1
|
Zhang T, Schmidt M. Targeting Epac2 and GluA3-containing AMPARs: a novel therapeutic strategy for Alzheimer's disease. Neural Regen Res 2025; 20:3223-3224. [PMID: 39715093 PMCID: PMC11881712 DOI: 10.4103/nrr.nrr-d-24-00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 12/25/2024] Open
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Zhang T, Zhang Y, Chameau P, Chen T, Marmolejo-Garza A, Douwenga W, Dolga AM, Kessels HW, Schmidt M, Eisel ULM. Activation of Epac2 improves Aβ-induced impairment of memory retrieval in an acute model of Alzheimer's disease. Neuropharmacology 2025; 274:110468. [PMID: 40239917 DOI: 10.1016/j.neuropharm.2025.110468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/04/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Impaired memory retrieval is one of the cognitive markers in the early stage of Alzheimer's Disease (AD). Previous studies report that exchange protein directly activated by cAMP 2 (Epac2) plays a specific and time-limited role in promoting memory retrieval. In this study, we investigated the effect of a novel Epac2 activator, S220, on neuronal and synaptic activities, and memory impairment in an acute AD mouse model. S220 treatment increased the firing rate of action potential and intracellular calcium in primary neuronal cultures. Moreover, S220 treatment increased synaptic currents in CA1 neurons. In the acute AD mouse model, intrahippocampal injection of amyloid-β (Aβ) oligomers impaired memory performance. Notably, administering S220 20 min before retention of contextual fear conditioning recovered the Aβ-induced memory impairment, suggesting an enhancing effect on memory retrieval. Collectively, our data demonstrate that the novel Epac2 activator S220 promotes synaptic communication and neuronal firing, and thereby improves Aβ-induced memory impairment via enhancing memory retrieval, indicating the role of Epac2 as a potential treatment target for AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Biopharmaceuticals and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Yuequ Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Pascal Chameau
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Tingting Chen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Alejandro Marmolejo-Garza
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Wanda Douwenga
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Amalia M Dolga
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
3
|
Duan J, Zeng D, Wu T, Luo Z, Jingwen G, Tan W, Zeng Y. Neural connections and molecular mechanisms underlying motor skill deficits in genetic models of autism spectrum disorders. Prog Neurobiol 2025; 249:102759. [PMID: 40254176 DOI: 10.1016/j.pneurobio.2025.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/14/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
Autism spectrum disorders (ASDs) comprise a broad category of neurodevelopmental disorders that include repetitive behaviors and difficulties in social interactions. Notably, individuals with ASDs exhibit significant impairments in motor skills even prior to the manifestation of other core symptoms. These skills are crucial for daily activities, such as communication, imitation, and exploration, and hold significant importance for individuals with ASDs. This review seeks to offer new insights into the understanding of motor skill impairments by delineating the pathological mechanisms underlying motor skill learning impairments associated with gene mutations in Fmr1, Chd8, Shank3, BTBR, 16p11.2, and Mecp2, predominantly drawing from well-characterized genetic mouse model studies and proposing potential targets for future therapeutic interventions. We further discuss the underlying pathogenic abnormalities associated with the development of specific brain regions within the cerebellum and cerebrum, as well as disruptions in the structure and function of critical neuronal connectivity pathways. Additional research utilizing epidemiological data, clinical observations, and animal research methodologies is warranted to enhance our understanding of the effect of motor skill learning on the growth, development, and social integration of children. Ultimately, our review suggests potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Jingwen Duan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Deyang Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Tong Wu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Zhenzhao Luo
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Geng Jingwen
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Italia M, Spinola A, Borroni B, DiLuca M, Gardoni F. Long-term exposure to anti-GluA3 antibodies triggers functional and structural changes in hippocampal neurons. Neurobiol Dis 2025; 207:106843. [PMID: 39954743 DOI: 10.1016/j.nbd.2025.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
Autoantibodies targeting the GluA3 subunit of AMPA receptors (AMPARs) are implicated in various neurological disorders, including Rasmussen's encephalitis, epilepsy, and frontotemporal dementia. However, their precise role in disease pathology remains insufficiently understood. This study investigated the long-term effects of human anti-GluA3 antibodies (anti-GluA3 hIgGs) on neuronal morphology and function using primary rat hippocampal neurons. We found that long-term exposure to anti-GluA3 hIgGs leads to the delocalisation of GluA3-containing AMPARs at extrasynaptic sites. This molecular event is correlated to dendritic arbor reorganisation, characterised by increased complexity near the soma and progressive simplification in distal regions as well as an increase in the number of shorter dendrites and a corresponding loss of longer ones, thus suggesting altered dendritic pruning dynamics. The altered neuronal architecture was accompanied by an increase in the number of dendritic spines and a modification of their morphology, indicating relevant changes in synaptic connectivity. Functionally, anti-GluA3 hIgGs significantly enhanced NMDA receptor-mediated postsynaptic Ca2+ currents and increased nuclear levels of phosphorylated cAMP response element-binding protein (CREB), indicating altered signal transduction. Overall, our study provides critical insights into the role of anti-GluA3 hIgGs in disease and potentially identifies new therapeutic targets for pathological conditions where they are present.
Collapse
Affiliation(s)
- Maria Italia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Alessio Spinola
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Monica DiLuca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", University of Milan, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB) "Rodolfo Paoletti", University of Milan, Milan, Italy.
| |
Collapse
|
5
|
Willems TS, Xiong H, Kessels HW, Lesuis SL. GluA1-containing AMPA receptors are necessary for sparse memory engram formation. Neurobiol Learn Mem 2025; 218:108031. [PMID: 39922481 DOI: 10.1016/j.nlm.2025.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Memory formation depends on the selective recruitment of neuronal ensembles into circuits known as engrams, which represent the physical substrate of memory. Sparse encoding of these ensembles is essential for memory specificity and efficiency. AMPA receptor (AMPAR) subunits, particularly GluA1, play a central role in synaptic plasticity, which underpins memory encoding. This study investigates how GluA1 expression influences the recruitment of neurons into memory engrams. Using global GluA1 knockout (GluA1KO) mice, localized knockout models, and contextual fear-conditioning paradigms, we evaluated the role of GluA1 in memory formation and engram sparsity. GluA1KO mice exhibited impaired short-term memory retention but preserved 24-hour contextual memory. Despite this, these mice displayed increased expression of the immediate early gene Arc in hippocampal neurons, indicative of a denser engram network. Electrophysiological analyses revealed reduced synaptic strength in GluA1-deficient neurons, irrespective of Arc expression. Localized GluA1 knockout in the hippocampus confirmed that GluA1 deficiency increases neuronal recruitment into engrams, disrupting the sparse encoding typically observed in wild-type mice. These findings demonstrate that GluA1-containing AMPARs constrain engram size, ensuring selective recruitment of neurons for efficient memory encoding. By regulating synaptic plasticity, GluA1 facilitates both the encoding and size of memory circuits. This study highlights the critical role of GluA1 in maintaining sparse engram formation and provides insight into mechanisms underlying memory deficits in conditions where synaptic composition is altered.
Collapse
Affiliation(s)
- Thije S Willems
- Department of Cell and Circuit Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Hui Xiong
- Department of Cell and Circuit Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Helmut W Kessels
- Department of Cell and Circuit Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Sylvie L Lesuis
- Department of Cell and Circuit Neuroscience, Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Bina L, Ciapponi C, Yu S, Wang X, Bosman LWJ, De Zeeuw CI. Cerebellar control of targeted tongue movements. J Physiol 2025; 603:1141-1169. [PMID: 40019494 PMCID: PMC11870073 DOI: 10.1113/jp287732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
The cerebellum is critical for coordinating movements related to eating, drinking and swallowing, all of which require proper control of the tongue. Cerebellar Purkinje cells can encode tongue movements, but it is unclear how their simple spikes and complex spikes induce changes in the shape of the tongue that contribute to goal-directed movements. To study these relations, we recorded and stimulated Purkinje cells in the vermis and hemispheres of mice during spontaneous licking from a stationary or moving water spout. We found that Purkinje cells can encode rhythmic licking with both their simple spikes and complex spikes. Increased simple spike firing during tongue protrusion induces ipsiversive bending of the tongue. Unexpected changes in the target location trigger complex spikes that alter simple spike firing during subsequent licks, adjusting the tongue trajectory. Furthermore, we observed increased complex spike firing during behavioural state changes at both the start and the end of licking bouts. Using machine learning, we confirmed that alterations in Purkinje cell activity accompany licking, with different Purkinje cells often exerting heterogeneous encoding schemes. Our data highlight that directional movement control is paramount in cerebellar function and that modulation of the complex spikes and that of the simple spikes are complementary during acquisition and execution of sensorimotor coordination. These results bring us closer to understanding the clinical implications of cerebellar disorders during eating, drinking and swallowing. KEY POINTS: When drinking, mice make rhythmic tongue movements directed towards the water source. Cerebellar Purkinje cells can fire rhythmically in tune with the tongue movements. Purkinje cells encode changes in the position of the water source with complex spikes. Purkinje cell simple spike firing affects the direction of tongue movements. Purkinje cells that report changes in the position of the target can also adjust movements in the right direction.
Collapse
Affiliation(s)
- Lorenzo Bina
- Department of NeuroscienceErasmus MCRotterdamThe Netherlands
| | | | - Si‐yang Yu
- Department of NeuroscienceErasmus MCRotterdamThe Netherlands
| | - Xiang Wang
- Department of NeuroscienceErasmus MCRotterdamThe Netherlands
| | | | - Chris I. De Zeeuw
- Department of NeuroscienceErasmus MCRotterdamThe Netherlands
- Netherlands Institute for NeuroscienceRoyal Academy of SciencesAmsterdamThe Netherlands
| |
Collapse
|
7
|
Reinders NR, van der Spek SJF, Klaassen RV, Koymans KJ, MacGillavry HD, Smit AB, Kessels HW. Amyloid-β-Driven Synaptic Deficits Are Mediated by Synaptic Removal of GluA3-Containing AMPA Receptors. J Neurosci 2025; 45:e0393242024. [PMID: 39779375 PMCID: PMC11867010 DOI: 10.1523/jneurosci.0393-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The detrimental effects of oligomeric amyloid-β (Aβ) on synapses are considered the leading cause for cognitive deficits in Alzheimer's disease. However, through which mechanism Aβ oligomers impair synaptic structure and function remains unknown. Here, we used electrophysiology and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) imaging on mouse and rat neurons to demonstrate that GluA3 expression in neurons lacking GluA3 is sufficient to resensitize their synapses to the damaging effects of Aβ, indicating that GluA3-containing AMPARs at synapses are necessary and sufficient for Aβ to induce synaptic deficits. We found that Aβ oligomers trigger the endocytosis of GluA3 and promote its translocation toward endolysosomal compartments for degradation. Mechanistically, these Aβ-driven effects critically depend on the PDZ-binding motif of GluA3. A single point mutation in the GluA3 PDZ-binding motif prevented Aβ-driven effects and rendered synapses fully resistant to the effects of Aβ. Correspondingly, proteomics on synaptosome fractions from APP/PS1-transgenic mice revealed a selective reduction of GluA3 at an early age. These findings support a model where the endocytosis and lysosomal degradation of GluA3-containing AMPARs are a critical early step in the cascade of events through which Aβ accumulation causes a loss of synapses.
Collapse
Affiliation(s)
- Niels R Reinders
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands
- Swammerdam Institute of Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Sophie J F van der Spek
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Remco V Klaassen
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Karin J Koymans
- Swammerdam Institute of Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Harold D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Helmut W Kessels
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands
- Swammerdam Institute of Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
8
|
de León-López CAM, Carretero-Rey M, Khan ZU. AMPA Receptors in Synaptic Plasticity, Memory Function, and Brain Diseases. Cell Mol Neurobiol 2025; 45:14. [PMID: 39841263 PMCID: PMC11754374 DOI: 10.1007/s10571-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity. Homeostatic scaling up and scaling down, which are additional types of plasticity similar to LTP and LTD, are also regulated by the insertion and removal of GluA1-containing AMPA receptors from the synaptic surface. The trafficking of AMPA receptors is an intricate process assisted by various proteins. Furthermore, AMPA receptors are critical for the formation and consolidation of various types of memory, and alterations in their function are intimately associated with cognitive dysfunction in aging and several neurological and psychiatric diseases. In this review, we will provide an overview of the current understanding of how AMPA receptors regulate various forms of synaptic plasticity, their contribution to memory functions, and their role in aging and brain diseases.
Collapse
Affiliation(s)
- Cristina A Muñoz de León-López
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Campus Teatinos s/n, Malaga, Spain
| | - Marta Carretero-Rey
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain
- Department of Medicine, Faculty of Medicine, University of Malaga, Campus Teatinos s/n, Malaga, Spain
| | - Zafar U Khan
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain.
- Department of Medicine, Faculty of Medicine, University of Malaga, Campus Teatinos s/n, Malaga, Spain.
- CIBERNED, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Maldonado T, Jackson TB, Rezaee Z, Bernard JA. Time Dependent Effects of Cerebellar tDCS on Cerebello-cortical Connectivity Networks in Young Adults. CEREBELLUM (LONDON, ENGLAND) 2025; 24:29. [PMID: 39794631 DOI: 10.1007/s12311-024-01781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed-loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function. Here, we used transcranial direct current stimulation (tDCS) to temporarily alter cerebellar function and subsequently investigated resting state network connectivity. Critically, what happens to these circuits if the cerebellum is not functioning optimally, or after stimulation, remains relatively unknown. We employed a between-subjects design with 74 participants total (38 female; M = 22.0 years, SD = 3.45), applying anodal (n = 25), cathodal (n = 25), or sham (n = 24) stimulation to the cerebellum to examine the effect of stimulation on cerebello-cortical resting state connectivity in young adults. We predicted increased functional connectivity following cathodal stimulation and decreased functional connectivity following anodal stimulation. We found, anodal stimulation resulted in increased connectivity in both ipsilateral and contralateral regions of the cortex, perhaps indicative of a compensatory response to degraded cerebellar output. Additionally, a window analysis also demonstrated a time dependent nature to the impacts of cerebellar tDCS on connectivity, particularly with cognitive regions of the cerebral cortex. This work suggests that when cerebellar outputs are degraded, in this case by tDCS, the cerebellum offloads its processing responsibility which encourages more cortical regions to engage to compensate for the degraded cerebellar output. This results in in differences in cortical activation patterns and performance deficits. These results might inform and update existing compensatory models, which focus primarily on the cortex, to include the cerebellum as a vital structure involved in the scaffolding of cortical processing.
Collapse
Affiliation(s)
- Ted Maldonado
- Department of Psychology, Indiana State University, Terre Haute, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - T Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health NIH, Bethesda, MD, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Hao S, Zhu X, Huang Z, Yang Q, Liu H, Wu Y, Zhan Y, Dong Y, Li C, Wang H, Haasdijk E, Wu Z, Li S, Yan H, Zhu L, Guo S, Wang Z, Ye A, Lin Y, Cui L, Tan X, Liu H, Wang M, Chen J, Zhong Y, Du W, Wang G, Lai T, Cao M, Yang T, Xu Y, Li L, Yu Q, Zhuang Z, Xia Y, Lei Y, An Y, Cheng M, Zhao Y, Han L, Yuan Y, Song X, Song Y, Gu L, Liu C, Lin X, Wang R, Wang Z, Wang Y, Li S, Li H, Song J, Chen M, Zhou W, Yuan N, Sun S, Wang S, Chen Y, Zheng M, Fang J, Zhang R, Zhang S, Chai Q, Liu J, Wei W, He J, Zhou H, Sun Y, Liu Z, Liu C, Yao J, Liang Z, Xu X, Poo M, Li C, De Zeeuw CI, Shen Z, Liu Z, Liu L, Liu S, Sun Y, Liu C. Cross-species single-cell spatial transcriptomic atlases of the cerebellar cortex. Science 2024; 385:eado3927. [PMID: 39325889 DOI: 10.1126/science.ado3927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
The molecular and cellular organization of the primate cerebellum remains poorly characterized. We obtained single-cell spatial transcriptomic atlases of macaque, marmoset, and mouse cerebella and identified primate-specific cell subtypes, including Purkinje cells and molecular-layer interneurons, that show different expression of the glutamate ionotropic receptor Delta type subunit 2 (GRID2) gene. Distinct gene expression profiles were found in anterior, posterior, and vestibular regions in all species, whereas region-selective gene expression was predominantly observed in the granular layer of primates and in the Purkinje layer of mice. Gene expression gradients in the cerebellar cortex matched well with functional connectivity gradients revealed with awake functional magnetic resonance imaging, with more lobule-specific differences between primates and mice than between two primate species. These comprehensive atlases and comparative analyses provide the basis for understanding cerebellar evolution and function.
Collapse
Affiliation(s)
| | - Xiaojia Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhi Huang
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Qianqian Yang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hean Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Wu
- BGI Research, Hangzhou 310030, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafeng Zhan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Dong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Chao Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - He Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Elize Haasdijk
- Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, Netherlands
| | - Zihan Wu
- Tencent AI Lab, Shenzhen 518057, China
| | - Shenglong Li
- BGI Research, Hangzhou 310030, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haotian Yan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lijing Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Zefang Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aojun Ye
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Luman Cui
- BGI Research, Shenzhen 518083, China
| | - Xing Tan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Mingli Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Jing Chen
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Yanqing Zhong
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wensi Du
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Guangling Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tingting Lai
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Mengdi Cao
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Yuanfang Xu
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ling Li
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Qian Yu
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Ying Xia
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Lei
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingjie An
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Cheng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yun Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lei Han
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Yuan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinxiang Song
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yumo Song
- BGI Research, Shenzhen 518083, China
| | - Liqin Gu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chang Liu
- BGI Research, Shenzhen 518083, China
| | | | - Ruiqi Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Yang Wang
- BGI Research, Shenzhen 518083, China
| | - Shenyu Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huanhuan Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jingjing Song
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengni Chen
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wanqiu Zhou
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Nini Yuan
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Suhong Sun
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shiwen Wang
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingyuan Zheng
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiao Fang
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruiyi Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuzhen Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qinwen Chai
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiabing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wu Wei
- Lingang Laboratory, Shanghai 200031, China
| | - Jie He
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibo Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyu Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | | | - Zhifeng Liang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Xu
- BGI Research, Hangzhou 310030, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Muming Poo
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Chengyu Li
- Lingang Laboratory, Shanghai 200031, China
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, Netherlands
| | - Zhiming Shen
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Zhiyong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cirong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
11
|
Garcia-Garcia MG, Kapoor A, Akinwale O, Takemaru L, Kim TH, Paton C, Litwin-Kumar A, Schnitzer MJ, Luo L, Wagner MJ. A cerebellar granule cell-climbing fiber computation to learn to track long time intervals. Neuron 2024; 112:2749-2764.e7. [PMID: 38870929 PMCID: PMC11343686 DOI: 10.1016/j.neuron.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/31/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
In classical cerebellar learning, Purkinje cells (PkCs) associate climbing fiber (CF) error signals with predictive granule cells (GrCs) that were active just prior (∼150 ms). The cerebellum also contributes to behaviors characterized by longer timescales. To investigate how GrC-CF-PkC circuits might learn seconds-long predictions, we imaged simultaneous GrC-CF activity over days of forelimb operant conditioning for delayed water reward. As mice learned reward timing, numerous GrCs developed anticipatory activity ramping at different rates until reward delivery, followed by widespread time-locked CF spiking. Relearning longer delays further lengthened GrC activations. We computed CF-dependent GrC→PkC plasticity rules, demonstrating that reward-evoked CF spikes sufficed to grade many GrC synapses by anticipatory timing. We predicted and confirmed that PkCs could thereby continuously ramp across seconds-long intervals from movement to reward. Learning thus leads to new GrC temporal bases linking predictors to remote CF reward signals-a strategy well suited for learning to track the long intervals common in cognitive domains.
Collapse
Affiliation(s)
- Martha G Garcia-Garcia
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Akash Kapoor
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Oluwatobi Akinwale
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Lina Takemaru
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tony Hyun Kim
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Casey Paton
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA
| | - Ashok Litwin-Kumar
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Mark J Schnitzer
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
12
|
Fernández Santoro EM, Karim A, Warnaar P, De Zeeuw CI, Badura A, Negrello M. Purkinje cell models: past, present and future. Front Comput Neurosci 2024; 18:1426653. [PMID: 39049990 PMCID: PMC11266113 DOI: 10.3389/fncom.2024.1426653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
The investigation of the dynamics of Purkinje cell (PC) activity is crucial to unravel the role of the cerebellum in motor control, learning and cognitive processes. Within the cerebellar cortex (CC), these neurons receive all the incoming sensory and motor information, transform it and generate the entire cerebellar output. The relatively homogenous and repetitive structure of the CC, common to all vertebrate species, suggests a single computation mechanism shared across all PCs. While PC models have been developed since the 70's, a comprehensive review of contemporary models is currently lacking. Here, we provide an overview of PC models, ranging from the ones focused on single cell intracellular PC dynamics, through complex models which include synaptic and extrasynaptic inputs. We review how PC models can reproduce physiological activity of the neuron, including firing patterns, current and multistable dynamics, plateau potentials, calcium signaling, intrinsic and synaptic plasticity and input/output computations. We consider models focusing both on somatic and on dendritic computations. Our review provides a critical performance analysis of PC models with respect to known physiological data. We expect our synthesis to be useful in guiding future development of computational models that capture real-life PC dynamics in the context of cerebellar computations.
Collapse
Affiliation(s)
| | - Arun Karim
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Pascal Warnaar
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | | | - Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
13
|
Voerman S, Broersen R, Swagemakers SMA, De Zeeuw CI, van der Spek PJ. Plasticity mechanisms of genetically distinct Purkinje cells. Bioessays 2024; 46:e2400008. [PMID: 38697917 DOI: 10.1002/bies.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.
Collapse
Affiliation(s)
- Stijn Voerman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Robin Broersen
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Wang C, Derderian KD, Hamada E, Zhou X, Nelson AD, Kyoung H, Ahituv N, Bouvier G, Bender KJ. Impaired cerebellar plasticity hypersensitizes sensory reflexes in SCN2A-associated ASD. Neuron 2024; 112:1444-1455.e5. [PMID: 38412857 PMCID: PMC11065582 DOI: 10.1016/j.neuron.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify a mechanism that underlies hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss of function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in mice via a CRISPR-activator approach that increases Scn2a expression, demonstrating that evaluation of a simple reflex can be used to assess and quantify successful therapeutic intervention.
Collapse
Affiliation(s)
- Chenyu Wang
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly D Derderian
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew D Nelson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France.
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Veerappa A, Guda C. Coordination among frequent genetic variants imparts substance use susceptibility and pathogenesis. Front Neurosci 2024; 18:1332419. [PMID: 38660223 PMCID: PMC11041639 DOI: 10.3389/fnins.2024.1332419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Determining the key genetic variants is a crucial step to comprehensively understand substance use disorders (SUDs). In this study, utilizing whole exome sequences of five multi-generational pedigrees with SUDs, we used an integrative omics-based approach to uncover candidate genetic variants that impart susceptibility to SUDs and influence addition traits. We identified several SNPs and rare, protein-function altering variants in genes, GRIA3, NCOR1, and SHANK1; compound heterozygous variants in LNPEP, LRP1, and TBX2, that play a significant role in the neurotransmitter-neuropeptide axis, specifically in the dopaminergic circuits. We also noted a greater frequency of heterozygous and recessive variants in genes involved in the structural and functional integrity of synapse receptors, CHRNA4, CNR2, GABBR1, DRD4, NPAS4, ADH1B, ADH1C, OPRM1, and GABBR2. Variant analysis in upstream promoter regions revealed regulatory variants in NEK9, PRRX1, PRPF4B, CELA2A, RABGEF1, and CRBN, crucial for dopamine regulation. Using family-and pedigree-based data, we identified heterozygous recessive alleles in LNPEP, LRP1 (4 frameshift deletions), and TBX2 (2 frameshift deletions) linked to SUDs. GWAS overlap identified several SNPs associated with SUD susceptibility, including rs324420 and rs1229984. Furthermore, miRNA variant analysis revealed notable variants in mir-548 U and mir-532. Pathway studies identified the presence of extensive coordination among these genetic variants to impart substance use susceptibility and pathogenesis. This study identified variants that were found to be overrepresented among genes of dopaminergic circuits participating in the neurotransmitter-neuropeptide axis, suggesting pleiotropic influences in the development and sustenance of chronic substance use. The presence of a diverse set of haploinsufficient variants in varying frequencies demonstrates the existence of extraordinary coordination among them in attributing risk and modulating severity to SUDs.
Collapse
Affiliation(s)
- Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
16
|
Zhang T, Dolga AM, Eisel ULM, Schmidt M. Novel crosstalk mechanisms between GluA3 and Epac2 in synaptic plasticity and memory in Alzheimer's disease. Neurobiol Dis 2024; 191:106389. [PMID: 38142840 DOI: 10.1016/j.nbd.2023.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease which accounts for the most cases of dementia worldwide. Impaired memory, including acquisition, consolidation, and retrieval, is one of the hallmarks in AD. At the cellular level, dysregulated synaptic plasticity partly due to reduced long-term potentiation (LTP) and enhanced long-term depression (LTD) underlies the memory deficits in AD. GluA3 containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are one of key receptors involved in rapid neurotransmission and synaptic plasticity. Recent studies revealed a novel form of GluA3 involved in neuronal plasticity that is dependent on cyclic adenosine monophosphate (cAMP), rather than N-methyl-d-aspartate (NMDA). However, this cAMP-dependent GluA3 pathway is specifically and significantly impaired by amyloid beta (Aβ), a pathological marker of AD. cAMP is a key second messenger that plays an important role in modulating memory and synaptic plasticity. We previously reported that exchange protein directly activated by cAMP 2 (Epac2), acting as a main cAMP effector, plays a specific and time-limited role in memory retrieval. From electrophysiological perspective, Epac2 facilities the maintenance of LTP, a cellular event closely associated with memory retrieval. Additionally, Epac2 was found to be involved in the GluA3-mediated plasticity. In this review, we comprehensively summarize current knowledge regarding the specific roles of GluA3 and Epac2 in synaptic plasticity and memory, and their potential association with AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
17
|
van Hoogstraten WS, Lute MCC, Liu Z, Broersen R, Mangili L, Kros L, Gao Z, Wang X, van den Maagdenberg AMJM, De Zeeuw CI. Disynaptic Inhibitory Cerebellar Control Over Caudal Medial Accessory Olive. eNeuro 2024; 11:ENEURO.0262-23.2023. [PMID: 38242692 PMCID: PMC10875979 DOI: 10.1523/eneuro.0262-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024] Open
Abstract
The olivocerebellar system, which is critical for sensorimotor performance and learning, functions through modules with feedback loops. The main feedback to the inferior olive comes from the cerebellar nuclei (CN), which are predominantly GABAergic and contralateral. However, for the subnucleus d of the caudomedial accessory olive (cdMAO), a crucial region for oculomotor and upper body movements, the source of GABAergic input has yet to be identified. Here, we demonstrate the existence of a disynaptic inhibitory projection from the medial CN (MCN) to the cdMAO via the superior colliculus (SC) by exploiting retrograde, anterograde, and transsynaptic viral tracing at the light microscopic level as well as anterograde classical and viral tracing combined with immunocytochemistry at the electron microscopic level. Retrograde tracing in Gad2-Cre mice reveals that the cdMAO receives GABAergic input from the contralateral SC. Anterograde transsynaptic tracing uncovered that the SC neurons receiving input from the contralateral MCN provide predominantly inhibitory projections to contralateral cdMAO, ipsilateral to the MCN. Following ultrastructural analysis of the monosynaptic projection about half of the SC terminals within the contralateral cdMAO are GABAergic. The disynaptic GABAergic projection from the MCN to the ipsilateral cdMAO mirrors that of the monosynaptic excitatory projection from the MCN to the contralateral cdMAO. Thus, while completing the map of inhibitory inputs to the olivary subnuclei, we established that the MCN inhibits the cdMAO via the contralateral SC, highlighting a potential push-pull mechanism in directional gaze control that appears unique in terms of laterality and polarity among olivocerebellar modules.
Collapse
Affiliation(s)
| | - Marit C C Lute
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam 1105 BA, The Netherlands
| | - Zhiqiang Liu
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Robin Broersen
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Luca Mangili
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Arn M J M van den Maagdenberg
- Departments of Neurology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Human Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam 1105 BA, The Netherlands
| |
Collapse
|
18
|
Brosens N, Simon C, Kessels HW, Lucassen PJ, Krugers HJ. Early life stress lastingly alters the function and AMPA-receptor composition of glutamatergic synapses in the hippocampus of male mice. J Neuroendocrinol 2023; 35:e13346. [PMID: 37901923 DOI: 10.1111/jne.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 10/31/2023]
Abstract
Early postnatal life is a sensitive period of development that shapes brain structure and function later in life. Exposure to stress during this critical time window can alter brain development and may enhance the susceptibility to psychopathology and neurodegenerative disorders later in life. The developmental effects of early life stress (ELS) on synaptic function are not fully understood, but could provide mechanistic insights into how ELS modifies later brain function and disease risk. We here assessed the effects of ELS on synaptic function and composition in the hippocampus of male mice. Mice were subjected to ELS by housing dams and pups with limited bedding and nesting material from postnatal days (P) 2-9. Synaptic strength was measured in terms of miniature excitatory postsynaptic currents (mEPSCs) in the hippocampal dentate gyrus at three different developmental stages: the early postnatal phase (P9), preadolescence (P21, at weaning) and adulthood at 3 months of age (3MO). Hippocampal synaptosome fractions were isolated from P9 and 3MO tissue and analyzed for protein content to assess postsynaptic composition. Finally, dendritic spine density was assessed in the DG at 3MO. At P9, ELS increased mEPSC frequency and amplitude. In parallel, synaptic composition was altered as PSD-95, GluA3 and GluN2B content were significantly decreased. The increased mEPSC frequency was sustained up to 3MO, at which age, GluA3 content was significantly increased. No differences were found in dendritic spine density. These findings highlight how ELS affects the development of hippocampal synapses, which could provide valuable insight into mechanisms how ELS alters brain function later in life.
Collapse
Affiliation(s)
- Niek Brosens
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Carla Simon
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Paul J Lucassen
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Harm J Krugers
- SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Eltokhi A, Bertocchi I, Rozov A, Jensen V, Borchardt T, Taylor A, Proenca CC, Rawlins JNP, Bannerman DM, Sprengel R. Distinct effects of AMPAR subunit depletion on spatial memory. iScience 2023; 26:108116. [PMID: 37876813 PMCID: PMC10590979 DOI: 10.1016/j.isci.2023.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
Pharmacological studies established a role for AMPARs in the mammalian forebrain in spatial memory performance. Here we generated global GluA1/3 double knockout mice (Gria1/3-/-) and conditional knockouts lacking GluA1 and GluA3 AMPAR subunits specifically from principal cells across the forebrain (Gria1/3ΔFb). In both models, loss of GluA1 and GluA3 resulted in reduced hippocampal GluA2 and increased levels of the NMDAR subunit GluN2A. Electrically-evoked AMPAR-mediated EPSPs were greatly diminished, and there was an absence of tetanus-induced LTP. Gria1/3-/- mice showed premature mortality. Gria1/3ΔFb mice were viable, and their memory performance could be analyzed. In the Morris water maze (MWM), Gria1/3ΔFb mice showed profound long-term memory deficits, in marked contrast to the normal MWM learning previously seen in single Gria1-/- and Gria3-/- knockout mice. Our results suggest a redundancy of function within the pool of available ionotropic glutamate receptors for long-term spatial memory performance.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Pharmacolog, University of Washington, Seattle, WA, USA
| | - Ilaria Bertocchi
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy
- Neuroscience Institute - Cavalieri-Ottolenghi Foundation (NICO), Laboratory of Neuropsychopharmacology, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Andrei Rozov
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Neuroscience, Lobachevsky State University of Nizhniy, 603022 Novgorod, Russia
- Federal Center of Brain Research and Neurotechnology, 117997 Moscow, Russia
| | - Vidar Jensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Thilo Borchardt
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Amy Taylor
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Catia C. Proenca
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Rolf Sprengel
- Departments of Molecular Neurobiology and Physiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
20
|
Zheng R, Xu FX, Zhou L, Xu J, Shen Y, Hao K, Wang XT, Deng J. Ablation of KIF2C in Purkinje cells impairs metabotropic glutamate receptor trafficking and motor coordination in male mice. J Physiol 2023; 601:3905-3920. [PMID: 37431690 DOI: 10.1113/jp284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Kinesin family member 2C (KIF2C)/mitotic centromere-associated kinesin (MCAK), is thought to be oncogenic as it is involved in tumour progression and metastasis. Moreover, it also plays a part in neurodegenerative conditions like Alzheimer's disease and psychiatric disorders such as suicidal schizophrenia. Our previous study conducted on mice demonstrated that KIF2C is widely distributed in various regions of the brain, and is localized in synaptic spines. Additionally, it regulates microtubule dynamic properties through its own microtubule depolymerization activity, thereby affecting AMPA receptor transport and cognitive behaviour in mice. In this study, we show that KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells results in abnormal gait, reduced balance ability and motor incoordination in male mice. These data suggest that KIF2C is essential for maintaining normal transport and synaptic function of mGlu1 and motor coordination in mice. KEY POINTS: KIF2C is localized in synaptic spines of hippocampus neurons, and regulates excitatory transmission, synaptic plasticity and cognitive behaviour. KIF2C is extensively expressed in the cerebellum, and we investigated its functions in development and synaptic transmission of cerebellar Purkinje cells. KIF2C deficiency in Purkinje cells alters the expression of metabotropic glutamate receptor 1 (mGlu1) and the AMPA receptor GluA2 subunit at Purkinje cell synapses, and changes excitatory synaptic transmission, but not inhibitory transmission. KIF2C regulates the transport of mGlu1 receptors in Purkinje cells by binding to Rab8. KIF2C deficiency in Purkinje cells affects motor coordination, but not social behaviour in male mice.
Collapse
Affiliation(s)
- Rui Zheng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| | - Fang-Xiao Xu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Junyu Xu
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ying Shen
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xin-Tai Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, Hangzhou Normal University, Hangzhou, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
| |
Collapse
|
21
|
Zhang T, Musheshe N, van der Veen CHJTM, Kessels HW, Dolga A, De Deyn P, Eisel U, Schmidt M. The Expression of Epac2 and GluA3 in an Alzheimer's Disease Experimental Model and Postmortem Patient Samples. Biomedicines 2023; 11:2096. [PMID: 37626593 PMCID: PMC10452319 DOI: 10.3390/biomedicines11082096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, characterized by amyloid beta (Aβ) and hyperphosphorylated tau accumulation in the brain. Recent studies indicated that memory retrieval, rather than memory formation, was impaired in the early stage of AD. Our previous study reported that pharmacological activation of hippocampal Epac2 promoted memory retrieval in C57BL/6J mice. A recent study suggested that pharmacological inhibition of Epac2 prevented synaptic potentiation mediated by GluA3-containing AMPARs. In this study, we aimed to investigate proteins associated with Epac2-mediated memory in hippocampal postmortem samples of AD patients and healthy controls compared with the experimental AD model J20 and wild-type mice. Epac2 and phospho-Akt were downregulated in AD patients and J20 mice, while Epac1 and phospho-ERK1/2 were not altered. GluA3 was reduced in J20 mice and tended to decrease in AD patients. PSD95 tended to decrease in AD patients and J20. Interestingly, AKAP5 was increased in AD patients but not in J20 mice, implicating its role in tau phosphorylation. Our study points to the downregulation of hippocampal expression of proteins associated with Epac2 in AD.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (T.Z.); (N.M.); (C.H.J.T.M.v.d.V.); (A.D.)
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands;
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (T.Z.); (N.M.); (C.H.J.T.M.v.d.V.); (A.D.)
| | - Christina H. J. T. M. van der Veen
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (T.Z.); (N.M.); (C.H.J.T.M.v.d.V.); (A.D.)
| | - Helmut W. Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Amalia Dolga
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (T.Z.); (N.M.); (C.H.J.T.M.v.d.V.); (A.D.)
- Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Peter De Deyn
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ulrich Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands;
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (T.Z.); (N.M.); (C.H.J.T.M.v.d.V.); (A.D.)
- Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
22
|
Wang C, Derderian KD, Hamada E, Zhou X, Nelson AD, Kyoung H, Ahituv N, Bouvier G, Bender KJ. Impaired cerebellar plasticity hypersensitizes sensory reflexes in SCN2A-associated ASD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543814. [PMID: 37333267 PMCID: PMC10274749 DOI: 10.1101/2023.06.05.543814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity, or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify the mechanisms that underlie hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss-of-function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in adolescent mice via a CRISPR-activator approach that increases Scn2a expression, highlighting how evaluation of simple reflexes can be used as quantitative readout of therapeutic interventions.
Collapse
Affiliation(s)
- Chenyu Wang
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly D. Derderian
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew D. Nelson
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
23
|
Wang XT, Zhou L, Dong BB, Xu FX, Wang DJ, Shen EW, Cai XY, Wang Y, Wang N, Ji SJ, Chen W, Schonewille M, Zhu JJ, De Zeeuw CI, Shen Y. cAMP-EPAC-PKCε-RIM1α signaling regulates presynaptic long-term potentiation and motor learning. eLife 2023; 12:e80875. [PMID: 37159499 PMCID: PMC10171863 DOI: 10.7554/elife.80875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
The cerebellum is involved in learning of fine motor skills, yet whether presynaptic plasticity contributes to such learning remains elusive. Here, we report that the EPAC-PKCε module has a critical role in a presynaptic form of long-term potentiation in the cerebellum and motor behavior in mice. Presynaptic cAMP-EPAC-PKCε signaling cascade induces a previously unidentified threonine phosphorylation of RIM1α, and thereby initiates the assembly of the Rab3A-RIM1α-Munc13-1 tripartite complex that facilitates docking and release of synaptic vesicles. Granule cell-specific blocking of EPAC-PKCε signaling abolishes presynaptic long-term potentiation at the parallel fiber to Purkinje cell synapses and impairs basic performance and learning of cerebellar motor behavior. These results unveil a functional relevance of presynaptic plasticity that is regulated through a novel signaling cascade, thereby enriching the spectrum of cerebellar learning mechanisms.
Collapse
Affiliation(s)
- Xin-Tai Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Lin Zhou
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Bin-Bin Dong
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Fang-Xiao Xu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - De-Juan Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - En-Wei Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xin-Yu Cai
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yin Wang
- Key Laboratory of Cranial Cerebral Diseases, Department of Neurobiology of Basic Medical College, Ningxia Medical UniversityYinchuanChina
| | - Na Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Sheng-Jian Ji
- Department of Biology, Southern University of Science and TechnologyShenzhenChina
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | | | - J Julius Zhu
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
- Netherlands Institute for Neuroscience, Royal Academy of SciencesAmsterdamNetherlands
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwuChina
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
24
|
Martín R, Suárez-Pinilla AS, García-Font N, Laguna-Luque ML, López-Ramos JC, Oset-Gasque MJ, Gruart A, Delgado-García JM, Torres M, Sánchez-Prieto J. The activation of mGluR4 rescues parallel fiber synaptic transmission and LTP, motor learning and social behavior in a mouse model of Fragile X Syndrome. Mol Autism 2023; 14:14. [PMID: 37029391 PMCID: PMC10082511 DOI: 10.1186/s13229-023-00547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS), the most common inherited intellectual disability, is caused by the loss of expression of the Fragile X Messenger Ribonucleoprotein (FMRP). FMRP is an RNA-binding protein that negatively regulates the expression of many postsynaptic as well as presynaptic proteins involved in action potential properties, calcium homeostasis and neurotransmitter release. FXS patients and mice lacking FMRP suffer from multiple behavioral alterations, including deficits in motor learning for which there is currently no specific treatment. METHODS We performed electron microscopy, whole-cell patch-clamp electrophysiology and behavioral experiments to characterise the synaptic mechanisms underlying the motor learning deficits observed in Fmr1KO mice and the therapeutic potential of positive allosteric modulator of mGluR4. RESULTS We found that enhanced synaptic vesicle docking of cerebellar parallel fiber to Purkinje cell Fmr1KO synapses was associated with enhanced asynchronous release, which not only prevents further potentiation, but it also compromises presynaptic parallel fiber long-term potentiation (PF-LTP) mediated by β adrenergic receptors. A reduction in extracellular Ca2+ concentration restored the readily releasable pool (RRP) size, basal synaptic transmission, β adrenergic receptor-mediated potentiation, and PF-LTP. Interestingly, VU 0155041, a selective positive allosteric modulator of mGluR4, also restored both the RRP size and PF-LTP in mice of either sex. Moreover, when injected into Fmr1KO male mice, VU 0155041 improved motor learning in skilled reaching, classical eyeblink conditioning and vestibuloocular reflex (VOR) tests, as well as the social behavior alterations of these mice. LIMITATIONS We cannot rule out that the activation of mGluR4s via systemic administration of VU0155041 can also affect other brain regions. Further studies are needed to stablish the effect of a specific activation of mGluR4 in cerebellar granule cells. CONCLUSIONS Our study shows that an increase in synaptic vesicles, SV, docking may cause the loss of PF-LTP and motor learning and social deficits of Fmr1KO mice and that the reversal of these changes by pharmacological activation of mGluR4 may offer therapeutic relief for motor learning and social deficits in FXS.
Collapse
Affiliation(s)
- Ricardo Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain.
| | - Alberto Samuel Suárez-Pinilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Nuria García-Font
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
- Centre for Discovery Brain Sciences and Simon Initiative for Developing Brain, University of Edinburgh, Edinburgh, EH89JZ, UK
| | | | - Juan C López-Ramos
- Division de Neurociencias, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - María Jesús Oset-Gasque
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
- Departamento de Bioquímica, Facultad de Farmacia, Universidad Complutense, Instituto Universitario Investigación en Neuroquímica, 28040, Madrid, Spain
| | - Agnes Gruart
- Division de Neurociencias, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | | | - Magdalena Torres
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain.
| |
Collapse
|
25
|
The role of post-translational modifications in synaptic AMPA receptor activity. Biochem Soc Trans 2023; 51:315-330. [PMID: 36629507 DOI: 10.1042/bst20220827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
AMPA-type receptors for the neurotransmitter glutamate are very dynamic entities, and changes in their synaptic abundance underlie different forms of synaptic plasticity, including long-term synaptic potentiation (LTP), long-term depression (LTD) and homeostatic scaling. The different AMPA receptor subunits (GluA1-GluA4) share a common modular structure and membrane topology, and their intracellular C-terminus tail is responsible for the interaction with intracellular proteins important in receptor trafficking. The latter sequence differs between subunits and contains most sites for post-translational modifications of the receptors, including phosphorylation, O-GlcNAcylation, ubiquitination, acetylation, palmitoylation and nitrosylation, which affect differentially the various subunits. Considering that each single subunit may undergo modifications in multiple sites, and that AMPA receptors may be formed by the assembly of different subunits, this creates multiple layers of regulation of the receptors with impact in synaptic function and plasticity. This review discusses the diversity of mechanisms involved in the post-translational modification of AMPA receptor subunits, and their impact on the subcellular distribution and synaptic activity of the receptors.
Collapse
|
26
|
Lobule-Related Action Potential Shape- and History-Dependent Current Integration in Purkinje Cells of Adult and Developing Mice. Cells 2023; 12:cells12040623. [PMID: 36831290 PMCID: PMC9953991 DOI: 10.3390/cells12040623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Purkinje cells (PCs) are the principal cells of the cerebellar cortex and form a central element in the modular organization of the cerebellum. Differentiation of PCs based on gene expression profiles revealed two subpopulations with distinct connectivity, action potential firing and learning-induced activity changes. However, which basal cell physiological features underlie the differences between these subpopulations and to what extent they integrate input differentially remains largely unclear. Here, we investigate the cellular electrophysiological properties of PC subpopulation in adult and juvenile mice. We found that multiple fundamental cell physiological properties, including membrane resistance and various aspects of the action potential shape, differ between PCs from anterior and nodular lobules. Moreover, the two PC subpopulations also differed in the integration of negative and positive current steps as well as in size of the hyperpolarization-activated current. A comparative analysis in juvenile mice confirmed that most of these lobule-specific differences are already present at pre-weaning ages. Finally, we found that current integration in PCs is input history-dependent for both positive and negative currents, but this is not a distinctive feature between anterior and nodular PCs. Our results support the concept of a fundamental differentiation of PCs subpopulations in terms of cell physiological properties and current integration, yet reveals that history-dependent input processing is consistent across PC subtypes.
Collapse
|
27
|
Morizawa YM, Matsumoto M, Nakashima Y, Endo N, Aida T, Ishikane H, Beppu K, Moritoh S, Inada H, Osumi N, Shigetomi E, Koizumi S, Yang G, Hirai H, Tanaka K, Tanaka KF, Ohno N, Fukazawa Y, Matsui K. Synaptic pruning through glial synapse engulfment upon motor learning. Nat Neurosci 2022; 25:1458-1469. [PMID: 36319770 DOI: 10.1038/s41593-022-01184-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
Synaptic pruning is a fundamental process of neuronal circuit refinement in learning and memory. Accumulating evidence suggests that glia participates in sculpting the neuronal circuits through synapse engulfment. However, whether glial involvement in synaptic pruning has a role in memory formation remains elusive. Using newly developed phagocytosis reporter mice and three-dimensional ultrastructural characterization, we found that synaptic engulfment by cerebellar Bergmann glia (BG) frequently occurred upon cerebellum-dependent motor learning in mice. We observed increases in pre- and postsynaptic nibbling by BG along with a reduction in spine volume after learning. Pharmacological blockade of engulfment with Annexin V inhibited both the spine volume reduction and overnight improvement of motor adaptation. These results indicate that BG contribute to the refinement of the mature cerebellar cortical circuit through synaptic engulfment during motor learning.
Collapse
Affiliation(s)
- Yosuke M Morizawa
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
- JSPS Research Fellowship for Young Scientists, Tokyo, Japan.
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Sciences, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuka Nakashima
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Narumi Endo
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Ishikane
- Department of Psychology, Graduate School of Humanities, Senshu University, Kawasaki, Japan
| | - Kaoru Beppu
- Division of Interdisciplinary Medical Science, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Satoru Moritoh
- Department of Ophthalmology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, School of Medicine, Jichi Medical University, Tochigi, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Life Science Innovation Center, School of Medical Science, University of Fukui, Fukui, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
- Division of Interdisciplinary Medical Science, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| |
Collapse
|
28
|
Wu QL, Gao Y, Li JT, Ma WY, Chen NH. The Role of AMPARs Composition and Trafficking in Synaptic Plasticity and Diseases. Cell Mol Neurobiol 2022; 42:2489-2504. [PMID: 34436728 PMCID: PMC11421597 DOI: 10.1007/s10571-021-01141-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
AMPA receptors are tetrameric ionic glutamate receptors, which mediate 90% fast excitatory synaptic transmission induced by excitatory glutamate in the mammalian central nervous system through the activation or inactivation of ion channels. The alternation of synaptic AMPA receptor number and subtype is thought to be one of the primary mechanisms that involve in synaptic plasticity regulation and affect the functions in learning, memory, and cognition. The increasing of surface AMPARs enhances synaptic strength during long-term potentiation, whereas the decreasing of AMPARs weakens synaptic strength during the long-term depression. It is closely related to the AMPA receptor as well as its subunits assembly, trafficking, and degradation. The dysfunction of any step in these precise regulatory processes is likely to induce the disorder of synaptic transmission and loss of neurons, or even cause neuropsychiatric diseases ultimately. Therefore, it is useful to understand how AMPARs regulate synaptic plasticity and its role in related neuropsychiatric diseases via comprehending architecture and trafficking of the receptors. Here, we reviewed the progress in structure, expression, trafficking, and relationship with synaptic plasticity of AMPA receptor, especially in anxiety, depression, neurodegenerative disorders, and cerebral ischemia.
Collapse
Affiliation(s)
- Qing-Lin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jun-Tong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Yu Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
29
|
Liu X, Vickstrom CR, Yu H, Liu S, Snarrenberg ST, Friedman V, Mu L, Chen B, Kelly TJ, Baker DA, Liu QS. Epac2 in midbrain dopamine neurons contributes to cocaine reinforcement via enhancement of dopamine release. eLife 2022; 11:e80747. [PMID: 35993549 PMCID: PMC9436413 DOI: 10.7554/elife.80747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022] Open
Abstract
Repeated exposure to drugs of abuse results in an upregulation of cAMP signaling in the mesolimbic dopamine system, a molecular adaptation thought to be critically involved in the development of drug dependence. Exchange protein directly activated by cAMP (Epac2) is a major cAMP effector abundantly expressed in the brain. However, it remains unknown whether Epac2 contributes to cocaine reinforcement. Here, we report that Epac2 in the mesolimbic dopamine system promotes cocaine reinforcement via enhancement of dopamine release. Conditional knockout of Epac2 from midbrain dopamine neurons (Epac2-cKO) and the selective Epac2 inhibitor ESI-05 decreased cocaine self-administration in mice under both fixed-ratio and progressive-ratio reinforcement schedules and across a broad range of cocaine doses. In addition, Epac2-cKO led to reduced evoked dopamine release, whereas Epac2 agonism robustly enhanced dopamine release in the nucleus accumbens in vitro. This mechanism is central to the behavioral effects of Epac2 disruption, as chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons via deschloroclozapine (DCZ)-induced activation of Gs-DREADD increased dopamine release and reversed the impairment of cocaine self-administration in Epac2-cKO mice. Conversely, chemogenetic inhibition of VTA dopamine neurons with Gi-DREADD reduced dopamine release and cocaine self-administration in wild-type mice. Epac2-mediated enhancement of dopamine release may therefore represent a novel and powerful mechanism that contributes to cocaine reinforcement.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukeeUnited States
| | - Casey R Vickstrom
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukeeUnited States
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukeeUnited States
| | - Shuai Liu
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukeeUnited States
| | - Shana Terai Snarrenberg
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukeeUnited States
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukeeUnited States
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukeeUnited States
| | - Bixuan Chen
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukeeUnited States
| | - Thomas J Kelly
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukeeUnited States
| | - David A Baker
- Department of Biomedical Sciences, Marquette UniversityMilwaukeeUnited States
| | - Qing-song Liu
- Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
30
|
Wang S, Rhijn JRV, Akkouh I, Kogo N, Maas N, Bleeck A, Ortiz IS, Lewerissa E, Wu KM, Schoenmaker C, Djurovic S, van Bokhoven H, Kleefstra T, Nadif Kasri N, Schubert D. Loss-of-function variants in the schizophrenia risk gene SETD1A alter neuronal network activity in human neurons through the cAMP/PKA pathway. Cell Rep 2022; 39:110790. [PMID: 35508131 PMCID: PMC7615788 DOI: 10.1016/j.celrep.2022.110790] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/20/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022] Open
Abstract
Heterozygous loss-of-function (LoF) mutations in SETD1A, which encodes a subunit of histone H3 lysine 4 methyltransferase, cause a neurodevelopmental syndrome and increase the risk for schizophrenia. Using CRISPR-Cas9, we generate excitatory/inhibitory neuronal networks from human induced pluripotent stem cells with a SETD1A heterozygous LoF mutation (SETD1A+/-). Our data show that SETD1A haploinsufficiency results in morphologically increased dendritic complexity and functionally increased bursting activity. This network phenotype is primarily driven by SETD1A haploinsufficiency in glutamatergic neurons. In accordance with the functional changes, transcriptomic profiling reveals perturbations in gene sets associated with glutamatergic synaptic function. At the molecular level, we identify specific changes in the cyclic AMP (cAMP)/Protein Kinase A pathway pointing toward a hyperactive cAMP pathway in SETD1A+/- neurons. Finally, by pharmacologically targeting the cAMP pathway, we are able to rescue the network deficits in SETD1A+/- cultures. Our results demonstrate a link between SETD1A and the cAMP-dependent pathway in human neurons.
Collapse
Affiliation(s)
- Shan Wang
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Jon-Ruben van Rhijn
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Ibrahim Akkouh
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Naoki Kogo
- Department of Human Genetics, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Biophysics, Donders Institute for Brain Cognition and Behaviour, 6525 AJ Nijmegen, the Netherlands
| | - Nadine Maas
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Anna Bleeck
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Irene Santisteban Ortiz
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Elly Lewerissa
- Department of Human Genetics, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Ka Man Wu
- Department of Human Genetics, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Chantal Schoenmaker
- Department of Human Genetics, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway; NORMENT, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Hans van Bokhoven
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands.
| |
Collapse
|
31
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
32
|
Reply to Piochon et al.: NMDARs in Purkinje cells are not involved in parallel fiber-Purkinje cell synaptic plasticity or motor learning. Proc Natl Acad Sci U S A 2022; 119:2120480119. [PMID: 35193965 PMCID: PMC8872723 DOI: 10.1073/pnas.2120480119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Abstract
Knowledge of the biology of ionotropic glutamate receptors (iGluRs) is a prerequisite for any student of the neurosciences. But yet, half a century ago, the situation was quite different. There was fierce debate on whether simple amino acids, such as l-glutamic acid (L-Glu), should even be considered as putative neurotransmitter candidates that drive excitatory synaptic signaling in the vertebrate brain. Organic chemist, Jeff Watkins, and physiologist, Dick Evans, were amongst the pioneering scientists who shed light on these tribulations. By combining their technical expertise, they performed foundational work that explained that the actions of L-Glu were, in fact, mediated by a family of ion-channels that they named NMDA-, AMPA- and kainate-selective iGluRs. To celebrate and reflect upon their seminal work, Neuropharmacology has commissioned a series of issues that are dedicated to each member of the Glutamate receptor superfamily that includes both ionotropic and metabotropic classes. This issue brings together nine timely reviews from researchers whose work has brought renewed focus on AMPA receptors (AMPARs), the predominant neurotransmitter receptor at central synapses. Together with the larger collection of papers on other GluR family members, these issues highlight that the excitement, passion, and clarity that Watkins and Evans brought to the study of iGluRs is unlikely to fade as we move into a new era on this most interesting of ion-channel families.
Collapse
|
34
|
Loschky SS, Spano GM, Marshall W, Schroeder A, Nemec KM, Schiereck SS, de Vivo L, Bellesi M, Banningh SW, Tononi G, Cirelli C. Ultrastructural effects of sleep and wake on the parallel fiber synapses of the cerebellum. eLife 2022; 11:84199. [PMID: 36576248 PMCID: PMC9797193 DOI: 10.7554/elife.84199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022] Open
Abstract
Multiple evidence in rodents shows that the strength of excitatory synapses in the cerebral cortex and hippocampus is greater after wake than after sleep. The widespread synaptic weakening afforded by sleep is believed to keep the cost of synaptic activity under control, promote memory consolidation, and prevent synaptic saturation, thus preserving the brain's ability to learn day after day. The cerebellum is highly plastic and the Purkinje cells, the sole output neurons of the cerebellar cortex, are endowed with a staggering number of excitatory parallel fiber synapses. However, whether these synapses are affected by sleep and wake is unknown. Here, we used serial block face scanning electron microscopy to obtain the full 3D reconstruction of more than 7000 spines and their parallel fiber synapses in the mouse posterior vermis. This analysis was done in mice whose cortical and hippocampal synapses were previously measured, revealing that average synaptic size was lower after sleep compared to wake with no major changes in synapse number. Here, instead, we find that while the average size of parallel fiber synapses does not change, the number of branched synapses is reduced in half after sleep compared to after wake, corresponding to ~16% of all spines after wake and ~8% after sleep. Branched synapses are harbored by two or more spines sharing the same neck and, as also shown here, are almost always contacted by different parallel fibers. These findings suggest that during wake, coincidences of firing over parallel fibers may translate into the formation of synapses converging on the same branched spine, which may be especially effective in driving Purkinje cells to fire. By contrast, sleep may promote the off-line pruning of branched synapses that were formed due to spurious coincidences.
Collapse
Affiliation(s)
- Sophia S Loschky
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | | | - William Marshall
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States,Department of Mathematics and Statistics, Brock UniversitySt. CatharinesCanada
| | - Andrea Schroeder
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | - Kelsey Marie Nemec
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | | | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | | | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
35
|
Martinez-Esteve Melnikova A, Pijuan J, Aparicio J, Ramírez A, Altisent-Huguet A, Vilanova-Adell A, Arzimanoglou A, Armstrong J, Palau F, Hoenicka J, San Antonio-Arce V. The p.Glu787Lys variant in the GRIA3 gene causes developmental and epileptic encephalopathy mimicking structural epilepsy in a female patient. Eur J Med Genet 2022; 65:104442. [DOI: 10.1016/j.ejmg.2022.104442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/28/2021] [Accepted: 01/22/2022] [Indexed: 11/03/2022]
|
36
|
Italia M, Ferrari E, Di Luca M, Gardoni F. GluA3-containing AMPA receptors: From physiology to synaptic dysfunction in brain disorders. Neurobiol Dis 2021; 161:105539. [PMID: 34743951 DOI: 10.1016/j.nbd.2021.105539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023] Open
Abstract
In the mammalian brain, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) play a fundamental role in the activation of excitatory synaptic transmission and the induction of different forms of synaptic plasticity. The modulation of the AMPAR tetramer subunit composition at synapses defines the functional properties of the receptor. During the last twenty years, several studies have evaluated the roles played by each subunit, from GluA1 to GluA4, in both physiological and pathological conditions. Here, we have focused our attention on GluA3-containing AMPARs, addressing their functional role in synaptic transmission and synaptic plasticity and their involvement in a variety of brain disorders. Although several aspects remain to be fully understood, GluA3 is a widely expressed and functionally relevant subunit in AMPARs involved in several brain circuits, and its pharmacological modulation could represent a novel approach for the rescue of altered glutamatergic synapses associated with neurodegenerative and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Maria Italia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| |
Collapse
|
37
|
Kita K, Albergaria C, Machado AS, Carey MR, Müller M, Delvendahl I. GluA4 facilitates cerebellar expansion coding and enables associative memory formation. eLife 2021; 10:65152. [PMID: 34219651 PMCID: PMC8291978 DOI: 10.7554/elife.65152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/01/2021] [Indexed: 01/17/2023] Open
Abstract
AMPA receptors (AMPARs) mediate excitatory neurotransmission in the central nervous system (CNS) and their subunit composition determines synaptic efficacy. Whereas AMPAR subunits GluA1–GluA3 have been linked to particular forms of synaptic plasticity and learning, the functional role of GluA4 remains elusive. Here, we demonstrate a crucial function of GluA4 for synaptic excitation and associative memory formation in the cerebellum. Notably, GluA4-knockout mice had ~80% reduced mossy fiber to granule cell synaptic transmission. The fidelity of granule cell spike output was markedly decreased despite attenuated tonic inhibition and increased NMDA receptor-mediated transmission. Computational network modeling incorporating these changes revealed that deletion of GluA4 impairs granule cell expansion coding, which is important for pattern separation and associative learning. On a behavioral level, while locomotor coordination was generally spared, GluA4-knockout mice failed to form associative memories during delay eyeblink conditioning. These results demonstrate an essential role for GluA4-containing AMPARs in cerebellar information processing and associative learning.
Collapse
Affiliation(s)
- Katarzyna Kita
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Catarina Albergaria
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana S Machado
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Megan R Carey
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Zhou Q, Qin J, Liang Y, Zhang W, He S, Tissir F, Qu Y, Zhou L. Celsr3 is required for Purkinje cell maturation and regulates cerebellar postsynaptic plasticity. iScience 2021; 24:102812. [PMID: 34308297 PMCID: PMC8283331 DOI: 10.1016/j.isci.2021.102812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Atypical cadherin Celsr3 is critical for brain embryonic development, and its role in the postnatal cerebellum remains unknown. Using Celsr3-GFP mice, Celsr3 shows high expression in postnatal Purkinje cells (PCs). Mice with conditional knockout (cKO) of Celsr3 in postnatal PCs exhibit deficit in motor coordination and learning, atrophic PC dendrites, and decreased synapses. Whole-PC recording in cerebellar slices discloses a reduction frequency of mEPSC and defective postsynaptic plasticity (LTP and LTD) in Celsr3 cKO mutants. Wnt5a perfusion enhances LTP formation, which could be occluded by cAMP agonist and diminished by cAMP antagonist in control, but not in Celsr3 cKO or Fzd3 cKO cerebellar slices. Celsr3 cKO resulted in the failure of mGluR1 agonist-induced LTD and paired stimulation-induced PKCα overexpression in PC dendrites, and downregulation of mGluR1 expression compvared to controls. In conclusion, Celsr3 is required for PCs maturation and regulates postsynaptic LTP and LTD through Wnt5a/cAMP and mGluR1/PKCα signaling respectively. Celsr3 cKO in postnatal PCs impairs mouse motor coordination and learning Celsr3 inactivation affects the maturation of PC dendrites and synapses Celsr3 is required for the cerebellar LTP induction via the Wnt5a/cAMP signaling Celsr3 regulates the cerebellar LTD induction through the mGluR1/PKCα pathway
Collapse
Affiliation(s)
- Qinji Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Jingwen Qin
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Yaying Liang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Wei Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Siyuan He
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium.,College of Life and Health Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, P.R. China.,The First Affiliated Hospital of Jian University, Guangzhou 510632, P. R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, P. R. China
| |
Collapse
|
39
|
Lin Z, Wu B, Paul MW, Li KW, Yao Y, Smal I, Proietti Onori M, Hasanbegovic H, Bezstarosti K, Demmers J, Houtsmuller AB, Meijering E, Hoebeek FE, Schonewille M, Smit AB, Gao Z, De Zeeuw CI. Protein Phosphatase 2B Dual Function Facilitates Synaptic Integrity and Motor Learning. J Neurosci 2021; 41:5579-5594. [PMID: 34021041 PMCID: PMC8244972 DOI: 10.1523/jneurosci.1741-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
Protein phosphatase 2B (PP2B) is critical for synaptic plasticity and learning, but the molecular mechanisms involved remain unclear. Here we identified different types of proteins that interact with PP2B, including various structural proteins of the postsynaptic densities (PSDs) of Purkinje cells (PCs) in mice. Deleting PP2B reduced expression of PSD proteins and the relative thickness of PSD at the parallel fiber to PC synapses, whereas reexpression of inactive PP2B partly restored the impaired distribution of nanoclusters of PSD proteins, together indicating a structural role of PP2B. In contrast, lateral mobility of surface glutamate receptors solely depended on PP2B phosphatase activity. Finally, the level of motor learning covaried with both the enzymatic and nonenzymatic functions of PP2B. Thus, PP2B controls synaptic function and learning both through its action as a phosphatase and as a structural protein that facilitates synapse integrity.SIGNIFICANCE STATEMENT Phosphatases are generally considered to serve their critical role in learning and memory through their enzymatic operations. Here, we show that protein phosphatase 2B (PP2B) interacts with structural proteins at the synapses of cerebellar Purkinje cells. Differentially manipulating the enzymatic and structural domains of PP2B leads to different phenotypes in cerebellar learning. We propose that PP2B is crucial for cerebellar learning via two complementary actions, an enzymatic and a structural operation.
Collapse
Affiliation(s)
- Zhanmin Lin
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Bin Wu
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Maarten W Paul
- Optical Imaging Center, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Yao Yao
- Department of Medical informatics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Medical informatics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | | | - Hana Hasanbegovic
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Center for Proteomics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Jeroen Demmers
- Center for Proteomics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | | | - Erik Meijering
- School of Computer Science and Engineering & Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Department for Developmental Origins of Disease, Wilhelmina Children's Hospital and Brain Center, Utrecht Medical Center, 3584 EA, Utrecht, The Netherlands
| | | | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, KNAW, 1105 BA, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Gugustea R, Jia Z. Genetic manipulations of AMPA glutamate receptors in hippocampal synaptic plasticity. Neuropharmacology 2021; 194:108630. [PMID: 34089730 DOI: 10.1016/j.neuropharm.2021.108630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2023]
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are the principal mediators of fast excitatory synaptic transmission and they are required for various forms of synaptic plasticity, including long-term potentiation (LTP) and depression (LTD), which are key mechanisms of learning and memory. AMPARs are tetrameric complexes assembled from four subunits (GluA1-4), however, the lack of subunit-specific pharmacological tools has made the assessment of individual subunits difficult. The application of genetic techniques, particularly gene targeting, allows for precise manipulation and dissection of each subunit in the regulation of neuronal function and behaviour. In this review, we summarize studies using various mouse models with genetically altered AMPARs and focus on their roles in basal synaptic transmission, LTP, and LTD at the hippocampal CA1 synapse. These studies provide strong evidence that there are multiple forms of LTP and LTD at this synapse which can be induced by various induction protocols, and they are differentially regulated by different AMPAR subunits and domains. We conclude that it is necessary to delineate the mechanism of each of these forms of plasticity and their contribution to memory and brain disorders.
Collapse
Affiliation(s)
- Radu Gugustea
- The Hospital for Sick Children, Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- The Hospital for Sick Children, Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
41
|
Romano V, Reddington AL, Cazzanelli S, Mazza R, Ma Y, Strydis C, Negrello M, Bosman LWJ, De Zeeuw CI. Functional Convergence of Autonomic and Sensorimotor Processing in the Lateral Cerebellum. Cell Rep 2021; 32:107867. [PMID: 32640232 PMCID: PMC7351113 DOI: 10.1016/j.celrep.2020.107867] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023] Open
Abstract
The cerebellum is involved in the control of voluntary and autonomic rhythmic behaviors, yet it is unclear to what extent it coordinates these in concert. We studied Purkinje cell activity during unperturbed and perturbed respiration in lobules simplex, crus 1, and crus 2. During unperturbed (eupneic) respiration, complex spike and simple spike activity encode the phase of ongoing sensorimotor processing. In contrast, when the respiratory cycle is perturbed by whisker stimulation, mice concomitantly protract their whiskers and advance their inspiration in a phase-dependent manner, preceded by increased simple spike activity. This phase advancement of respiration in response to whisker stimulation can be mimicked by optogenetic stimulation of Purkinje cells and prevented by cell-specific genetic modification of their AMPA receptors, hampering increased simple spike firing. Thus, the impact of Purkinje cell activity on respiratory control is context and phase dependent, highlighting a coordinating role for the cerebellar hemispheres in aligning autonomic and sensorimotor behaviors. During unperturbed respiration, Purkinje cells signal ongoing sensorimotor processing After perturbation, mice advance their simple spike activity, whisking, and inspiration Altering simple spike activity affects the impact of whisker stimulation on respiration Cerebellar coordination of autonomic and sensorimotor behaviors is context dependent
Collapse
Affiliation(s)
- Vincenzo Romano
- Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, the Netherlands
| | | | - Silvia Cazzanelli
- Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, the Netherlands
| | - Roberta Mazza
- Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, the Netherlands
| | - Yang Ma
- Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, the Netherlands
| | - Christos Strydis
- Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, the Netherlands
| | - Mario Negrello
- Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, the Netherlands.
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, the Netherlands.
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 GE Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
42
|
Peter S, Urbanus BHA, Klaassen RV, Wu B, Boele HJ, Azizi S, Slotman JA, Houtsmuller AB, Schonewille M, Hoebeek FE, Spijker S, Smit AB, De Zeeuw CI. AMPAR Auxiliary Protein SHISA6 Facilitates Purkinje Cell Synaptic Excitability and Procedural Memory Formation. Cell Rep 2021; 31:107515. [PMID: 32294428 PMCID: PMC7175376 DOI: 10.1016/j.celrep.2020.03.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
The majority of excitatory postsynaptic currents in the brain are gated through AMPA-type glutamate receptors, the kinetics and trafficking of which can be modulated by auxiliary proteins. It remains to be elucidated whether and how auxiliary proteins can modulate synaptic function to contribute to procedural memory formation. In this study, we report that the AMPA-type glutamate receptor (AMPAR) auxiliary protein SHISA6 (CKAMP52) is expressed in cerebellar Purkinje cells, where it co-localizes with GluA2-containing AMPARs. The absence of SHISA6 in Purkinje cells results in severe impairments in the adaptation of the vestibulo-ocular reflex and eyeblink conditioning. The physiological abnormalities include decreased presence of AMPARs in synaptosomes, impaired excitatory transmission, increased deactivation of AMPA receptors, and reduced induction of long-term potentiation at Purkinje cell synapses. Our data indicate that Purkinje cells require SHISA6-dependent modification of AMPAR function in order to facilitate cerebellar, procedural memory formation. SHISA6 is prominently expressed in Purkinje cells in close association with AMPARs SHISA6 absence in Purkinje cells results in impaired procedural memory formation Purkinje cell synaptic baseline excitatory transmission is facilitated by SHISA6 Purkinje cell AMPAR kinetics are modulated by SHISA6
Collapse
Affiliation(s)
- Saša Peter
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands
| | | | - Remco V Klaassen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Bin Wu
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands; Department of Neurology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands
| | - Sameha Azizi
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands
| | - Johan A Slotman
- Optical Imaging Centre, Department of Pathology, Erasmus MC, 3000 DR Rotterdam, the Netherlands
| | - Adriaan B Houtsmuller
- Optical Imaging Centre, Department of Pathology, Erasmus MC, 3000 DR Rotterdam, the Netherlands
| | | | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands; Department for Developmental Origins of Disease, Wilhelmina Children's Hospital, Brain Center, UMC Utrecht, 3584 EA Utrecht, the Netherlands
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands.
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, 1105 CA Amsterdam, the Netherlands.
| |
Collapse
|
43
|
Bonnan A, Rowan MMJ, Baker CA, Bolton MM, Christie JM. Autonomous Purkinje cell activation instructs bidirectional motor learning through evoked dendritic calcium signaling. Nat Commun 2021; 12:2153. [PMID: 33846328 PMCID: PMC8042043 DOI: 10.1038/s41467-021-22405-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 03/01/2021] [Indexed: 01/19/2023] Open
Abstract
The signals in cerebellar Purkinje cells sufficient to instruct motor learning have not been systematically determined. Therefore, we applied optogenetics in mice to autonomously excite Purkinje cells and measured the effect of this activity on plasticity induction and adaptive behavior. Ex vivo, excitation of channelrhodopsin-2-expressing Purkinje cells elicits dendritic Ca2+ transients with high-intensity stimuli initiating dendritic spiking that additionally contributes to the Ca2+ response. Channelrhodopsin-2-evoked Ca2+ transients potentiate co-active parallel fiber synapses; depression occurs when Ca2+ responses were enhanced by dendritic spiking. In vivo, optogenetic Purkinje cell activation drives an adaptive decrease in vestibulo-ocular reflex gain when vestibular stimuli are paired with relatively small-magnitude Purkinje cell Ca2+ responses. In contrast, pairing with large-magnitude Ca2+ responses increases vestibulo-ocular reflex gain. Optogenetically induced plasticity and motor adaptation are dependent on endocannabinoid signaling, indicating engagement of this pathway downstream of Purkinje cell Ca2+ elevation. Our results establish a causal relationship among Purkinje cell Ca2+ signal size, opposite-polarity plasticity induction, and bidirectional motor learning.
Collapse
Affiliation(s)
- Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Matthew M J Rowan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | | | - M McLean Bolton
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
- University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
44
|
Abstract
The well-known second messenger cyclic adenosine monophosphate (cAMP) regulates the morphology and physiology of neurons and thus higher cognitive brain functions. The discovery of exchange protein activated by cAMP (Epac) as a guanine nucleotide exchange factor for Rap GTPases has shed light on protein kinase A (PKA)-independent functions of cAMP signaling in neural tissues. Studies of cAMP-Epac-mediated signaling in neurons under normal and disease conditions also revealed its diverse contributions to neurodevelopment, synaptic remodeling, and neurotransmitter release, as well as learning, memory, and emotion. In this mini-review, the various roles of Epac isoforms, including Epac1 and Epac2, highly expressed in neural tissues are summarized, and controversies or issues are highlighted that need to be resolved to uncover the critical functions of Epac in neural tissues and the potential for a new therapeutic target of mental disorders.
Collapse
Affiliation(s)
- Kyungmin Lee
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
45
|
White JJ, Bosman LWJ, Blot FGC, Osório C, Kuppens BW, Krijnen WHJJ, Andriessen C, De Zeeuw CI, Jaarsma D, Schonewille M. Region-specific preservation of Purkinje cell morphology and motor behavior in the ATXN1[82Q] mouse model of spinocerebellar ataxia 1. Brain Pathol 2021; 31:e12946. [PMID: 33724582 PMCID: PMC8412070 DOI: 10.1111/bpa.12946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 01/09/2023] Open
Abstract
Purkinje cells are the primary processing units of the cerebellar cortex and display molecular heterogeneity that aligns with differences in physiological properties, projection patterns, and susceptibility to disease. In particular, multiple mouse models that feature Purkinje cell degeneration are characterized by incomplete and patterned Purkinje cell degeneration, suggestive of relative sparing of Purkinje cell subpopulations, such as those expressing Aldolase C/zebrinII (AldoC) or residing in the vestibulo‐cerebellum. Here, we investigated a well‐characterized Purkinje cell‐specific mouse model for spinocerebellar ataxia type 1 (SCA1) that expresses human ATXN1 with a polyQ expansion (82Q). Our pathological analysis confirms previous findings that Purkinje cells of the vestibulo‐cerebellum, i.e., the flocculonodular lobes, and crus I are relatively spared from key pathological hallmarks: somatodendritic atrophy, and the appearance of p62/SQSTM1‐positive inclusions. However, immunohistological analysis of transgene expression revealed that spared Purkinje cells do not express mutant ATXN1 protein, indicating the sparing of Purkinje cells can be explained by an absence of transgene expression. Additionally, we found that Purkinje cells in other cerebellar lobules that typically express AldoC, not only display severe pathology but also show loss of AldoC expression. The relatively preserved flocculonodular lobes and crus I showed a substantial fraction of Purkinje cells that expressed the mutant protein and displayed pathology as well as loss of AldoC expression. Despite considerable pathology in these lobules, behavioral analyses demonstrated a relative sparing of related functions, suggestive of sufficient functional cerebellar reserve. Together, the data indicate that mutant ATXN1 affects both AldoC‐positive and AldoC‐negative Purkinje cells and disrupts normal parasagittal AldoC expression in Purkinje cells. Our results show that, in a mouse model otherwise characterized by widespread Purkinje cell degeneration, sparing of specific subpopulations is sufficient to maintain normal performance of specific behaviors within the context of the functional, modular map of the cerebellum.
Collapse
Affiliation(s)
- Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Catarina Osório
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Bram W Kuppens
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
46
|
The why and how of sleep-dependent synaptic down-selection. Semin Cell Dev Biol 2021; 125:91-100. [PMID: 33712366 PMCID: PMC8426406 DOI: 10.1016/j.semcdb.2021.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022]
Abstract
Sleep requires that we disconnect from the environment, losing the ability to promptly respond to stimuli. There must be at least one essential function that justifies why we take this risk every day, and that function must depend on the brain being offline. We have proposed that this function is to renormalize synaptic weights after learning has led to a net increase in synaptic strength in many brain circuits. Without this renormalization, synaptic activity would become energetically too expensive and saturation would prevent new learning. There is converging evidence from molecular, electrophysiological, and ultrastructural experiments showing a net increase in synaptic strength after the major wake phase, and a net decline after sleep. The evidence also suggests that sleep-dependent renormalization is a smart process of synaptic down-selection, comprehensive and yet specific, which could explain the many beneficial effects of sleep on cognition. Recently, a key molecular mechanism that allows broad synaptic weakening during sleep was identified. Other mechanisms still being investigated should eventually explain how sleep can weaken most synapses but afford protection to some, including those directly activated by learning. That synaptic down-selection takes place during sleep is by now established; why it should take place during sleep has a plausible explanation; how it happens is still work in progress.
Collapse
|
47
|
González-Calvo I, Iyer K, Carquin M, Khayachi A, Giuliani FA, Sigoillot SM, Vincent J, Séveno M, Veleanu M, Tahraoui S, Albert M, Vigy O, Bosso-Lefèvre C, Nadjar Y, Dumoulin A, Triller A, Bessereau JL, Rondi-Reig L, Isope P, Selimi F. Sushi domain-containing protein 4 controls synaptic plasticity and motor learning. eLife 2021; 10:65712. [PMID: 33661101 PMCID: PMC7972451 DOI: 10.7554/elife.65712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/03/2021] [Indexed: 01/28/2023] Open
Abstract
Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.
Collapse
Affiliation(s)
- Inés González-Calvo
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Keerthana Iyer
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélanie Carquin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Anouar Khayachi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Fernando A Giuliani
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Séverine M Sigoillot
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Jean Vincent
- Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Maxime Veleanu
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Sylvana Tahraoui
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélanie Albert
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Oana Vigy
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Célia Bosso-Lefèvre
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Yann Nadjar
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Andréa Dumoulin
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Jean-Louis Bessereau
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut Neuromyogène, Lyon, France
| | - Laure Rondi-Reig
- Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
48
|
Human Theta Burst Stimulation Combined with Subsequent Electroacupuncture Increases Corticospinal Excitability. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8824530. [PMID: 33424994 PMCID: PMC7773446 DOI: 10.1155/2020/8824530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022]
Abstract
Objective Intermittent theta burst stimulation (iTBS) is a widely used noninvasive brain stimulation for the facilitation of corticospinal excitability (CSE). Previous studies have shown that acupuncture applied to acupoints associated with motor function in healthy people can reduce the amplitude of the motor-evoked potentials (MEPs), which reflects the inhibition of CSE. In our work, we wanted to test whether the combination of iTBS and electroacupuncture (EA) would have different effects on CSE in humans. Methods A single-blind sham-controlled crossover design study was conducted on 20 healthy subjects. Subjects received 20 minutes' sham or real EA stimulation immediately after sham or real iTBS. MEPs, short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), cortical silent period (CSP), and central motor conduction time (CMCT) were recorded before each trial, and immediately, 20 minutes, and 40 minutes after the end of stimulation. Results In the sham iTBS group, EA produced a reduction in MEPs amplitude, lasting approximately 40 minutes, while in the real iTBS group, EA significantly increased MEPs amplitude beyond 40 minutes after the end of stimulation. In sham EA group, the recorded MEPs amplitude showed no significant trend over time compared to baseline. Among all experiments, there were no significant changes in SICI, ICF, CSP, CMCT, etc. Conclusion These data indicate that immediate application of EA after iTBS significantly increased corticospinal excitability. This trial was registered in the Chinese Clinical Trial Registry (registration no. ChiCTR1900025348).
Collapse
|
49
|
De Zeeuw CI. Bidirectional learning in upbound and downbound microzones of the cerebellum. Nat Rev Neurosci 2020; 22:92-110. [PMID: 33203932 DOI: 10.1038/s41583-020-00392-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 12/30/2022]
Abstract
Over the past several decades, theories about cerebellar learning have evolved. A relatively simple view that highlighted the contribution of one major form of heterosynaptic plasticity to cerebellar motor learning has given way to a plethora of perspectives that suggest that many different forms of synaptic and non-synaptic plasticity, acting at various sites, can control multiple types of learning behaviour. However, there still seem to be contradictions between the various hypotheses with regard to the mechanisms underlying cerebellar learning. The challenge is therefore to reconcile these different views and unite them into a single overall concept. Here I review our current understanding of the changes in the activity of cerebellar Purkinje cells in different 'microzones' during various forms of learning. I describe an emerging model that indicates that the activity of each microzone is bound to either increase or decrease during the initial stages of learning, depending on the directional and temporal demands of its downstream circuitry and the behaviour involved.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands. .,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.
| |
Collapse
|
50
|
β-Adrenergic Receptors/Epac Signaling Increases the Size of the Readily Releasable Pool of Synaptic Vesicles Required for Parallel Fiber LTP. J Neurosci 2020; 40:8604-8617. [PMID: 33046543 DOI: 10.1523/jneurosci.0716-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 01/10/2023] Open
Abstract
The second messenger cAMP is an important determinant of synaptic plasticity that is associated with enhanced neurotransmitter release. Long-term potentiation (LTP) at parallel fiber (PF)-Purkinje cell (PC) synapses depends on a Ca2+-induced increase in presynaptic cAMP that is mediated by Ca2+-sensitive adenylyl cyclases. However, the upstream signaling and the downstream targets of cAMP involved in these events remain poorly understood. It is unclear whether cAMP generated by β-adrenergic receptors (βARs) is required for PF-PC LTP, although noradrenergic varicosities are apposed in PF-PC contacts. Guanine nucleotide exchange proteins directly activated by cAMP [Epac proteins (Epac 1-2)] are alternative cAMP targets to protein kinase A (PKA) and Epac2 is abundant in the cerebellum. However, whether Epac proteins participate in PF-PC LTP is not known. Immunoelectron microscopy demonstrated that βARs are expressed in PF boutons. Moreover, activation of these receptors through their agonist isoproterenol potentiated synaptic transmission in cerebellar slices from mice of either sex, an effect that was insensitive to the PKA inhibitors (H-89, KT270) but that was blocked by the Epac inhibitor ESI 05. Interestingly, prior activation of these βARs occluded PF-PC LTP, while the β1AR antagonist metoprolol blocked PF-PC LTP, which was also absent in Epac2 -/- mice. PF-PC LTP is associated with an increase in the size of the readily releasable pool (RRP) of synaptic vesicles, consistent with the isoproterenol-induced increase in vesicle docking in cerebellar slices. Thus, the βAR-mediated modulation of the release machinery and the subsequent increase in the size of the RRP contributes to PF-PC LTP.SIGNIFICANCE STATEMENT G-protein-coupled receptors modulate the release machinery, causing long-lasting changes in synaptic transmission that influence synaptic plasticity. Nevertheless, the mechanisms underlying synaptic responses to β-adrenergic receptor (βAR) activation remain poorly understood. An increase in the number of synaptic vesicles primed for exocytosis accounts for the potentiation of neurotransmitter release driven by βARs. This effect is not mediated by the canonical protein kinase A pathway but rather, through direct activation of the guanine nucleotide exchange protein Epac by cAMP. Interestingly, this βAR signaling via Epac is involved in long term potentiation at cerebellar granule cell-to-Purkinje cell synapses. Thus, the pharmacological activation of βARs modulates synaptic plasticity and opens therapeutic opportunities to control this phenomenon.
Collapse
|