1
|
Serneels PJ, De Schutter JD, De Groef L, Moons L, Bergmans S. Oligodendroglial heterogeneity in health, disease, and recovery: deeper insights into myelin dynamics. Neural Regen Res 2025; 20:3179-3192. [PMID: 39665821 PMCID: PMC11881716 DOI: 10.4103/nrr.nrr-d-24-00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024] Open
Abstract
Decades of research asserted that the oligodendroglial lineage comprises two cell types: oligodendrocyte precursor cells and oligodendrocytes. However, recent studies employing single-cell RNA sequencing techniques have uncovered novel cell states, prompting a revision of the existing terminology. Going forward, the oligodendroglial lineage should be delineated into five distinct cell states: oligodendrocyte precursor cells, committed oligodendrocyte precursor cells, newly formed oligodendrocytes, myelin-forming oligodendrocytes, and mature oligodendrocytes. This new classification system enables a deeper understanding of the oligodendroglia in both physiological and pathological contexts. Adopting this uniform terminology will facilitate comparison and integration of data across studies. This, including the consolidation of findings from various demyelinating models, is essential to better understand the pathogenesis of demyelinating diseases. Additionally, comparing injury models across species with varying regenerative capacities can provide insights that may lead to new therapeutic strategies to overcome remyelination failure. Thus, by standardizing terminology and synthesizing data from diverse studies across different animal models, we can enhance our understanding of myelin pathology in central nervous system disorders such as multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis, all of which involve oligodendroglial and myelin dysfunction.
Collapse
Affiliation(s)
- Pieter-Jan Serneels
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Julie D. De Schutter
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Lies De Groef
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Cellular Communication & Neurodegeneration Research Group, Leuven, Belgium
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| | - Steven Bergmans
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Neural Circuit Development & Regeneration Research Group, Leuven, Belgium
| |
Collapse
|
2
|
Cen YY, Gao XL, Feng YH, Zhou C, Li CJ, Liu F, Shen JF, Zhang YY. The Double-Edged Effect of Connexins and Pannexins of Glial Cells in Central and Peripheral Nervous System After Nerve Injury. Mol Neurobiol 2025:10.1007/s12035-025-04991-6. [PMID: 40310549 DOI: 10.1007/s12035-025-04991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Glial cells play pivotal roles in homeostatic regulation and driving reactive pathologic changes after nerve injury. Connexins (Cxs) and pannexins (Panxs) have emerged as seminal proteins implicated in cell-cell communication, exerting a profound impact on the response processes of glial cell activation, proliferation, protein synthesis and secretion, as well as apoptosis following nerve injury. These influences are mediated through various forms, including protein monomers, hemichannel (HC), and gap junction (GJ), mainly by regulating intercellular or intracellular signaling pathways. Multiple Cx and Panx isoforms have been detected in central nervous system (CNS) or peripheral nervous system (PNS). Each isoform exhibits distinct cellular and subcellular localization, and the differential regulation and functional roles of various protein isoforms are observed post-injury. The quantitative and functional alterations of the same protein isoform in different studies remain inconsistent, attributable to factors such as the predominant mode of protein polymerization, the specific injury model, and the injury site. Similarly, the same protein isoforms have different roles in regulating the response processes after nerve injury, thus exerting a double-edged sword effect. This review describes the regulatory mechanisms and bidirectional effects of Cxs and Panxs. Additionally, it surveys the current status of research and application of drugs as therapeutic targets for neuropathic injuries. We summarize comprehensive and up-to-date information on these proteins in the glial cell response to nerve injury, providing new perspectives for future mechanistic exploration and development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yue-Yan Cen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Xin-Lin Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
3
|
Huang W, Liu Y, Li J, Gao Y, Tang J, Yip S, Wang X, Zhang H, Ma Y, Su S, Nie J, Lu R. Endoplasmic Reticulum Stress Drives Neuroinflammation Through Lipocalin 2 Upregulation in Retinal Microglia After Optic Nerve Injury. Invest Ophthalmol Vis Sci 2025; 66:12. [PMID: 40327012 PMCID: PMC12063709 DOI: 10.1167/iovs.66.5.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/12/2025] [Indexed: 05/07/2025] Open
Abstract
Purpose This study aims to explore how lipocalin 2 (LCN2) connects endoplasmic reticulum (ER) stress and inflammation in optic nerve injury (ONI) and identify potential therapeutic strategies. Methods An optic nerve crush (ONC) mouse model was used to investigate the role of ER stress and LCN2 in ONI. Immunofluorescence, quantitative PCR, and Western blot analyses were performed to assess ER stress markers, LCN2, inflammation-related genes, and retinal ganglion cell (RGC) survival, with or without treatment of 4PBA (an ER stress inhibitor) and TUN (an ER stress activator) in both the ONC model and BV2 cells. Lcn2 knockdown was achieved using small interfering RNA in BV2 cells and adeno-associated virus (AAV)-mediated gene silencing in vivo to explore underlying signaling pathways. Results ER stress markers (GRP78, ATF4, CHOP) and LCN2 expression were increased in ONC retinas, accompanied by microglial activation and RGC loss. Inhibition of ER stress using 4PBA effectively decreased LCN2 expression, attenuated microglial activation, and increased RGC survival post-ONC. Intravitreal injection of recombinant LCN2 induced a proinflammatory phenotype in microglia and exacerbated neurotoxicity. AAV-mediated Lcn2 silencing mitigated microglial activation, reduced neuroinflammation, and provided RGC neuroprotection, surpassing 4PBA treatment. In vitro studies further confirmed that Lcn2 knockdown significantly reduced the inflammatory response in BV2 cells by inhibiting NLRP3 inflammasome activation via the TLR4/NF-κB pathway. Conclusions This study elucidates the critical role of LCN2 in linking ER stress and inflammation in ONI, offering a promising therapeutic target. AAV-mediated Lcn2 silencing outperforms broad ER stress inhibition, providing a novel strategy for treating optic nerve injuries.
Collapse
Affiliation(s)
- Weifeng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yaoming Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jinmiao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Junjie Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Siuhang Yip
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Xinyue Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Hongwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yujun Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Shicai Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jiahe Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| |
Collapse
|
4
|
Bhattacharya S, Deka J, Avallone T, Todd L. The neuroimmune interface in retinal regeneration. Prog Retin Eye Res 2025; 106:101361. [PMID: 40287050 DOI: 10.1016/j.preteyeres.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Retinal neurodegeneration leads to irreversible blindness due to the mammalian nervous system's inability to regenerate lost neurons. Efforts to regenerate retina involve two main strategies: stimulating endogenous cells to reprogram into neurons or transplanting stem-cell derived neurons into the degenerated retina. However, both approaches must overcome a major barrier in getting new neurons to grow back down the optic nerve and connect to appropriate visual targets in environments that differ significantly from developmental conditions. While immune privilege has historically been associated with the central nervous system, an emerging literature highlights the active role of immune cells in shaping neurodegeneration and regeneration. This review explores the neuroimmune interface in retinal repair, dissecting how immune interactions influence glial reprogramming, transplantation outcomes, and axonal regeneration. By integrating insights from regenerative species with mammalian models, we highlight novel immunomodulatory strategies to optimize retinal regeneration.
Collapse
Affiliation(s)
- Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jugasmita Deka
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thomas Avallone
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
5
|
Venanzi AW, McGee LD, Hackam AS. Evaluating the Evidence for Neuroprotective and Axonal Regenerative Activities of Different Inflammatory Cell Types After Optic Nerve Injury. Mol Neurobiol 2025; 62:6212-6227. [PMID: 39738875 PMCID: PMC11953096 DOI: 10.1007/s12035-024-04679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery. However, recent evidence indicates that certain inflammatory cell types and signaling pathways are protective after optic nerve injury and promote RGC survival and axonal regeneration. The objective of this review is to examine the evidence for diverse effects of inflammatory cell types on the retina and optic nerve after injury. Additionally, we highlight promising avenues for further research.
Collapse
Affiliation(s)
- Alexander W Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Laura D McGee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
| |
Collapse
|
6
|
Wallin J, Forsberg A, Svenningsson P. Effects of Montelukast on Neuroinflammation in Parkinson's Disease: An Open Label Safety and Tolerability Trial with CSF Markers and [ 11C]PBR28 PET. Mov Disord 2025; 40:739-744. [PMID: 39912596 PMCID: PMC12006882 DOI: 10.1002/mds.30144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Dysregulated leukotriene signaling is proposed to be involved in pathogenesis of Parkinson's disease (PD). OBJECTIVE The objective was to examine the safety and tolerability of montelukast, a cysteinyl-leukotriene receptor1 and GPR17 antagonist, in patients with PD. Secondary outcomes were target engagement, effects on PD signs/symptoms, and central neuroinflammation. METHODS Fifteen PD patients were recruited to a 12-week open-label trial of 20 mg bi-daily montelukast treatment. Patients underwent ratings with the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS), the Montreal Cognitive Assessment (MoCA), Beck's Depression Inventory (BDI), Parkinson's Disease Questionnaire-39 (PDQ-39), [11C]PBR28-PET, and lumbar punctures before and during montelukast treatment. RESULTS All patients completed the study. Three patients reported loose stool. No serious adverse events related to treatment were reported. MDS-UPDRS-Total scores improved by 6.9 points. Very low levels of montelukast were detected in all cerebrospinal fluid (CSF) samples and resulted in a reduction in inflammation/metabolism markers. [11C]PBR28 binding was lowered in high, but not mixed, affinity binders after montelukast. CONCLUSIONS Montelukast crosses the blood-brain barrier at very low levels and is well tolerated and safe in PD patients. Preliminary effects on neuroinflammation and clinical scores motivate a future randomized controlled trial (RCT) in PD. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Johan Wallin
- Center for Neurology, Region StockholmStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Anton Forsberg
- Centre for Psychiatry Research, Karolinska InstitutetStockholmSweden
| | - Per Svenningsson
- Center for Neurology, Region StockholmStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| |
Collapse
|
7
|
Wang Y, Jiang A, Yan J, Wen D, Gu N, Li Z, Sun X, Wu Y, Guo Z. Inhibition of GPR17/ID2 Axis Improve Remyelination and Cognitive Recovery after SAH by Mediating OPC Differentiation in Rat Model. Transl Stroke Res 2025; 16:178-193. [PMID: 37935878 DOI: 10.1007/s12975-023-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023]
Abstract
Myelin sheath injury contributes to cognitive deficits following subarachnoid hemorrhage (SAH). G protein-coupled receptor 17 (GPR17), a membrane receptor, negatively regulates oligodendrocyte precursor cell (OPC) differentiation in both developmental and pathological contexts. Nonetheless, GPR17's role in modulating OPC differentiation, facilitating remyelination post SAH, and its interaction with downstream molecules remain elusive. In a rat SAH model induced by arterial puncture, OPCs expressing GPR17 proliferated prominently by day 14 post-onset, coinciding with compromised myelin sheath integrity and cognitive deficits. Selective Gpr17 knockdown in oligodendrocytes (OLs) via adeno-associated virus (AAV) administration revealed that reduced GPR17 levels promoted OPC differentiation, restored myelin sheath integrity, and improved cognitive deficits by day 14 post-SAH. Moreover, GPR17 knockdown attenuated the elevated expression of the inhibitor of DNA binding 2 (ID2) post-SAH, suggesting a GPR17-ID2 regulatory axis. Bi-directional modulation of ID2 expression in OLs using AAV unveiled that elevated ID2 counteracted the restorative effects of GPR17 knockdown. This resulted in hindered differentiation, exacerbated myelin sheath impairment, and worsened cognitive deficits. These findings highlight the pivotal roles of GPR17 and ID2 in governing OPC differentiation and axonal remyelination post-SAH. This study positions GPR17 as a potential therapeutic target for SAH intervention. The interplay between GPR17 and ID2 introduces a novel avenue for ameliorating cognitive deficits post-SAH.
Collapse
Affiliation(s)
- Yingwen Wang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Anan Jiang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Yan
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Daochen Wen
- Department of Neurosurgery, Xuanhan County People's Hospital, Dazhou, China
| | - Nina Gu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Zhao Li
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China
| | - Yue Wu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China.
| | - Zongduo Guo
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
8
|
Wu X, Hu Z, Yue H, Wang C, Li J, Yang Y, Luan Z, Wang L, Shen Y, Gu Y. Enhancing myelinogenesis through LIN28A rescues impaired cognition in PWMI mice. Stem Cell Res Ther 2025; 16:141. [PMID: 40102931 PMCID: PMC11921748 DOI: 10.1186/s13287-025-04267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND In premature newborn infants, preterm white matter injury (PWMI) causes motor and cognitive disabilities. Accumulating evidence suggests that PWMI may result from defected differentiation of oligodendrocyte precursor cells (OPCs) and impaired maturation of oligodendrocytes. However, the underlying mechanisms remain unclear. METHODS Using RNAscope, we analyzed the expression level of RNA-binding protein LIN28A in individual OPCs. Knockout of one or both alleles of Lin28a in OPCs was achieved by administrating tamoxifen to NG2CreER::Ai14::Lin28aflox/+ or NG2CreER::Ai14::Lin28aflox/flox mice. Lentivirus expressing FLEX-Lin28a was used in NG2CreER mice to overexpress LIN28A in OPCs. A series of behavioral tests were performed to assess the cognitive functions of mice. Two-tailed unpaired t-tests was carried out for statistical analysis between groups. RESULTS We found that the expression of Lin28a was decreased in OPCs in a PWMI mouse model. Knockout of one or both alleles of Lin28a in OPCs postnatally resulted in reduced OPC differentiation, decreased myelinogenesis and impaired cognitive functions. Supplementing LIN28A in OPCs postnatally was able to promote OPC differentiation and enhance myelinogenesis, thus rescuing the cognitive functions in PWMI mice. CONCLUSION Our study reveals that LIN28A is critical in regulating postnatal myelinogenesis. Overexpression of LIN28A in OPCs rescues cognitive deficits in PWMI mice by promoting myelinogenesis, thus providing a potential strategy for the treatment of PWMI.
Collapse
Affiliation(s)
- Xuan Wu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhechun Hu
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Huimin Yue
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310027, China
| | - Chao Wang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jie Li
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yinxiang Yang
- Department of Pediatrics, the Sixth Medical Center of PLA General Hospital, Beijing, 10048, China
| | - Zuo Luan
- Department of Pediatrics, the Sixth Medical Center of PLA General Hospital, Beijing, 10048, China
| | - Liang Wang
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ying Shen
- International Institutes of Medicine, Department of Neurology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Zhang J, Eaton M, Chen X, Zhao Y, Kant S, Deming BA, Harish K, Nguyen HP, Shu Y, Lai S, Wu J, Que Z, Wettschurack KW, Zhang Z, Xiao T, Halurkar MS, Olivero-Acosta MI, Yoo YE, Lanman NA, Koss WA, Skarnes WC, Yang Y. Restoration of excitation/inhibition balance enhances neuronal signal-to-noise ratio and rescues social deficits in autism-associated Scn2a-deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641498. [PMID: 40093153 PMCID: PMC11908182 DOI: 10.1101/2025.03.04.641498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Social behavior is critical for survival and adaptation, which is profoundly disrupted in autism spectrum disorders (ASD). Social withdrawal due to information overload was often described in ASD, and it was suspected that increased basal noise, i.e., excessive background neuronal activities in the brain could be a disease mechanism. However, experimental test of this hypothesis is limited. Loss-of-function mutations (deficiency) in SCN2A, which encodes the voltage-gated sodium channel NaV1.2, have been revealed as a leading monogenic cause of profound ASD. Here, we revealed that Scn2a deficiency results in robust and multifaceted social impairments in mice. Scn2a-deficient neurons displayed an increased excitation-inhibition (E/I) ratio, contributing to elevated basal neuronal noise and diminished signal-to-noise ratio (SNR) during social interactions. Notably, the restoration of Scn2a expression in adulthood is able to rescue both SNR and social deficits. By balancing the E/I ratio and reducing basal neuronal firing, an FDA-approved GABAA receptor-positive allosteric modulator improves sociability in Scn2a-deficient mice and normalizes neuronal activities in translationally relevant human brain organoids carrying autism-associated SCN2A nonsense mutation. Collectively, our findings revealed a critical role of the NaV1.2 channel in the regulation of social behaviors, and identified molecular, cellular, and circuitry mechanisms underlying SCN2A-associated disorders.
Collapse
Affiliation(s)
- Jingliang Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Muriel Eaton
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Xiaoling Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Yuanrui Zhao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Shivam Kant
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Brody A. Deming
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Kothandaraman Harish
- Department of Comparative Pathobiology, Purdue University
- Purdue University Center for Cancer Research, Purdue University
| | - Huynhvi P. Nguyen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Yue Shu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Shirong Lai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Jiaxiang Wu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Zhefu Que
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Kyle W. Wettschurack
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Zaiyang Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University
| | - Tiange Xiao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University
| | - Manasi S. Halurkar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Maria I. Olivero-Acosta
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Ye-Eun Yoo
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| | - Nadia A. Lanman
- Department of Comparative Pathobiology, Purdue University
- Purdue University Center for Cancer Research, Purdue University
| | - Wendy A. Koss
- Purdue Institute for Integrative Neuroscience, Purdue University
- Office of the Executive Vice President for Research and Partnerships, Purdue University
| | | | - Yang Yang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University
- Purdue Institute for Integrative Neuroscience, Purdue University
| |
Collapse
|
10
|
Pakula A, El Nagar S, Bayin NS, Christensen JB, Stephen DN, Reid AJ, Koche R, Joyner AL. An increase in reactive oxygen species underlies neonatal cerebellum repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.14.618368. [PMID: 39464104 PMCID: PMC11507802 DOI: 10.1101/2024.10.14.618368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The neonatal mouse cerebellum shows remarkable regenerative potential upon injury at birth, wherein a subset of Nestin-expressing progenitors (NEPs) undergoes adaptive reprogramming to replenish granule cell progenitors that die. Here, we investigate how the microenvironment of the injured cerebellum changes upon injury and contributes to the regenerative potential of normally gliogenic - NEPs and their adaptive reprogramming. Single cell transcriptomic and bulk chromatin accessibility analyses of the NEPs from injured neonatal cerebella compared to controls show a temporary increase in cellular processes involved in responding to reactive oxygen species (ROS), a known damage-associated molecular pattern. Analysis of ROS levels in cerebellar tissue confirm a transient increased one day after injury at postanal day 1, overlapping with the peak cell death in the cerebellum. In a transgenic mouse line that ubiquitously overexpresses human mitochondrial catalase (mCAT), ROS is reduced 1 day after injury to the granule cell progenitors, and we demonstrate that several steps in the regenerative process of NEPs are curtailed leading to reduced cerebellar growth. We also provide preliminary evidence that microglia are involved in one step of adaptive reprogramming by regulating NEP replenishment of the granule cell precursors. Collectively, our results highlight that changes in the tissue microenvironment regulate multiple steps in adaptative reprogramming of NEPs upon death of cerebellar granule cell progenitors at birth, highlighting the instructive roles of microenvironmental signals during regeneration of the neonatal brain.
Collapse
|
11
|
Liu ZG, Zhou LY, Sun YQ, Ma YH, Liu CM, Zhang BY. Unlocking the potential for optic nerve regeneration over long distances: a multi-therapeutic intervention. Front Neurol 2025; 15:1526973. [PMID: 39850731 PMCID: PMC11754882 DOI: 10.3389/fneur.2024.1526973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration in vivo through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration. At present, research on promoting optic nerve regeneration remains slow, with most studies unable to achieve axonal growth beyond the optic chiasm or reestablish connections with the brain. Future research priorities include directing axonal growth along correct pathways, facilitating synapse formation and myelination, and modifying the inhibitory microenvironment. These strategies are crucial not only for optic nerve regeneration but also for broader applications in central nervous system repair. In this review, we discuss multifactors therapeutic strategies for optic nerve regeneration, offering insights into advancing nerve regeneration research.
Collapse
Affiliation(s)
- Zhen-Gang Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lai-Yang Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yi-Hang Ma
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Bo-Yin Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhang Q, Tang J, Liu L, Liu Z, Xue J, Ge J, Zhuo Y, Li Y. Emerging therapeutic strategies for optic nerve regeneration. Trends Pharmacol Sci 2025; 46:45-61. [PMID: 39694789 DOI: 10.1016/j.tips.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
The optic nerve, comprising axons from retinal ganglion cells (RGCs), is a component of the central nervous system (CNS) that generally exhibits a limited regeneration capacity following injury in mature mammals, resulting in permanent vision loss. Here, we summarize recent advances in interventions targeting cell-intrinsic and cell-extrinsic mechanisms to enhance RGC axon regeneration. Additionally, we summarize strategies for guiding the reconnection of regenerating axons with brain visual targets, aiming to restore partial visual function. Given the advent of high-throughput screening techniques and multiomics analyses, we discuss how these emerging methodologies deepen our understanding of regenerative mechanisms and expedite the development of innovative therapeutic approaches. Lastly, we explore the translational potential of these strategies in achieving clinically meaningful vision recovery.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Liyan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China; Department of Ophthalmology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
13
|
Chen J, Dai XY, Malhi KK, Xu XW, Tang YX, Li XW, Li JL. A New Insight into the Mechanism of Atrazine-Induced Neurotoxicity: Triggering Neural Stem Cell Senescence by Activating the Integrated Stress Response Pathway. RESEARCH (WASHINGTON, D.C.) 2024; 7:0547. [PMID: 39679284 PMCID: PMC11638487 DOI: 10.34133/research.0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Atrazine (AT), a widely utilized chemical herbicide, causes widespread contamination of agricultural water bodies. Recently, exposure to AT has been linked to the development of age-related neurodegenerative diseases (NDs), suggesting its neurotoxicity potential. As an endocrine disruptor, AT targets the hypothalamus, a crucial part of the neuroendocrine system. However, the toxicological mechanism of AT exposure to the hypothalamus and its correlation with ND development remain unexplored. Our results indicated that AT exposure caused significant morphological and structural damage to the hypothalamus, leading to the loss of mature and intact neurons and microglial activation. Furthermore, hypothalamic neural stem cells (HtNSCs) were recruited to areas of neuronal damage caused by AT. Through in vivo and in vitro experiments, we clarified the outcomes of AT-induced HtNSC recruitment alongside the loss of mature/intact neurons. Mechanistically, AT induces senescence in these recruited HtNSCs by activating integrated stress response signaling. This consequently hinders the repair of damaged neurons by inhibiting HtNSC proliferation and differentiation. Overall, our findings underscore the pivotal role of the integrated stress response pathway in AT-induced HtNSC senescence and hypothalamic damage. Additionally, the present study offers novel perspectives to understand the mechanisms of AT-induced neurotoxicity and provides preliminary evidence linking AT contamination to the development of NDs.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology,
Jiangxi Agricultural University, Nanchang 330045, P.R. China
| | - Kanwar K. Malhi
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiang-Wen Xu
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi-Xi Tang
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiao-Wei Li
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment,
Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
14
|
Hu Y, Tao W. Current perspectives on microglia-neuron communication in the central nervous system: Direct and indirect modes of interaction. J Adv Res 2024; 66:251-265. [PMID: 38195039 PMCID: PMC11674795 DOI: 10.1016/j.jare.2024.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/05/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The incessant communication that takes place between microglia and neurons is essential the development, maintenance, and pathogenesis of the central nervous system (CNS). As mobile phagocytic cells, microglia serve a critical role in surveilling and scavenging the neuronal milieu to uphold homeostasis. AIM OF REVIEW This review aims to discuss the various mechanisms that govern the interaction between microglia and neurons, from the molecular to the organ system level, and to highlight the importance of these interactions in the development, maintenance, and pathogenesis of the CNS. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent research has revealed that microglia-neuron interaction is vital for regulating fundamental neuronal functions, such as synaptic pruning, axonal remodeling, and neurogenesis. The review will elucidate the intricate signaling pathways involved in these interactions, both direct and indirect, to provide a better understanding of the fundamental mechanisms of brain function. Furthermore, gaining insights into these signals could lead to the development of innovative therapies for neural disorders.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
15
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
16
|
Lei C, Wang J, Zhang X, Ge X, Zhao W, Li X, Jiang W, Ma M, Wang Z, Sun S, Kong Q, Li H, Mu L, Wang J. The wnt/pyruvate kinase, muscle axis plays an essential role in the differentiation of mouse neuroblastoma cells. Neurochem Int 2024; 181:105901. [PMID: 39542042 DOI: 10.1016/j.neuint.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Neuronal differentiation and neurite growth are essential processes in nervous system development and are regulated by several factors. Although all-trans retinoic acid (ATRA) has been shown to mediate the differentiation of mouse neuroblastoma cells via the activation of several pathways, including Wnt/β-catenin signaling, the mechanism remains unclear. The pyruvate kinase, muscle (PKM) plays an important role in the glycolysis of neuroblastoma cells and regulates the Wnt signaling pathway in various cancer cells. In this study, we hypothesized that the Wnt/PKM axis regulates the differentiation of neuroblastoma cells (Neuro-2a and N1E-115). To test this hypothesis, we used inhibitors and activators of the Wnt/β-catenin and glycolytic pathways in ATRA-induced differentiated Neuro-2a and N1E-115 cells and established cell lines with silenced or a mutant replacement of Pkm. Western blot and qPCR showed that ATRA treatment activated the Wnt signaling pathway and inhibited PKM-mediated glycolysis. The oxygen consumption rate (indicating oxidative phosphorylation) significantly increased, whereas the extracellular acidification rate (indicating glycolysis) significantly decreased during differentiation; these effects were reversed upon PKM inhibition. The Wnt inhibitor ICG-001 and PKM activator ML-265 inhibited ATRA-induced Neuro-2a and N1E-115 differentiation, whereas RNA interference-mediated Pkm silencing promoted Neuro-2a and N1E-115 differentiation, which was reversed by PKM overexpression. Treatment with the Wnt activator kenpaullone promoted Neuro-2a and N1E-115 differentiation, which was reversed by ML-265 administration. These results indicate that Wnt/β-catenin signaling promotes Neuro-2a and N1E-115 differentiation by inhibiting PKM-mediated glycolysis during ATRA-induced differentiation. These findings may provide a new theoretical basis for the role of glycolysis in nerve differentiation.
Collapse
Affiliation(s)
- Cheng Lei
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Jiaqi Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaoyu Zhang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xuemin Ge
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Wei Zhao
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xinrong Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Wei Jiang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Mingyu Ma
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Zhenhai Wang
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shanshan Sun
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qingfei Kong
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Hulun Li
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Lili Mu
- Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Jinghua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
17
|
Nie R, Zhou X, Fu J, Hu S, Zhang Q, Jiang W, Yan Y, Cao X, Yuan D, Long Y, Hong H, Tang S. GPR17 modulates anxiety-like behaviors via basolateral amygdala to ventral hippocampal CA1 glutamatergic projection. Acta Pharm Sin B 2024; 14:4789-4805. [PMID: 39664418 PMCID: PMC11628806 DOI: 10.1016/j.apsb.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024] Open
Abstract
Anxiety disorders are one of the most epidemic and chronic psychiatric disorders. An incomplete understanding of anxiety pathophysiology has limited the development of highly effective drugs against these disorders. GPR17 has been shown to be involved in multiple sclerosis and some acute brain injury disorders. However, no study has investigated the role of GPR17 in psychiatric disorders. In a well-established chronic restraint stress (CRS) mouse model, using a combination of pharmacological and molecular biology techniques, viral tracing, in vitro electrophysiology recordings, in vivo fiber photometry, chemogenetic manipulations and behavioral tests, we demonstrated that CRS induced anxiety-like behaviors and increased the expression of GPR17 in basolateral amygdala (BLA) glutamatergic neurons. Inhibition of GPR17 by cangrelor or knockdown of GPR17 by adeno-associated virus in BLA glutamatergic neurons effectively improved anxiety-like behaviors. Overexpression of GPR17 in BLA glutamatergic neurons increased the susceptibility to anxiety-like behaviors. What's more, BLA glutamatergic neuronal activity was required for anxiolytic-like effects of GPR17 antagonist and GPR17 modulated anxiety-like behaviors via BLA to ventral hippocampal CA1 glutamatergic projection. Our study finds for the first and highlights the new role of GPR17 in regulating anxiety-like behaviors and it might be a novel potential target for therapy of anxiety disorders.
Collapse
Affiliation(s)
- Ruizhe Nie
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xinting Zhou
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaru Fu
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shanshan Hu
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qilu Zhang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weikai Jiang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yizi Yan
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xian Cao
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Hong
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
18
|
Wang X, Li J, Nie J, Huang W, Tang J, Peng Y, Gao Y, Lu R. IL-33 protects retinal structure and function via mTOR/S6 signaling pathway in optic nerve crush. Exp Eye Res 2024; 248:110121. [PMID: 39401556 DOI: 10.1016/j.exer.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
This study demonstrated the functions and molecular mechanisms of the IL-33/ST2 axis in experimental optic neuropathy. C57BL/6J mice were used to establish an optic nerve crush (ONC) model. ONC mice were administered with IL-33 intraperitoneal injection, with PBS vehicle as control. Immunofluorescence, quantitative RT-PCR, and western blot techniques were utilized to assess the expression of the IL-33/ST2 axis. The electroretinography (ERG), optical coherence tomography (OCT), H&E, and luxol fast blue were used to assess the structural and functional changes. Western blot was employed to detect the activation of the mTOR/S6 pathway. The IL-33 expression level in the inner nuclear layer of the retina in ONC mice reached its peak on day 3, accompanied by a significant increase in IL-33 receptor ST2 expression. IL-33 treatment promoted the survival of retinal ganglion cells, restored the thickness of inner retina layer (IRL), alleviated the demyelination of the optic nerve, and recovered the decreased amplitude of b-wave in ONC mice. Furthermore, administration of IL-33 activated the mTOR/S6 signaling pathway in RGCs, which was significantly suppressed in the ONC condition. This study indicated that boosting the IL-33/ST2/mTOR/S6 pathway can protect against structural and functional damage to the retina and optic nerve induced by ONC. As a result, the IL-33/ST2 axis holds potential as a therapeutic option for treating various optic neuropathies.
Collapse
Affiliation(s)
- Xinyue Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jinmiao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiahe Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Weifeng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Junjie Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yue Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
19
|
Luo W, Yang Z, Zheng J, Cai Z, Li X, Liu J, Guo X, Luo M, Fan X, Cheng M, Tang T, Liu J, Wang Y. Small Molecule Hydrogels Loading Small Molecule Drugs from Chinese Medicine for the Enhanced Treatment of Traumatic Brain Injury. ACS NANO 2024; 18:28894-28909. [PMID: 39383335 DOI: 10.1021/acsnano.4c09097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Self-assembly of hydrogels for mechanical support and drug delivery has been extensively researched in traumatic brain injury (TBI), where treatment options are limited. The chief challenge is that most self-assembled hydrogels rely on high molecular carriers or the incorporation of exogenous inactive substances as mediators. It is difficult for these drug delivery systems to achieve clinical translation due to concerns regarding biological safety. Here we report a small molecule hydrogel (GBR-gel) loading small molecule drugs (glycyrrhizic acid, berberine, and rhein) that originated from popular Chinese medicines without additional drug loading or inactive components under physiological conditions. In the long run, GBR-gel possesses several advantages, including ease of preparation, cost-effectiveness, and high biocompatibility. As a proof-of-concept, GBR-gel allows for prompt administration at the site of brain injury to exert potent pharmacodynamic effects. Further single-cell RNA sequencing and experimental validation indicated that GBR-gel can effectively rescue the suppressed glutamatergic synapse pathway after TBI, thereby attenuating inflammatory responses and neural impairments. Our work provides an alternative strategy for timely intervention of TBI.
Collapse
Affiliation(s)
- Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zexuan Cai
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xuexuan Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, P. R. China
| | - Jingjing Liu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Ming Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xudong Fan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| |
Collapse
|
20
|
Kim J, Choi C. Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches. Curr Issues Mol Biol 2024; 46:11646-11664. [PMID: 39451571 PMCID: PMC11505999 DOI: 10.3390/cimb46100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Neurodegenerative disorders, particularly Alzheimer's and Parkinson's diseases, continue to challenge modern medicine despite therapeutic advances. Orphan G-protein-coupled receptors (GPCRs) have emerged as promising targets in the central nervous system, offering new avenues for drug development. This review focuses on the structural biology of orphan GPCRs implicated in these disorders, providing a comprehensive analysis of their molecular architecture and functional mechanisms. We examine recent breakthroughs in structural determination techniques, such as cryo-electron microscopy and X-ray crystallography, which have elucidated the intricate conformations of these receptors. The review highlights how structural insights inform our understanding of orphan GPCR activation, ligand binding and signaling pathways. By integrating structural data with molecular pharmacology, we explore the potential of structure-guided approaches in developing targeted therapeutics toward orphan GPCRs. This structural-biology-centered perspective aims to deepen our comprehension of orphan GPCRs and guide future drug discovery efforts in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | | |
Collapse
|
21
|
Harvey BM, Baxter M, Garcia AM, Granato M. Glial cell derived pathway directs regenerating optic nerve axons toward the CNS midline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618346. [PMID: 39464127 PMCID: PMC11507804 DOI: 10.1101/2024.10.15.618346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Several RGC intrinsic signaling pathways have been shown to enhance RGC survival and RGC axonal growth after optic nerve injury. Yet an unresolved challenge for regenerating RGC axons is to properly navigate the optic chiasm located at the Central Nervous System midline. Here, we use live-cell imaging in larval zebrafish to show that regrowing RGC axons initiate growth toward the midline and extend along a trajectory similar to their original projection. From a candidate genetic screen, we identify the glycosyltransferase Lh3 to be required during the process of regeneration to direct regrowing RGC axons toward the midline. Moreover, we find that mutants in collagen 18a1 (col18a1), a putative Lh3 substrate, display RGC axonal misguidance phenotypes similar to those we observe in lh3 mutants, suggesting that lh3 may act through col18a1 during regeneration. Finally, we show that transgenic lh3 expression in sox10+ presumptive olig2+ oligodendrocytes located near the optic chiasm restores directed axonal growth. Combined these data identify lh3 and col18a1 as part of a glial derived molecular pathway critical for guiding in vivo regenerating RGC axons towards and across the optic chiasm.
Collapse
Affiliation(s)
- Beth M. Harvey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Melissa Baxter
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alexis M. Garcia
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
22
|
Raffaele S, Nguyen N, Milanese M, Mannella FC, Boccazzi M, Frumento G, Bonanno G, Abbracchio MP, Bonifacino T, Fumagalli M. Montelukast improves disease outcome in SOD1 G93A female mice by counteracting oligodendrocyte dysfunction and aberrant glial reactivity. Br J Pharmacol 2024; 181:3303-3326. [PMID: 38751168 DOI: 10.1111/bph.16408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron (MN) loss and consequent muscle atrophy, for which no effective therapies are available. Recent findings reveal that disease progression is fuelled by early aberrant neuroinflammation and the loss of oligodendrocytes with neuroprotective and remyelinating properties. On this basis, pharmacological interventions capable of restoring a pro-regenerative local milieu and re-establish proper oligodendrocyte functions may be beneficial. EXPERIMENTAL APPROACH Here, we evaluated the in vivo therapeutic effects of montelukast (MTK), an antagonist of the oligodendroglial G protein-coupled receptor 17 (GPR17) and of cysteinyl-leukotriene receptor 1 (CysLT1R) receptors on microglia and astrocytes, in the SOD1G93A ALS mouse model. We chronically treated SOD1G93A mice with MTK, starting from the early symptomatic disease stage. Disease progression was assessed by behavioural and immunohistochemical approaches. KEY RESULTS Oral MTK treatment significantly extended survival probability, delayed body weight loss and ameliorated motor functionalityonly in female SOD1G93A mice. Noteworthy, MTK significantly restored oligodendrocyte maturation and induced significant changes in the reactive phenotype and morphological features of microglia/macrophages and astrocytes in the spinal cord of female SOD1G93A mice, suggesting enhanced pro-regenerative functions. Importantly, concomitant MN preservation has been detected after MTK administration. No beneficial effects were observed in male mice, highlighting a sex-based difference in the protective activity of MTK. CONCLUSIONS AND IMPLICATIONS Our results provide the first preclinical evidence indicating that repurposing of MTK, a safe and marketed anti-asthmatic drug, may be a promising sex-specific strategy for personalized ALS treatment.
Collapse
Affiliation(s)
- Stefano Raffaele
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Nhung Nguyen
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca C Mannella
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Giulia Frumento
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, Università degli Studi di Genova, Genoa, Italy
- Inter-University Center for the Promotion of the 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
Sun L, Cen Y, Liu X, Wei J, Ke X, Wang Y, Liao Q, Chang M, Zhou M, Wu W. Systemic whole transcriptome analysis identified underlying molecular characteristics and regulatory networks implicated in the retina following optic nerve injury. Exp Eye Res 2024; 244:109929. [PMID: 38750783 DOI: 10.1016/j.exer.2024.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 06/02/2024]
Abstract
Optic nerve injuries are severely disrupt the structural and functional integrity of the retina, often leading to visual impairment or blindness. Despite the profound impact of these injuries, the molecular mechanisms involved remain poorly understood. In this study, we performed a comprehensive whole-transcriptome analysis of mouse retina samples after optic nerve crush (ONC) to elucidate changes in gene expression and regulatory networks. Transcriptome analysis revealed a variety of molecular alterations, including 256 mRNAs, 530 lncRNAs, and 37 miRNAs, associated with metabolic, inflammatory, signaling, and biosynthetic pathways in the injured retina. The integrated analysis of co-expression and protein-protein interactions identified an active interconnected module comprising 5 co-expressed proteins (Fga, Serpina1a, Hpd, Slc38a4, and Ahsg) associated with the complement and coagulation cascades. Finally, 5 mRNAs (Fga, Serpinala, Hpd, Slc38a4, and Ahsg), 2 miRNAs (miR-671-5p and miR-3057-5p), and 6 lncRNAs (MSTRG. 1830.1, Gm10814, A530013C23Rik, Gm40634, MSTRG.9514.1, A330023F24Rik) were identified by qPCR in the injured retina, and some of them were validated as critical components of a ceRNA network active in 661W and HEK293T cells through dual-luciferase reporter assays. In conclusion, our study provides comprehensive insight into the complex and dynamic biological mechanisms involved in retinal injury responses and highlights promising potential targets to enhance neuroprotection and restore vision.
Collapse
Affiliation(s)
- Lanfang Sun
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yixin Cen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaojiang Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinfei Wei
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyu Ke
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yanan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qianling Liao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengchun Chang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Meng Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
24
|
Wang Y, Yu Z, Cheng M, Hu E, Yan Q, Zheng F, Guo X, Zhang W, Li H, Li Z, Zhu W, Wu Y, Tang T, Li T. Buyang huanwu decoction promotes remyelination via miR-760-3p/GPR17 axis after intracerebral hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118126. [PMID: 38556140 DOI: 10.1016/j.jep.2024.118126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The repairment of myelin sheaths is crucial for mitigating neurological impairments of intracerebral hemorrhage (ICH). However, the current research on remyelination processes in ICH remains limited. A representative traditional Chinese medicine, Buyang Huanwu decoction (BYHWD), shows a promising therapeutic strategy for ICH treatment. AIM OF THE STUDY To investigate the pro-remyelination effects of BYHWD on ICH and explore the underlying mechanisms. MATERIALS AND METHODS The collagenase-induced mice ICH model was created for investigation. BYHWD's protective effects were assessed by behavioral tests and histological staining. Transmission electron microscopy was used for displaying the structure of myelin sheaths. The remyelination and oligodendrocyte differentiation were evaluated by the expressions of myelin proteolipid protein (PLP), myelin basic protein (MBP), MBP/TAU, Olig2/CC1, and PDGFRα/proliferating cell nuclear antigen (PCNA) through RT-qPCR and immunofluorescence. Transcriptomics integrated with disease database analysis and experiments in vivo and in vitro revealed the microRNA-related underlying mechanisms. RESULTS Here, we reported that BYHWD promoted the neurological function of ICH mice and improved remyelination by increasing PLP, MBP, and TAU, as well as restoring myelin structure. Besides, we showed that BYHWD promoted remyelination by boosting the differentiation of PDGFRα+ oligodendrocyte precursor cells into olig2+/CC1+ oligodendrocytes. Additionally, we demonstrated that the remyelination effects of BYHWD worked by inhibiting G protein-coupled receptor 17 (GPR17). miRNA sequencing integrated with miRNA database prediction screened potential miRNAs targeting GPR17. By applying immunofluorescence, RNA in situ hybridization and dual luciferase reporter gene assay, we confirmed that BYHWD suppressed GPR17 and improved remyelination by increasing miR-760-3p. CONCLUSIONS BYHWD improves remyelination and neurological function in ICH mice by targeting miR-760-3p to inhibit GPR17. This study may shed light on the orchestration of remyelination mechanisms after ICH, thus providing novel insights for developing innovative prescriptions with brain-protective properties.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China
| | - Qiuju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, PR China
| | - Zhilin Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wenxin Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang, PR China.
| |
Collapse
|
25
|
Birgül Iyison N, Abboud C, Abboud D, Abdulrahman AO, Bondar AN, Dam J, Georgoussi Z, Giraldo J, Horvat A, Karoussiotis C, Paz-Castro A, Scarpa M, Schihada H, Scholz N, Güvenc Tuna B, Vardjan N. ERNEST COST action overview on the (patho)physiology of GPCRs and orphan GPCRs in the nervous system. Br J Pharmacol 2024. [PMID: 38825750 DOI: 10.1111/bph.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 06/04/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.
Collapse
Affiliation(s)
- Necla Birgül Iyison
- Department of Molecular Biology and Genetics, University of Bogazici, Istanbul, Turkey
| | - Clauda Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | | | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Magurele, Romania
- Forschungszentrum Jülich, Institute for Computational Biomedicine (IAS-5/INM-9), Jülich, Germany
| | - Julie Dam
- Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anemari Horvat
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| | - Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Alba Paz-Castro
- Molecular Pharmacology of GPCRs research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Miriam Scarpa
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Schihada
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bilge Güvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Nina Vardjan
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Laboratory of Cell Engineering, Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
26
|
Liu X, Xin DE, Zhong X, Zhao C, Li Z, Zhang L, Dourson AJ, Lee L, Mishra S, Bayat AE, Nicholson E, Seibel WL, Yan B, Mason J, Turner BJ, Gonsalvez DG, Ong W, Chew SY, Ghosh B, Yoon SO, Xin M, He Z, Tchieu J, Wegner M, Nave KA, Franklin RJM, Dutta R, Trapp BD, Hu M, Smith MA, Jankowski MP, Barton SK, He X, Lu QR. Small-molecule-induced epigenetic rejuvenation promotes SREBP condensation and overcomes barriers to CNS myelin regeneration. Cell 2024; 187:2465-2484.e22. [PMID: 38701782 PMCID: PMC11812128 DOI: 10.1016/j.cell.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/01/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024]
Abstract
Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.
Collapse
Affiliation(s)
- Xuezhao Liu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dazhuan Eric Xin
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, 45229, USA
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhidan Li
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Liguo Zhang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Arman E Bayat
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eva Nicholson
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - William L Seibel
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, 45229, USA
| | - Joel Mason
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne 3052, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne 3052, Australia
| | - David G Gonsalvez
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3168, Australia
| | - William Ong
- School of Chemistry, Chemical Engineering, and Biotechnology Nanyang Technological University, Singapore 637459, Singapore
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering, and Biotechnology Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, India, 500078
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| | - Mei Xin
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jason Tchieu
- Department of Pediatrics, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Robin J M Franklin
- Altos Labs, Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA; Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, OH, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pediatric Pain Research Center, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Samantha K Barton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne 3052, Australia
| | - Xuelian He
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Jain A, Hakim S, Woolf CJ. Immune drivers of physiological and pathological pain. J Exp Med 2024; 221:e20221687. [PMID: 38607420 PMCID: PMC11010323 DOI: 10.1084/jem.20221687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Physiological pain serves as a warning of exposure to danger and prompts us to withdraw from noxious stimuli to prevent tissue damage. Pain can also alert us of an infection or organ dysfunction and aids in locating such malfunction. However, there are instances where pain is purely pathological, such as unresolved pain following an inflammation or injury to the nervous system, and this can be debilitating and persistent. We now appreciate that immune cells are integral to both physiological and pathological pain, and that pain, in consequence, is not strictly a neuronal phenomenon. Here, we discuss recent findings on how immune cells in the skin, nerve, dorsal root ganglia, and spinal cord interact with somatosensory neurons to mediate pain. We also discuss how both innate and adaptive immune cells, by releasing various ligands and mediators, contribute to the initiation, modulation, persistence, or resolution of various modalities of pain. Finally, we propose that the neuroimmune axis is an attractive target for pain treatment, but the challenges in objectively quantifying pain preclinically, variable sex differences in pain presentation, as well as adverse outcomes associated with immune system modulation, all need to be considered in the development of immunotherapies against pain.
Collapse
Affiliation(s)
- Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Sara Hakim
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Zhao R, Deng X, Dong J, Liang C, Yang X, Tang Y, Du J, Ge Z, Wang D, Shen Y, Jiang L, Lin W, Zhu T, Wang G. Highly Bioadaptable Hybrid Conduits with Spatially Bidirectional Structure for Precision Nerve Fiber Regeneration via Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309306. [PMID: 38483934 PMCID: PMC11109652 DOI: 10.1002/advs.202309306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Indexed: 05/23/2024]
Abstract
Peripheral nerve deficits give rise to motor and sensory impairments within the limb. The clinical restoration of extensive segmental nerve defects through autologous nerve transplantation often encounters challenges such as axonal mismatch and suboptimal functional recovery. These issues may stem from the limited regenerative capacity of proximal axons and the subsequent Wallerian degeneration of distal axons. To achieve the integration of sensory and motor functions, a spatially differential plasmid DNA (pDNA) dual-delivery nanohydrogel conduit scaffold is devised. This innovative scaffold facilitates the localized administration of the transforming growth factor β (TGF-β) gene in the proximal region to accelerate nerve regeneration, while simultaneously delivering nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) to the distal region to mitigate Wallerian degeneration. By promoting autonomous and selective alignment of nerve fiber gap sutures via structure design, the approach aims to achieve a harmonious unification of nerve regeneration, neuromotor function, and sensory recovery. It is anticipated that this groundbreaking technology will establish a robust platform for gene delivery in tissue engineering.
Collapse
Affiliation(s)
- Renliang Zhao
- Orthopedics Research InstituteDepartment of OrthopedicsWest China HospitalSichuan UniversityChengdu610041P. R. China
- Trauma Medical CenterDepartment of Orthopedics SurgeryWest China HospitalSichuan UniversityChengdu610041China
| | - Xiangtian Deng
- Orthopedics Research InstituteDepartment of OrthopedicsWest China HospitalSichuan UniversityChengdu610041P. R. China
- Trauma Medical CenterDepartment of Orthopedics SurgeryWest China HospitalSichuan UniversityChengdu610041China
| | - Jizhao Dong
- Multidisciplinary Centre for Advanced MaterialsInstitute for Frontier Medical TechnologySchool of Chemistry and Chemical EngineeringShanghai University of Engineering Science333 Longteng Rd.Shanghai201620P. R. China
| | - Chen Liang
- Multidisciplinary Centre for Advanced MaterialsInstitute for Frontier Medical TechnologySchool of Chemistry and Chemical EngineeringShanghai University of Engineering Science333 Longteng Rd.Shanghai201620P. R. China
| | - Xiaozhong Yang
- Orthopedics Research InstituteDepartment of OrthopedicsWest China HospitalSichuan UniversityChengdu610041P. R. China
- Trauma Medical CenterDepartment of Orthopedics SurgeryWest China HospitalSichuan UniversityChengdu610041China
| | - Yunfeng Tang
- Head & Neck Oncology WardCancer CenterWest China HospitalCancer CenterSichuan UniversityChengdu610041P. R. China
| | - Juan Du
- Multidisciplinary Centre for Advanced MaterialsInstitute for Frontier Medical TechnologySchool of Chemistry and Chemical EngineeringShanghai University of Engineering Science333 Longteng Rd.Shanghai201620P. R. China
| | - Zilu Ge
- Orthopedics Research InstituteDepartment of OrthopedicsWest China HospitalSichuan UniversityChengdu610041P. R. China
- Trauma Medical CenterDepartment of Orthopedics SurgeryWest China HospitalSichuan UniversityChengdu610041China
| | - Dong Wang
- Orthopedics Research InstituteDepartment of OrthopedicsWest China HospitalSichuan UniversityChengdu610041P. R. China
- Trauma Medical CenterDepartment of Orthopedics SurgeryWest China HospitalSichuan UniversityChengdu610041China
| | - Yifan Shen
- Spine LabDepartment of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Lianghua Jiang
- Department of Orthopedic TraumaThe First People's Hospital of Kunshan affiliated with Jiangsu UniversitySuzhouJiangsu215300P. R. China
| | - Wei Lin
- Department of GynecologyWest China Second HospitalSichuan UniversityChengdu610041P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced MaterialsInstitute for Frontier Medical TechnologySchool of Chemistry and Chemical EngineeringShanghai University of Engineering Science333 Longteng Rd.Shanghai201620P. R. China
| | - Guanglin Wang
- Orthopedics Research InstituteDepartment of OrthopedicsWest China HospitalSichuan UniversityChengdu610041P. R. China
- Trauma Medical CenterDepartment of Orthopedics SurgeryWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
29
|
Trakhtenberg EF. Premature axon-oligodendrocyte interaction contributes to stalling of experimental axon regeneration after injury to the white matter. Neural Regen Res 2024; 19:469-470. [PMID: 37721257 PMCID: PMC10581583 DOI: 10.4103/1673-5374.380883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Ephraim F. Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
30
|
Xu X, Song X, Chen F, Yan W, Meng Q, Liu J, Yao R, Liu Y, Dong F. Solifenacin promotes remyelination in cuprizone mouse model by inhibiting the Wnt/β-catenin signaling pathway. J Chem Neuroanat 2024; 136:102375. [PMID: 38123002 DOI: 10.1016/j.jchemneu.2023.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/22/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Demyelinating diseases are a type of neurological disorder characterized by the damage to the myelin sheath in the central nervous system. Promoting the proliferation and differentiation of oligodendrocyte precursor cells (OPCs) is crucial for treatment. Non-selective muscarinic receptor (MR) antagonists have been shown to improve remyelination in rodent models, although the mechanisms are still unclear. In this study, we treated cuprizone (CPZ)-induced demyelination mouse model with different concentrations of Solifenacin (Sol), a selective M3 receptor antagonist, to determine the optimal concentration for promoting remyelination. Behavioral tests and Luxol fast blue (LFB) staining were used to observe the extent of remyelination, while immunofluorescence was used to measure the expression levels of myelin-related proteins, including myelin basic protein (MBP) and platelet-derived growth factor receptor alpha (PDGFR-α). Western blot analysis was employed to analyze the expression levels of molecules associated with the Wnt/β-catenin signaling pathway. The results showed that Sol treatment significantly promoted myelin regeneration and OPCs differentiation in CPZ-induced demyelination mouse model. Additionally, Sol treatment inhibited the Wnt/β-catenin signaling pathway and reversed the effects of CPZ on OPCs differentiation. In conclusion, Sol may promote the differentiation of OPCs by inhibiting the Wnt/β-catenin signaling pathway, making it a potential therapeutic option for central nervous system demyelinating diseases.
Collapse
Affiliation(s)
- Xinqi Xu
- The First Clinical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Xueli Song
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Fei Chen
- The First Clinical College, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Weixing Yan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Qiqi Meng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Jinfeng Liu
- School of Life Science, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yaping Liu
- National Demonstration Center for Experimental Basic Medical Science Education (Xuzhou Medical University), Xuzhou, 221004, Jiangsu Province, China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.
| |
Collapse
|
31
|
Xu J, Peng Q, Cai J, Shangguan J, Su W, Chen G, Sun H, Zhu C, Gu Y. The Schwann cell-specific G-protein Gαo (Gnao1) is a cell-intrinsic controller contributing to the regulation of myelination in peripheral nerve system. Acta Neuropathol Commun 2024; 12:24. [PMID: 38331815 PMCID: PMC10854112 DOI: 10.1186/s40478-024-01720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
Myelin sheath abnormality is the cause of various neurodegenerative diseases (NDDs). G-proteins and their coupled receptors (GPCRs) play the important roles in myelination. Gnao1, encoding the major Gα protein (Gαo) in mammalian nerve system, is required for normal motor function. Here, we show that Gnao1 restricted to Schwann cell (SCs) lineage, but not neurons, negatively regulate SC differentiation, myelination, as well as re-myelination in peripheral nervous system (PNS). Mice lacking Gnao1 expression in SCs exhibit faster re-myelination and motor function recovery after nerve injury. Conversely, mice with Gnao1 overexpression in SCs display the insufficient myelinating capacity and delayed re-myelination. In vitro, Gnao1 deletion in SCs promotes SC differentiation. We found that Gnao1 knockdown in SCs resulting in the elevation of cAMP content and the activation of PI3K/AKT pathway, both associated with SC differentiation. The analysis of RNA sequencing data further evidenced that Gnao1 deletion cause the increased expression of myelin-related molecules and activation of regulatory pathways. Taken together, our data indicate that Gnao1 negatively regulated SC differentiation by reducing cAMP level and inhibiting PI3K-AKT cascade activation, identifying a novel drug target for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Jinghui Xu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Qianqian Peng
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Jieyi Cai
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Jianghong Shangguan
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Wenfeng Su
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Gang Chen
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Hualin Sun
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China
| | - Changlai Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China.
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS, 226001, People's Republic of China.
| |
Collapse
|
32
|
Zuo Y, Xie J, Zhang X, Thirupathi A, Liu X, Zhang D, Zhang J, Shi Z. Sevoflurane causes cognitive impairment by inducing iron deficiency and inhibiting the proliferation of neural precursor cells in infant mice. CNS Neurosci Ther 2024; 30:e14612. [PMID: 38334030 PMCID: PMC10853893 DOI: 10.1111/cns.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
AIMS Numerous studies on animals have shown that exposure to general anesthetics in infant stage may cause neurocognitive impairment. However, the exact mechanism is not clear. The dysfunction of iron metabolism can cause neurodevelopmental disorders. Therefore, we investigated the effect of iron metabolism disorder induced by sevoflurane (Sev) on cognitive function and the proliferation of neural precursor cells (NPCs) and neural stem cells (NSCs) in infant mice. METHODS C57BL/6 mice of postnatal day 14 and neural stem cells NE4C were treated with 2% Sev for 6 h. We used the Morris water maze (MWM) to test the cognitive function of infant mice. The proliferation of NPCs was measured using bromodeoxyuridine (BrdU) label and their markers Ki67 and Pax6 in infant brain tissues 12 h after anesthesia. Meanwhile, we used immunohistochemical stain, immunofluorescence assay, western blot, and flow cytometer to evaluate the myelinogenesis, iron levels, and cell proliferation in cortex and hippocampus or in NE4C cells. RESULTS The results showed that Sev significantly caused cognitive deficiency in infant mice. Further, we found that Sev inhibited oligodendrocytes proliferation and myelinogenesis by decreasing MBP and CC-1 expression and iron levels. Meanwhile, Sev also induced the iron deficiency in neurons and NSCs by downregulating FtH and FtL expression and upregulating the TfR1 expression in the cortex and hippocampus, which dramatically suppressed the proliferation of NSCs and NPCs as indicated by decreasing the colocalization of Pax6+ and BrdU+ cells, and caused the decrease in the number of neurons. Interestingly, iron supplementation before anesthesia significantly improved iron deficiency in cortex and hippocampus and cognitive deficiency induced by Sev in infant mice. Iron therapy inhibited the decrease of MBP expression, iron levels in neurons and oligodendrocytes, and DNA synthesis of Pax6+ cells in hippocampus induced by Sev. Meanwhile, the number of neurons was partially recovered in hippocampus. CONCLUSION The results from the present study demonstrated that Sev-induced iron deficiency might be a new mechanism of cognitive impairment caused by inhaled anesthetics in infant mice. Iron supplementation before anesthesia is an effective strategy to prevent cognitive impairment caused by Sev in infants.
Collapse
Affiliation(s)
- Yong Zuo
- Laboratory of Molecular Iron Metabolism, College of Life ScienceHebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Jinhong Xie
- Laboratory of Molecular Iron Metabolism, College of Life ScienceHebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Xue Zhang
- Laboratory of Molecular Iron Metabolism, College of Life ScienceHebei Normal UniversityShijiazhuangHebei ProvinceChina
| | | | - Xiaopeng Liu
- The Second Affiliated Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Di Zhang
- Laboratory of Molecular Iron Metabolism, College of Life ScienceHebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Jianhua Zhang
- Laboratory of Molecular Iron Metabolism, College of Life ScienceHebei Normal UniversityShijiazhuangHebei ProvinceChina
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life ScienceHebei Normal UniversityShijiazhuangHebei ProvinceChina
| |
Collapse
|
33
|
De Lima S, Mietto BS, Ribas VT, Ribeiro-Resende VT, Oliveira ALR, Park KK. Editorial: Promoting nervous system regeneration by treatments targeting neuron-glia interactions. Front Cell Neurosci 2024; 17:1355469. [PMID: 38273976 PMCID: PMC10808721 DOI: 10.3389/fncel.2023.1355469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Affiliation(s)
- Silmara De Lima
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bruno Siqueira Mietto
- Department of Biology, Institute of Biomedical Science, Juiz de Fora Federal University, Juiz de Fora, Minas Gerais, Brazil
| | - Vinicius Toledo Ribas
- Morphology Department, Institute of Biomedical Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Kevin K. Park
- Department of Ophthalmology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
34
|
Sun J, Wang W, Ma Q, Pan X, Zhai H, Wang J, Han Y, Li Y, Wang Y. Necrostatin-1s Suppresses RIPK1-driven Necroptosis and Inflammation in Periventricular Leukomalacia Neonatal Mice. Neurochem Res 2024; 49:129-141. [PMID: 37642893 DOI: 10.1007/s11064-023-04013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Periventricular leukomalacia (PVL), a predominant form of brain injury in preterm survivors, is characterized by hypomyelination and microgliosis and is also the major cause of long-term neurobehavioral abnormalities in premature infants. Receptor-interacting protein kinase 1 (RIPK1) plays a pivotal role in mediating cell death and inflammatory signaling cascade. However, very little is known about the potential effect of RIPK1 in PVL and the underlying mechanism. Herein, we found that the expression level of RIPK1 was drastically increased in the brain of PVL neonatal mice models, and treatment of PVL neonatal mice with Necrostatin-1s (Nec-1s), an inhibitor of RIPK1, greatly ameliorated cerebral ischemic injury, exhibiting an increase of body weights, reduction of cerebral infarct size, neuronal loss, and occurrence of necrosis-like cells, and significantly improved the long-term abnormal neurobehaviors of PVL. In addition, Nec-1s significantly suppressed hypomyelination and promoted the differentiation of oligodendrocyte precursor cells (OPCs), as demonstrated by the increased expression levels of MBP and Olig2, the decreased expression level of GPR17, a significant increase in the number of CC-1-positive cells, and suppression of myelin ultrastructure impairment. Moreover, the mechanism of neuroprotective effects of Nec-1s against PVL is closely associated with its suppression of the RIPK1-mediated necrosis signaling molecules, RIPK1, PIPK3, and MLKL. More importantly, inhibition of RIPK1 could reduce microglial inflammatory injury by triggering the M1 to M2 microglial phenotype, appreciably decreasing the levels of M1 marker CD86 and increasing the levels of M2 markers Arg1 or CD206 in PVL mice. Taken together, inhibition of RIPK1 markedly ameliorates the brain injury and long-term neurobehavioral abnormalities of PVL mice through the reduction of neural cell necroptosis and reversing neuroinflammation.
Collapse
Affiliation(s)
- Jinping Sun
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Wei Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Quanrui Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Xiaoli Pan
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Hualiang Zhai
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Junyan Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Yong Han
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Yunhong Li
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China.
| | - Yin Wang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China.
| |
Collapse
|
35
|
Sun C, Deng J, Ma Y, Meng F, Cui X, Li M, Li J, Li J, Yin P, Kong L, Zhang L, Tang P. The dual role of microglia in neuropathic pain after spinal cord injury: Detrimental and protective effects. Exp Neurol 2023; 370:114570. [PMID: 37852469 DOI: 10.1016/j.expneurol.2023.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition that is frequently accompanied by neuropathic pain, resulting in significant physical and psychological harm to a vast number of individuals globally. Despite the high prevalence of neuropathic pain following SCI, the precise underlying mechanism remains incompletely understood. Microglia are a type of innate immune cell that are present in the central nervous system (CNS). They have been observed to have a significant impact on neuropathic pain following SCI. This article presents a comprehensive overview of recent advances in understanding the role of microglia in the development of neuropathic pain following SCI. Specifically, the article delves into the detrimental and protective effects of microglia on neuropathic pain following SCI, as well as the mechanisms underlying their interconversion. Furthermore, the article provides a thorough overview of potential avenues for future research in this area.
Collapse
Affiliation(s)
- Chang Sun
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China; Department of Orthopedics, Air Force Medical Center, PLA, Beijing, China
| | - Junhao Deng
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yifei Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Fanqi Meng
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiang Cui
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Ming Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiantao Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jia Li
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Lingjie Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| |
Collapse
|
36
|
Irshad K, Huang YK, Rodriguez P, Lo J, Aghoghovwia BE, Pan Y, Chang KC. The Neuroimmune Regulation and Potential Therapeutic Strategies of Optic Pathway Glioma. Brain Sci 2023; 13:1424. [PMID: 37891793 PMCID: PMC10605541 DOI: 10.3390/brainsci13101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Optic pathway glioma (OPG) is one of the causes of pediatric visual impairment. Unfortunately, there is as yet no cure for such a disease. Understanding the underlying mechanisms and the potential therapeutic strategies may help to delay the progression of OPG and rescue the visual morbidities. Here, we provide an overview of preclinical OPG studies and the regulatory pathways controlling OPG pathophysiology. We next discuss the role of microenvironmental cells (neurons, T cells, and tumor-associated microglia and macrophages) in OPG development. Last, we provide insight into potential therapeutic strategies for treating OPG and promoting axon regeneration.
Collapse
Affiliation(s)
- Khushboo Irshad
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
| | - Yu-Kai Huang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Paul Rodriguez
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Jung Lo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Benjamin E. Aghoghovwia
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
37
|
Qin Z, Huang Y, Li Z, Pan G, Zheng L, Xiao X, Wang F, Chen J, Chen X, Lin X, Li K, Yan G, Zhang H, Xing F. Glioblastoma Vascular Plasticity Limits Effector T-cell Infiltration and Is Blocked by cAMP Activation. Cancer Immunol Res 2023; 11:1351-1366. [PMID: 37540804 DOI: 10.1158/2326-6066.cir-22-0872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/20/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Glioblastoma (GBM) is the deadliest form of brain cancer. It is a highly angiogenic and immunosuppressive malignancy. Although immune checkpoint blockade therapies have revolutionized treatment for many types of cancer, their therapeutic efficacy in GBM has been far less than expected or even ineffective. In this study, we found that the genomic signature of glioma-derived endothelial cells (GdEC) correlates with an immunosuppressive state and poor prognosis of patients with glioma. We established an in vitro model of GdEC differentiation for drug screening and used this to determine that cyclic adenosine monophosphate (cAMP) activators could effectively block GdEC formation by inducing oxidative stress. Furthermore, cAMP activators impaired GdEC differentiation in vivo, normalized the tumor vessels, and altered the tumor immune profile, especially increasing the influx and function of CD8+ effector T cells. Dual blockade of GdECs and PD-1 induced tumor regression and established antitumor immune memory. Thus, our study reveals that endothelial transdifferentiation of GBM shapes an endothelial immune cell barrier and supports the clinical development of combining GdEC blockade and immunotherapy for GBM. See related Spotlight by Lee et al., p. 1300.
Collapse
Affiliation(s)
- Zixi Qin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Youwei Huang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, P.R. China
| | - Zeying Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Guopeng Pan
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Liangying Zheng
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, P.R. China
| | - Xiao Xiao
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Fang Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Jiahong Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Xueqin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Kai Li
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Fan Xing
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, P.R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
38
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
39
|
Mezydlo A, Treiber N, Ullrich Gavilanes EM, Eichenseer K, Ancău M, Wens A, Ares Carral C, Schifferer M, Snaidero N, Misgeld T, Kerschensteiner M. Remyelination by surviving oligodendrocytes is inefficient in the inflamed mammalian cortex. Neuron 2023; 111:1748-1759.e8. [PMID: 37071991 DOI: 10.1016/j.neuron.2023.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/01/2023] [Accepted: 03/22/2023] [Indexed: 04/20/2023]
Abstract
In multiple sclerosis, an inflammatory attack results in myelin loss, which can be partially reversed by remyelination. Recent studies suggest that mature oligodendrocytes could contribute to remyelination by generating new myelin. Here, we show that in a mouse model of cortical multiple sclerosis pathology, surviving oligodendrocytes can indeed extend new proximal processes but rarely generate new myelin internodes. Furthermore, drugs that boost myelin recovery by targeting oligodendrocyte precursor cells did not enhance this alternate mode of myelin regeneration. These data indicate that the contribution of surviving oligodendrocytes to myelin recovery in the inflamed mammalian CNS is minor and inhibited by distinct remyelination brakes.
Collapse
Affiliation(s)
- Aleksandra Mezydlo
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany; Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Nils Treiber
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Emily Melisa Ullrich Gavilanes
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Katharina Eichenseer
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany; Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Mihai Ancău
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany; Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Adinda Wens
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Carla Ares Carral
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany
| | - Martina Schifferer
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicolas Snaidero
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany; Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
40
|
Jansen MI, Castorina A. Identification of Key Genes and Regulatory Pathways in Multiple Sclerosis Brain Samples: A Meta-Analysis of Micro-Array Datasets. Int J Mol Sci 2023; 24:ijms24119361. [PMID: 37298310 DOI: 10.3390/ijms24119361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) whose aetiology is only partly understood. Investigating the intricate transcriptional changes occurring in MS brains is critical to unravel novel pathogenic mechanisms and therapeutic targets. Unfortunately, this process is often hindered by the difficulty in retrieving an adequate number of samples. However, by merging data from publicly available datasets, it is possible to identify alterations in gene expression profiles and regulatory pathways that were previously overlooked. Here, we merged microarray gene expression profiles obtained from CNS white matter samples taken from MS donors to identify novel differentially expressed genes (DEGs) linked with MS. Data from three independent datasets (GSE38010, GSE32915, and GSE108000) were combined and used to detect novel DEGs using the Stouffer's Z-score method. Corresponding regulatory pathways were analysed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases. Finally, top up- and down-regulated transcripts were validated by real-time quantitative PCR (qPCR) using an independent set of white matter tissue samples obtained from MS donors with different disease subtypes. There were a total of 1446 DEGs, of which 742 were up-regulated and 704 genes were down-regulated. DEGs were associated with several myelin-related pathways and protein metabolism pathways. Validation studies of selected top up- or down-regulated genes highlighted MS subtype-specific differences in the expression of some of the identified genes, underlining a more complex scenario of white matter pathology amongst people afflicted by this devastating disease.
Collapse
Affiliation(s)
- Margo I Jansen
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
41
|
Tomczak W, Winkler-Lach W, Tomczyk-Socha M, Misiuk-Hojło M. Advancements in Ocular Regenerative Therapies. BIOLOGY 2023; 12:biology12050737. [PMID: 37237549 DOI: 10.3390/biology12050737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
The use of stem cells (SCs) has emerged as a promising avenue in ophthalmology, offering potential therapeutic solutions for various vision impairments and degenerative eye diseases. SCs possess the unique ability to self-renew and differentiate into specialised cell types, making them valuable tools for repairing damaged tissues and restoring visual function. Stem cell-based therapies hold significant potential for addressing conditions such as age-related macular degeneration (AMD), retinitis pigmentosa (RP), corneal disorders, and optic nerve damage. Therefore, researchers have explored different sources of stem cells, including embryonic stem cells (ESC), induced pluripotent stem cells (iPSCs), and adult stem cells, for ocular tissue regeneration. Preclinical studies and early-phase clinical trials have demonstrated promising outcomes, with some patients experiencing improved vision following stem cell-based interventions. However, several challenges remain, including optimising the differentiation protocols, ensuring transplanted cells' safety and long-term viability, and developing effective delivery methods. The field of stem cell research in ophthalmology witnesses a constant influx of new reports and discoveries. To effectively navigate these tons of information, it becomes crucial to summarise and systematise these findings periodically. In light of recent discoveries, this paper demonstrates the potential applications of stem cells in ophthalmology, focusing on their use in various eye tissues, including the cornea, retina, conjunctiva, iris, trabecular meshwork, lens, ciliary body, sclera, and orbital fat.
Collapse
Affiliation(s)
| | | | | | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, 50556 Wroclaw, Poland
| |
Collapse
|
42
|
Chapman TW, Olveda GE, Bame X, Pereira E, Hill RA. Oligodendrocyte death initiates synchronous remyelination to restore cortical myelin patterns in mice. Nat Neurosci 2023; 26:555-569. [PMID: 36928635 PMCID: PMC10208560 DOI: 10.1038/s41593-023-01271-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
Myelin degeneration occurs in neurodegenerative diseases and aging. In these conditions, resident oligodendrocyte progenitor cells (OPCs) differentiate into oligodendrocytes that carry out myelin repair. To investigate the cellular dynamics underlying these events, we developed a noninflammatory demyelination model that combines intravital two-photon imaging with a single-cell ablation technique called two-photon apoptotic targeted ablation (2Phatal). Oligodendrocyte 2Phatal in both sexes results in a myelin degeneration cascade that triggers rapid forms of synchronous remyelination on defined axons. This remyelination is driven by oligodendrocytes differentiated from a subset of morphologically distinct, highly branched OPCs. Moreover, remyelination efficiency depends on the initial myelin patterns, as well as the age of the organism. In summary, using 2Phatal, we show a form of rapid synchronous remyelination, mediated by a distinct subset of OPCs, capable of restoring the original myelin patterning in adulthood but not aging.
Collapse
Affiliation(s)
- Timothy W Chapman
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Genaro E Olveda
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Elizabeth Pereira
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
43
|
Kiyota N, Namekata K, Nishijima E, Guo X, Kimura A, Harada C, Nakazawa T, Harada T. Effects of constitutively active K-Ras on axon regeneration after optic nerve injury. Neurosci Lett 2023; 799:137124. [PMID: 36780941 DOI: 10.1016/j.neulet.2023.137124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Visual disturbance after optic nerve injury is a serious problem. Attempts have been made to enhance the intrinsic ability of retinal ganglion cells (RGCs) to regenerate their axons, and the importance of PI3K/Akt and RAF/MEK/ERK signal activation has been suggested. Since these signals are shared with oncogenic signaling cascades, in this study, we focused on a constitutively active form of K-Ras, K-RasV12, to determine if overexpression of this molecule could stimulate axon regeneration. We confirmed that K-RasV12 phosphorylated Akt and ERK in vitro. Intravitreal delivery of AAV2-K-RasV12 increased the number of surviving RGCs and promoted 1.0 mm of axon regeneration one week after optic nerve injury without inducing abnormal proliferative effects in the RGCs. In addition, AAV2-K-RasV12 induced robust RGC axon regeneration, reaching as far as approximately 2.5 mm from the injury site, in eight weeks. Our findings suggest that AAV2-K-RasV12 could provide a good model for speedy and efficient analysis of the mechanism underlying axon regeneration in vivo.
Collapse
Affiliation(s)
- Naoki Kiyota
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Euido Nishijima
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
44
|
Xu T, Liu C, Deng S, Gan L, Zhang Z, Yang GY, Tian H, Tang Y. The roles of microglia and astrocytes in myelin phagocytosis in the central nervous system. J Cereb Blood Flow Metab 2023; 43:325-340. [PMID: 36324281 PMCID: PMC9941857 DOI: 10.1177/0271678x221137762] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Myelination is an important process in the central nervous system (CNS). Oligodendrocytes (OLs) extend multiple layers to densely sheath on axons, composing the myelin to achieve efficient electrical signal conduction. The myelination during developmental stage maintains a balanced state. However, numerous CNS diseases including neurodegenerative and cerebrovascular diseases cause demyelination and disrupt the homeostasis, resulting in inflammation and white matter deficits. Effective clearance of myelin debris is needed in the region of demyelination, which is a key step for remyelination and tissue regeneration. Microglia and astrocytes are the major resident phagocytic cells in the brain, which may play different or collaborative roles in myelination. Microglia and astrocytes participate in developmental myelination through engulfing excessive unneeded myelin. They are also involved in the clearance of degenerated myelin debris for accelerating remyelination, or engulfing healthy myelin sheath for inhibiting remyelination. This review focuses on the roles of microglia and astrocytes in phagocytosing myelin in the developmental brain and diseased brain. In addition, the interaction between microglia and astrocytes to mediate myelin engulfment is also summarized.
Collapse
Affiliation(s)
- Tongtong Xu
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Chang Liu
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Shiyu Deng
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Lin Gan
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Hengli Tian
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| | - Yaohui Tang
- Shanghai Jiao Tong Affiliated Sixth People’s
Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai, China
| |
Collapse
|
45
|
Pan L, Trimarco A, Zhang AJ, Fujimori K, Urade Y, Sun LO, Taveggia C, Zhang Y. Oligodendrocyte-lineage cell exocytosis and L-type prostaglandin D synthase promote oligodendrocyte development and myelination. eLife 2023; 12:e77441. [PMID: 36779701 PMCID: PMC9946447 DOI: 10.7554/elife.77441] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/12/2023] [Indexed: 02/14/2023] Open
Abstract
In the developing central nervous system, oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes, which form myelin around axons. Oligodendrocytes and myelin are essential for the function of the central nervous system, as evidenced by the severe neurological symptoms that arise in demyelinating diseases such as multiple sclerosis and leukodystrophy. Although many cell-intrinsic mechanisms that regulate oligodendrocyte development and myelination have been reported, it remains unclear whether interactions among oligodendrocyte-lineage cells (OPCs and oligodendrocytes) affect oligodendrocyte development and myelination. Here, we show that blocking vesicle-associated membrane protein (VAMP) 1/2/3-dependent exocytosis from oligodendrocyte-lineage cells impairs oligodendrocyte development, myelination, and motor behavior in mice. Adding oligodendrocyte-lineage cell-secreted molecules to secretion-deficient OPC cultures partially restores the morphological maturation of oligodendrocytes. Moreover, we identified L-type prostaglandin D synthase as an oligodendrocyte-lineage cell-secreted protein that promotes oligodendrocyte development and myelination in vivo. These findings reveal a novel autocrine/paracrine loop model for the regulation of oligodendrocyte and myelin development.
Collapse
Affiliation(s)
- Lin Pan
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Amelia Trimarco
- Division of Neuroscience, IRCCS, San Raffaele HospitalMilanItaly
| | - Alice J Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Ko Fujimori
- Department of Pathobiochemistry, Osaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Yoshihiro Urade
- Hirono Satellite, Isotope Science Center, The University of TokyoFukushimaJapan
| | - Lu O Sun
- Department of Molecular Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Carla Taveggia
- Division of Neuroscience, IRCCS, San Raffaele HospitalMilanItaly
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
46
|
Harrington AW, Liu C, Phillips N, Nepomuceno D, Kuei C, Chang J, Chen W, Sutton SW, O'Malley D, Pham L, Yao X, Sun S, Bonaventure P. Identification and characterization of select oxysterols as ligands for GPR17. Br J Pharmacol 2023; 180:401-421. [PMID: 36214386 DOI: 10.1111/bph.15969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE G-protein coupled receptor 17 (GPR17) is an orphan receptor involved in the process of myelination, due to its ability to inhibit the maturation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Despite multiple claims that the biological ligand has been identified, it remains an orphan receptor. EXPERIMENTAL APPROACH Seventy-seven oxysterols were screened in a cell-free [35 S]GTPγS binding assay using membranes from cells expressing GPR17. The positive hits were characterized using adenosine 3',5' cyclic monophosphate (cAMP), inositol monophosphate (IP1) and calcium mobilization assays, with results confirmed in rat primary oligodendrocytes. Rat and pig brain extracts were separated by high-performance liquid chromatography (HPLC) and endogenous activator(s) were identified in receptor activation assays. Gene expression studies of GPR17, and CYP46A1 (cytochrome P450 family 46 subfamily A member 1) enzymes responsible for the conversion of cholesterol into specific oxysterols, were performed using quantitative real-time PCR. KEY RESULTS Five oxysterols were able to stimulate GPR17 activity, including the brain cholesterol, 24(S)-hydroxycholesterol (24S-HC). A specific brain fraction from rat and pig extracts containing 24S-HC activates GPR17 in vitro. Expression of Gpr17 during mouse brain development correlates with the expression of Cyp46a1 and the levels of 24S-HC itself. Other active oxysterols have low brain concentrations below effective ranges. CONCLUSIONS AND IMPLICATIONS Oxysterols, including but not limited to 24S-HC, could be physiological activators for GPR17 and thus potentially regulate OPC differentiation and myelination through activation of the receptor.
Collapse
Affiliation(s)
| | - Changlu Liu
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Naomi Phillips
- Janssen Research & Development, LLC, San Diego, California, USA
| | | | - Chester Kuei
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Joseph Chang
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Weixuan Chen
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Steven W Sutton
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Daniel O'Malley
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Ly Pham
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Xiang Yao
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Siquan Sun
- Janssen Research & Development, LLC, San Diego, California, USA
| | | |
Collapse
|
47
|
Zheng B, Tuszynski MH. Regulation of axonal regeneration after mammalian spinal cord injury. Nat Rev Mol Cell Biol 2023; 24:396-413. [PMID: 36604586 DOI: 10.1038/s41580-022-00562-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 01/06/2023]
Abstract
One hundred years ago, Ramón y Cajal, considered by many as the founder of modern neuroscience, stated that neurons of the adult central nervous system (CNS) are incapable of regenerating. Yet, recent years have seen a tremendous expansion of knowledge in the molecular control of axon regeneration after CNS injury. We now understand that regeneration in the adult CNS is limited by (1) a failure to form cellular or molecular substrates for axon attachment and elongation through the lesion site; (2) environmental factors, including inhibitors of axon growth associated with myelin and the extracellular matrix; (3) astrocyte responses, which can both limit and support axon growth; and (4) intraneuronal mechanisms controlling the establishment of an active cellular growth programme. We discuss these topics together with newly emerging hypotheses, including the surprising finding from transcriptomic analyses of the corticospinal system in mice that neurons revert to an embryonic state after spinal cord injury, which can be sustained to promote regeneration with neural stem cell transplantation. These gains in knowledge are steadily advancing efforts to develop effective treatment strategies for spinal cord injury in humans.
Collapse
Affiliation(s)
- Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| | - Mark H Tuszynski
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| |
Collapse
|
48
|
McNamara NB, Munro DAD, Bestard-Cuche N, Uyeda A, Bogie JFJ, Hoffmann A, Holloway RK, Molina-Gonzalez I, Askew KE, Mitchell S, Mungall W, Dodds M, Dittmayer C, Moss J, Rose J, Szymkowiak S, Amann L, McColl BW, Prinz M, Spires-Jones TL, Stenzel W, Horsburgh K, Hendriks JJA, Pridans C, Muramatsu R, Williams A, Priller J, Miron VE. Microglia regulate central nervous system myelin growth and integrity. Nature 2023; 613:120-129. [PMID: 36517604 PMCID: PMC9812791 DOI: 10.1038/s41586-022-05534-y] [Citation(s) in RCA: 230] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/05/2022] [Indexed: 12/15/2022]
Abstract
Myelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health1, it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans. We demonstrate that microglia are dispensable for developmental myelin ensheathment. However, they are required for subsequent regulation of myelin growth and associated cognitive function, and for preservation of myelin integrity by preventing its degeneration. We show that loss of myelin health due to the absence of microglia is associated with the appearance of a myelinating oligodendrocyte state with altered lipid metabolism. Moreover, this mechanism is regulated through disruption of the TGFβ1-TGFβR1 axis. Our findings highlight microglia as promising therapeutic targets for conditions in which myelin growth and integrity are dysregulated, such as in ageing and neurodegenerative disease2,3.
Collapse
Affiliation(s)
- Niamh B McNamara
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - David A D Munro
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Nadine Bestard-Cuche
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Akiko Uyeda
- Departments of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Alana Hoffmann
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Rebecca K Holloway
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
| | - Irene Molina-Gonzalez
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Katharine E Askew
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Stephen Mitchell
- Wellcome Trust Centre for Cell Biology, King's Buildings, The University of Edinburgh, Edinburgh, UK
| | - William Mungall
- Biological and Veterinary Services, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Michael Dodds
- Biological and Veterinary Services, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Carsten Dittmayer
- Department of Neuropathology and Neurocure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jonathan Moss
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Jamie Rose
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Stefan Szymkowiak
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Lukas Amann
- Institute of Neuropathology, Centre for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Barry W McColl
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Marco Prinz
- Institute of Neuropathology, Centre for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Tara L Spires-Jones
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Werner Stenzel
- Department of Neuropathology and Neurocure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Clare Pridans
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| | - Rieko Muramatsu
- Departments of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Anna Williams
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Josef Priller
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin and DZNE, Berlin, Germany
| | - Veronique E Miron
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK.
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
- Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada.
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
49
|
Spencer SA, Suárez-Pozos E, Verdugo JS, Wang H, Afshari FS, Li G, Manam S, Yasuda D, Ortega A, Lister JA, Ishii S, Zhang Y, Fuss B. Lysophosphatidic acid signaling via LPA 6 : A negative modulator of developmental oligodendrocyte maturation. J Neurochem 2022; 163:478-499. [PMID: 36153691 PMCID: PMC9772207 DOI: 10.1111/jnc.15696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
The developmental process of central nervous system (CNS) myelin sheath formation is characterized by well-coordinated cellular activities ultimately ensuring rapid and synchronized neural communication. During this process, myelinating CNS cells, namely oligodendrocytes (OLGs), undergo distinct steps of differentiation, whereby the progression of earlier maturation stages of OLGs represents a critical step toward the timely establishment of myelinated axonal circuits. Given the complexity of functional integration, it is not surprising that OLG maturation is controlled by a yet fully to be defined set of both negative and positive modulators. In this context, we provide here first evidence for a role of lysophosphatidic acid (LPA) signaling via the G protein-coupled receptor LPA6 as a negative modulatory regulator of myelination-associated gene expression in OLGs. More specifically, the cell surface accessibility of LPA6 was found to be restricted to the earlier maturation stages of differentiating OLGs, and OLG maturation was found to occur precociously in Lpar6 knockout mice. To further substantiate these findings, a novel small molecule ligand with selectivity for preferentially LPA6 and LPA6 agonist characteristics was functionally characterized in vitro in primary cultures of rat OLGs and in vivo in the developing zebrafish. Utilizing this approach, a negative modulatory role of LPA6 signaling in OLG maturation could be corroborated. During development, such a functional role of LPA6 signaling likely serves to ensure timely coordination of circuit formation and myelination. Under pathological conditions as seen in the major human demyelinating disease multiple sclerosis (MS), however, persistent LPA6 expression and signaling in OLGs can be seen as an inhibitor of myelin repair. Thus, it is of interest that LPA6 protein levels appear elevated in MS brain samples, thereby suggesting that LPA6 signaling may represent a potential new druggable pathway suitable to promote myelin repair in MS.
Collapse
Affiliation(s)
- Samantha A Spencer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Edna Suárez-Pozos
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jazmín Soto Verdugo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Huiqun Wang
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Fatemah S Afshari
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Guo Li
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Susmita Manam
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Daisuke Yasuda
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - James A Lister
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Satoshi Ishii
- Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
50
|
Wang J, Yang L, Jiang M, Zhao C, Liu X, Berry K, Waisman A, Langseth AJ, Novitch BG, Bergles DE, Nishiyama A, Lu QR. Olig2 Ablation in Immature Oligodendrocytes Does Not Enhance CNS Myelination and Remyelination. J Neurosci 2022; 42:8542-8555. [PMID: 36198499 PMCID: PMC9665935 DOI: 10.1523/jneurosci.0237-22.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Lijun Yang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Minqing Jiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Xuezhao Liu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ari Waisman
- Institute for Molecular Medicine, Langenbeckstrasse 1, Mainz, 55131, Germany
| | - Abraham J Langseth
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, Maryland 21205
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|