1
|
Artusa V, De Luca L, Clerici M, Trabattoni D. Connecting the dots: Mitochondrial transfer in immunity, inflammation, and cancer. Immunol Lett 2025; 274:106992. [PMID: 40054017 DOI: 10.1016/j.imlet.2025.106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/15/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
Mitochondria are more than mere energy generators; they are multifaceted organelles that integrate metabolic, signalling, and immune functions, making them indispensable players in maintaining cellular and systemic health. Mitochondrial transfer has recently garnered attention due to its potential role in several physiological and pathological processes. This process involves multiple mechanisms by which mitochondria, along with mitochondrial DNA and other components, are exchanged between cells. In this review, we examine the critical roles of mitochondrial transfer in health and disease, focusing on its impact on immune cell function, the resolution of inflammation, tissue repair, and regeneration. Additionally, we explore its implications in viral infections and cancer progression. We also provide insights into emerging therapeutic applications, emphasizing its potential to address unmet clinical needs.
Collapse
Affiliation(s)
- Valentina Artusa
- Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157 Milan, Italy.
| | - Lara De Luca
- Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 12, 20122, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 12, 20122, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148 Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157 Milan, Italy.
| |
Collapse
|
2
|
Palese F, Rakotobe M, Zurzolo C. Transforming the concept of connectivity: unveiling tunneling nanotube biology and their roles in brain development and neurodegeneration. Physiol Rev 2025; 105:1823-1865. [PMID: 40067081 DOI: 10.1152/physrev.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 02/03/2025] [Indexed: 05/08/2025] Open
Abstract
Tunneling nanotubes (TNTs) are thin tubular membrane protrusions that connect distant cells, generating a complex cellular network. Over the past few decades, research on TNTs has provided important insights into their biology, including structural composition, formation mechanisms, modulators, and functionality. It has been discovered that TNTs allow cytoplasmic continuity between connected cells, facilitating fast intercellular communication via both passive and active exchange of materials. These features are pivotal in the nervous system, where rapid processing of inputs is physiologically required. TNTs have been implicated in the progression of neurodegenerative diseases and cancer in various in vitro models, and TNT-like structures have also been observed in the developing brain and in vivo. This highlights their significant role in pathophysiological processes. In this comprehensive review we aim to provide an extensive overview of TNTs, starting from key structural features and mechanisms of formation and describing the main experimental techniques used to detect these structures both in vitro and in vivo. We focus primarily on the nervous system, where the discovery of TNTs could prompt a reconsideration of the brain functioning as individual units (the neuronal theory of Cajal) versus neurons being physically connected, as Golgi believed. We illustrate the involvement of TNTs in brain development and neurodegenerative states and highlight the limitations and future research needs in this field.
Collapse
Affiliation(s)
- Francesca Palese
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
| | - Malalaniaina Rakotobe
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Lind-Holm Mogensen F, Seibler P, Grünewald A, Michelucci A. Microglial dynamics and neuroinflammation in prodromal and early Parkinson's disease. J Neuroinflammation 2025; 22:136. [PMID: 40399949 PMCID: PMC12096518 DOI: 10.1186/s12974-025-03462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025] Open
Abstract
Parkinson's disease (PD) is characterized by a drastic loss of dopaminergic neurons already at diagnosis. As this loss of neurons starts decades before diagnosis, understanding the prodromal stages of the disease might offer novel strategies to curb its progression. While the precise pathogenic mechanisms underlying PD remain incompletely understood, growing evidence suggests that neuroinflammation and immune dysregulation play a central role in the development and progression of the disease. Here, we delve into the emerging roles of microglia, the resident immune cells of the central nervous system, in the pathogenesis of prodromal and early-stage PD. We emphasize that microglia contribute to neuroinflammation, protein aggregation and neurodegeneration, although the underlying mechanisms are not yet known. Neuroimaging studies have provided valuable insights into the patterns of microglial activation detected in individuals with prodromal PD and at the time of clinical diagnosis. Furthermore, we highlight the complex interplay between immune dysregulation and neurodegeneration along PD development, including alterations in the peripheral immune system, brain-gut interactions and brain-immune interfaces. Lastly, we outline existing models for investigating microglial involvement in prodromal PD, along with the impact of anti-inflammatory therapies and strategies to modify risk factors. In conclusion, targeting microglial activation and immune dysfunctions in individuals at risk of PD could represent a promising preventive measure and may offer novel therapeutic strategies for early intervention and disease modification.
Collapse
Affiliation(s)
- Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A, rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2, avenue de l'Université, Esch-sur-Alzette, L-4365, Luxembourg
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Ratzeburger Allee 160, Lübeck, 23562, Germany
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, avenue du Swing, Belvaux, L-4367, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A, rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg.
| |
Collapse
|
4
|
Oettinger D, Yamamoto A. Autophagy Dysfunction and Neurodegeneration: Where Does It Go Wrong? J Mol Biol 2025:169219. [PMID: 40383464 DOI: 10.1016/j.jmb.2025.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
An infamous hallmark of neurodegenerative diseases is the accumulation of misfolded or unfolded proteins forming inclusions in the brain. The accumulation of these abnormal structures is a mysterious one, given that cells devote significant resources to integrate complementary pathways to ensure proteome integrity and proper protein folding. Aberrantly folded protein species are rapidly targeted for disposal by the ubiquitin-proteasome system (UPS), and even if this should fail, and the species accumulates, the cell can also rely on the lysosome-mediated degradation pathways of autophagy. Despite the many safeguards in place, failure to maintain protein homeostasis commonly occurs during, or preceding, the onset of disease. Over the last decade and a half, studies suggest that the failure of autophagy may explain the disruption in protein homeostasis observed in disease. In this review, we will examine how the highly complex cells of the brain can become vulnerable to failure of aggregate clearance at specific points during the processive pathway of autophagy, contributing to aggregate accumulation in brains with neurodegenerative disease.
Collapse
Affiliation(s)
- Daphne Oettinger
- Doctoral Program for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Engelenburg HJ, van den Bosch AM, Chen JA, Hsiao CC, Melief MJ, Harroud A, Huitinga I, Hamann J, Smolders J. Multiple sclerosis severity variant in DYSF-ZNF638 locus associates with neuronal loss and inflammation. iScience 2025; 28:112430. [PMID: 40352730 PMCID: PMC12063138 DOI: 10.1016/j.isci.2025.112430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/23/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
The genetic variant rs10191329AA has been identified to associate with faster disability accrual in multiple sclerosis (MS). We investigated the impact of rs10191329AA carriership on MS pathology and flanking genes dysferlin (DYSF) and zinc finger protein 638 (ZNF638) in the Netherlands Brain Bank cohort (n = 290) by comparing rs10191329AA (n = 6) to matched rs10191329CC carriers (n = 12). rs10191329AA carriership associated with more acute axonal stress, reduced layer 2 neuronal density, and a higher proportion of lesions with foamy microglia. In rs10191329AA donors, normal appearing white matter was characterized by a higher proportion of ZNF638+ oligodendrocytes, and normal appearing gray matter showed more DYSF+ cells. Nuclear RNA sequencing showed an upregulation of mitochondrial genes in rs10191329AA carriers. These data suggest that MS severity associates with an increased susceptibility to neurodegeneration and chronic inflammation. Understanding the role of DYSF, ZNF638, and mitochondrial pathways may reveal new therapeutic targets to attenuate MS progression.
Collapse
Affiliation(s)
- Hendrik J. Engelenburg
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Aletta M.R. van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - J.Q. Alida Chen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Marie-José Melief
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, the Netherlands
| | - Adil Harroud
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 2B4, Canada
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1054 BE Amsterdam, the Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
6
|
Han X, Cao X, Ju Q, Ge C, Lin Y, Shi J, Zhang X, Sun C, Li H. Microglial TAK1 promotes neurotoxic astrocytes and cognitive impairment in LPS-induced hippocampal neuroinflammation. J Biol Chem 2025:110225. [PMID: 40349778 DOI: 10.1016/j.jbc.2025.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
The peripheral immune system has a strong effect on the central nervous system (CNS). Systemic lipopolysaccharides (LPS) administration triggers robust microglial activation and induces significant inflammatory responses in the hippocampus. This study investigates the role of Transforming Growth Factor-β-Activated Kinase 1 (TAK1) in mediating LPS-induced hippocampal neuroinflammation and cognitive impairment. Our findings reveal that LPS induces activation of microglial TAK1, which in turn actives downstream effector NF-κB/p65 to release pro-inflammatory cytokines. The activated microglia also promote astrocytes to polarize into a neurotoxic phenotype (A1-like phenotype), and cause the loss of newborn neurons in the hippocampal dentate gyrus (DG). However, TAK1 reduction inhibits microglial responses, limits neurotoxic astrocytes, rescues newborn neurons, and subsequently improves LPS-induced cognitive deficits, suggesting that targeting TAK1 may be an effective strategy for alleviating neuroinflammation. The interaction between TAK1 activation, microglial responses, and the transition of neurotoxic astrocytes enhances our understanding of the cellular dynamics driving LPS-induced neuroinflammation, suggesting that TAK1 may be a therapeutic target for treating cognitive impairment.
Collapse
Affiliation(s)
- Xiao Han
- Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Xin Cao
- Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Qianqian Ju
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Chengxin Ge
- Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yongqi Lin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China
| | - Jinhong Shi
- Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xinhua Zhang
- Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu, China.
| | - Haoming Li
- Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
7
|
Li B, Li B, Qiao X, Meng W, Xie Y, Gong J, Fan Y, Zhao Z, Li L. Targeting mitochondrial transfer as a promising therapeutic strategy. Trends Mol Med 2025:S1471-4914(25)00089-9. [PMID: 40335384 DOI: 10.1016/j.molmed.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025]
Abstract
Despite the primary impression of mitochondria as energy factories, these organelles are increasingly recognized for their multifaceted roles beyond energy production. Intriguingly, mitochondria can transfer between cells, influencing physiological and pathological processes through intercellular trafficking termed 'mitochondrial transfer.' This phenomenon is important in maintaining metabolic homeostasis, enhancing tissue regeneration, exacerbating cancer progression, and facilitating immune modulation, depending on the cell type and microenvironment. Recently, mitochondrial transfer has emerged as a promising therapeutic target for tissue repair and antitumor therapy. Here, we summarize and critically review recent advances in this field. We aim to provide an updated overview of the mechanisms and potential therapeutic avenues associated with mitochondrial transfer in various diseases from the perspective of different donor cells.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xianghe Qiao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuhang Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiajing Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Augusto-Oliveira M, Arrifano GDP, Leal-Nazaré CG, Chaves-Filho A, Santos-Sacramento L, Lopes-Araujo A, Tremblay MÈ, Crespo-Lopez ME. Morphological diversity of microglia: Implications for learning, environmental adaptation, ageing, sex differences and neuropathology. Neurosci Biobehav Rev 2025; 172:106091. [PMID: 40049541 DOI: 10.1016/j.neubiorev.2025.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Microglia are the brain resident macrophages that respond rapidly to any insult. These non-neuroectodermal cells are decorated with plenty of receptors allowing them to recognise and respond precisely to a multitude of stimuli. To do so, microglia undergo structural and functional changes aiming to actively keep the brain's homeostasis. However, some microglial responses, when sustained or exacerbated, can contribute to neuropathology and neurodegeneration. Many microglial molecular and cellular changes were identified that display a strong correlation with neuronal damage and neuroinflammation/disease status, as well as present key sex-related differences that modulate microglial outcomes. Nevertheless, the relationship between microglial structural and functional features is just beginning to be unravelled. Several reports show that microglia undergo soma and branch remodelling in response to environmental stimuli, ageing, neurodegenerative diseases, trauma, and systemic inflammation, suggesting a complex form and function link. Also, it is reasonable overall to suppose that microglia diminishing their process length and ramification also reduce their monitoring activity of synapses, which is critical for detecting any synaptic disturbance and performing synaptic remodelling. Elucidating the complex interactions between microglial morphological plasticity and its functional implications appears essential for the understanding of complex cognitive and behavioural processes in health and neuropathological conditions.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| | - Gabriela de Paula Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Amanda Lopes-Araujo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec, Qubec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada; College Member of the Royal Society of Canada, Canada.
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| |
Collapse
|
9
|
Ma Y, Song R, Duan C. Mitochondrial quality control and transfer communication in neurological disorders and neuroinflammation. Front Immunol 2025; 16:1542369. [PMID: 40356918 PMCID: PMC12066325 DOI: 10.3389/fimmu.2025.1542369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Mitochondria, as the primary energy factories of cells, play a pivotal role in maintaining nervous system function and regulating inflammatory responses. The balance of mitochondrial quality control is critical for neuronal health, and disruptions in this balance are often implicated in the pathogenesis of various neurological disorders. Mitochondrial dysfunction not only exacerbates energy deficits but also triggers neuroinflammation through the release of damage-associated molecular patterns (DAMPs), such as mitochondrial DNA (mtDNA) and reactive oxygen species (ROS). This review examines the mechanisms and recent advancements in mitochondrial quality control in neurological diseases, focusing on processes such as mitochondrial fusion and fission, mitophagy, biogenesis, and protein expression regulation. It further explores the role of mitochondrial dysfunction and subsequent inflammatory cascades in conditions such as ischemic and hemorrhagic stroke, neurodegenerative diseases and brain tumors. Additionally, emerging research highlights the significance of mitochondrial transfer mechanisms, particularly intercellular transfer between neurons and glial cells, as a potential strategy for mitigating inflammation and promoting cellular repair. This review provides insights into the molecular underpinnings of neuroinflammatory pathologies while underscoring the translational potential of targeting mitochondrial quality control for therapeutic development.
Collapse
Affiliation(s)
| | | | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Basak B, Holzbaur ELF. Mitophagy in Neurons: Mechanisms Regulating Mitochondrial Turnover and Neuronal Homeostasis. J Mol Biol 2025:169161. [PMID: 40268233 DOI: 10.1016/j.jmb.2025.169161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Mitochondrial quality control is instrumental in regulating neuronal health and survival. The receptor-mediated clearance of damaged mitochondria by autophagy, known as mitophagy, plays a key role in controlling mitochondrial homeostasis. Mutations in genes that regulate mitophagy are causative for familial forms of neurological disorders including Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). PINK1/Parkin-dependent mitophagy is the best studied mitophagy pathway, while more recent work has brought to light additional mitochondrial quality control mechanisms that operate either in parallel to or independent of PINK1/Parkin mitophagy. Here, we discuss our current understanding of mitophagy mechanisms operating in neurons to govern mitochondrial homeostasis. We also summarize progress in our understanding of the links between mitophagic dysfunction and neurodegeneration, and highlight the potential for therapeutic interventions to maintain mitochondrial health and neuronal function.
Collapse
Affiliation(s)
- Bishal Basak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
11
|
Gaweda-Walerych K, Aragona V, Lodato S, Sitek EJ, Narożańska E, Buratti E. Progranulin deficiency in the brain: the interplay between neuronal and non-neuronal cells. Transl Neurodegener 2025; 14:18. [PMID: 40234992 PMCID: PMC12001433 DOI: 10.1186/s40035-025-00475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Heterozygous mutations in GRN gene lead to insufficient levels of the progranulin (PGRN) protein, resulting in frontotemporal dementia (FTD) with TAR DNA-binding protein 43 (TDP-43) inclusions, classified pathologically as frontotemporal lobar degeneration (FTLD-TDP). Homozygous GRN mutations are exceedingly rare and cause neuronal ceroid lipofuscinosis 11, a lysosomal storage disease with onset in young adulthood, or an FTD syndrome with late-onset manifestations. In this review, we highlight the broad spectrum of clinical phenotypes associated with PGRN deficiency, including primary progressive aphasia and behavioral variant of frontotemporal dementia. We explore these phenotypes alongside relevant rodent and in vitro human models, ranging from the induced pluripotent stem cell-derived neural progenitors, neurons, microglia, and astrocytes to genetically engineered heterotypic organoids containing both neurons and astrocytes. We summarize advantages and limitations of these models in recapitulating the main FTLD-GRN hallmarks, highlighting the role of non-cell-autonomous mechanisms in the formation of TDP-43 pathology, neuroinflammation, and neurodegeneration. Data obtained from patients' brain tissues and biofluids, in parallel with single-cell transcriptomics, demonstrate the complexity of interactions among the highly heterogeneous cellular clusters present in the brain, including neurons, astrocytes, microglia, oligodendroglia, endothelial cells, and pericytes. Emerging evidence has revealed that PGRN deficiency is associated with cell cluster-specific, often conserved, genetic and molecular phenotypes in the central nervous system. In this review, we focus on how these distinct cellular populations and their dysfunctional crosstalk contribute to neurodegeneration and neuroinflammation in FTD-GRN. Specifically, we characterize the phenotypes of lipid droplet-accumulating microglia and alterations of myelin lipid content resulting from lysosomal dysfunction caused by PGRN deficiency. Additionally, we consider how the deregulation of glia-neuron communication affects the exchange of organelles such as mitochondria, and the removal of excess toxic products such as protein aggregates, in PGRN-related neurodegeneration.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Vanessa Aragona
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Levi Montalicini 4, Pieve Emanuele, 20072, Milan, Italy
- Neurodevelopment Biology Lab, IRCCS Humanitas Research Hospital, via Manzoni, 56, Rozzano, 20089, Milan, Italy
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Laboratory of Clinical Neuropsychology, Neurolinguistics, and Neuropsychotherapy, Faculty of Health Sciences, Medical University of Gdansk, 80-210, Gdansk, Poland.
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland.
| | - Ewa Narożańska
- Neurology Department, St. Adalbert Hospital, Copernicus PL, 80-462, Gdansk, Poland
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149, Trieste, Italy
| |
Collapse
|
12
|
Baker V, Budinger D, Riechers SP, Heneka MT. Protocol for observing tunneling nanotube formation and function in both fixed and live primary mouse neurons and microglia coculture system. STAR Protoc 2025; 6:103723. [PMID: 40184246 PMCID: PMC12002979 DOI: 10.1016/j.xpro.2025.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 03/07/2025] [Indexed: 04/06/2025] Open
Abstract
Microglia and neurons can connect via tunneling nanotubes (TNTs), facilitating the transfer of organelles, vesicles, and proteins. Here, we present a protocol for visualizing murine TNT formation and material transfer between neurons and microglia in both fixed samples and samples for live-cell imaging, as well as for flow cytometry. We describe steps for identifying and measuring TNTs and quantifying the transport of aggregated proteins, such as α-synuclein or tau, between these cells. For complete details on the use and execution of this protocol, please refer to Scheiblich et al.1.
Collapse
Affiliation(s)
- Vivian Baker
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval, Luxembourg.
| | - Dimitri Budinger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval, Luxembourg.
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue du Swing, 4367 Esch-Belval, Luxembourg.
| |
Collapse
|
13
|
Antico O, Thompson PW, Hertz NT, Muqit MMK, Parton LE. Targeting mitophagy in neurodegenerative diseases. Nat Rev Drug Discov 2025; 24:276-299. [PMID: 39809929 DOI: 10.1038/s41573-024-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura E Parton
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
14
|
Li SJ, Zheng QW, Zheng J, Zhang JB, Liu H, Tie JJ, Zhang KL, Wu FF, Li XD, Zhang S, Sun X, Yang YL, Wang YY. Mitochondria transplantation transiently rescues cerebellar neurodegeneration improving mitochondrial function and reducing mitophagy in mice. Nat Commun 2025; 16:2839. [PMID: 40121210 PMCID: PMC11929859 DOI: 10.1038/s41467-025-58189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Cerebellar ataxia is the primary manifestation of cerebellar degenerative diseases, and mitochondrial dysfunction in Purkinje cells (PCs) plays a critical role in disease progression. In this study, we investigated the feasibility of mitochondria transplantation as a potential therapeutic approach to rescue cerebellar neurodegeneration and elucidate the associated mechanisms. We constructed a conditional Drp1 knockout model in PCs (PCKO mice), characterized by progressive ataxia. Drp1 knockout resulted in pervasive and progressive apoptosis of PCs and significant activation of surrounding glial cells. Mitochondrial dysfunction, which triggers mitophagy, is a key pathogenic factor contributing to morphological and functional damage in PCs. Transplanting liver-derived mitochondria into the cerebellum of 1-month-old PCKO mice improved mitochondrial function, reduced mitophagy, delayed apoptosis of PCs, and alleviated cerebellar ataxia for up to 3 weeks. These findings demonstrate that mitochondria transplantation holds promise as a therapeutic approach for cerebellar degenerative diseases.
Collapse
Affiliation(s)
- Shu-Jiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Qian-Wen Zheng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Jie Zheng
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Jin-Bao Zhang
- Department of pediatrics, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Hui Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Jing-Jing Tie
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Kun-Long Zhang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China
- Department of Rehabilitation Medicine, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Fei-Fei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiao-Dong Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Shuai Zhang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Xin Sun
- Department of pediatrics, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China.
| | - Yan-Ling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China.
| | - Ya-Yun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Teaching Demonstration Center, School of Basic Medicine, Air Force Medical University (Fourth Military Medical University), Xi'an, China.
- State Key Laboratory of Military Stomatology, School of Stomatology, Air Force Medical University (Fourth Military Medical University), Xi'an, China.
| |
Collapse
|
15
|
Ye P, Jiang P, Ye L, Liu M, Fang Q, Yu P, Luo J, Su H, Yang W. PRAG1 Condensation Drives Cell Contraction Under Stress. Biomolecules 2025; 15:379. [PMID: 40149915 PMCID: PMC11939857 DOI: 10.3390/biom15030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Peak1-related, kinase-activating pseudokinase 1 (PRAG1), a member of the pseudopodium-enriched atypical kinase (PEAK) family of pseudokinases, has been reported to play a role in regulating cell morphology. However, the molecular mechanism for this function remains elusive. In this study, we demonstrate that PRAG1 forms dynamic condensates in cells mediated by its αN and αJ helices. Importantly, we found that PRAG1 condensates functioned in mediating cell contraction, while condensate-formation-deficient PRAG1 mutants lost this function. Remarkably, the formation of spherical PRAG1 condensates appears to be a common phenomenon in diverse stress models, as well as in dopaminergic (DA) neurons derived from a Parkinson's disease patient. Our findings reveal a novel mechanism through which PRAG1 drives cell contraction and suggest a potential link between aberrant PRAG1 phase separation and stress-induced cell contraction. PRAG1 condensation drives cell contraction under stress.
Collapse
Affiliation(s)
- Peiwu Ye
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Peiran Jiang
- Department of Neurosurgery of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Department of Neurobiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Luyu Ye
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; (L.Y.); (M.L.); (Q.F.)
| | - Min Liu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; (L.Y.); (M.L.); (Q.F.)
| | - Qiuyuan Fang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; (L.Y.); (M.L.); (Q.F.)
| | - Peilin Yu
- Department of Toxicology, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Jianhong Luo
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Huanxing Su
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Wei Yang
- Department of Neurosurgery of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; (L.Y.); (M.L.); (Q.F.)
- Guizhou University Medical College, Guiyang 550025, China
| |
Collapse
|
16
|
Huang Y, Zhang G, Li S, Feng J, Zhang Z. Innate and adaptive immunity in neurodegenerative disease. Cell Mol Life Sci 2025; 82:68. [PMID: 39894884 PMCID: PMC11788272 DOI: 10.1007/s00018-024-05533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025]
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive loss of selected neurons. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs. Pathologically, NDs are characterized by progressive failure of neural interactions and aberrant protein fibril aggregation and deposition, which lead to neuron loss and cognitive and behavioral impairments. Great efforts have been made to delineate the underlying mechanism of NDs. However, the very first trigger of these disorders and the state of the illness are still vague. Existing therapeutic strategies can relieve symptoms but cannot cure these diseases. The human immune system is a complex and intricate network comprising various components that work together to protect the body against pathogens and maintain overall health. They can be broadly divided into two main types: innate immunity, the first line of defense against pathogens, which acts nonspecifically, and adaptive immunity, which follows a defense process that acts more specifically and is targeted. The significance of brain immunity in maintaining the homeostatic environment of the brain, and its direct implications in NDs, has increasingly come into focus. Some components of the immune system have beneficial regulatory effects, whereas others may have detrimental effects on neurons. The intricate interplay and underlying mechanisms remain an area of active research. This review focuses on the effects of both innate and adaptive immunity on AD and PD, offering a comprehensive understanding of the initiation and regulation of brain immunity, as well as the interplay between innate and adaptive immunity in influencing the progression of NDs.
Collapse
Affiliation(s)
- Yeyu Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guoxin Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jin Feng
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
17
|
Wiseman JA, Reddy K, Dieriks BV. From onset to advancement: the temporal spectrum of α-synuclein in synucleinopathies. Ageing Res Rev 2025; 104:102640. [PMID: 39667671 DOI: 10.1016/j.arr.2024.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
This review provides an in-depth analysis of the complex role of alpha-synuclein (α-Syn) in the development of α-synucleinopathies, with a particular focus on its structural diversity and the resulting clinical variability. The ability of α-Syn to form different strains or polymorphs and undergo various post-translational modifications significantly contributes to the wide range of symptoms observed in disorders such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), as well as in lesser-known non-classical α-synucleinopathies. The interaction between genetic predispositions and environmental factors further complicates α-synucleinopathic disease pathogenesis, influencing the disease-specific onset and progression. Despite their common pathological hallmark of α-Syn accumulation, the clinical presentation and progression of α-synucleinopathies differ significantly, posing challenges for diagnosis and treatment. The intricacies of α-Syn pathology highlight the critical need for a deeper understanding of its biological functions and interactions within the neuronal environment to develop targeted therapeutic strategies. The precise point at which α-Syn aggregation transitions from being a byproduct of initial disease triggers to an active and independent driver of disease progression - through the propagation and acceleration of pathogenic processes - remains unclear. By examining the role of α-Syn across various contexts, we illuminate its dual role as both a marker and a mediator of disease, offering insights that could lead to innovative approaches for managing α-synucleinopathies.
Collapse
Affiliation(s)
- James A Wiseman
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Kreesan Reddy
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
18
|
Zhou M, Xu K, Ge J, Luo X, Wu M, Wang N, Zeng J. Targeting Ferroptosis in Parkinson's Disease: Mechanisms and Emerging Therapeutic Strategies. Int J Mol Sci 2024; 25:13042. [PMID: 39684753 DOI: 10.3390/ijms252313042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein in the brain. Ferroptosis, a recently identified form of regulated cell death, is critical in PD pathogenesis due to its association with iron deposition, overproduction of reactive oxygen species, iron-dependent lipid peroxidation and impaired lipid peroxidation clearance. This cell death mechanism is closely linked to several pathogenic processes in PD, including α-synuclein aggregation, oxidative stress, mitochondrial dysfunction, microglia-induced neuroinflammation, and neuromelanin accumulation. Given the significant role of ferroptosis in these mechanisms, there is increasing interest in targeting ferroptosis for PD treatment. Several drugs have shown potential in alleviating PD symptoms by inhibiting ferroptosis. This review aims to consolidate current knowledge on ferroptosis in PD and assess the therapeutic potential of anti-ferroptosis drugs, highlighting promising directions for future research and clinical applications.
Collapse
Affiliation(s)
- Minghao Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Keyang Xu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xingnian Luo
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengyao Wu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ning Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Kim H, Le B, Goshi N, Zhu K, Grodzki AC, Lein PJ, Zhao M, Seker E. Primary cortical cell tri-culture to study effects of amyloid-β on microglia function and neuroinflammatory response. J Alzheimers Dis 2024; 102:730-741. [PMID: 39501607 PMCID: PMC11758989 DOI: 10.1177/13872877241291142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
BACKGROUND Microglia play a critical role in neurodegenerative disorders, such as Alzheimer's disease, where alterations in microglial function may result in pathogenic amyloid-β (Aβ) accumulation, chronic neuroinflammation, and deleterious effects on neuronal function. However, studying these complex factors in vivo, where numerous confounding processes exist, is challenging, and until recently, in vitro models have not allowed sustained culture of critical cell types in the same culture. OBJECTIVE We employed a rat primary tri-culture (neurons, astrocytes, and microglia) model and compared it to co-culture (neurons and astrocytes) and mono-culture (microglia) to study microglial function (i.e., motility and Aβ clearance) and proteomic response to exogenous Aβ. METHODS The cultures were exposed to fluorescently-labeled Aβ (FITC-Aβ) particles for varying durations. Epifluorescence microscopy images were analyzed to quantify the number of FITC-Aβ particles and assess cytomorphological features. Cytokine profiles from conditioned media were obtained. Live-cell imaging was employed to extract microglia motility parameters. RESULTS FITC-Aβ particles were more effectively cleared in the tri-culture compared to the co-culture. This was attributed to microglia engulfing FITC-Aβ particles, as confirmed via epifluorescence and confocal microscopy. FITC-Aβ treatment significantly increased microglia size, but had no significant effect on neuronal surface coverage or astrocyte size. Upon FITC-Aβ treatment, there was a significant increase in proinflammatory cytokines in tri-culture, but not in co-culture. Aβ treatment altered microglia motility evident as a swarming-like motion. CONCLUSIONS The results suggest that neuron-astrocyte-microglia interactions influence microglia function and highlight the utility of the tri-culture model for studies of neuroinflammation, neurodegeneration, and cell-cell communication.
Collapse
Affiliation(s)
- Hyehyun Kim
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, USA
| | - Bryan Le
- Department of Ophthalmology and Vision Science, University of California-Davis, Davis, CA, USA
| | - Noah Goshi
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, USA
| | - Kan Zhu
- Department of Ophthalmology and Vision Science, University of California-Davis, Davis, CA, USA
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California-Davis, Davis, CA, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California-Davis, Davis, CA, USA
| | - Min Zhao
- Department of Ophthalmology and Vision Science, University of California-Davis, Davis, CA, USA
| | - Erkin Seker
- Department of Electrical and Computer Engineering, University of California-Davis, Davis, CA, USA
| |
Collapse
|
20
|
Niazi SK. Placebo Effects: Neurological Mechanisms Inducing Physiological, Organic, and Belief Responses-A Prospective Analysis. Healthcare (Basel) 2024; 12:2314. [PMID: 39595511 PMCID: PMC11593399 DOI: 10.3390/healthcare12222314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
The placebo effect can induce physiological or clinical neurological and organic responses despite the recipient receiving no active ingredients; these responses are based instead on the recipient's perceptions. Placebo effects come from the rostral anterior cingulate cortex, pontine nucleus, and cerebellum of the brain; this information provides a better understanding of placebo effects and can also help us understand the mechanism of the modulation of neurotransmitters from the use of psychedelic substances, activity of selective serotonin reuptake inhibitors, the process of transcranial magnetic stimulation, and deep brain stimulation, as well as aid in developing novel therapies, challenging the validity of controlled clinical trials (RCTs) that the regulatory agencies now appreciate. Education about how placebo effects bring in social, political, and religious beliefs and whether these can be modulated may help reduce global confrontations.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Trainor AR, MacDonald DS, Penney J. Microglia: roles and genetic risk in Parkinson's disease. Front Neurosci 2024; 18:1506358. [PMID: 39554849 PMCID: PMC11564156 DOI: 10.3389/fnins.2024.1506358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
The prevalence of neurodegenerative disorders such as Parkinson's disease are increasing as world populations age. Despite this growing public health concern, the precise molecular and cellular mechanisms that culminate in neurodegeneration remain unclear. Effective treatment options for Parkinson's disease and other neurodegenerative disorders remain very limited, due in part to this uncertain disease etiology. One commonality across neurodegenerative diseases is sustained neuroinflammation, mediated in large part by microglia, the innate immune cells of the brain. Initially thought to simply react to neuron-derived pathology, genetic and functional studies in recent years suggest that microglia play a more active role in the neurodegenerative process than previously appreciated. Here, we review evidence for the roles of microglia in Parkinson's disease pathogenesis and progression, with a particular focus on microglial functions that are perturbed by disease associated genes and mutations.
Collapse
Affiliation(s)
| | | | - Jay Penney
- Department of Biomedical Sciences, AVC, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
22
|
Zhang X, Yu H, Feng J. Emerging role of microglia in inter-cellular transmission of α-synuclein in Parkinson's disease. Front Aging Neurosci 2024; 16:1411104. [PMID: 39444806 PMCID: PMC11496080 DOI: 10.3389/fnagi.2024.1411104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, significantly prejudicing the health and quality of life of elderly patients. The main pathological characteristics of PD are the loss of dopaminergic neurons in the substantia nigra (SN) as well as abnormal aggregation of α-synuclein (α-syn) monomers and oligomers, which results in formation of Lewy bodies (LBs). Intercellular transmission of α-syn is crucial for PD progression. Microglia play diverse roles in physiological and pathological conditions, exhibiting neuroprotective or neurotoxic effects; moreover, they may directly facilitate α-syn propagation. Various forms of extracellular α-syn can be taken up by microglia through multiple mechanisms, degraded or processed into more pathogenic forms, and eventually released into extracellular fluid or adjacent cells. This review discusses current literature regarding the molecular mechanisms underlying the uptake, degradation, and release of α-syn by microglia.
Collapse
Affiliation(s)
| | | | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Kotarba S, Kozłowska M, Scios M, Saramowicz K, Barczuk J, Granek Z, Siwecka N, Wiese W, Golberg M, Galita G, Sychowski G, Majsterek I, Rozpędek-Kamińska W. Potential Mechanisms of Tunneling Nanotube Formation and Their Role in Pathology Spread in Alzheimer's Disease and Other Proteinopathies. Int J Mol Sci 2024; 25:10797. [PMID: 39409126 PMCID: PMC11477428 DOI: 10.3390/ijms251910797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. The etiopathogenesis of this disease remains unknown. Currently, several hypotheses attempt to explain its cause, with the most well-studied being the cholinergic, beta-amyloid (Aβ), and Tau hypotheses. Lately, there has been increasing interest in the role of immunological factors and other proteins such as alpha-synuclein (α-syn) and transactive response DNA-binding protein of 43 kDa (TDP-43). Recent studies emphasize the role of tunneling nanotubes (TNTs) in the spread of pathological proteins within the brains of AD patients. TNTs are small membrane protrusions composed of F-actin that connect non-adjacent cells. Conditions such as pathogen infections, oxidative stress, inflammation, and misfolded protein accumulation lead to the formation of TNTs. These structures have been shown to transport pathological proteins such as Aβ, Tau, α-syn, and TDP-43 between central nervous system (CNS) cells, as confirmed by in vitro studies. Besides their role in spreading pathology, TNTs may also have protective functions. Neurons burdened with α-syn can transfer protein aggregates to glial cells and receive healthy mitochondria, thereby reducing cellular stress associated with α-syn accumulation. Current AD treatments focus on alleviating symptoms, and clinical trials with Aβ-lowering drugs have proven ineffective. Therefore, intensifying research on TNTs could bring scientists closer to a better understanding of AD and the development of effective therapies.
Collapse
Affiliation(s)
- Szymon Kotarba
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Marta Kozłowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Małgorzata Scios
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Zuzanna Granek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Michał Golberg
- Department of Histology and Embryology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Grzegorz Sychowski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| | - Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.K.); (M.K.); (M.S.); (K.S.); (J.B.); (Z.G.); (N.S.); (W.W.); (G.G.); (G.S.); (I.M.)
| |
Collapse
|
24
|
Riley JF, Holzbaur ELF. Cell-to-cell tunnels rescue neurons from degeneration. Nature 2024; 634:38-40. [PMID: 39261692 DOI: 10.1038/d41586-024-02862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
25
|
Neher JJ, Simons M. Protective lifelines: Tunneling nanotubes connect neurons and microglia. Neuron 2024; 112:2991-2993. [PMID: 39326386 DOI: 10.1016/j.neuron.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/28/2024]
Abstract
Tunneling nanotubes (TNTs) facilitate the exchange of intracellular cargo between cells. In this issue of Neuron, Scheiblich et al.1 reveal that TNTs selectively mediate the bidirectional transfer of cytoplasmic protein aggregates from neurons to microglia and mitochondria from microglia to neurons, thereby preserving neuronal health.
Collapse
Affiliation(s)
- Jonas J Neher
- Biomedical Center (BMC), Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
| |
Collapse
|