1
|
McCrea M, Reddy N, Ghobrial K, Ahearn R, Krafty R, Hitchens TK, Martinez-Gonzalez J, Modo M. Mesoscale connectivity of the human hippocampus and fimbria revealed by ex vivo diffusion MRI. Neuroimage 2025; 310:121125. [PMID: 40101867 PMCID: PMC12038723 DOI: 10.1016/j.neuroimage.2025.121125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
The human hippocampus is essential to cognition and emotional processing. Its function is defined by its connectivity. Although some pathways have been well-established, our knowledge about anterior-posterior connectivity and the distribution of fibers from major fiber bundles remains limited. Mesoscale (250 μm isotropic acquisition, upsampled to 125 μm) resolution MR images of the human temporal lobe afforded a detailed visualization of fiber tracts, including those that related anterior-posterior substructures defined as subregions (head, body, tail) and subfields (cornu ammonis 1-3, dentate gyrus) of the hippocampus. Fifty pathways were dissected between the head and body, highlighting an intricate mesh of connectivity between these two subregions. Along the body subregion, 12 lamellae were identified based on morphology and the presence of interlamellar fibers that appear to connect neighboring lamellae at the edge of the external limb of the granule cell layer (GCL). Translamellar fibers (i.e. longitudinal fibers crossing more than 2 lamellae) were also evident at the edge of the internal limb of the GCL. The dentate gyrus of the body was the main site of connectivity with the fimbria. Unique pathways were dissected within the fimbria that connected the body of the hippocampus with the amygdala and the temporal pole. A topographical segregation within the fimbria was determined by fibers' hippocampal origin, illustrating the importance of mapping the spatial distribution of fibers. Elucidating the detailed structural connectivity of the hippocampus is crucial to develop better diagnostic markers of neurological and psychiatric conditions, as well as to devise novel surgical interventions.
Collapse
Affiliation(s)
- Madeline McCrea
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Navya Reddy
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Kathryn Ghobrial
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Ryan Ahearn
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Ryan Krafty
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - T Kevin Hitchens
- Neurobiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | | | - Michel Modo
- Departments of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA.
| |
Collapse
|
2
|
Pan N, Liu S, Ge X, Zheng Y. Association of hippocampal atrophy with tau pathology of temporal regions in preclinical Alzheimer's disease. J Alzheimers Dis 2025:13872877251314785. [PMID: 39956951 DOI: 10.1177/13872877251314785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND Hippocampal atrophy is linked to memory and cognitive deficits, preceding clinical diagnosis of mild cognitive impairment (MCI) by decades. Morphometry changes in the hippocampal formation (HF) and their relationship to tau deposition in non-demented individuals remains unclear. OBJECTIVE To investigate morphometry changes in the HF and their association with tau deposition in a non-demented cohort. METHODS Eighty-three subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) underwent T1-weighted MRI and Tau-PET scans at baseline and longitudinal follow-up. Participants were divided into amyloid-negative (Aβ-) and amyloid-positive (Aβ+) groups. Hippocampal volume/thickness were measured, and associations with tau deposition in temporal regions were examined using multivariable linear regression. RESULTS No significant association was found between the hippocampal volume/thickness and tau deposition of temporal regions for the Aβ- group. For the Aβ+ group, the hippocampal thickness was significantly associated with tau deposition of entorhinal cortex (ERC) for both hemispheres, and temporal pole, inferior temporal, and middle temporal regions for right hippocampi with the longitudinal follow up scans, while no significant association with the baseline scans. It was interesting that there was strong association between the baseline tau deposition of ERC and temporal pole and the longitudinal follow up thickness of left hippocampi, while the associated regions for the right hemisphere were ERC, temporal pole, and inferior temporal regions. CONCLUSIONS Hippocampal atrophy may precede cognitive symptoms, with tau deposition in adjacent temporal regions contributing to hippocampal changes. The right HF appears more vulnerable than the left, indicating hemispheric differences in pathology.
Collapse
Affiliation(s)
- Ningning Pan
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, China
| | - Shujuan Liu
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, China
| | - Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
3
|
Cassarà AM, Newton TH, Zhuang K, Regel SJ, Achermann P, Pascual‐Leone A, Kuster N, Neufeld E. Recommendations for the Safe Application of Temporal Interference Stimulation in the Human Brain Part I: Principles of Electrical Neuromodulation and Adverse Effects. Bioelectromagnetics 2025; 46:e22542. [PMID: 39921360 PMCID: PMC11806287 DOI: 10.1002/bem.22542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/02/2025] [Indexed: 02/10/2025]
Abstract
Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, non-invasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and non-clinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. In order to inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations. To this end, we undertook a two-part effort to determine frequency-dependent thresholds for applied currents below which TIS is unlikely to pose risk to humans in terms of heating or unwanted stimulation. Part I of this effort, described here, comprises a summary of the current knowledge pertaining to the safety of TIS and related techniques. Specifically, we provide: i) a broad overview of the electrophysiological impacts neurostimulation, ii) a review of the (bio-)physical principles underlying the mechanisms of action of transcranial alternating/direct stimulation (tACS/tDCS), deep brain stimulation (DBS), and TIS, and iii) a comprehensive survey of the adverse effects (AEs) associated with each technique as reported in the scientific literature and regulatory and clinical databases. In Part II, we perform an in silico study to determine field exposure metrics for tDCS/tACS and DBS under normal (safe) operating conditions and infer frequency-dependent current thresholds for TIS that result in equivalent levels of exposure.
Collapse
Affiliation(s)
- Antonino M. Cassarà
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | - Taylor H. Newton
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | - Katie Zhuang
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | | | - Peter Achermann
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
| | - Alvaro Pascual‐Leone
- TI Solutions AGZurichSwitzerland
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLifeBostonMassachusettsUSA
| | - Niels Kuster
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
- TI Solutions AGZurichSwitzerland
- Department of Information Technology and Electrical EngineeringETH ZurichZurichSwitzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in SocietyZurichSwitzerland
- TI Solutions AGZurichSwitzerland
| |
Collapse
|
4
|
Hollearn MK, Manns JR, Blanpain LT, Hamann SB, Bijanki K, Gross RE, Drane DL, Campbell JM, Wahlstrom KL, Light GF, Tasevac A, Demarest P, Brunner P, Willie JT, Inman CS. Exploring individual differences in amygdala-mediated memory modulation. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:188-209. [PMID: 39702728 DOI: 10.3758/s13415-024-01250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Amygdala activation by emotional arousal during memory formation can prioritize events for long-term memory. Building upon our prior demonstration that brief electrical stimulation to the human amygdala reliably improved long-term recognition memory for images of neutral objects without eliciting an emotional response, our study aims to explore and describe individual differences and stimulation-related factors in amygdala-mediated memory modulation. Thirty-one patients undergoing intracranial monitoring for intractable epilepsy were shown neutral object images paired with direct amygdala stimulation during encoding with recognition memory tested immediately and one day later. Adding to our prior sample, we found an overall memory enhancement effect without subjective emotional arousal at the one-day delay, but not at the immediate delay, for previously stimulated objects compared to not stimulated objects. Importantly, we observed a larger variation in performance across this larger sample than our initial sample, including some participants who showed a memory impairment for stimulated objects. Of the explored individual differences, the factor that most accounted for variability in memory modulation was each participant's pre-operative memory performance. Worse memory performance on standardized neuropsychological tests was associated with a stronger susceptibility to memory modulation in a positive or negative direction. Sex differences and the frequency of interictal epileptiform discharges (IEDs) during testing also accounted for some variance in amygdala-mediated memory modulation. Given the potential and challenges of this memory modulation approach, we discuss additional individual and stimulation factors that we hope will differentiate between memory enhancement and impairment to further optimize the potential of amygdala-mediated memory enhancement for therapeutic interventions.
Collapse
Affiliation(s)
- Martina K Hollearn
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA
| | | | - Lou T Blanpain
- Neuroscience, Emory School of Medicine, Atlanta, GA, USA
| | | | - Kelly Bijanki
- Neurosurgery, Baylor College of Medicine, Huston, TX, USA
| | - Robert E Gross
- Neurosurgery, Emory School of Medicine, Atlanta, GA, USA
| | | | - Justin M Campbell
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Krista L Wahlstrom
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA
| | - Griffin F Light
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA
| | - Aydin Tasevac
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA
| | - Phillip Demarest
- Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peter Brunner
- Neurosurgery, Washington University School of Medicine, Saint Louis, MO, USA
- Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jon T Willie
- Neurosurgery, Washington University School of Medicine, Saint Louis, MO, USA
- Barnes-Jewish Hospital, Saint Louis, MO, USA
| | - Cory S Inman
- Department of Psychology, University of Utah, 380 S 1530 E BEH S 502, Salt Lake City, UT, 84112, USA.
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Arulchelvan E, Vanneste S. Transcutaneous electrical stimulation enhances episodic memory encoding via a noradrenaline-attention network, with associated neuroinflammatory changes. Brain Stimul 2025; 18:191-207. [PMID: 39827981 DOI: 10.1016/j.brs.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Attention plays a central role in learning and memory processes. Prior research has demonstrated how goal-directed attention influences successful performance on both attention and working memory tasks. However, an important question remains about whether long-term memory outcomes can be reliably enhanced by targeting attention processes. OBJECTIVE To test the hypothesis that 40 Hz Non-invasive Transcutaneous Electrical Stimulation of the Greater Occipital Nerve (NITESGON) would enhance long-term memory encoding by upregulating theta activity in the dorsal attention network. We also hypothesised that this would be in association with upregulated noradrenaline activity and downregulated cytokine activity. METHODS In two double-blinded experiments, learning and memory were tested via a Swahili-English word-association task completed on 2 visits (separated by 1 week). 60 individuals were randomized to assess 40 Hz NITESGON's effect compared to active-control (1 Hz) or sham conditions. Before and after stimulation, rs-EEG assessed theta activity in the dorsal attention network, and saliva measures were collected incl. salivary alpha amylase (sAA; a proxy for noradrenaline activity) and cytokines (IL-6, IL-1β and TNF-α). RESULTS Participants receiving 40 Hz NITESGON learned and remembered more words than control or sham groups. There were no significant differences in consolidation between the groups. 40 Hz NITESGON was associated with increased theta activity in the dorsal attention network, and this activation was associated with enhanced learning but not memory performance. The 40 Hz NITESGON group had significantly upregulated sAA post-stimulation, with this associated with learning and memory (supporting a LC-NA mechanism). Modulation of IL-1β and TNF-α were not frequency specific. However, modulation of IL-6 was specific to 40 Hz and was associated with memory outcomes. CONCLUSION 40 Hz NITESGON can activate a noradrenaline - dorsal attention network, to facilitate goal-directed attention during encoding stages of a long-term memory task, in association with neuroinflammatory changes.
Collapse
Affiliation(s)
- Elva Arulchelvan
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Xu S, Liu Y, Lee H, Li W. Neural interfaces: Bridging the brain to the world beyond healthcare. EXPLORATION (BEIJING, CHINA) 2024; 4:20230146. [PMID: 39439491 PMCID: PMC11491314 DOI: 10.1002/exp.20230146] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Neural interfaces, emerging at the intersection of neurotechnology and urban planning, promise to transform how we interact with our surroundings and communicate. By recording and decoding neural signals, these interfaces facilitate direct connections between the brain and external devices, enabling seamless information exchange and shared experiences. Nevertheless, their development is challenged by complexities in materials science, electrochemistry, and algorithmic design. Electrophysiological crosstalk and the mismatch between electrode rigidity and tissue flexibility further complicate signal fidelity and biocompatibility. Recent closed-loop brain-computer interfaces, while promising for mood regulation and cognitive enhancement, are limited by decoding accuracy and the adaptability of user interfaces. This perspective outlines these challenges and discusses the progress in neural interfaces, contrasting non-invasive and invasive approaches, and explores the dynamics between stimulation and direct interfacing. Emphasis is placed on applications beyond healthcare, highlighting the need for implantable interfaces with high-resolution recording and stimulation capabilities.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Yang Liu
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hyunjin Lee
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Weidong Li
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
7
|
Mohan UR, Jacobs J. Why does invasive brain stimulation sometimes improve memory and sometimes impair it? PLoS Biol 2024; 22:e3002894. [PMID: 39453948 PMCID: PMC11616832 DOI: 10.1371/journal.pbio.3002894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/04/2024] [Indexed: 10/27/2024] Open
Abstract
Invasive brain stimulation is used to treat individuals with episodic memory loss; however, studies to date report both enhancement and impairment of memory. This Essay discusses the sources of this variability, and suggests a path towards developing customized stimulation protocols for more consistent memory enhancement.
Collapse
Affiliation(s)
- Uma R. Mohan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States of America
- Department of Neurological Surgery, Columbia University, New York City, New York, United States of America
| |
Collapse
|
8
|
Adam CD, Mirzakhalili E, Gagnon KG, Cottone C, Arena JD, Ulyanova AV, Johnson VE, Wolf JA. Disrupted Hippocampal Theta-Gamma Coupling and Spike-Field Coherence Following Experimental Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596704. [PMID: 39314320 PMCID: PMC11418945 DOI: 10.1101/2024.05.30.596704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Traumatic brain injury (TBI) often results in persistent learning and memory deficits, likely due to disrupted hippocampal circuitry underlying these processes. Precise temporal control of hippocampal neuronal activity is important for memory encoding and retrieval and is supported by oscillations that dynamically organize single unit firing. Using high-density laminar electrophysiology, we discovered a loss of oscillatory power across CA1 lamina, with a profound, layer-specific reduction in theta-gamma phase amplitude coupling in injured rats. Interneurons from injured animals were less strongly entrained to theta and gamma oscillations, suggesting a mechanism for the loss of coupling, while pyramidal cells were entrained to a later phase of theta. During quiet immobility, we report decreased ripple amplitudes from injured animals during sharp-wave ripple events. These results reveal deficits in information encoding and retrieval schemes essential to cognition that likely underlie TBI-associated learning and memory impairments, and elucidate potential targets for future neuromodulation therapies.
Collapse
Affiliation(s)
- Christopher D Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Ehsan Mirzakhalili
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Kimberly G Gagnon
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John D Arena
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Alexandra V Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| |
Collapse
|
9
|
Hadar PN, Zelmann R, Salami P, Cash SS, Paulk AC. The Neurostimulationist will see you now: prescribing direct electrical stimulation therapies for the human brain in epilepsy and beyond. Front Hum Neurosci 2024; 18:1439541. [PMID: 39296917 PMCID: PMC11408201 DOI: 10.3389/fnhum.2024.1439541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
As the pace of research in implantable neurotechnology increases, it is important to take a step back and see if the promise lives up to our intentions. While direct electrical stimulation applied intracranially has been used for the treatment of various neurological disorders, such as Parkinson's, epilepsy, clinical depression, and Obsessive-compulsive disorder, the effectiveness can be highly variable. One perspective is that the inability to consistently treat these neurological disorders in a standardized way is due to multiple, interlaced factors, including stimulation parameters, location, and differences in underlying network connectivity, leading to a trial-and-error stimulation approach in the clinic. An alternate view, based on a growing knowledge from neural data, is that variability in this input (stimulation) and output (brain response) relationship may be more predictable and amenable to standardization, personalization, and, ultimately, therapeutic implementation. In this review, we assert that the future of human brain neurostimulation, via direct electrical stimulation, rests on deploying standardized, constrained models for easier clinical implementation and informed by intracranial data sets, such that diverse, individualized therapeutic parameters can efficiently produce similar, robust, positive outcomes for many patients closer to a prescriptive model. We address the pathway needed to arrive at this future by addressing three questions, namely: (1) why aren't we already at this prescriptive future?; (2) how do we get there?; (3) how far are we from this Neurostimulationist prescriptive future? We first posit that there are limited and predictable ways, constrained by underlying networks, for direct electrical stimulation to induce changes in the brain based on past literature. We then address how identifying underlying individual structural and functional brain connectivity which shape these standard responses enable targeted and personalized neuromodulation, bolstered through large-scale efforts, including machine learning techniques, to map and reverse engineer these input-output relationships to produce a good outcome and better identify underlying mechanisms. This understanding will not only be a major advance in enabling intelligent and informed design of neuromodulatory therapeutic tools for a wide variety of neurological diseases, but a shift in how we can predictably, and therapeutically, prescribe stimulation treatments the human brain.
Collapse
Affiliation(s)
- Peter N Hadar
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
10
|
Liufu M, Leveroni ZM, Shridhar S, Zhou N, Yu JY. Optimizing real-time phase detection in diverse rhythmic biological signals for phase-specific neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609522. [PMID: 39253473 PMCID: PMC11383035 DOI: 10.1101/2024.08.24.609522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Closed-loop, phase-specific neurostimulation is a powerful method to modulate ongoing brain activity for clinical and research applications. Phase-specific stimulation relies on estimating the phase of an ongoing oscillation in real time and issuing a control command at a target phase. Phase detection algorithms based on Fast Fourier transform (FFT) are widely used due to their computational efficiency and robustness. However, it is unclear how algorithm performance depends on the spectral properties of the input signal and how algorithm parameters can be optimized. We used offline simulation to evaluate the performance of three algorithms (endpoint-corrected Hilbert Transform, Hilbert Transform and phase mapping) on three rhythmic biological signals with distinct spectral properties (rodent hippocampal theta potential, human EEG alpha and human essential tremor). First, we found that algorithm performance was more strongly influenced by signal amplitude and frequency variation compared with signal to noise ratio. Second, our simulations showed that the size of the data window for phase estimation was critical for the performance of FFT-based algorithms, where the optimal data window corresponds to the period of the oscillation. We validated this prediction with real time phase detection of hippocampal theta oscillations in freely behaving rats performing spatial navigation. Our findings define the relationship between signal properties and algorithm performance and provide a convenient method for optimizing FFT-based phase detection algorithms.
Collapse
|
11
|
Deng Q, Wu C, Parker E, Liu TCY, Duan R, Yang L. Microglia and Astrocytes in Alzheimer's Disease: Significance and Summary of Recent Advances. Aging Dis 2024; 15:1537-1564. [PMID: 37815901 PMCID: PMC11272214 DOI: 10.14336/ad.2023.0907] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease, one of the most common forms of dementia, is characterized by a slow progression of cognitive impairment and neuronal loss. Currently, approved treatments for AD are hindered by various side effects and limited efficacy. Despite considerable research, practical treatments for AD have not been developed. Increasing evidence shows that glial cells, especially microglia and astrocytes, are essential in the initiation and progression of AD. During AD progression, activated resident microglia increases the ability of resting astrocytes to transform into reactive astrocytes, promoting neurodegeneration. Extensive clinical and molecular studies show the involvement of microglia and astrocyte-mediated neuroinflammation in AD pathology, indicating that microglia and astrocytes may be potential therapeutic targets for AD. This review will summarize the significant and recent advances of microglia and astrocytes in the pathogenesis of AD in three parts. First, we will review the typical pathological changes of AD and discuss microglia and astrocytes in terms of function and phenotypic changes. Second, we will describe microglia and astrocytes' physiological and pathological role in AD. These roles include the inflammatory response, "eat me" and "don't eat me" signals, Aβ seeding, propagation, clearance, synapse loss, synaptic pruning, remyelination, and demyelination. Last, we will review the pharmacological and non-pharmacological therapies targeting microglia and astrocytes in AD. We conclude that microglia and astrocytes are essential in the initiation and development of AD. Therefore, understanding the new role of microglia and astrocytes in AD progression is critical for future AD studies and clinical trials. Moreover, pharmacological, and non-pharmacological therapies targeting microglia and astrocytes, with specific studies investigating microglia and astrocyte-mediated neuronal damage and repair, may be a promising research direction for future studies regarding AD treatment and prevention.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Wang L, Yang Z, Satoshi F, Prasanna X, Yan Z, Vihinen H, Chen Y, Zhao Y, He X, Bu Q, Li H, Zhao Y, Jiang L, Qin F, Dai Y, Zhang N, Qin M, Kuang W, Zhao Y, Jokitalo E, Vattulainen I, Kajander T, Zhao H, Cen X. Membrane remodeling by FAM92A1 during brain development regulates neuronal morphology, synaptic function, and cognition. Nat Commun 2024; 15:6209. [PMID: 39043703 PMCID: PMC11266426 DOI: 10.1038/s41467-024-50565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
The Bin/Amphiphysin/Rvs (BAR) domain protein FAM92A1 is a multifunctional protein engaged in regulating mitochondrial ultrastructure and ciliogenesis, but its physiological role in the brain remains unclear. Here, we show that FAM92A1 is expressed in neurons starting from embryonic development. FAM92A1 knockout in mice results in altered brain morphology and age-associated cognitive deficits, potentially due to neuronal degeneration and disrupted synaptic plasticity. Specifically, FAM92A1 deficiency impairs diverse neuronal membrane morphology, including the mitochondrial inner membrane, myelin sheath, and synapses, indicating its roles in membrane remodeling and maintenance. By determining the crystal structure of the FAM92A1 BAR domain, combined with atomistic molecular dynamics simulations, we uncover that FAM92A1 interacts with phosphoinositide- and cardiolipin-containing membranes to induce lipid-clustering and membrane curvature. Altogether, these findings reveal the physiological role of FAM92A1 in the brain, highlighting its impact on synaptic plasticity and neural function through the regulation of membrane remodeling and endocytic processes.
Collapse
Affiliation(s)
- Liang Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Ziyun Yang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Fudo Satoshi
- Helsinki Institute of Life Science - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Xavier Prasanna
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ziyi Yan
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Helena Vihinen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Yaxing Chen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yue Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiumei He
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China
| | - Qian Bu
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongchun Li
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ying Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Linhong Jiang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Feng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yanping Dai
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ni Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Weihong Kuang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yinglan Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Eija Jokitalo
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Tommi Kajander
- Helsinki Institute of Life Science - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
- School of Life Sciences, Guangxi Normal University, Guilin, China.
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.
| | - Xiaobo Cen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Karimani F, Asgari Taei A, Abolghasemi-Dehaghani MR, Safari MS, Dargahi L. Impairment of entorhinal cortex network activity in Alzheimer's disease. Front Aging Neurosci 2024; 16:1402573. [PMID: 38882526 PMCID: PMC11176617 DOI: 10.3389/fnagi.2024.1402573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
The entorhinal cortex (EC) stands out as a critical brain region affected in the early phases of Alzheimer's disease (AD), with some of the disease's pathological processes originating from this area, making it one of the most crucial brain regions in AD. Recent research highlights disruptions in the brain's network activity, characterized by heightened excitability and irregular oscillations, may contribute to cognitive impairment. These disruptions are proposed not only as potential therapeutic targets but also as early biomarkers for AD. In this paper, we will begin with a review of the anatomy and function of EC, highlighting its selective vulnerability in AD. Subsequently, we will discuss the disruption of EC network activity, exploring changes in excitability and neuronal oscillations in this region during AD and hypothesize that, considering the advancements in neuromodulation techniques, addressing the disturbances in the network activity of the EC could offer fresh insights for both the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Farnaz Karimani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mir-Shahram Safari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Rapaka D, Tebogo MO, Mathew EM, Adiukwu PC, Bitra VR. Targeting papez circuit for cognitive dysfunction- insights into deep brain stimulation for Alzheimer's disease. Heliyon 2024; 10:e30574. [PMID: 38726200 PMCID: PMC11079300 DOI: 10.1016/j.heliyon.2024.e30574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Hippocampus is the most widely studied brain area coupled with impairment of memory in a variety of neurological diseases and Alzheimer's disease (AD). The limbic structures within the Papez circuit have been linked to various aspects of cognition. Unfortunately, the brain regions that include this memory circuit are often ignored in terms of understanding cognitive decline in these diseases. To properly comprehend where cognition problems originate, it is crucial to clarify any aberrant contributions from all components of a specific circuit -on both a local and a global level. The pharmacological treatments currently available are not long lasting. Deep Brain Stimulation (DBS) emerged as a new powerful therapeutic approach for alleviation of the cognitive dysfunctions. Metabolic, functional, electrophysiological, and imaging studies helped to find out the crucial nodes that can be accessible for DBS. Targeting these nodes within the memory circuit produced significant improvement in learning and memory by disrupting abnormal circuit activity and restoring the physiological network. Here, we provide an overview of the neuroanatomy of the circuit of Papez along with the mechanisms and various deep brain stimulation targets of the circuit structures which could be significant for improving cognitive dysfunctions in AD.
Collapse
Affiliation(s)
| | - Motshegwana O. Tebogo
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| | - Elizabeth M. Mathew
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| | | | - Veera Raghavulu Bitra
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| |
Collapse
|
15
|
Wischnewski M, Berger TA, Opitz A, Alekseichuk I. Causal functional maps of brain rhythms in working memory. Proc Natl Acad Sci U S A 2024; 121:e2318528121. [PMID: 38536752 PMCID: PMC10998564 DOI: 10.1073/pnas.2318528121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Experimental Psychology, University of Groningen, Groningen9712TS, The Netherlands
| | - Taylor A. Berger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
16
|
Roeder BM, She X, Dakos AS, Moore B, Wicks RT, Witcher MR, Couture DE, Laxton AW, Clary HM, Popli G, Liu C, Lee B, Heck C, Nune G, Gong H, Shaw S, Marmarelis VZ, Berger TW, Deadwyler SA, Song D, Hampson RE. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall of stimulus features and categories. Front Comput Neurosci 2024; 18:1263311. [PMID: 38390007 PMCID: PMC10881797 DOI: 10.3389/fncom.2024.1263311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Objective Here, we demonstrate the first successful use of static neural stimulation patterns for specific information content. These static patterns were derived by a model that was applied to a subject's own hippocampal spatiotemporal neural codes for memory. Approach We constructed a new model of processes by which the hippocampus encodes specific memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of targeted content into short-term memory. A memory decoding model (MDM) of hippocampal CA3 and CA1 neural firing was computed which derives a stimulation pattern for CA1 and CA3 neurons to be applied during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results MDM electrical stimulation delivered to the CA1 and CA3 locations in the hippocampus during the sample phase of DMS trials facilitated memory of images from the DMS task during a delayed recognition (DR) task that also included control images that were not from the DMS task. Across all subjects, the stimulated trials exhibited significant changes in performance in 22.4% of patient and category combinations. Changes in performance were a combination of both increased memory performance and decreased memory performance, with increases in performance occurring at almost 2 to 1 relative to decreases in performance. Across patients with impaired memory that received bilateral stimulation, significant changes in over 37.9% of patient and category combinations was seen with the changes in memory performance show a ratio of increased to decreased performance of over 4 to 1. Modification of memory performance was dependent on whether memory function was intact or impaired, and if stimulation was applied bilaterally or unilaterally, with nearly all increase in performance seen in subjects with impaired memory receiving bilateral stimulation. Significance These results demonstrate that memory encoding in patients with impaired memory function can be facilitated for specific memory content, which offers a stimulation method for a future implantable neural prosthetic to improve human memory.
Collapse
Affiliation(s)
- Brent M Roeder
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Xiwei She
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Alexander S Dakos
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Bryan Moore
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Robert T Wicks
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- Johns Hopkins Children's Center, Baltimore, MD, United States
| | - Mark R Witcher
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, United States
| | - Daniel E Couture
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Adrian W Laxton
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | | | - Gautam Popli
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Charles Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- USC Keck Memorial Hospital, Los Angeles, CA, United States
| | - Brian Lee
- USC Keck Memorial Hospital, Los Angeles, CA, United States
| | - Christianne Heck
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- USC Keck Memorial Hospital, Los Angeles, CA, United States
| | - George Nune
- USC Keck Memorial Hospital, Los Angeles, CA, United States
| | - Hui Gong
- Rancho Los Amigos National Rehabilitation Hospital, Los Angeles, CA, United States
| | - Susan Shaw
- Rancho Los Amigos National Rehabilitation Hospital, Los Angeles, CA, United States
| | - Vasilis Z Marmarelis
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W Berger
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Sam A Deadwyler
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Robert E Hampson
- Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| |
Collapse
|
17
|
Paschen E, Kleis P, Vieira DM, Heining K, Boehler C, Egert U, Häussler U, Haas CA. On-demand low-frequency stimulation for seizure control: efficacy and behavioural implications. Brain 2024; 147:505-520. [PMID: 37675644 DOI: 10.1093/brain/awad299] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Mesial temporal lobe epilepsy (MTLE), the most common form of focal epilepsy in adults, is often refractory to medication and associated with hippocampal sclerosis. Deep brain stimulation represents an alternative treatment option for drug-resistant patients who are ineligible for resective brain surgery. In clinical practice, closed-loop stimulation at high frequencies is applied to interrupt ongoing seizures, yet has (i) a high incidence of false detections; (ii) the drawback of delayed seizure-suppressive intervention; and (iii) limited success in sclerotic tissue. As an alternative, low-frequency stimulation (LFS) has been explored recently in patients with focal epilepsies. In preclinical epilepsy models, hippocampal LFS successfully prevented seizures when applied continuously. Since it would be advantageous to reduce the stimulation load, we developed a protocol for on-demand LFS. Given the importance of the hippocampus for navigation and memory, we investigated potential consequences of LFS on hippocampal function. To this end, we used the intrahippocampal kainate mouse model, which recapitulates the key features of MTLE, including spontaneous seizure activity and hippocampal sclerosis. Specifically, our online detection algorithm monitored epileptiform activity in hippocampal local field potential recordings and identified short epileptiform bursts preceding focal seizure clusters, triggering hippocampal LFS to stabilize the network state. To probe behavioural performance, we tested the acute influence of LFS on anxiety-like behaviour in the light-dark box test, spatial and non-spatial memory in the object location memory and novel object recognition test, as well as spatial navigation and long-term memory in the Barnes maze. On-demand LFS was almost as effective as continuous LFS in preventing focal seizure clusters but with a significantly lower stimulation load. When we compared the behavioural performance of chronically epileptic mice to healthy controls, we found that both groups were equally mobile, but epileptic mice displayed an increased anxiety level, altered spatial learning strategy and impaired memory performance. Most importantly, with the application of hippocampal LFS before behavioural training and test sessions, we could rule out deleterious effects on cognition and even show an alleviation of deficits in long-term memory recall in chronically epileptic mice. Taken together, our findings may provide a promising alternative to current therapies, overcoming some of their major limitations, and inspire further investigation of LFS for seizure control in focal epilepsy syndromes.
Collapse
Affiliation(s)
- Enya Paschen
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Piret Kleis
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Diego M Vieira
- Biomicrotechnology, Department of Microsystems Engineering-IMTEK, Faculty of Engineering, University of Freiburg, Freiburg 79108, Germany
| | - Katharina Heining
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Christian Boehler
- Department of Microsystems Engineering (IMTEK), Bioelectronic Microtechnology (BEMT), University of Freiburg, Freiburg 79108, Germany
| | - Ulrich Egert
- Biomicrotechnology, Department of Microsystems Engineering-IMTEK, Faculty of Engineering, University of Freiburg, Freiburg 79108, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg 79110, Germany
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg 79110, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg 79110, Germany
| |
Collapse
|
18
|
Lee K, Paulk AC, Ro YG, Cleary DR, Tonsfeldt KJ, Kfir Y, Pezaris JS, Tchoe Y, Lee J, Bourhis AM, Vatsyayan R, Martin JR, Russman SM, Yang JC, Baohan A, Richardson RM, Williams ZM, Fried SI, Hoi Sang U, Raslan AM, Ben-Haim S, Halgren E, Cash SS, Dayeh SA. Flexible, scalable, high channel count stereo-electrode for recording in the human brain. Nat Commun 2024; 15:218. [PMID: 38233418 PMCID: PMC10794240 DOI: 10.1038/s41467-023-43727-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Over the past decade, stereotactically placed electrodes have become the gold standard for deep brain recording and stimulation for a wide variety of neurological and psychiatric diseases. Current electrodes, however, are limited in their spatial resolution and ability to record from small populations of neurons, let alone individual neurons. Here, we report on an innovative, customizable, monolithically integrated human-grade flexible depth electrode capable of recording from up to 128 channels and able to record at a depth of 10 cm in brain tissue. This thin, stylet-guided depth electrode is capable of recording local field potentials and single unit neuronal activity (action potentials), validated across species. This device represents an advance in manufacturing and design approaches which extends the capabilities of a mainstay technology in clinical neurology.
Collapse
Affiliation(s)
- Keundong Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Angelique C Paulk
- Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Yun Goo Ro
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel R Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Karen J Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yoav Kfir
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - John S Pezaris
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrew M Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joel R Martin
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Samantha M Russman
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Amy Baohan
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - R Mark Richardson
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ziv M Williams
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Shelley I Fried
- Department of Neurosurgery, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - U Hoi Sang
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sharona Ben-Haim
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Eric Halgren
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sydney S Cash
- Department of Neurology, Harvard Medical School, Boston, MA, 02114, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Shadi A Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
19
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. Cereb Cortex 2024; 34:bhad427. [PMID: 38041253 PMCID: PMC10793570 DOI: 10.1093/cercor/bhad427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/03/2023] Open
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown, CT 06459, USA
| | - James E Kragel
- Dept. of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ethan A Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley C Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Joshua P Aronson
- Dept. of Neurosurgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Barbara C Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Robert E Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta, GA 30322, USA
| | - Michael R Sperling
- Dept. of Neurology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Sameer A Sheth
- Dept. of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel S Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Chen Y, Fernandez Z, Scheel N, Gifani M, Zhu DC, Counts SE, Dorrance AM, Razansky D, Yu X, Qian W, Qian C. Novel inductively coupled ear-bars (ICEs) to enhance restored fMRI signal from susceptibility compensation in rats. Cereb Cortex 2024; 34:bhad479. [PMID: 38100332 PMCID: PMC10793587 DOI: 10.1093/cercor/bhad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Functional magnetic resonance imaging faces inherent challenges when applied to deep-brain areas in rodents, e.g. entorhinal cortex, due to the signal loss near the ear cavities induced by susceptibility artifacts and reduced sensitivity induced by the long distance from the surface array coil. Given the pivotal roles of deep brain regions in various diseases, optimized imaging techniques are needed. To mitigate susceptibility-induced signal losses, we introduced baby cream into the middle ear. To enhance the detection sensitivity of deep brain regions, we implemented inductively coupled ear-bars, resulting in approximately a 2-fold increase in sensitivity in entorhinal cortex. Notably, the inductively coupled ear-bar can be seamlessly integrated as an add-on device, without necessitating modifications to the scanner interface. To underscore the versatility of inductively coupled ear-bars, we conducted echo-planner imaging-based task functional magnetic resonance imaging in rats modeling Alzheimer's disease. As a proof of concept, we also demonstrated resting-state-functional magnetic resonance imaging connectivity maps originating from the left entorhinal cortex-a central hub for memory and navigation networks-to amygdala hippocampal area, Insular Cortex, Prelimbic Systems, Cingulate Cortex, Secondary Visual Cortex, and Motor Cortex. This work demonstrates an optimized procedure for acquiring large-scale networks emanating from a previously challenging seed region by conventional magnetic resonance imaging detectors, thereby facilitating improved observation of functional magnetic resonance imaging outcomes.
Collapse
Affiliation(s)
- Yi Chen
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen 72076, Germany
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Zachary Fernandez
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Norman Scheel
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Mahsa Gifani
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Scott E Counts
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Family Medicine, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI 49508, United States
- Michigan Alzheimer’s Disease Research Center, Ann Arbor, MI 48105, United States
| | - Anne M Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich 8006, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Institute for Biomedical Engineering, , Zurich 8092, Switzerland
- Zurich Neuroscience Center, Zurich 8057, Switzerland
| | - Xin Yu
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02114, United States
| | - Wei Qian
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - Chunqi Qian
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
21
|
Modo M, Sparling K, Novotny J, Perry N, Foley LM, Hitchens TK. Mapping mesoscale connectivity within the human hippocampus. Neuroimage 2023; 282:120406. [PMID: 37827206 PMCID: PMC10623761 DOI: 10.1016/j.neuroimage.2023.120406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
The connectivity of the hippocampus is essential to its functions. To gain a whole system view of intrahippocampal connectivity, ex vivo mesoscale (100 μm isotropic resolution) multi-shell diffusion MRI (11.7T) and tractography were performed on entire post-mortem human right hippocampi. Volumetric measurements indicated that the head region was largest followed by the body and tail regions. A unique anatomical organization in the head region reflected a complex organization of the granule cell layer (GCL) of the dentate gyrus. Tractography revealed the volumetric distribution of the perforant path, including both the tri-synaptic and temporoammonic pathways, as well as other well-established canonical connections, such as Schaffer collaterals. Visualization of the perforant path provided a means to verify the borders between the pro-subiculum and CA1, as well as between CA1/CA2. A specific angularity of different layers of fibers in the alveus was evident across the whole sample and allowed a separation of afferent and efferent connections based on their origin (i.e. entorhinal cortex) or destination (i.e. fimbria) using a cluster analysis of streamlines. Non-canonical translamellar connections running along the anterior-posterior axis were also discerned in the hilus. In line with "dentations" of the GCL, mossy fibers were bunching together in the sagittal plane revealing a unique lamellar organization and connections between these. In the head region, mossy fibers projected to the origin of the fimbria, which was distinct from the body and tail region. Mesoscale tractography provides an unprecedented systems view of intrahippocampal connections that underpin cognitive and emotional processing.
Collapse
Affiliation(s)
- Michel Modo
- Department of Radiology; Department of BioEngineering; McGowan Institute for Regenerative Medicine; Centre for Neuroscience University of Pittsburgh (CNUP); Centre for the Neural Basis of Cognition (CNBC).
| | | | | | | | | | - T Kevin Hitchens
- Small Animal Imaging Center; Departmnet of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| |
Collapse
|
22
|
Wang Z, Zou J, Zhang L, Ning J, Zhang X, Jiang B, Liang Y, Zhang Y. The impact of early adversity on the cerebral cortex - a Mendelian randomization study. Front Neurosci 2023; 17:1283159. [PMID: 37965215 PMCID: PMC10641447 DOI: 10.3389/fnins.2023.1283159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Background The early adversity is associated with a series of negative outcomes in adulthood, and the impact on the cerebral cortex may be one of the fundamental causes of these adverse consequences in adulthood. In this study, we aim to investigate the causal relationship between early adversity and changes in cerebral cortex structure using Mendelian randomization (MR) analysis. Methods The GWAS summary statistics of 6 early adversity traits were obtained from individuals of European ancestry in the UK Biobank. The GWAS summary statistics of 34 known functional cortical regions were obtained from the ENIGMA Consortium. Causal relationships between the adversity factors and brain cortical structure were assessed using the inverse-variance weighted (IVW), MR-Egger, and weighted median methods, with IVW being the primary evaluation method. Cochran's Q-test, MR-PRESSO, leave-one-out analysis, and funnel plot examination were employed to detect potential heterogeneity and pleiotropy, as well as to identify and exclude outliers. Results At a global level, no causal relationship was found between early adversity and cortical thickness (TH) or surface area (SA) of the brain. However, at the regional level, early adversity was found to potentially influence the TH of the caudal anterior cingulate, superior temporal, entorhinal, paracentral, lateral occipital, banks of the superior temporal sulcus, and supramarginal regions, as well as the SA of the pars triangularis, lateral occipital, parahippocampal, medial orbitofrontal, and isthmus cingulate regions. All findings were nominally significant and passed sensitivity analyses, with no significant heterogeneity or pleiotropy detected. Discussion Our study provides evidence for the association between early adversity and alterations in brain cortical structure, which may serve as a foundation for certain mental disorders. Furthermore, magnetic resonance imaging (MRI) might be considered as a promising tool to aid healthcare professionals in identifying individuals with a history of adverse experiences, allowing for early interventions.
Collapse
Affiliation(s)
- Zhen Wang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Jing Zou
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Le Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Jinghua Ning
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Xin Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan (Cultivation), Dali, Yunnan, China
| | - Yi Liang
- Princess Margaret Cancer Centre, University Health Network, TMDT-MaRS Centre, Toronto, ON, Canada
| | - Yuzhe Zhang
- College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
23
|
Sjöberg RL. Brain stimulation and elicited memories. Acta Neurochir (Wien) 2023; 165:2737-2745. [PMID: 35804269 PMCID: PMC10542740 DOI: 10.1007/s00701-022-05307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Since the late 1930s, electric brain stimulation (EBS) in awake patients has been known to occasionally elicit patient descriptions of a form of memory flashbacks, known as experiential phenomena. One understanding of these sensations are as caused by an augmentation of the capacity for memory retrieval. However, an alternative hypothesis holds that memory flashbacks during EBS are "synthetic constructions" in the form of mental events, falsely interpreted as memories. METHODS A critical narrative review is used to discuss the false memory hypothesis in relation to the current empirical literature and source attribution theory. RESULTS EBS as well as situational demands in the form of interaction between patient and neurosurgeon may both lead to the creation of mental events and influence their interpretation in a way that may create false memories. The false memory hypothesis provides a potential explanation for several apparent inconsistencies in the current literature such as (a) the fragmented nature of experiential reports, (b) the ability of EBS to induce memory retrieval errors in controlled studies, (c) that Penfield's elicitations of experiential phenomena are so rarely replicated in the modern era, and (d) the limited utility of techniques that elicit experiential phenomena in the treatment of memory disorders. CONCLUSIONS The hypothesis that experiential phenomena may largely be "synthetic constructions" deserves serious consideration by neurosurgeons.
Collapse
Affiliation(s)
- Rickard L Sjöberg
- Department of Clinical Science, Umeå University, Umeå, Sweden.
- Department of Clinical Science, Neurosciences, Umeå University, S901 85, Umeå, Sweden.
| |
Collapse
|
24
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550851. [PMID: 37609181 PMCID: PMC10441352 DOI: 10.1101/2023.07.27.550851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown CT 06459
| | | | - Ethan A. Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Bradley C. Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas TX 75390
| | - Joshua P. Aronson
- Dept. of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Barbara C. Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Robert E. Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta GA 30322
| | - Michael R. Sperling
- Dept. of Neurology, Thomas Jefferson University Hospital, Philadelphia PA 19107
| | | | - Sameer A. Sheth
- Dept. of Neurosurgery, Columbia University Medical Center, New York, NY 10032
| | - Paul A. Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Daniel S. Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Michael J. Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
25
|
Erden YJ, Brey P. Neurotechnology and ethics guidelines for human enhancement: The case of the hippocampal cognitive prosthesis. Artif Organs 2023; 47:1235-1241. [PMID: 37533179 DOI: 10.1111/aor.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Neurotechnologies offer both therapeutic and enhancement potential. In this article, we demonstrate how ethics guidelines can help with critical reflection on their potential for enhancement. We do this through the case of the hippocampal cognitive prosthesis. This prothesis developed in the US, has primarily therapeutic ends, with scope for enhancement. This technology raises several ethical issues, including as related to identity and memory, autonomy and authenticity. In the first section, we outline what we mean by enhancement, and introduce neurotechnologies generally and the hippocampal cognitive prosthesis specifically, with an introduction to generally relevant ethical issues. In the second section, we outline ethical issues pertinent to the hippocampal cognitive prosthesis and explore how ethics guidelines can help to promote essential critical reflection on a technology like this. Through all this, our emphasis is to balance between technological optimism and caution, especially where technologies have enhancement potential.
Collapse
Affiliation(s)
- Yasemin J Erden
- Philosophy Section, Faculty of Behavioural, Management and Social Sciences, University of Twente, Enschede, The Netherlands
| | - Philip Brey
- Philosophy Section, Faculty of Behavioural, Management and Social Sciences, University of Twente, Enschede, The Netherlands
| |
Collapse
|
26
|
Arulchelvan E, Vanneste S. Promising neurostimulation routes for targeting the hippocampus to improve episodic memory: A review. Brain Res 2023:148457. [PMID: 37315722 DOI: 10.1016/j.brainres.2023.148457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
This review aims to highlight modern neurostimulation approaches that are effectively activating the hippocampus and enhancing episodic memory performance. The hippocampus is a brain region known to play an essential role in episodic memory processes. However, as it is nestled deep within the brain, it has been a challenging target for traditional neurostimulation approaches, with studies reporting inconsistent memory effects. Recent studies suggest more than half of the electrical current from non-invasive transcranial electrical stimulation (tES) methods may be attenuated by the human scalp, skull, and cerebral spinal fluid. Thus, this review aims to highlight novel neurostimulation approaches that are showing promise as alternative routes for activating hippocampal circuitry. Early evidence suggests temporal interference, closed-loop and individualized protocols, sensory stimulation and peripheral nerve-targeted tES protocols warrant further investigation. These approaches each provide promising routes for activating the hippocampus by a) increasing its functional connectiveness to key brain regions, b) strengthening synaptic plasticity mechanisms, or c) enhancing neural entrainment specifically within and between theta and gamma frequencies in these regions. Importantly, these three functional mechanisms and the hippocampus' structural integrity are negatively impacted throughout the progression of Alzheimer's Disease, with episodic memory deficits likewise evident in early stages. Consequently, depending on further validation of the approaches reviewed here, these techniques could offer significant applied therapeutic value for patients suffering from memory deficits or neurodegenerative diseases including amnestic Mild Cognitive Impairment or Alzheimer's disease.
Collapse
Affiliation(s)
- Elva Arulchelvan
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Global Brain Health Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Geva-Sagiv M, Mankin EA, Eliashiv D, Epstein S, Cherry N, Kalender G, Tchemodanov N, Nir Y, Fried I. Augmenting hippocampal-prefrontal neuronal synchrony during sleep enhances memory consolidation in humans. Nat Neurosci 2023; 26:1100-1110. [PMID: 37264156 PMCID: PMC10244181 DOI: 10.1038/s41593-023-01324-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/06/2023] [Indexed: 06/03/2023]
Abstract
Memory consolidation during sleep is thought to depend on the coordinated interplay between cortical slow waves, thalamocortical sleep spindles and hippocampal ripples, but direct evidence is lacking. Here, we implemented real-time closed-loop deep brain stimulation in human prefrontal cortex during sleep and tested its effects on sleep electrophysiology and on overnight consolidation of declarative memory. Synchronizing the stimulation to the active phases of endogenous slow waves in the medial temporal lobe (MTL) enhanced sleep spindles, boosted locking of brain-wide neural spiking activity to MTL slow waves, and improved coupling between MTL ripples and thalamocortical oscillations. Furthermore, synchronized stimulation enhanced the accuracy of recognition memory. By contrast, identical stimulation without this precise time-locking was not associated with, and sometimes even degraded, these electrophysiological and behavioral effects. Notably, individual changes in memory accuracy were highly correlated with electrophysiological effects. Our results indicate that hippocampo-thalamocortical synchronization during sleep causally supports human memory consolidation.
Collapse
Affiliation(s)
- Maya Geva-Sagiv
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Center of Neuroscience, University of California, Davis, Davis, CA, USA
| | - Emily A Mankin
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dawn Eliashiv
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shdema Epstein
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalie Cherry
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Guldamla Kalender
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Natalia Tchemodanov
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Deep brain stimulation during sleep enhances human brain synchrony and memory. Nat Neurosci 2023:10.1038/s41593-023-01342-3. [PMID: 37264160 DOI: 10.1038/s41593-023-01342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
29
|
Manssuer L, Ding Q, Zhang Y, Gong H, Liu W, Yang R, Zhang C, Zhao Y, Pan Y, Zhan S, Li D, Sun B, Voon V. Risk and aversion coding in human habenula high gamma activity. Brain 2023; 146:2642-2653. [PMID: 36445730 PMCID: PMC10232252 DOI: 10.1093/brain/awac456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2023] Open
Abstract
Neurons in the primate lateral habenula fire in response to punishments and are inhibited by rewards. Through its modulation of midbrain monoaminergic activity, the habenula is believed to play an important role in adaptive behavioural responses to punishment and underlie depressive symptoms and their alleviation with ketamine. However, its role in value-based decision-making in humans is poorly understood due to limitations with non-invasive imaging methods which measure metabolic, not neural, activity with poor temporal resolution. Here, we overcome these limitations to more closely bridge the gap between species by recording local field potentials directly from the habenula in 12 human patients receiving deep brain stimulation treatment for bipolar disorder (n = 4), chronic pain (n = 3), depression (n = 3) and schizophrenia (n = 2). This allowed us to record neural activity during value-based decision-making tasks involving monetary rewards and losses. High-frequency gamma (60-240 Hz) activity, a proxy for population-level spiking involved in cognitive computations, increased during the receipt of loss and decreased during receipt of reward. Furthermore, habenula high gamma also encoded risk during decision-making, being larger in amplitude for high compared to low risk. For both risk and aversion, differences between conditions peaked approximately between 400 and 750 ms after stimulus onset. The findings not only demonstrate homologies with the primate habenula but also extend its role to human decision-making, showing its temporal dynamics and suggesting revisions to current models. The findings suggest that habenula high gamma could be used to optimize real-time closed-loop deep brain stimulation treatment for mood disturbances and impulsivity in psychiatric disorders.
Collapse
Affiliation(s)
- Luis Manssuer
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Qiong Ding
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yingying Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Hengfeng Gong
- Shanghai Pudong New Area Mental Health Centre, Tongji University School of Medicine, Shanghai 200124, China
| | - Wei Liu
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Ruoqi Yang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yijie Zhao
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yixin Pan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shikun Zhan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Valerie Voon
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- Neural and Intelligence Engineering Centre, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| |
Collapse
|
30
|
Stangl M, Maoz SL, Suthana N. Mobile cognition: imaging the human brain in the 'real world'. Nat Rev Neurosci 2023; 24:347-362. [PMID: 37046077 PMCID: PMC10642288 DOI: 10.1038/s41583-023-00692-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/14/2023]
Abstract
Cognitive neuroscience studies in humans have enabled decades of impactful discoveries but have primarily been limited to recording the brain activity of immobile participants in a laboratory setting. In recent years, advances in neuroimaging technologies have enabled recordings of human brain activity to be obtained during freely moving behaviours in the real world. Here, we propose that these mobile neuroimaging methods can provide unique insights into the neural mechanisms of human cognition and contribute to the development of novel treatments for neurological and psychiatric disorders. We further discuss the challenges associated with studying naturalistic human behaviours in complex real-world settings as well as strategies for overcoming them. We conclude that mobile neuroimaging methods have the potential to bring about a new era of cognitive neuroscience in which neural mechanisms can be studied with increased ecological validity and with the ability to address questions about natural behaviour and cognitive processes in humans engaged in dynamic real-world experiences.
Collapse
Affiliation(s)
- Matthias Stangl
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Sabrina L Maoz
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
31
|
A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat Neurosci 2023; 26:517-527. [PMID: 36804647 PMCID: PMC9991917 DOI: 10.1038/s41593-023-01260-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/17/2023] [Indexed: 02/22/2023]
Abstract
Advances in technologies that can record and stimulate deep brain activity in humans have led to impactful discoveries within the field of neuroscience and contributed to the development of novel therapies for neurological and psychiatric disorders. Further progress, however, has been hindered by device limitations in that recording of single-neuron activity during freely moving behaviors in humans has not been possible. Additionally, implantable neurostimulation devices, currently approved for human use, have limited stimulation programmability and restricted full-duplex bidirectional capability. In this study, we developed a wearable bidirectional closed-loop neuromodulation system (Neuro-stack) and used it to record single-neuron and local field potential activity during stationary and ambulatory behavior in humans. Together with a highly flexible and customizable stimulation capability, the Neuro-stack provides an opportunity to investigate the neurophysiological basis of disease, develop improved responsive neuromodulation therapies, explore brain function during naturalistic behaviors in humans and, consequently, bridge decades of neuroscientific findings across species.
Collapse
|
32
|
Jwa AS, Shim J, Choi S, Eom J, Kim S, Ryu YJ. An XYZ-axis Matrix Approach for the Integration of Neuroscience and Neuroethics. Exp Neurobiol 2023; 32:8-19. [PMID: 36919332 PMCID: PMC10017846 DOI: 10.5607/en22032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 03/16/2023] Open
Abstract
The recent, unprecedented advancement in neuroscience has led to new discoveries about the human brain and its function. Yet at the same time, it has spurred novel ethical and regulatory issues, and the field of neuroethics has emerged as an interdisciplinary endeavor to address these issues. Across the globe, extensive efforts have been underway to achieve the integration of neuroscience and Neuroethics, with active engagement not only from academia but also from the government, the public, and industry. However, in some countries, integrating neuroscience and neuroethics has proved to be a particularly challenging task. For example, in South Korea, the government has primarily driven the integration effort, and only a small group of researchers is properly trained for conducting an interdisciplinary evaluation of ethical, legal, social, and cultural implications (ELSCI) of neurotechnology. On the basis of the last few years of experience pursuing a government-funded neuroethics project in South Korea, we developed a new operational framework to provide practical guidance on ELSCI research. This framework consists of the X, Y, and Z axes; the X-axis represents a target neurotechnology, the Y-axis represents different developmental stages of the technology, and the Z-axis represents ELSCI issues that may arise from the development and use of the neurotechnology. Here we also present a step-by-step workflow to apply this matrix framework, from organizing a panel for a target neurotechnology to facilitating stakeholder discussion through public hearings. This framework will enable meaningful integration of neuroscience and neuroethics to promote responsible innovation in neuroscience and neurotechnology.
Collapse
Affiliation(s)
- Anita S Jwa
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Jiwon Shim
- Department of Philosophy, Dongguk University, Seoul 04620, Korea
| | - Sinu Choi
- Institute of Liberal Art, Pukyoung National University, Busan 48513, Korea
| | - Juhee Eom
- Department of Law, Konkuk University, Chungju 27478, Korea
| | - Soojin Kim
- Division of Communication & Media, Ewha Womans University, Seoul 03760, Korea
| | - Young-Joon Ryu
- Department of Medical Ethics and Medical Humanities, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
33
|
Gupta A, Vardalakis N, Wagner FB. Neuroprosthetics: from sensorimotor to cognitive disorders. Commun Biol 2023; 6:14. [PMID: 36609559 PMCID: PMC9823108 DOI: 10.1038/s42003-022-04390-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neuroprosthetics is a multidisciplinary field at the interface between neurosciences and biomedical engineering, which aims at replacing or modulating parts of the nervous system that get disrupted in neurological disorders or after injury. Although neuroprostheses have steadily evolved over the past 60 years in the field of sensory and motor disorders, their application to higher-order cognitive functions is still at a relatively preliminary stage. Nevertheless, a recent series of proof-of-concept studies suggest that electrical neuromodulation strategies might also be useful in alleviating some cognitive and memory deficits, in particular in the context of dementia. Here, we review the evolution of neuroprosthetics from sensorimotor to cognitive disorders, highlighting important common principles such as the need for neuroprosthetic systems that enable multisite bidirectional interactions with the nervous system.
Collapse
Affiliation(s)
- Ankur Gupta
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Fabien B. Wagner
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
34
|
Webler RD, Oathes DJ, van Rooij SJH, Gewirtz JC, Nahas Z, Lissek SM, Widge AS. Causally mapping human threat extinction relevant circuits with depolarizing brain stimulation methods. Neurosci Biobehav Rev 2023; 144:105005. [PMID: 36549377 PMCID: PMC10210253 DOI: 10.1016/j.neubiorev.2022.105005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Laboratory threat extinction paradigms and exposure-based therapy both involve repeated, safe confrontation with stimuli previously experienced as threatening. This fundamental procedural overlap supports laboratory threat extinction as a compelling analogue of exposure-based therapy. Threat extinction impairments have been detected in clinical anxiety and may contribute to exposure-based therapy non-response and relapse. However, efforts to improve exposure outcomes using techniques that boost extinction - primarily rodent extinction - have largely failed to date, potentially due to fundamental differences between rodent and human neurobiology. In this review, we articulate a comprehensive pre-clinical human research agenda designed to overcome these failures. We describe how connectivity guided depolarizing brain stimulation methods (i.e., TMS and DBS) can be applied concurrently with threat extinction and dual threat reconsolidation-extinction paradigms to causally map human extinction relevant circuits and inform the optimal integration of these methods with exposure-based therapy. We highlight candidate targets including the amygdala, hippocampus, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and mesolimbic structures, and propose hypotheses about how stimulation delivered at specific learning phases could strengthen threat extinction.
Collapse
Affiliation(s)
- Ryan D Webler
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| | - Desmond J Oathes
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Arizona State University, AZ, USA
| | - Ziad Nahas
- Department of Psychology, Arizona State University, AZ, USA
| | - Shmuel M Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry and Medical Discovery Team on Addictions, University of Minnesota Medical School, MN, USA
| |
Collapse
|
35
|
Lowet E, Kondabolu K, Zhou S, Mount RA, Wang Y, Ravasio CR, Han X. Deep brain stimulation creates informational lesion through membrane depolarization in mouse hippocampus. Nat Commun 2022; 13:7709. [PMID: 36513664 PMCID: PMC9748039 DOI: 10.1038/s41467-022-35314-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Deep brain stimulation (DBS) is a promising neuromodulation therapy, but the neurophysiological mechanisms of DBS remain unclear. In awake mice, we performed high-speed membrane voltage fluorescence imaging of individual hippocampal CA1 neurons during DBS delivered at 40 Hz or 140 Hz, free of electrical interference. DBS powerfully depolarized somatic membrane potentials without suppressing spike rate, especially at 140 Hz. Further, DBS paced membrane voltage and spike timing at the stimulation frequency and reduced timed spiking output in response to hippocampal network theta-rhythmic (3-12 Hz) activity patterns. To determine whether DBS directly impacts cellular processing of inputs, we optogenetically evoked theta-rhythmic membrane depolarization at the soma. We found that DBS-evoked membrane depolarization was correlated with DBS-mediated suppression of neuronal responses to optogenetic inputs. These results demonstrate that DBS produces powerful membrane depolarization that interferes with the ability of individual neurons to respond to inputs, creating an informational lesion.
Collapse
Affiliation(s)
- Eric Lowet
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| | - Krishnakanth Kondabolu
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Samuel Zhou
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Rebecca A. Mount
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Yangyang Wang
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Cara R. Ravasio
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| |
Collapse
|
36
|
Amoah DK. Advances in the understanding and enhancement of the human cognitive functions of learning and memory. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Learning and memory are among the key cognitive functions that drive the human experience. As such, any defective condition associated with these cognitive domains could affect our navigation through everyday life. For years, researchers have been working toward having a clear understanding of how learning and memory work, as well as ways to improve them. Many advances have been made, as well as some challenges that have also been faced in the process. That notwithstanding, there are prospects with regards to the frontier of the enhancement of learning and memory in humans. This review article selectively highlights four broad areas of focus in research into the understanding and enhancement of learning and memory. Brain stimulation, effects of sleep, effects of stress and emotion, and synaptic plasticity are the main focal areas of this review, in terms of some pivotal research works, findings and theories.
Collapse
Affiliation(s)
- Daniel Kofi Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra LG 25, Ghana
| |
Collapse
|
37
|
Liu C, Guo X, Chang X. Intestinal Flora Balance Therapy Based on Probiotic Support Improves Cognitive Function and Symptoms in Patients with Alzheimer's Disease: A Systematic Review and Meta-analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4806163. [PMID: 36017397 PMCID: PMC9398783 DOI: 10.1155/2022/4806163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Objective The clinical value of intestinal flora balance therapy based on probiotic support in improving cognitive function and symptoms of patients with Alzheimer's disease was to systematically evaluate, so as to provide evidence-based medicine basis for the promotion and use of this therapy. Methods The randomized controlled trials (RCTs) were searched for the improvement of cognitive function and symptoms of patients with Alzheimer's disease by intestinal flora balance therapy supported mainly by probiotics in PubMed, EMBASE, ScienceDirect, Cochrane Library, China Knowledge Network Database (CNKI), China VIP database, Wanfang database, and China Biomedical Literature Database (CBM) online database (RCT). Data were extracted independently by two researchers, and the literature was assessed for risk of bias according to the Cochrane Handbook 5.1.0 criteria. The data were meta-analyzed using RevMan 5.4 statistical software. Results Finally, 5 randomized controlled trials were included, with a total sample size of 386 cases. The results of meta-analysis showed that Chi2 = 13.14, df = 2, P = 0.001, and I 2 = 85% showed significant heterogeneity in the inclusion of the study data. Probiotic-supported intestinal microflora balance therapy improves cognitive function in patients with Alzheimer's disease. Through meta-analysis of transient memory scores, it is concluded that intestinal flora balance therapy based on probiotic support can improve transient memory in patients with Alzheimer's disease. Meta-analysis of ADAS-COG score showed that intestinal flora balance therapy supported by probiotics could improve the cognitive function of patients with Alzheimer's disease. The ADL score was analyzed by meta, and the heterogeneity test result was Chi2 = 0.79, df = 1, P = 0.37 > 0.05, and I 2 = 0%, indicating that the intestinal flora balance therapy supported by probiotics can improve the ability of daily living of patients with Alzheimer's disease. Conclusion Intestinal flora balance therapy based on probiotic support can effectively improve cognitive function, instantaneous memory, and ability of daily life in patients with Alzheimer's disease. However, more studies and long-term follow-up studies with higher methodological quality are needed to further verify.
Collapse
Affiliation(s)
- Changxing Liu
- Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Xinyi Guo
- Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
| | - Xiang Chang
- Xi'an Hospital of Traditional Chinese Medicine, Shaanxi Province 710016, China
| |
Collapse
|
38
|
Williams SC, Horsfall HL, Funnell JP, Hanrahan JG, Schaefer AT, Muirhead W, Marcus HJ. Neurosurgical Team Acceptability of Brain-Computer Interfaces: A Two-Stage International Cross-Sectional Survey. World Neurosurg 2022; 164:e884-e898. [PMID: 35623610 PMCID: PMC10444691 DOI: 10.1016/j.wneu.2022.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Invasive brain-computer interfaces (BCIs) require neurosurgical implantation, which confers a range of risks. Despite this situation, no studies have assessed the acceptability of invasive BCIs among the neurosurgical team. This study aims to establish baseline knowledge of BCIs within the neurosurgical team and identify attitudes toward different applications of invasive BCI. METHODS A 2-stage cross-sectional international survey of the neurosurgical team (neurosurgeons, anesthetists, and operating room nurses) was conducted. Results from the first, qualitative, survey were used to guide the second-stage quantitative survey, which assessed acceptability of invasive BCI applications. Five-part Likert scales were used to collect quantitative data. Surveys were distributed internationally via social media and collaborators. RESULTS A total of 108 qualitative responses were collected. Themes included the promise of BCIs positively affecting disease targets, concerns regarding stability, and an overall positive emotional reaction to BCI technology. The quantitative survey generated 538 responses from 32 countries. Baseline knowledge of BCI technology was poor, with 9% claiming to have a good or expert knowledge of BCIs. Acceptability of invasive BCI for rehabilitative purposes was >80%. Invasive BCI for augmentation in healthy populations divided opinion. CONCLUSIONS The neurosurgical team's view of the acceptability of invasive BCI was divided across a range of indications. Some applications (e.g., stroke rehabilitation) were viewed as more appropriate than other applications (e.g., augmentation for military use). This range in views highlights the need for stakeholder consultation on acceptable use cases along with regulation and guidance to govern initial BCI implantations if patients are to realize the potential benefits.
Collapse
Affiliation(s)
- Simon C Williams
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), London, United Kingdom.
| | - Hugo Layard Horsfall
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), London, United Kingdom
| | - Jonathan P Funnell
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), London, United Kingdom
| | - John G Hanrahan
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), London, United Kingdom
| | - Andreas T Schaefer
- The Francis Crick Institute, Sensory Circuits and Neurotechnology Laboratory, London, United Kingdom; Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - William Muirhead
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), London, United Kingdom
| | - Hani J Marcus
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), London, United Kingdom
| |
Collapse
|
39
|
Yoon J, Kim HW, Shin M, Lim J, Lee JY, Lee SN, Choi JW. 3D Neural Network Composed of Neurospheroid and Bionanohybrid on Microelectrode Array to Realize the Spatial Input Signal Recognition in Neurospheroid. SMALL METHODS 2022; 6:e2200127. [PMID: 35595685 DOI: 10.1002/smtd.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/03/2022] [Indexed: 06/15/2023]
Abstract
There have been several studies for demonstration of 2D neural network using living cells or organic/inorganic molecules, but to date, there is no report of development of a 3D neural network in vitro. Based on developed bionanohybrid composed of protein, DNA, molybdenum disulfide nanoparticles, and peptides for controlling electrophysiological states of living cells, here, the in vitro 3D neural network composed of the bionanohybrid, 3D neurospheroid and the microelectrode array (MEA) is developed. After production of the 3D neurospheroid derived from human neural stem cells, the bionanohybrid developed on the MEA successfully semi-penetrates the neurites of the 3D neurospheroid and forms the 3D neural network. The developed 3D neural network successfully exhibited the electrophysiological output signals of the 3D neurospheroid by transmitting the input signal applied by the bionanohybrid. Moreover, by using the selectively immobilized bionanohybrid on the MEA, the spatial input signal recognition in the neurospheroid of 3D neural network is realized for the first time. This newly developed in vitro 3D neural network provides a promising strategy to be applied in brain-on-a-chip, brain disease-related drug efficacy evaluation, bioelectronics, and bioelectronic medicine.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Hyun-Woong Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., Seoul, 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
40
|
Roeder BM, Riley MR, She X, Dakos AS, Robinson BS, Moore BJ, Couture DE, Laxton AW, Popli G, Munger Clary HM, Sam M, Heck C, Nune G, Lee B, Liu C, Shaw S, Gong H, Marmarelis VZ, Berger TW, Deadwyler SA, Song D, Hampson RE. Patterned Hippocampal Stimulation Facilitates Memory in Patients With a History of Head Impact and/or Brain Injury. Front Hum Neurosci 2022; 16:933401. [PMID: 35959242 PMCID: PMC9358788 DOI: 10.3389/fnhum.2022.933401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Rationale: Deep brain stimulation (DBS) of the hippocampus is proposed for enhancement of memory impaired by injury or disease. Many pre-clinical DBS paradigms can be addressed in epilepsy patients undergoing intracranial monitoring for seizure localization, since they already have electrodes implanted in brain areas of interest. Even though epilepsy is usually not a memory disorder targeted by DBS, the studies can nevertheless model other memory-impacting disorders, such as Traumatic Brain Injury (TBI). Methods: Human patients undergoing Phase II invasive monitoring for intractable epilepsy were implanted with depth electrodes capable of recording neurophysiological signals. Subjects performed a delayed-match-to-sample (DMS) memory task while hippocampal ensembles from CA1 and CA3 cell layers were recorded to estimate a multi-input, multi-output (MIMO) model of CA3-to-CA1 neural encoding and a memory decoding model (MDM) to decode memory information from CA3 and CA1 neuronal signals. After model estimation, subjects again performed the DMS task while either MIMO-based or MDM-based patterned stimulation was delivered to CA1 electrode sites during the encoding phase of the DMS trials. Each subject was sorted (post hoc) by prior experience of repeated and/or mild-to-moderate brain injury (RMBI), TBI, or no history (control) and scored for percentage successful delayed recognition (DR) recall on stimulated vs. non-stimulated DMS trials. The subject’s medical history was unknown to the experimenters until after individual subject memory retention results were scored. Results: When examined compared to control subjects, both TBI and RMBI subjects showed increased memory retention in response to both MIMO and MDM-based hippocampal stimulation. Furthermore, effects of stimulation were also greater in subjects who were evaluated as having pre-existing mild-to-moderate memory impairment. Conclusion: These results show that hippocampal stimulation for memory facilitation was more beneficial for subjects who had previously suffered a brain injury (other than epilepsy), compared to control (epilepsy) subjects who had not suffered a brain injury. This study demonstrates that the epilepsy/intracranial recording model can be extended to test the ability of DBS to restore memory function in subjects who previously suffered a brain injury other than epilepsy, and support further investigation into the beneficial effect of DBS in TBI patients.
Collapse
Affiliation(s)
- Brent M. Roeder
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mitchell R. Riley
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Xiwei She
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Alexander S. Dakos
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Brian S. Robinson
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Bryan J. Moore
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Daniel E. Couture
- Department of Neurosurgery, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Adrian W. Laxton
- Department of Neurosurgery, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Gautam Popli
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Heidi M. Munger Clary
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Maria Sam
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Christi Heck
- Department of Neurology, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurosurgery, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Charles Liu
- Department of Neurosurgery, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Susan Shaw
- Department of Neurology, Rancho Los Amigos National Rehabilitation Hospital, Los Angeles, CA, United States
| | - Hui Gong
- Department of Neurology, Rancho Los Amigos National Rehabilitation Hospital, Los Angeles, CA, United States
| | - Vasilis Z. Marmarelis
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W. Berger
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Sam A. Deadwyler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Dong Song
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Robert E. Hampson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| |
Collapse
|
41
|
Davila CE, Wang DX, Ritzer M, Moran R, Lega BC. A Control-Theoretical System for Modulating Hippocampal Gamma Oscillations using Stimulation of the Posterior Cingulate Cortex. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2242-2253. [PMID: 35849675 PMCID: PMC9469793 DOI: 10.1109/tnsre.2022.3192170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Closed-loop stimulation for targeted modulation of brain signals has emerged as a promising strategy for episodic memory restoration. In parallel, closed-loop neuromodulation strategies have been applied to treat brain conditions including drug-resistant depression, Parkinson’s Disease, and epilepsy. In this study, we seek to apply control theoretical principles to achieve closed loop modulation of hippocampal oscillatory activity. We focus on hippocampal gamma power, a signal with an established association for episodic memory processing, which may be a promising ‘biomarker’ for the modulation of memory performance. To develop a closed-loop stimulation paradigm that effectively modulates hippocampal gamma power, we use a novel data-set in which open-loop stimulation was applied to the posterior cingulate cortex and hippocampal gamma power was recorded during the encoding of episodic memories. The dataset was used to design and evaluate a linear quadratic integral (LQI) servo-controller in order to determine its viability for in-vivo use. In our simulation framework, we demonstrate that applying an LQI servo controller based on an autoregressive with exogenous input (ARX) plant model achieves effective control of hippocampal gamma power in 15 out of 17 experimental subjects. We demonstrate that we are able to modulate gamma power using stimulation thresholds that are physiologically safe and on time scales that are reasonable for application in a clinical system. We outline further experimentation to test our proposed system and compare our findings to emerging closed-loop neuromodulation strategies.
Collapse
|
42
|
Shi L, Jiang Y, Zheng N, Cheng JX, Yang C. High-precision neural stimulation through optoacoustic emitters. NEUROPHOTONICS 2022; 9:032207. [PMID: 35355658 PMCID: PMC8941197 DOI: 10.1117/1.nph.9.3.032207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/25/2022] [Indexed: 05/03/2023]
Abstract
Neuromodulation poses an invaluable role in deciphering neural circuits and exploring clinical treatment of neurological diseases. Optoacoustic neuromodulation is an emerging modality benefiting from the merits of ultrasound with high penetration depth as well as the merits of photons with high spatial precision. We summarize recent development in a variety of optoacoustic platforms for neural modulation, including fiber, film, and nanotransducer-based devices, highlighting the key advantages of each platform. The possible mechanisms and main barriers for optoacoustics as a viable neuromodulation tool are discussed. Future directions in fundamental and translational research are proposed.
Collapse
Affiliation(s)
- Linli Shi
- Boston University, Department of Chemistry, Boston, Massachusetts, United States
| | - Ying Jiang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Nan Zheng
- Boston University, Division of Materials Science and Engineering, Boston, Massachusetts, United States
| | - Ji-Xin Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Address all correspondence to Chen Yang, ; Ji-Xin Cheng,
| | - Chen Yang
- Boston University, Department of Chemistry, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Address all correspondence to Chen Yang, ; Ji-Xin Cheng,
| |
Collapse
|
43
|
Arnavut E, Hamilton J, Yao R, Sajjad M, Hadjiargyrou M, Komatsu D, Thanos PK. Abstinence following intermittent methylphenidate exposure dose-dependently modifies brain glucose metabolism in the rat brain. Synapse 2022; 76:17-30. [PMID: 35730134 DOI: 10.1002/syn.22243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/10/2022]
Abstract
Methylphenidate (MP) is a psychostimulant chronically prescribed for the treatment of attention deficit hyperactivity disorder (ADHD). Additionally, MP users may take breaks from using the medication during "drug holidays," which may include short-term or long-term breaks from medication. The present study utilized fluorodeoxyglucose (FDG) positron emission tomography (PET) to analyze the effects of chronic oral MP use and abstinence on brain glucose metabolism (BGluM) in rats at two different doses: high dose (HD) and low dose (LD). The schedule of treatment was 3 weeks on-treatment and 1 week off-treatment for a period of 13 weeks, followed by an abstinence period of 4 total weeks. Results showed that chronic MP treatment using this schedule did not lead to significant changes in BGluM when comparing the control to HD MP groups. However, significant activation in BGluM was observed after periods of abstinence between control and HD MP rats in the following brain regions: the trigeminal nucleus, reticular nucleus, inferior olive, lemniscus, mesencephalic reticular formation, inferior colliculus, and several areas of the cerebellum. These brain regions and functional brain circuit play a role in facial sensory function, the auditory pathway, organizing connections between the thalamus and cortex, motor learning, auditory function, control over eye movement, auditory information integration, and both motor and cognitive functions. These results, when considered with previous studies, indicate that MP schedule of use may have differing effects on BGluM. BGluM following long-term MP use was dependent on MP dose and schedule of use in rats. This study was conducted in non-ADHD model rats with the aim to establish an understanding of the effects of MP itself, especially given the growing chronic off-label and prescribed use of MP. Further studies are needed for analysis of the drug's effects on an ADHD model.
Collapse
Affiliation(s)
- Eliz Arnavut
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Sciences, State University at Buffalo, Buffalo, New York
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Sciences, State University at Buffalo, Buffalo, New York
| | - Rutao Yao
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Munawwar Sajjad
- Department of Nuclear Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - David Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, New York, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biomedical Sciences, State University at Buffalo, Buffalo, New York.,Department of Psychology, State University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
44
|
Li R, Zhang C, Rao Y, Yuan TF. Deep brain stimulation of fornix for memory improvement in Alzheimer's disease: A critical review. Ageing Res Rev 2022; 79:101668. [PMID: 35705176 DOI: 10.1016/j.arr.2022.101668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Memory reflects the brain function in encoding, storage and retrieval of the data or information, which is a fundamental ability for any live organism. The development of approaches to improve memory attracts much attention due to the underlying mechanistic insight and therapeutic potential to treat neurodegenerative diseases with memory loss, such as Alzheimer's disease (AD). Deep brain stimulation (DBS), a reversible, adjustable, and non-ablative therapy, has been shown to be safe and effective in many clinical trials for neurodegenerative and neuropsychiatric disorders. Among all potential regions with access to invasive electrodes, fornix is considered as it is the major afferent and efferent connection of the hippocampus known to be closely associated with learning and memory. Indeed, clinical trials have demonstrated that fornix DBS globally improved cognitive function in a subset of patients with AD, indicating fornix can serve as a potential target for neurosurgical intervention in treating memory impairment in AD. The present review aims to provide a better understanding of recent progresses in the application of fornix DBS for ameliorating memory impairments in AD patients.
Collapse
Affiliation(s)
- Ruofan Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxia Rao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Laboratory Animal Science, Fudan University, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
45
|
Haehner A, Chen B, Espin M, Haussmann R, Matthes C, Desser D, Loessner L, Brandt MD, Donix M, Hummel T. Training with Odors Impacts Hippocampal Thickness in Patients with Mild Cognitive Impairment. J Alzheimers Dis 2022; 88:743-755. [DOI: 10.3233/jad-220248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The olfactory system is affected early in Alzheimer’s disease and olfactory loss can already be observed in patients with mild cognitive impairment (MCI). Olfactory training is effective for improving olfactory and cognitive function by stimulating the olfactory pathway, but its effect on patients with MCI remains unclear. Objective: The aim of this randomized, prospective, controlled, blinded study was to assess whether a 4-month period of olfactory training (frequent short-term sniffing various odors) may have an effect on olfactory function, cognitive function, and morphology of medial temporal lobe (MTL) subregions and olfactory bulb in MCI patients. Methods: A total of thirty-seven MCI patients were randomly assigned to the training group or a placebo group, which were performed twice a day for 4 months. Olfactory assessments, cognitive tests and magnetic resonance imaging were performed at the baseline and follow-up period. Results: After the training, there was an increase in odor discrimination, and increased cortical thickness of bilateral hippocampus (CA23DG and CA1) and mean MTL. Additionally, the change of olfactory score was positively associated with change of volume of olfactory bulb and hippocampus; the change of global cognition was positively associated with change of cortical thickness of hippocampus, entorhinal cortex and mean MTL; the change of cortical thickness of entorhinal cortex was positively associated with change of executive function. Conclusion: Olfactory training was associated with an increase in cortical thickness of the hippocampus but not olfactory bulb volume in patients with MCI. Olfactory training may serve as an early intervention of preventing hippocampal atrophy.
Collapse
Affiliation(s)
| | - Ben Chen
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
- Memory Clinic, Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, Guangdong Province, China
| | - Melanie Espin
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | | | | | - Dmitriy Desser
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | | | - Moritz D. Brandt
- Department of Neurology, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Markus Donix
- Department of Psychiatry, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
46
|
Deep Brain Stimulation of the Medial Septal Area Can Modulate Gene Expression in the Hippocampus of Rats under Urethane Anesthesia. Int J Mol Sci 2022; 23:ijms23116034. [PMID: 35682713 PMCID: PMC9181580 DOI: 10.3390/ijms23116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
We studied the effects of stimulation of the medial septal area on the gene expression in the dorsal and ventral hippocampus. Rats under urethane anesthesia were implanted with a recording electrode in the right hippocampus and stimulating electrode in the dorsal medial septum (dMS) or medial septal nucleus (MSN). After one-hour-long deep brain stimulation, we collected ipsi- and contralateral dorsal and ventral hippocampi. Quantitative PCR showed that deep brain stimulation did not cause any changes in the intact contralateral dorsal and ventral hippocampi. A comparison of ipsi- and contralateral hippocampi in the control unstimulated animals showed that electrode implantation in the ipsilateral dorsal hippocampus led to a dramatic increase in the expression of immediate early genes (c-fos, arc, egr1, npas4), neurotrophins (ngf, bdnf) and inflammatory cytokines (il1b and tnf, but not il6) not only in the area close to implantation site but also in the ventral hippocampus. Moreover, the stimulation of MSN but not dMS further increased the expression of c-fos, egr1, npas4, bdnf, and tnf in the ipsilateral ventral but not dorsal hippocampus. Our data suggest that the activation of medial septal nucleus can change the gene expression in ventral hippocampal cells after their priming by other stimuli.
Collapse
|
47
|
Liu QY, Pan YC, Shu HY, Zhang LJ, Li QY, Ge QM, Shao Y, Zhou Q. Brain Activity in Age-Related Macular Degeneration Patients From the Perspective of Regional Homogeneity: A Resting-State Functional Magnetic Resonance Imaging Study. Front Aging Neurosci 2022; 14:865430. [PMID: 35615597 PMCID: PMC9124803 DOI: 10.3389/fnagi.2022.865430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveIn this study, the regional homogeneity (ReHo) method was used to investigate levels of cerebral homogeneity in individuals with age-related macular degeneration (AMD), with the aim of exploring whether these measures are associated with clinical characteristics.Materials and MethodsPatients with AMD and healthy controls attending the First Affiliated Hospital of Nanchang University were invited to participate. Resting state functional magnetic resonance images were recorded in each participant and levels of synchronous neural activity were evaluated using ReHo. Receiver operating characteristic (ROC) curves were used to evaluate the sensitivity and specificity of this method.ResultsEighteen patients with AMD (9 males and 9 females) and 15 healthy controls (HCs) were recruited. The two groups were approximately matched in age, gender and weight. Compared with controls, the ReHo values were significantly higher in the AMD group at the limbic lobe and parahippocampal gyrus, and were significantly reduced at the cingulate gyrus, superior frontal gyrus, middle frontal gyrus, inferior parietal lobule, and precentral gyrus. Mean ReHo values at the cingulate gyrus and the superior frontal gyrus were negatively correlated with clinical symptoms.ConclusionBrain neural homogeneity dysfunction is a manifestation of visual pathways in AMD patients, and may be one of the pathological mechanisms of chronic vision loss, anxiety and depression in AMD patients. In addition, the ReHo data may be useful for early screening for AMD.
Collapse
|
48
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
49
|
Tukker JJ, Beed P, Brecht M, Kempter R, Moser EI, Schmitz D. Microcircuits for spatial coding in the medial entorhinal cortex. Physiol Rev 2022; 102:653-688. [PMID: 34254836 PMCID: PMC8759973 DOI: 10.1152/physrev.00042.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hippocampal formation is critically involved in learning and memory and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields as well as a host of other functionally defined cell types including head direction cells, speed cells, border cells, and object-vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.
Collapse
Affiliation(s)
- John J Tukker
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Prateep Beed
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edvard I Moser
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
50
|
Luo W, Yun D, Hu Y, Tian M, Yang J, Xu Y, Tang Y, Zhan Y, Xie H, Guan JS. Acquiring new memories in neocortex of hippocampal-lesioned mice. Nat Commun 2022; 13:1601. [PMID: 35332120 PMCID: PMC8948206 DOI: 10.1038/s41467-022-29208-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
The hippocampus interacts with the neocortical network for memory retrieval and consolidation. Here, we found the lateral entorhinal cortex (LEC) modulates learning-induced cortical long-range gamma synchrony (20–40 Hz) in a hippocampal-dependent manner. The long-range gamma synchrony, which was coupled to the theta (7–10 Hz) rhythm and enhanced upon learning and recall, was mediated by inter-cortical projections from layer 5 neurons of the LEC to layer 2 neurons of the sensory and association cortices. Artificially induced cortical gamma synchrony across cortical areas improved memory encoding in hippocampal lesioned mice for originally hippocampal-dependent tasks. Mechanistically, we found that activities of cortical c-Fos labeled neurons, which showed egocentric map properties, were modulated by LEC-mediated gamma synchrony during memory recall, implicating a role of cortical synchrony to generate an integrative memory representation from disperse features. Our findings reveal the hippocampal mediated organization of cortical memories and suggest brain-machine interface approaches to improve cognitive function. Hippocampal lesioned mice form new memories. Here, the authors show the lateral entorhinal cortex modulates learning-induced cortical long-range gamma synchrony in a hippocampal-dependent manner and artificially induced cortical gamma synchrony across cortical areas improved memory encoding in hippocampal lesioned mice.
Collapse
Affiliation(s)
- Wenhan Luo
- School of Life Science and Technology, Shanghai Tech University, 201210, Shanghai, China
| | - Di Yun
- School of Life Science and Technology, Shanghai Tech University, 201210, Shanghai, China
| | - Yi Hu
- School of Life Science and Technology, Shanghai Tech University, 201210, Shanghai, China
| | - Miaomiao Tian
- School of Life Science and Technology, Shanghai Tech University, 201210, Shanghai, China
| | - Jiajun Yang
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yifan Xu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yong Tang
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Yang Zhan
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Hong Xie
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.,Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ji-Song Guan
- School of Life Science and Technology, Shanghai Tech University, 201210, Shanghai, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|