avoidance, which reduces the activity and quantity of reactivated BLA engram cells. Furthermore, activation or inhibition of dopaminergic projections from the ventral tegmental area to the BLA effectively mimics or blocks the therapeutic effect of re-exposure with ketamine and is dopamine D2 receptor dependent. Single-cell RNA sequencing reveals that re-exposure with ketamine triggered significant changes in memory-related pathways in the BLA. Together, our research advances the understanding of how ketamine mitigates PTSD symptoms and offers promising avenues for developing more effective treatments for trauma-related disorders.
Collapse
Affiliation(s)
- Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xue-Ke Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jian Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tong-Xia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Chi Cui
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiang Peng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kun Ren
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, P.R. China.
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei 430030, P.R. China.
| |
Collapse
|
28
|
Wei H, Feng C, Li F. Modeling biological memory network by an autonomous and adaptive multi-agent system. Brain Inform 2024; 11:23. [PMID: 39277566 PMCID: PMC11401808 DOI: 10.1186/s40708-024-00237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
At the intersection of computation and cognitive science, graph theory is utilized as a formalized description of complex relationships description of complex relationships and structures, but traditional graph models are static, lack the dynamic and autonomous behaviors of biological neural networks, rely on algorithms with a global view. This study introduces a multi-agent system (MAS) model based on the graph theory, each agent equipped with adaptive learning and decision-making capabilities, thereby facilitating decentralized dynamic information memory, modeling and simulation of the brain's memory process. This decentralized approach transforms memory storage into the management of MAS paths, with each agent utilizing localized information for the dynamic formation and modification of these paths, different path refers to different memory instance. The model's unique memory algorithm avoids a global view, instead relying on neighborhood-based interactions to enhance resource utilization. Emulating neuron electrophysiology, each agent's adaptive learning behavior is represented through a microcircuit centered around a variable resistor. Using principles of Ohm's and Kirchhoff's laws, we validated the model's efficacy in memorizing and retrieving data through computer simulations. This approach offers a plausible neurobiological explanation for memory realization and validates the memory trace theory at a system level.
Collapse
Affiliation(s)
- Hui Wei
- Laboratory of Algorithms for Cognitive Models, School of Computer Science, Fudan University, No. 2005 Songhu Rd, Yangpu District, Shanghai, 200438, China.
| | - Chenyue Feng
- Laboratory of Algorithms for Cognitive Models, School of Computer Science, Fudan University, No. 2005 Songhu Rd, Yangpu District, Shanghai, 200438, China
| | - Fushun Li
- Laboratory of Algorithms for Cognitive Models, School of Computer Science, Fudan University, No. 2005 Songhu Rd, Yangpu District, Shanghai, 200438, China
| |
Collapse
|
29
|
McKenzie AT, Zeleznikow-Johnston A, Sparks JS, Nnadi O, Smart J, Wiley K, Cerullo MA, de Wolf A, Minerva F, Risco R, Church GM, de Magalhães JP, Kendziorra EF. Structural brain preservation: a potential bridge to future medical technologies. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1400615. [PMID: 39315362 PMCID: PMC11416988 DOI: 10.3389/fmedt.2024.1400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
When faced with the prospect of death, some people would prefer a form of long-term preservation that may allow them to be restored to healthy life in the future, if technology ever develops to the point that this is feasible and humane. Some believe that we may have the capacity to perform this type of experimental preservation today-although it has never been proven-using contemporary methods to preserve the structure of the brain. The idea is that the morphomolecular organization of the brain encodes the information required for psychological properties such as personality and long-term memories. If these structures in the brain can be maintained intact over time, this could theoretically provide a bridge to access restorative technologies in the future. To consider this hypothesis, we first describe possible metrics that can be used to assess structural brain preservation quality. We next explore several possible methods to preserve structural information in the brain, including the traditional cryonics method of cryopreservation, as well as aldehyde-stabilized cryopreservation and fluid preservation. We focus in-depth on fluid preservation, which relies on aldehyde fixation to induce chemical gel formation in a wide set of biomolecules and appears to be a cost-effective method. We describe two theoretical recovery technologies, alongside several of the ethical and legal complexities of brain preservation, all of which will require a prudent approach. We believe contemporary structural brain preservation methods have a non-negligible chance of allowing successful restoration in the future and that this deserves serious research efforts by the scientific community.
Collapse
Affiliation(s)
| | - Ariel Zeleznikow-Johnston
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | | | - Oge Nnadi
- Brain Preservation Foundation, Ashburn, VA, United States
| | - John Smart
- Brain Preservation Foundation, Ashburn, VA, United States
| | - Keith Wiley
- Brain Preservation Foundation, Ashburn, VA, United States
| | | | | | | | - Ramón Risco
- Escuela Superior de Ingeniería, Universidad de Sevilla & National Accelerators Center, CNA-CSIC, Seville, Spain
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - João Pedro de Magalhães
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
30
|
Kucewicz MT, Cimbalnik J, Garcia-Salinas JS, Brazdil M, Worrell GA. High frequency oscillations in human memory and cognition: a neurophysiological substrate of engrams? Brain 2024; 147:2966-2982. [PMID: 38743818 PMCID: PMC11370809 DOI: 10.1093/brain/awae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.
Collapse
Affiliation(s)
- Michal T Kucewicz
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Bioelectronics, Neurophysiology and Engineering Laboratory, Mayo Clinic, Departments of Neurology and Biomedical Engineering & Physiology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jan Cimbalnik
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Department of Biomedical Engineering, St. Anne’s University Hospital in Brno & International Clinical Research Center, Brno 602 00, Czech Republic
- Brno Epilepsy Center, 1th Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, member of the ERN-EpiCARE, Brno 602 00, Czech Republic
| | - Jesus S Garcia-Salinas
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Milan Brazdil
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Brno Epilepsy Center, 1th Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, member of the ERN-EpiCARE, Brno 602 00, Czech Republic
- Behavioural and Social Neuroscience Research Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Gregory A Worrell
- BioTechMed Center, Brain & Mind Electrophysiology laboratory, Department of Multimedia Systems, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk 80-233, Poland
- Bioelectronics, Neurophysiology and Engineering Laboratory, Mayo Clinic, Departments of Neurology and Biomedical Engineering & Physiology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
31
|
Arshavsky YI. Autoimmune hypothesis of Alzheimer's disease: unanswered question. J Neurophysiol 2024; 132:929-942. [PMID: 39163023 DOI: 10.1152/jn.00259.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) was described more than a century ago. However, there are still no effective approaches to its treatment, which may suggest that the search for the cure is not being conducted in the most productive direction. AD begins as selective impairments of declarative memory with no deficits in other cognitive functions. Therefore, understanding of the AD pathogenesis has to include the understanding of this selectivity. Currently, the main efforts aimed at prevention and treatment of AD are based on the dominating hypothesis for the AD pathogenesis: the amyloid hypothesis. But this hypothesis does not explain selective memory impairments since β-amyloid accumulates extracellularly and should be toxic to all types of cerebral neurons, not only to "memory engram neurons." To explain selective memory impairment, I propose the autoimmune hypothesis of AD, based on the analysis of risk factors for AD and molecular mechanisms of memory formation. Memory formation is associated with epigenetic modifications of chromatin in memory engram neurons and, therefore, might be accompanied by the expression of memory-specific proteins recognized by the adaptive immune system as "non-self" antigens. Normally, the brain is protected by the blood-brain barrier (BBB). All risk factors for AD provoke BBB disruptions, possibly leading to an autoimmune reaction against memory engram neurons. This reaction would make them selectively sensitive to tauopathy. If this hypothesis is confirmed, the strategies for AD prevention and treatment would be radically changed.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
32
|
Berry JA, Guhle DC, Davis RL. Active forgetting and neuropsychiatric diseases. Mol Psychiatry 2024; 29:2810-2820. [PMID: 38532011 PMCID: PMC11420092 DOI: 10.1038/s41380-024-02521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Recent and pioneering animal research has revealed the brain utilizes a variety of molecular, cellular, and network-level mechanisms used to forget memories in a process referred to as "active forgetting". Active forgetting increases behavioral flexibility and removes irrelevant information. Individuals with impaired active forgetting mechanisms can experience intrusive memories, distressing thoughts, and unwanted impulses that occur in neuropsychiatric diseases. The current evidence indicates that active forgetting mechanisms degrade, or mask, molecular and cellular memory traces created in synaptic connections of "engram cells" that are specific for a given memory. Combined molecular genetic/behavioral studies using Drosophila have uncovered a complex system of cellular active-forgetting pathways within engram cells that is regulated by dopamine neurons and involves dopamine-nitric oxide co-transmission and reception, endoplasmic reticulum Ca2+ signaling, and cytoskeletal remodeling machinery regulated by small GTPases. Some of these molecular cellular mechanisms have already been found to be conserved in mammals. Interestingly, some pathways independently regulate forgetting of distinct memory types and temporal phases, suggesting a multi-layering organization of forgetting systems. In mammals, active forgetting also involves modulation of memory trace synaptic strength by altering AMPA receptor trafficking. Furthermore, active-forgetting employs network level mechanisms wherein non-engram neurons, newly born-engram neurons, and glial cells regulate engram synapses in a state and experience dependent manner. Remarkably, there is evidence for potential coordination between the network and cellular level forgetting mechanisms. Finally, subjects with several neuropsychiatric diseases have been tested and shown to be impaired in active forgetting. Insights obtained from research on active forgetting in animal models will continue to enrich our understanding of the brain dysfunctions that occur in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Jacob A Berry
- Department of Biological Sciences, University of Alberta, Edmonton, AL, T6G 2E9, Canada.
| | - Dana C Guhle
- Department of Biological Sciences, University of Alberta, Edmonton, AL, T6G 2E9, Canada
| | - Ronald L Davis
- Department of Neuroscience, UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA.
| |
Collapse
|
33
|
Sanguino-Gómez J, Huijgens S, den Hartog M, Schenk IJM, Kluck W, Versluis TD, Krugers HJ. Neural correlates of learning and memory are altered by early-life stress. Neurobiol Learn Mem 2024; 213:107952. [PMID: 38906243 DOI: 10.1016/j.nlm.2024.107952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
The ability to learn and remember, which is fundamental for behavioral adaptation, is susceptible to stressful experiences during the early postnatal period, such as abnormal levels of maternal care. The exact mechanisms underlying these effects still remain elusive. This study examined whether early life stress (ELS) alters memory and brain activation patterns in male mice. Therefore, we examined the expression of the immediate early genes (IEGs) c-Fos and Arc in the dentate gyrus (DG) and basolateral amygdala (BLA) after training and memory retrieval in a fear conditioning task. Furthermore, we examined the potential of RU38486 (RU486), a glucocorticoid receptor antagonist, to mitigate ELS-induced memory deficits by blocking stress signalling during adolescence. Arc::dVenus reporter mice, which allow investigating experience-dependent expression of the immediate early gene Arc also at more remote time points, were exposed to ELS by housing dams and offspring with limited bedding and nesting material (LBN) between postnatal days (PND) 2-9 and trained in a fear conditioning task at adult age. We found that ELS reduced both fear acquisition and contextual memory retrieval. RU486 did not prevent these effects. ELS reduced the number of Arc::dVenus+ cells in DG and BLA after training, while the number of c-Fos+ cells were left unaffected. After memory retrieval, ELS decreased c-Fos+ cells in the ventral DG and BLA. ELS also altered the colocalization of c-Fos+ cells with Arc::dVenus+ cells in the ventral DG, possibly indicating impaired engram allocation in the ventral DG after memory retrieval. In conclusion, this study shows that ELS alters neuronal activation patterns after fear acquisition and retrieval, which may provide mechanistic insights into enduring impact of ELS on the processing of fear memories, possibly via changes in cell (co-) activation and engram cell allocation.
Collapse
Affiliation(s)
| | - Stefan Huijgens
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Maxine den Hartog
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Inim J M Schenk
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Wenya Kluck
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamara D Versluis
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Wolcott NS, Redman WT, Karpinska M, Jacobs EG, Goard MJ. The estrous cycle modulates hippocampal spine dynamics, dendritic processing, and spatial coding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606418. [PMID: 39131375 PMCID: PMC11312567 DOI: 10.1101/2024.08.02.606418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Histological evidence suggests that the estrous cycle exerts a powerful effect on CA1 neurons in mammalian hippocampus. Decades have passed since this landmark observation, yet how the estrous cycle shapes dendritic spine dynamics and hippocampal spatial coding in vivo remains a mystery. Here, we used a custom hippocampal microperiscope and two-photon calcium imaging to track CA1 pyramidal neurons in female mice over multiple cycles. Estrous cycle stage had a potent effect on spine dynamics, with heightened density during periods of greater estradiol (proestrus). These morphological changes were accompanied by greater somatodendritic coupling and increased infiltration of back-propagating action potentials into the apical dendrite. Finally, tracking CA1 response properties during navigation revealed enhanced place field stability during proestrus, evident at the single-cell and population level. These results establish the estrous cycle as a driver of large-scale structural and functional plasticity in hippocampal circuits essential for learning and memory.
Collapse
Affiliation(s)
- Nora S Wolcott
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - William T Redman
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Intelligent Systems Center, Johns Hopkins University Applied Physics Lab, Laurel, MD 20723, USA
| | - Marie Karpinska
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Ann S. Bowers Women's Brain Health Initiative, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael J Goard
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
35
|
Malleret G, Salin P, Mazza S, Plancher G. Working memory forgetting: Bridging gaps between human and animal studies. Neurosci Biobehav Rev 2024; 163:105742. [PMID: 38830561 DOI: 10.1016/j.neubiorev.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
The causes of forgetting in working memory (WM) remain a source of debate in cognitive psychology, partly because it has always been challenging to probe the complex neural mechanisms that govern rapid cognitive processes in humans. In this review, we argue that neural, and more precisely animal models, provide valuable tools for exploring the precise mechanisms of WM forgetting. First, we discuss theoretical perspectives concerning WM forgetting in humans. Then, we present neuronal correlates of WM in animals, starting from the initial evidence of delay activity observed in the prefrontal cortex to the later synaptic theory of WM. In the third part, specific theories of WM are discussed, including the notion that silent versus non-silent activity is more consistent with the processes of refreshing and decay proposed in human cognitive models. The review concludes with an exploration of the relationship between long-term memory and WM, revealing connections between these two forms of memory through the long-term synaptic hypothesis, which suggests that long-term storage of interference can potentially disrupt WM.
Collapse
Affiliation(s)
- Gaël Malleret
- Centre de Recherche en Neurosciences de Lyon, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, University Claude Bernard Lyon 1, Bron F-69500, France
| | - Paul Salin
- Centre de Recherche en Neurosciences de Lyon, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, University Claude Bernard Lyon 1, Bron F-69500, France
| | - Stéphanie Mazza
- Centre de Recherche en Neurosciences de Lyon, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5292, Institut National de la Santé et de la Recherche Médicale U1028, University Claude Bernard Lyon 1, Bron F-69500, France
| | - Gaën Plancher
- Université Lumière Lyon 2, Laboratoire d'Etude des Mécanismes Cognitifs, Bron, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
36
|
Zhao Q. Thermodynamic model for memory. Biosystems 2024; 242:105247. [PMID: 38866100 DOI: 10.1016/j.biosystems.2024.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
A thermodynamic model for memory formation is proposed. Key points include: 1) Any thought or consciousness corresponds to a thermodynamic system of nerve cells. 2) The system concept of nerve cells can only be described by thermodynamics of condensed matter. 3) The memory structure is logically associated with the system structure or the normal structure of biology. 4) The development of our thoughts is processed irreversibly, and numerous states or thoughts can be generated. 5) Memory formation results from the reorganization and change of cellular structures (or memory structures), which are related to nerve cell skeleton and membrane. Their alteration can change the excitability of nerve cells and the pathway of neural impulse conduction. 6) Amnesia results from the loss of thermodynamic stability of the memory structure, which can be achieved by different ways. Some related phenomena and facts are discussed. The analysis shows that thermodynamics can account for the basic properties of memory.
Collapse
Affiliation(s)
- Qinyi Zhao
- Medical Institute, CRRC, Beijing, China.
| |
Collapse
|
37
|
Fayed MR, Ghandour K, Inokuchi K. Sleep and quiet wakefulness signify an idling brain hub for creative insights. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230226. [PMID: 38853559 PMCID: PMC11343221 DOI: 10.1098/rstb.2023.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 06/11/2024] Open
Abstract
Long-term potentiation of synaptic strength is a fundamental aspect of learning and memory. Memories are believed to be stored within specific populations of neurons known as engram cells, which are subsequently reactivated during sleep, facilitating the consolidation of stored information. However, sleep and offline reactivations are associated not only with past experiences but also with anticipation of future events. During periods of offline reactivation, which occur during sleep and quiet wakefulness, the brain exhibits a capability to form novel connections. This process links various past experiences, often leading to the emergence of qualitatively new information that was not initially available. Brain activity during sleep and quiet wakefulness is referred to as the 'idling brain'. Idling brain activity is believed to play a pivotal role in abstracting essential information, comprehending underlying rules, generating creative ideas and fostering insightful thoughts. In this review, we will explore the current state of research and future directions in understanding how sleep and idling brain activity are interconnected with various cognitive functions, especially creative insights. These insights have profound implications for our daily lives, impacting our ability to process information, make decisions and navigate complex situations effectively. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Mostafa R. Fayed
- Research Centre for Idling Brain Science, University of Toyama, Toyama930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama930-0194, Japan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh33516, Egypt
| | - Khaled Ghandour
- Research Centre for Idling Brain Science, University of Toyama, Toyama930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama930-0194, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo11562, Egypt
| | - Kaoru Inokuchi
- Research Centre for Idling Brain Science, University of Toyama, Toyama930-0194, Japan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama930-0194, Japan
| |
Collapse
|
38
|
Fu Y, Cao Z, Ye T, Yang H, Chu C, Lei C, Wen Y, Cai Z, Yuan Y, Guo X, Yang L, Sheng H, Cui D, Shao D, Chen M, Lai B, Zheng P. Projection neurons from medial entorhinal cortex to basolateral amygdala are critical for the retrieval of morphine withdrawal memory. iScience 2024; 27:110239. [PMID: 39021787 PMCID: PMC11253517 DOI: 10.1016/j.isci.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/10/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
The medial entorhinal cortex (MEC) is crucial for contextual memory, yet its role in context-induced retrieval of morphine withdrawal memory remains unclear. This study investigated the role of the MEC and its projection neurons from MEC layer 5 to the basolateral amygdala (BLA) (MEC-BLA neurons) in context-induced retrieval of morphine withdrawal memory. Results show that context activates the MEC in morphine withdrawal mice, and the inactivation of the MEC inhibits context-induced retrieval of morphine withdrawal memory. At neural circuits, context activates MEC-BLA neurons in morphine withdrawal mice, and the inactivation of MEC-BLA neurons inhibits context-induced retrieval of morphine withdrawal memory. But MEC-BLA neurons are not activated by conditioning of context and morphine withdrawal, and the inhibition of MEC-BLA neurons do not influence the coupling of context and morphine withdrawal memory. These results suggest that MEC-BLA neurons are critical for the retrieval, but not for the formation, of morphine withdrawal memory.
Collapse
Affiliation(s)
- Yali Fu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zixuan Cao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ting Ye
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chenshan Chu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chao Lei
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yaxian Wen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhangyin Cai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Yuan
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinli Guo
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huan Sheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dongyang Cui
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Da Shao
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ming Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Medical College of China Three Gorges University, Yichang 443002, China
| |
Collapse
|
39
|
Wang F, Sun H, Chen M, Feng B, Lu Y, Lyu M, Cui D, Zhai Y, Zhang Y, Zhu Y, Wang C, Wu H, Ma X, Zhu F, Wang Q, Li Y. The thalamic reticular nucleus orchestrates social memory. Neuron 2024; 112:2368-2385.e11. [PMID: 38701789 DOI: 10.1016/j.neuron.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/12/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Social memory has been developed in humans and other animals to recognize familiar conspecifics and is essential for their survival and reproduction. Here, we demonstrated that parvalbumin-positive neurons in the sensory thalamic reticular nucleus (sTRNPvalb) are necessary and sufficient for mice to memorize conspecifics. sTRNPvalb neurons receiving glutamatergic projections from the posterior parietal cortex (PPC) transmit individual information by inhibiting the parafascicular thalamic nucleus (PF). Mice in which the PPCCaMKII→sTRNPvalb→PF circuit was inhibited exhibited a disrupted ability to discriminate familiar conspecifics from novel ones. More strikingly, a subset of sTRNPvalb neurons with high electrophysiological excitability and complex dendritic arborizations is involved in the above corticothalamic pathway and stores social memory. Single-cell RNA sequencing revealed the biochemical basis of these subset cells as a robust activation of protein synthesis. These findings elucidate that sTRNPvalb neurons modulate social memory by coordinating a hitherto unknown corticothalamic circuit and inhibitory memory engram.
Collapse
Affiliation(s)
- Feidi Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huan Sun
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingyue Chen
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Yu Lu
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mi Lyu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dongqi Cui
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Zhang
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yaomin Zhu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
40
|
Chen R, Wang Z, Lin Q, Hou X, Jiang Y, Le Q, Liu X, Ma L, Wang F. Destabilization of fear memory by Rac1-driven engram-microglia communication in hippocampus. Brain Behav Immun 2024; 119:621-636. [PMID: 38670239 DOI: 10.1016/j.bbi.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Rac1 is a key regulator of the cytoskeleton and neuronal plasticity, and is known to play a critical role in psychological and cognitive brain disorders. To elucidate the engram specific Rac1 signaling in fear memory, a doxycycline (Dox)-dependent robust activity marking (RAM) system was used to label dorsal dentate gyrus (DG) engram cells in mice during contextual fear conditioning. Rac1 mRNA and protein levels in DG engram cells were peaked at 24 h (day 1) after fear conditioning and were more abundant in the fear engram cells than in the non-engram cells. Optogenetic activation of Rac1 in a temporal manner in DG engram cells before memory retrieval decreased the freezing level in the fear context. Optogenetic activation of Rac1 increased autophagy protein 7 (ATG7) expression in the DG engram cells and activated DG microglia. Microglia-specific transcriptomics and fluorescence in situ hybridization revealed that overexpression of ATG7 in the fear engram cells upregulated the mRNA of Toll-like receptor TLR2/4 in DG microglia. Knockdown of microglial TLR2/4 rescued fear memory destabilization induced by ATG7 overexpression or Rac1 activation in DG engram cells. These results indicate that Rac1-driven communications between engram cells and microglia contributes to contextual fear memory destabilization, and is mediated by ATG7 and TLR2/4, and suggest a novel mechanistic framework for the cytoskeletal regulator in fear memory interference.
Collapse
Affiliation(s)
- Ruyan Chen
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Zhilin Wang
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qing Lin
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xutian Hou
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Yan Jiang
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qiumin Le
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xing Liu
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Lan Ma
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Feifei Wang
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China.
| |
Collapse
|
41
|
Mak A, Abramian A, Driessens SLW, Boers-Escuder C, van der Loo RJ, Smit AB, van den Oever MC, Verheijen MHG. Activation of G s Signaling in Cortical Astrocytes Does Not Influence Formation of a Persistent Contextual Memory Engram. eNeuro 2024; 11:ENEURO.0056-24.2024. [PMID: 38902023 PMCID: PMC11209656 DOI: 10.1523/eneuro.0056-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 06/22/2024] Open
Abstract
Formation and retrieval of remote contextual memory depends on cortical engram neurons that are defined during learning. Manipulation of astrocytic Gq and Gi associated G-protein coupled receptor (GPCR) signaling has been shown to affect memory processing, but little is known about the role of cortical astrocytic Gs-GPCR signaling in remote memory acquisition and the functioning of cortical engram neurons. We assessed this by chemogenetic manipulation of astrocytes in the medial prefrontal cortex (mPFC) of male mice, during either encoding or consolidation of a contextual fear memory, while simultaneously labeling cortical engram neurons. We found that stimulation of astrocytic Gs signaling during memory encoding and consolidation did not alter remote memory expression. In line with this, the size of the mPFC engram population and the recall-induced reactivation of these neurons was unaffected. Hence, our data indicate that activation of Gs-GPCR signaling in cortical astrocytes is not sufficient to alter memory performance and functioning of cortical engram neurons.
Collapse
Affiliation(s)
- Aline Mak
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Adlin Abramian
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Stan L W Driessens
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Cristina Boers-Escuder
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
42
|
Liu Y, Ye S, Li XN, Li WG. Memory Trace for Fear Extinction: Fragile yet Reinforceable. Neurosci Bull 2024; 40:777-794. [PMID: 37812300 PMCID: PMC11178705 DOI: 10.1007/s12264-023-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/08/2023] [Indexed: 10/10/2023] Open
Abstract
Fear extinction is a biological process in which learned fear behavior diminishes without anticipated reinforcement, allowing the organism to re-adapt to ever-changing situations. Based on the behavioral hypothesis that extinction is new learning and forms an extinction memory, this new memory is more readily forgettable than the original fear memory. The brain's cellular and synaptic traces underpinning this inherently fragile yet reinforceable extinction memory remain unclear. Intriguing questions are about the whereabouts of the engram neurons that emerged during extinction learning and how they constitute a dynamically evolving functional construct that works in concert to store and express the extinction memory. In this review, we discuss recent advances in the engram circuits and their neural connectivity plasticity for fear extinction, aiming to establish a conceptual framework for understanding the dynamic competition between fear and extinction memories in adaptive control of conditioned fear responses.
Collapse
Affiliation(s)
- Ying Liu
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Shuai Ye
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
43
|
Choucry A, Nomoto M, Inokuchi K. Engram mechanisms of memory linking and identity. Nat Rev Neurosci 2024; 25:375-392. [PMID: 38664582 DOI: 10.1038/s41583-024-00814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 05/25/2024]
Abstract
Memories are thought to be stored in neuronal ensembles referred to as engrams. Studies have suggested that when two memories occur in quick succession, a proportion of their engrams overlap and the memories become linked (in a process known as prospective linking) while maintaining their individual identities. In this Review, we summarize the key principles of memory linking through engram overlap, as revealed by experimental and modelling studies. We describe evidence of the involvement of synaptic memory substrates, spine clustering and non-linear neuronal capacities in prospective linking, and suggest a dynamic somato-synaptic model, in which memories are shared between neurons yet remain separable through distinct dendritic and synaptic allocation patterns. We also bring into focus retrospective linking, in which memories become associated after encoding via offline reactivation, and discuss key temporal and mechanistic differences between prospective and retrospective linking, as well as the potential differences in their cognitive outcomes.
Collapse
Affiliation(s)
- Ali Choucry
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Masanori Nomoto
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan
- Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Kaoru Inokuchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
- CREST, Japan Science and Technology Agency (JST), University of Toyama, Toyama, Japan.
| |
Collapse
|
44
|
Delamare G, Tomé DF, Clopath C. Intrinsic Neural Excitability Biases Allocation and Overlap of Memory Engrams. J Neurosci 2024; 44:e0846232024. [PMID: 38561228 PMCID: PMC11112642 DOI: 10.1523/jneurosci.0846-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Memories are thought to be stored in neural ensembles known as engrams that are specifically reactivated during memory recall. Recent studies have found that memory engrams of two events that happened close in time tend to overlap in the hippocampus and the amygdala, and these overlaps have been shown to support memory linking. It has been hypothesized that engram overlaps arise from the mechanisms that regulate memory allocation itself, involving neural excitability, but the exact process remains unclear. Indeed, most theoretical studies focus on synaptic plasticity and little is known about the role of intrinsic plasticity, which could be mediated by neural excitability and serve as a complementary mechanism for forming memory engrams. Here, we developed a rate-based recurrent neural network that includes both synaptic plasticity and neural excitability. We obtained structural and functional overlap of memory engrams for contexts that are presented close in time, consistent with experimental and computational studies. We then investigated the role of excitability in memory allocation at the network level and unveiled competitive mechanisms driven by inhibition. This work suggests mechanisms underlying the role of intrinsic excitability in memory allocation and linking, and yields predictions regarding the formation and the overlap of memory engrams.
Collapse
Affiliation(s)
- Geoffroy Delamare
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Douglas Feitosa Tomé
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
45
|
Mocle AJ, Ramsaran AI, Jacob AD, Rashid AJ, Luchetti A, Tran LM, Richards BA, Frankland PW, Josselyn SA. Excitability mediates allocation of pre-configured ensembles to a hippocampal engram supporting contextual conditioned threat in mice. Neuron 2024; 112:1487-1497.e6. [PMID: 38447576 PMCID: PMC11065628 DOI: 10.1016/j.neuron.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Little is understood about how engrams, sparse groups of neurons that store memories, are formed endogenously. Here, we combined calcium imaging, activity tagging, and optogenetics to examine the role of neuronal excitability and pre-existing functional connectivity on the allocation of mouse cornu ammonis area 1 (CA1) hippocampal neurons to an engram ensemble supporting a contextual threat memory. Engram neurons (high activity during recall or TRAP2-tagged during training) were more active than non-engram neurons 3 h (but not 24 h to 5 days) before training. Consistent with this, optogenetically inhibiting scFLARE2-tagged neurons active in homecage 3 h, but not 24 h, before conditioning disrupted memory retrieval, indicating that neurons with higher pre-training excitability were allocated to the engram. We also observed stable pre-configured functionally connected sub-ensembles of neurons whose activity cycled over days. Sub-ensembles that were more active before training were allocated to the engram, and their functional connectivity increased at training. Therefore, both neuronal excitability and pre-configured functional connectivity mediate allocation to an engram ensemble.
Collapse
Affiliation(s)
- Andrew J Mocle
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Adam I Ramsaran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Alexander D Jacob
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Asim J Rashid
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Alessandro Luchetti
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Lina M Tran
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Vector Institute, Toronto, ON M5G 1M1, Canada
| | | | - Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5G 1X8, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
46
|
Carbonero D, Noueihed J, Kramer MA, White JA. Non-Negative Matrix Factorization for Analyzing State Dependent Neuronal Network Dynamics in Calcium Recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.11.561797. [PMID: 37905071 PMCID: PMC10614735 DOI: 10.1101/2023.10.11.561797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Calcium imaging allows recording from hundreds of neurons in vivo with the ability to resolve single cell activity. Evaluating and analyzing neuronal responses, while also considering all dimensions of the data set to make specific conclusions, is extremely difficult. Often, descriptive statistics are used to analyze these forms of data. These analyses, however, remove variance by averaging the responses of single neurons across recording sessions, or across combinations of neurons, to create single quantitative metrics, losing the temporal dynamics of neuronal activity, and their responses relative to each other. Dimensionally Reduction (DR) methods serve as a good foundation for these analyses because they reduce the dimensions of the data into components, while still maintaining the variance. Non-negative Matrix Factorization (NMF) is an especially promising DR analysis method for analyzing activity recorded in calcium imaging because of its mathematical constraints, which include positivity and linearity. We adapt NMF for our analyses and compare its performance to alternative dimensionality reduction methods on both artificial and in vivo data. We find that NMF is well-suited for analyzing calcium imaging recordings, accurately capturing the underlying dynamics of the data, and outperforming alternative methods in common use.
Collapse
Affiliation(s)
- Daniel Carbonero
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Neurophotonics Center, Boston University, Boston, Massachusetts, United States of America
| | - Jad Noueihed
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Neurophotonics Center, Boston University, Boston, Massachusetts, United States of America
| | - Mark A. Kramer
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - John A. White
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Neurophotonics Center, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
47
|
Kobelt M, Waldhauser GT, Rupietta A, Heinen R, Rau EMB, Kessler H, Axmacher N. The memory trace of an intrusive trauma-analog episode. Curr Biol 2024; 34:1657-1669.e5. [PMID: 38537637 DOI: 10.1016/j.cub.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Intrusive memories are a core symptom of posttraumatic stress disorder. Compared with memories of everyday events, they are characterized by several seemingly contradictory features: intrusive memories contain distinct sensory and emotional details of the traumatic event and can be triggered by various perceptually similar cues, but they are poorly integrated into conceptual memory. Here, we conduct exploratory whole-brain analyses to investigate the neural representations of trauma-analog experiences and how they are reactivated during memory intrusions. We show that trauma-analog movies induce excessive processing and generalized representations in sensory areas but decreased blood-oxygen-level-dependent (BOLD) responses and highly distinct representations in conceptual/semantic areas. Intrusive memories activate generalized representations in sensory areas and reactivate memory traces specific to trauma-analog events in the anterior cingulate cortex. These findings provide the first evidence of how traumatic events could distort memory representations in the human brain, which may form the basis for future confirmatory research on the neural representations of traumatic experiences.
Collapse
Affiliation(s)
- M Kobelt
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany.
| | - G T Waldhauser
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany.
| | - A Rupietta
- Department of Clinical Psychology and Psychotherapy, Ruhr-Universität Bochum, Bochum 44787, North Rhine-Westphalia, Germany
| | - R Heinen
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany
| | - E M B Rau
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany
| | - H Kessler
- Department of Psychosomatic Medicine and Psychotherapy, Campus Fulda, Universität Marburg, Marburg 35032, Hessen, Germany; Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr-Universität Bochum, Bochum 44791, North Rhine-Westphalia, Germany
| | - N Axmacher
- Department of Neuropsychology, Ruhr-Universität Bochum, Bochum 44801, North Rhine-Westphalia, Germany.
| |
Collapse
|
48
|
Chettih SN, Mackevicius EL, Hale S, Aronov D. Barcoding of episodic memories in the hippocampus of a food-caching bird. Cell 2024; 187:1922-1935.e20. [PMID: 38554707 PMCID: PMC11015962 DOI: 10.1016/j.cell.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/28/2023] [Accepted: 02/23/2024] [Indexed: 04/02/2024]
Abstract
The hippocampus is critical for episodic memory. Although hippocampal activity represents place and other behaviorally relevant variables, it is unclear how it encodes numerous memories of specific events in life. To study episodic coding, we leveraged the specialized behavior of chickadees-food-caching birds that form memories at well-defined moments in time whenever they cache food for subsequent retrieval. Our recordings during caching revealed very sparse, transient barcode-like patterns of firing across hippocampal neurons. Each "barcode" uniquely represented a caching event and transiently reactivated during the retrieval of that specific cache. Barcodes co-occurred with the conventional activity of place cells but were uncorrelated even for nearby cache locations that had similar place codes. We propose that animals recall episodic memories by reactivating hippocampal barcodes. Similarly to computer hash codes, these patterns assign unique identifiers to different events and could be a mechanism for rapid formation and storage of many non-interfering memories.
Collapse
Affiliation(s)
- Selmaan N Chettih
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Emily L Mackevicius
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Basis Research Institute, New York, NY 10027, USA
| | - Stephanie Hale
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Dmitriy Aronov
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
49
|
Lai S, Zhang L, Tu X, Ma X, Song Y, Cao K, Li M, Meng J, Shi Y, Wu Q, Yang C, Lan Z, Lau CG, Shi J, Ma W, Li S, Xue YX, Huang Z. Termination of convulsion seizures by destabilizing and perturbing seizure memory engrams. SCIENCE ADVANCES 2024; 10:eadk9484. [PMID: 38507477 PMCID: PMC10954199 DOI: 10.1126/sciadv.adk9484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Epileptogenesis, arising from alterations in synaptic strength, shares mechanistic and phenotypic parallels with memory formation. However, direct evidence supporting the existence of seizure memory remains scarce. Leveraging a conditioned seizure memory (CSM) paradigm, we found that CSM enabled the environmental cue to trigger seizure repetitively, and activating cue-responding engram cells could generate CSM artificially. Moreover, cue exposure initiated an analogous process of memory reconsolidation driven by mammalian target of rapamycin-brain-derived neurotrophic factor signaling. Pharmacological targeting of the mammalian target of rapamycin pathway within a limited time window reduced seizures in animals and interictal epileptiform discharges in patients with refractory seizures. Our findings reveal a causal link between seizure memory engrams and seizures, which leads us to a deeper understanding of epileptogenesis and points to a promising direction for epilepsy treatment.
Collapse
Affiliation(s)
- Shirong Lai
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
- School of Health Management, Xihua University, Chengdu 610039, China
| | - Libo Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Shenzhen Public Service Platform for Clinical Application of Medical Imaging, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen-PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Xinyu Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinyue Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yujing Song
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Kexin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Miaomiao Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jihong Meng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Yiqiang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qing Wu
- School of Health Management, Xihua University, Chengdu 610039, China
| | - Chen Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zifan Lan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | | | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Weining Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Shaoyi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
50
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|