1
|
Kanda H, Yamanaka H, Dai Y, Noguchi K. The neuronal and glial cell diversity in the celiac ganglion revealed by single-nucleus RNA sequencing. Sci Rep 2025; 15:5510. [PMID: 39953101 PMCID: PMC11828872 DOI: 10.1038/s41598-025-89779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
The sympathetic nervous system regulates various visceral functions, including those of the heart, lungs, and digestive system, and maintains homeostasis. The prevertebral ganglia (PVG) in the peripheral nervous system serve as a vital relay station, transmitting efferent signals to visceral organs. The PVG receives innervation from intestinofugal afferent neurones (IFANs) that originate from the enteric plexus, as well as from spinal sensory nerves that innervate the enteric tract. While neural circuits comprising sensory and sympathetic nerves have been proposed, the exact diversity of the individual neurones in these circuits is still not well characterized in rats. In this study, we employed single-nuclei RNA-sequencing to characterize all the cell types present in the celiac ganglion (CG). We identified five distinct neural clusters, including celiac noradrenergic and celiac cholinergic neurones (CNA1-4, CACh). Among these, the CNA3 cluster expressed Tacr1 and Cckar, while the CACh cluster expressed Ramp1. Furthermore, we characterised Mki67-positive proliferating cells and found that they expressed genes associated with satellite glial cells (SGCs). Additionally, general resident and sympathetic SGCs with distinct SGC clusters were localised within the CG. Our data provide a valuable resource for investigating neural circuits within the PVG and for identifying target organs innervated by specific neuronal populations.
Collapse
Affiliation(s)
- Hirosato Kanda
- Laboratory of Anatomy, School of Pharmacy, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan.
- Laboratory of Basic Pain Research, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan.
| | - Hiroki Yamanaka
- Laboratory of Anatomy, School of Pharmacy, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan
- Laboratory of Basic Pain Research, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan
| | - Yi Dai
- Laboratory of Basic Pain Research, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan
- Department of Anatomy and Neuroscience, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan
| | - Koichi Noguchi
- Laboratory of Basic Pain Research, Hyogo Medical University, Kobe, Hyogo, 650-8530, Japan
| |
Collapse
|
2
|
Wang J, Shao MH, Li J, Liu JQ, Xu XY, Xu MR, Li M, Liu JS. High temperature induces the upward shift of the thermal neutral zone and decreases metabolic capacity in zebra finches. Comp Biochem Physiol A Mol Integr Physiol 2025; 300:111788. [PMID: 39642981 DOI: 10.1016/j.cbpa.2024.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The thermal neutral zone (TNZ) represents a fundamental concept in the thermal physiology of homeothermic organisms. TNZ is characterized as a specific range of environmental temperatures within which the metabolic rate remains at its basal level. The ambient temperature is regarded as a critical environmental factor that affects an animal's thermoregulation and propels the development of various morphological, physiological, and behavioral adaptations. In the present investigation, we assessed the influence of environmental temperature on various physiological parameters, including body mass, metabolic rate, thermoneutral zone (TNZ), state 4 respiration (S4R), cytochrome c oxidase (CCO) activity, body fat content, triglyceride content, free fatty acid content, β-hydroxyacyl Co-A dehydrogenase (HOAD) and citrate synthase (CS) activities, AMPK and PGC-1α mRNA levels, and triiodothyronine (T3) and tetraiodothyronine (T4) concentrations in zebra finches acclimated to 25 °C or 38 °C. zebra finches were found to have a TNZ of 32-42 °C when acclimated to 25 °C and a TNZ of 34-42 °C when acclimated to 38 °C. Acclimation to a high temperature led to an increase in the lower critical temperature (LCT), consequently resulting in a narrower TNZ. Zebra finches acclimated to 38 °C for a duration of four weeks exhibited a notable reduction in both body mass and basal metabolic rate as opposed to individuals maintained at 25 °C. Additionally, finches that were acclimatized to 38 °C exhibited a reduction in liver mass and a lower S4R level in both the liver and kidneys. Furthermore, these finches showed decreased CCO activity in the pectoral muscle and liver and lower avian uncoupling protein expression in the pectoral muscle compared with the birds acclimated to 25 °C. The T3 level in the serum was lower in the 38 °C-acclimated finches than the 25 °C-acclimated finches. These findings suggested that the shift in the LCT of TNZ in zebra finches may possibly be associated with their metabolic capacity as well as their T3 levels at a different ambient temperature. The changes in LCT of TNZ could be an important strategy in adapting to variations in ambient temperature in zebra finches.
Collapse
Affiliation(s)
- Jing Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ming-Hui Shao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Juan Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Jia-Qi Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Xin-Yi Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ming-Ru Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Ming Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China.
| | - Jin-Song Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China.
| |
Collapse
|
3
|
Chang L, Meng F, Jiao B, Zhou T, Su R, Zhu C, Wu Y, Ling Y, Wang S, Wu K, Zhang D, Cao J. Integrated analysis of omics reveals the role of scapular fat in thermogenesis adaptation in sunite sheep. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101292. [PMID: 39018792 DOI: 10.1016/j.cbd.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Inhabiting some of the world's most inhospitable climatic regions, the Sunite Mongolian sheep generates average temperatures as low as 4.3 °C and a minimum temperature of -38.8 °C; in these environments, they make essential cold adaptations. In this regard, scapular fat tissues from Mongolian sheep were collected both in winter and summer for transcriptomic and proteomic analyses to identify genes related to adaptive thermogenesis. In the transcriptome analysis, 588 differentially expressed genes were identified to participate in smooth muscle activity and fat metabolism, as well as in nutrient regulation. There were 343 upregulated and 245 downregulated genes. GO and KEGG pathway analyses on these genes revealed their participation in regulating smooth muscle activity, metabolism of fats, and nutrients. Proteomic analysis showed the differential expression of 925 proteins: among them, there are 432 up- and 493 down-expressed proteins. These proteins are mainly involved in oxidative phosphorylation, respiratory chain complex assembly, and ATP production by electron transport. Furthermore, using both sets at a more detailed level of analysis revealed over-representation in gene ontology categories related to hormone signaling, metabolism of lipids, the pentose phosphate pathway, the TCA cycle, and especially the process of oxidative phosphorylation. The identified essential genes and proteins were further validated by quantitative real-time polymerase chain reaction and Western blotting, respectively; key metabolic network constriction was constructed. The present study emphasized the critical role of lipid turnover in scapular fat for thermogenic adaptation in Sunite sheep.
Collapse
Affiliation(s)
- Longwei Chang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Fanhua Meng
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China.
| | - Boran Jiao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Tong Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Rina Su
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Chunxiao Zhu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Yi Wu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Yu Ling
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Shenyuan Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Kaifeng Wu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China
| | - Dong Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China.
| | - Junwei Cao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010018, China.
| |
Collapse
|
4
|
Xu X, Senior AM, Le Couteur DG, Cogger VC, Raubenheimer D, James DE, Parker B, Simpson SJ, Muller S, Yang JYH. eNODAL: an experimentally guided nutriomics data clustering method to unravel complex drug-diet interactions. Brief Bioinform 2024; 26:bbaf036. [PMID: 39982203 PMCID: PMC11843446 DOI: 10.1093/bib/bbaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 02/19/2025] [Indexed: 02/22/2025] Open
Abstract
Unraveling the complex interplay between nutrients and drugs via their effects on "omics" features could revolutionize our fundamental understanding of nutritional physiology, personalized nutrition, and, ultimately, human health span. Experimental studies in nutrition are starting to use large-scale "omics" experiments to pick apart the effects of such interacting factors. However, the high dimensionality of the omics features, coupled with complex fully factorial experimental designs, poses a challenge to the analysis. Current strategies for analyzing such types of data are based on between-feature correlations. However, these techniques risk overlooking important signals that arise from the experimental design and produce clusters that are hard to interpret. We present a novel approach for analyzing high-dimensional outcomes in nutriomics experiments, termed experiment-guided NutriOmics DatA cLustering ('eNODAL'). This three-step hybrid framework takes advantage of both Analysis of Variance (ANOVA)-type analyses and unsupervised learning methods to extract maximum information from experimental nutriomics studies. First, eNODAL categorizes the omics features into interpretable groups based on the significance of response to the different experimental variables using an ANOVA-like test. Such groups may include the main effects of a nutritional intervention and drug exposure or their interaction. Second, consensus clustering is performed within each interpretable group to further identify subclusters of features with similar response profiles to these experimental factors. Third, eNODAL annotates these subclusters based on their experimental responses and biological pathways enriched within the subcluster. We validate eNODAL using data from a mouse experiment to test for the interaction effects of macronutrient intake and drugs that target aging mechanisms in mice.
Collapse
Affiliation(s)
- Xiangnan Xu
- Chair of Statistics, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin 10178, Germany
| | - Alistair M Senior
- Charles Perkins Centre, University of Sydney, Johns Hopkins Drive, NSW 2050, Australia
- Sydney Precision Data Science Centre, University of Sydney, F07 Eastern Avenue, NSW 2050, Australia
- Laboratory of Data Discovery for Health Limited (D24H), 19 Science Park W Avenue, Hong Kong SAR 999077, China
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Johns Hopkins Drive, NSW 2050, Australia
- Centre for Education and Research on Ageing, Concord RG Hospital, Hospital Road, NSW 2138, Australia
- ANZAC Research Institute, Concord RG Hospital, Hospital Road, NSW 2138, Australia
| | - Victoria C Cogger
- Centre for Education and Research on Ageing, Concord RG Hospital, Hospital Road, NSW 2138, Australia
- ANZAC Research Institute, Concord RG Hospital, Hospital Road, NSW 2138, Australia
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Johns Hopkins Drive, NSW 2050, Australia
- School of Life and Environmental Science, University of Sydney, F22 Eastern Avenue, NSW 2050, Australia
| | - David E James
- Charles Perkins Centre, University of Sydney, Johns Hopkins Drive, NSW 2050, Australia
- ANZAC Research Institute, Concord RG Hospital, Hospital Road, NSW 2138, Australia
| | - Benjamin Parker
- Department of Anatomy and Physiology, University of Melbourne, 30 Royal Parade, VIC 3052, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Johns Hopkins Drive, NSW 2050, Australia
- School of Life and Environmental Science, University of Sydney, F22 Eastern Avenue, NSW 2050, Australia
| | - Samuel Muller
- Sydney Precision Data Science Centre, University of Sydney, F07 Eastern Avenue, NSW 2050, Australia
- School of Mathematical and Physical Sciences, Macquarie University, 18 Wally's Walk, NSW 2109, Australia
- School of Mathematics and Statistics, University of Sydney, F07 Eastern Avenue, NSW 2050, Australia
| | - Jean Y H Yang
- Charles Perkins Centre, University of Sydney, Johns Hopkins Drive, NSW 2050, Australia
- Sydney Precision Data Science Centre, University of Sydney, F07 Eastern Avenue, NSW 2050, Australia
- Laboratory of Data Discovery for Health Limited (D24H), 19 Science Park W Avenue, Hong Kong SAR 999077, China
- School of Mathematics and Statistics, University of Sydney, F07 Eastern Avenue, NSW 2050, Australia
| |
Collapse
|
5
|
Wang S, Li X, Fang Y, Shu Q, Ma R, Wu D. Construction and validation of a risk prediction model for soldiers with frostbite in northeast China: a cross-sectional study. BMC Public Health 2024; 24:2493. [PMID: 39272064 PMCID: PMC11396340 DOI: 10.1186/s12889-024-19959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND One of the challenges of physical training in extreme condition is frostbite, especially in Northeast China. In this study, we aimed to construct a risk prediction model for frostbite among soldiers in Northeast China, and verify its effect. METHODS 698 participants were selected via convenience sampling from Northeast China from December 2021 to January 2022 (winter). They were randomly divided into a training set (N = 479) and a testing set (N = 202) in a ratio of 7:3. All participants completed a researcher-made questionnaire on frostbite. The prediction model was constructed through the use of Logistic regression analysis, which was used to predict the independent risk factors for frostbite formation and screen significant indicators. The model's performance was assessed using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA) to evaluate the prediction efficiency and goodness of fit. RESULTS The incidence of frostbite in the training set was 19.83% (95 people), all of which were first-degree frostbite. Among them, frostbite in multiple parts was the most common (58.95%), followed by singular body parts like hands (24.21%), ears (11.58%) and feet (5.26%). Single factor logistic regression analyses showed that ambient temperature, ambient wind speed, outdoor stationary time, stationary status, and history of frostbite are independent risk factors that affect the occurrence of frostbite. Furthermore, we constructed the frostbite risk prediction model for soldiers in the northeastern region of China. The area under the receiver operating characteristic curve (AUC) for the risk of frostbite in the training set and testing set was 0.816 (95% CI, 0.770 ~ 0.862) and 0.787 (95% CI, 0.713 ~ 0.860), respectively. The Hosmer-Lemeshow test of the model showed χ2 = 11.328 and P = 0.184 (> 0.05). The DCA curve indicated that most of the clinical net benefits of the model are greater than 0, demonstrating good clinical usefulness. CONCLUSION The constructed frostbite prediction model can effectively identify soldiers with a higher risk of frostbite. It provided theoretical support for commanders to take preventive measures to reduce the incidence of frostbite among soldiers and was of great clinical guiding significance.
Collapse
Affiliation(s)
- Sitong Wang
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, People's Republic of China
| | - Xueyu Li
- Department of Nursing, General Hospital of Northern Theater Command, Wenhua Road 83rd Shenhe Region, Shenyang, Liaoning, 110016, People's Republic of China.
| | - Yuli Fang
- Department of Nursing, General Hospital of Northern Theater Command, Wenhua Road 83rd Shenhe Region, Shenyang, Liaoning, 110016, People's Republic of China
| | - Qin Shu
- School of Nursing, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Ruihang Ma
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, People's Republic of China
| | - Di Wu
- Department of Nursing, General Hospital of Northern Theater Command, Wenhua Road 83rd Shenhe Region, Shenyang, Liaoning, 110016, People's Republic of China
| |
Collapse
|
6
|
Basu R, Flak JN. Hypothalamic neural circuits regulating energy expenditure. VITAMINS AND HORMONES 2024; 127:79-124. [PMID: 39864947 PMCID: PMC12007011 DOI: 10.1016/bs.vh.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization. The hypothalamus has evolved to enhance energy storage for survival in famine and scarce environments but contribute to obesity in modern contexts of caloric abundance. It acts as a master regulator of whole-body energy homeostasis, rapidly adapting to ensure energy supplies for cellular functions. Understanding hypothalamic function, pertaining to energy expenditure, is crucial for developing targeted interventions to address metabolic disorders, offering new insights into the neural control of metabolic states and potential therapeutic strategies.
Collapse
Affiliation(s)
- Rashmita Basu
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan N Flak
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
7
|
Grajales-Reyes JG, Chen B, Meseguer D, Schneeberger M. Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation? Physiology (Bethesda) 2024; 39:0. [PMID: 38536114 PMCID: PMC11368520 DOI: 10.1152/physiol.00034.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.
Collapse
Affiliation(s)
- Jose G Grajales-Reyes
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Bandy Chen
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Laboratory of Neurovascular Control of Homeostasis, Yale School of Medicine, New Haven, Connecticut, United States
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
8
|
Basu R, Elmendorf AJ, Lorentz B, Mahler CA, Lazzaro O, App B, Zhou S, Yamamoto Y, Suber M, Wann JC, Roh HC, Sheets PL, Johnson TS, Flak JN. Ventromedial hypothalamic nucleus subset stimulates tissue thermogenesis via preoptic area outputs. Mol Metab 2024; 84:101951. [PMID: 38729241 PMCID: PMC11112375 DOI: 10.1016/j.molmet.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Hypothalamic signals potently stimulate energy expenditure by engaging peripheral mechanisms to restore energy homeostasis. Previous studies have identified several critical hypothalamic sites (e.g. preoptic area (POA) and ventromedial hypothalamic nucleus (VMN)) that could be part of an interconnected neurocircuit that controls tissue thermogenesis and essential for body weight control. However, the key neurocircuit that can stimulate energy expenditure has not yet been established. METHODS Here, we investigated the downstream mechanisms by which VMN neurons stimulate adipose tissue thermogenesis. We manipulated subsets of VMN neurons acutely as well as chronically and studied its effect on tissue thermogenesis and body weight control, using Sf1Cre and Adcyap1Cre mice and measured physiological parameters under both high-fat diet and standard chow diet conditions. To determine the node efferent to these VMN neurons, that is involved in modulating energy expenditure, we employed electrophysiology and optogenetics experiments combined with measurements using tissue-implantable temperature microchips. RESULTS Activation of the VMN neurons that express the steroidogenic factor 1 (Sf1; VMNSf1 neurons) reduced body weight, adiposity and increased energy expenditure in diet-induced obese mice. This function is likely mediated, at least in part, by the release of the pituitary adenylate cyclase-activating polypeptide (PACAP; encoded by the Adcyap1 gene) by the VMN neurons, since we previously demonstrated that PACAP, at the VMN, plays a key role in energy expenditure control. Thus, we then shifted focus to the subpopulation of VMNSf1 neurons that contain the neuropeptide PACAP (VMNPACAP neurons). Since the VMN neurons do not directly project to the peripheral tissues, we traced the location of the VMNPACAP neurons' efferents. We identified that VMNPACAP neurons project to and activate neurons in the caudal regions of the POA whereby these projections stimulate tissue thermogenesis in brown and beige adipose tissue. We demonstrated that selective activation of caudal POA projections from VMNPACAP neurons induces tissue thermogenesis, most potently in negative energy balance and activating these projections lead to some similar, but mostly unique, patterns of gene expression in brown and beige tissue. Finally, we demonstrated that the activation of the VMNPACAP neurons' efferents that lie at the caudal POA are necessary for inducing tissue thermogenesis in brown and beige adipose tissue. CONCLUSIONS These data indicate that VMNPACAP connections with the caudal POA neurons impact adipose tissue function and are important for induction of tissue thermogenesis. Our data suggests that the VMNPACAP → caudal POA neurocircuit and its components are critical for controlling energy balance by activating energy expenditure and body weight control.
Collapse
Affiliation(s)
- Rashmita Basu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Andrew J Elmendorf
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Betty Lorentz
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Connor A Mahler
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Olivia Lazzaro
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Britany App
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Shudi Zhou
- Department of Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yura Yamamoto
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Mya Suber
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Jamie C Wann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Patrick L Sheets
- Department of Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Travis S Johnson
- Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA; Melvin and Bren Simon Comprehensive Cancer Centre, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan N Flak
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Houmøller CP, Hellerup SH, Nøhr NK, Winther G, Mikkelsen S, Geisler L, Holst M. Measured versus estimated energy requirement in hospitalized patients. Clin Nutr ESPEN 2024; 59:312-319. [PMID: 38220392 DOI: 10.1016/j.clnesp.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND & AIM Failure to identify a patient's energy requirement has a variety of consequences both physiological and economical. Previous studies have shown that predictive formulas, including the Harris Benedict equation (HB), both over- and underestimates energy requirement in severely ill patients and healthy younger adults, compared to the golden standard, indirect calorimetry (IC). The comparison between measured and estimated energy requirements in hospitalized patients in regular wards is underreported. The aim of this study was to assess the agreement between measured energy requirements and requirements estimated by HB in the individual hospitalized patients, and to investigate whether those findings were associated with other specific patient characteristics. METHODS IC (n = 86) was used to measure resting energy expenditure (REE) and bioimpedance analysis (BIA) (n = 67) was used for body composition in patients admitted to Aalborg University Hospital. Furthermore, height, weight, body mass index, calf circumference, while information regarding hospital ward, vital values, dieticians estimated energy requirements and blood samples were collected in the patients' electronic medical records. Bland-Altman plots, multiple linear regression analysis, and Chi2 tests were performed. RESULTS On average a difference between IC compared with the HB (6.2%), dietitians' estimation (7.8%) and BIA (4.50%) was observed (p < 0.05). Association between REE and skeletal muscle mass (SMM) (R2 = 0.58, β = 149.0 kJ), body fat mass (BFM) (R2 = 0.51, β = 59.1 kJ), and weight (R2 = 0.62, β = 45.6 kJ) were found (p < 0.05). A positive association between measured REE and HB were found in the following variables (p < 0.05): CRP, age, surgical patients, and respiratory rate. CONCLUSION This study found a general underestimation of estimated energy expenditure compared to measured REE. A positive correlation between measured REE and SMM, BRM and weight was found. Lastly, the study found a greater association between CRP, age, surgical patients, and respiratory rate and a general greater than ±10% difference between measured and estimation of energy requirements.
Collapse
Affiliation(s)
| | | | - Niels K Nøhr
- Department of Health, Science and Technology, Aalborg University, Denmark.
| | - Gustav Winther
- Department of Health, Science and Technology, Aalborg University, Denmark.
| | - Sabina Mikkelsen
- Centre for Nutrition and Intestinal Failure, Aalborg University Hospital, Denmark.
| | - Lea Geisler
- Centre for Nutrition and Intestinal Failure, Aalborg University Hospital, Denmark.
| | - Mette Holst
- Centre for Nutrition and Intestinal Failure, Department of Gastroenterology, Aalborg University Hospital and Department of Clinical Medicine, Aalborg University, Denmark.
| |
Collapse
|
10
|
Lun W, Yan Q, Guo X, Zhou M, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Mechanism of action of the bile acid receptor TGR5 in obesity. Acta Pharm Sin B 2024; 14:468-491. [PMID: 38322325 PMCID: PMC10840437 DOI: 10.1016/j.apsb.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/17/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of membrane protein receptors, and Takeda G protein-coupled receptor 5 (TGR5) is a member of this family. As a membrane receptor, TGR5 is widely distributed in different parts of the human body and plays a vital role in regulating metabolism, including the processes of energy consumption, weight loss and blood glucose homeostasis. Recent studies have shown that TGR5 plays an important role in glucose and lipid metabolism disorders such as fatty liver, obesity and diabetes. With the global obesity situation becoming more and more serious, a comprehensive explanation of the mechanism of TGR5 and filling the gaps in knowledge concerning clinical ligand drugs are urgently needed. In this review, we mainly explain the anti-obesity mechanism of TGR5 to promote the further study of this target, and show the electron microscope structure of TGR5 and review recent studies on TGR5 ligands to illustrate the specific binding between TGR5 receptor binding sites and ligands, which can effectively provide new ideas for ligand research and promote drug research.
Collapse
Affiliation(s)
- Weijun Lun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Minchuan Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
11
|
Li M, Xu M, Wang J, Yao Y, Zhang X, Liu J. Phenotypic flexibility in metabolic adjustments and digestive function in white-shouldered starlings: responses to short-term temperature acclimation. J Exp Biol 2024; 227:jeb246214. [PMID: 38009187 DOI: 10.1242/jeb.246214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Changing the intrinsic rate of metabolic heat production is the main adaptive strategy for small birds to cope with different ambient temperatures. In this study, we tested the hypothesis that the small passerine the white-shouldered starling (Sturnus sinensis) can modulate basal metabolism under temperature acclimation by changing the morphological, physiological and biochemical state of its tissues and organs. We measured the effects of temperature on body mass, basal metabolic rate (BMR), wet mass of various internal organs, state 4 respiration (S4R) and cytochrome c oxidase (CCO) activity in the pectoral muscle and organs, metabolites in the pectoral muscle, energy intake, histological dynamics and the activity of duodenal digestive enzymes. Warm acclimation decreased BMR to a greater extent than cold acclimation. At the organ level, birds in the cold-acclimated group had significantly heavier intestines but significantly lighter pectoral muscles. At the cellular level, birds in the cold-acclimated group showed significantly higher S4R in the liver and heart and CCO activity in the liver and kidney at both the mass-specific and whole-organ levels. A metabolomic analysis of the pectoral tissue revealed significantly higher lipid decomposition, amino acid degradation, ATP hydrolysis, and GTP and biotin synthesis in cold-acclimated birds. Acclimation to cold significantly increased the gross energy intake (GEI), feces energy (FE) and digestive energy intake (DEI) but significantly decreased the digestive efficiency of these birds. Furthermore, cold-acclimated birds had a higher maltase activity and longer villi in the duodenum. Taken together, these data show that white-shouldered starlings exhibit high phenotypic flexibility in metabolic adjustments and digestive function under temperature acclimation, consistent with the notion that small birds cope with the energy challenges presented by a cold environment by modulating tissue function in a way that would affect BMR.
Collapse
Affiliation(s)
- Ming Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China. Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Mingru Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China. Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Jing Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China. Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Yaqi Yao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China. Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Xinhao Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China. Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| | - Jinsong Liu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China. Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, China
| |
Collapse
|
12
|
Muzik O, Diwadkar VA. Depth and hierarchies in the predictive brain: From reaction to action. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1664. [PMID: 37518831 DOI: 10.1002/wcs.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
The human brain is a prediction device, a view widely accepted in neuroscience. Prediction is a rational and efficient response that relies on the brain's ability to create and employ generative models to optimize actions over unpredictable time horizons. We argue that extant predictive frameworks while compelling, have not explicitly accounted for the following: (a) The brain's generative models must incorporate predictive depth (i.e., rely on degrees of abstraction to enable predictions over different time horizons); (b) The brain's implementation scheme to account for varying predictive depth relies on dynamic predictive hierarchies formed using the brain's functional networks. We show that these hierarchies incorporate the ascending processes (driven by reaction), and the descending processes (related to prediction), eventually driving action. Because they are dynamically formed, predictive hierarchies allow the brain to address predictive challenges in virtually any domain. By way of application, we explain how this framework can be applied to heretofore poorly understood processes of human behavioral thermoregulation. Although mammalian thermoregulation has been closely tied to deep brain structures engaged in autonomic control such as the hypothalamus, this narrow conception does not translate well to humans. In addition to profound differences in evolutionary history, the human brain is bestowed with substantially increased functional complexity (that itself emerged from evolutionary differences). We argue that behavioral thermoregulation in humans is possible because, (a) ascending signals shaped by homeostatic sub-networks, interject with (b) descending signals related to prediction (implemented in interoceptive and executive sub-networks) and action (implemented in executive sub-networks). These sub-networks cumulatively form a predictive hierarchy for human thermoregulation, potentiating a range of viable responses to known and unknown thermoregulatory challenges. We suggest that our proposed extensions to the predictive framework provide a set of generalizable principles that can further illuminate the many facets of the predictive brain. This article is categorized under: Neuroscience > Behavior Philosophy > Action Psychology > Prediction.
Collapse
Affiliation(s)
- Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of Michigan, Michigan, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
13
|
Kasza I, Cuncannan C, Michaud J, Nelson D, Yen CLE, Jain R, Simcox J, MacDougald OA, Parks BW, Alexander CM. "Humanizing" mouse environments: Humidity, diurnal cycles and thermoneutrality. Biochimie 2023; 210:82-98. [PMID: 36372307 PMCID: PMC10172392 DOI: 10.1016/j.biochi.2022.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Thermoneutral housing has been shown to promote more accurate and robust development of several pathologies in mice. Raising animal housing temperatures a few degrees may create a relatively straightforward opportunity to improve translatability of mouse models. In this commentary, we discuss the changes of physiology induced in mice housed at thermoneutrality, and review techniques for measuring systemic thermogenesis, specifically those affecting storage and mobilization of lipids in adipose depots. Environmental cues are a component of the information integrated by the brain to calculate food consumption and calorie deposition. We show that relative humidity is one of those cues, inducing a rapid sensory response that is converted to a more chronic susceptibility to obesity. Given high inter-institutional variability in the regulation of relative humidity, study reproducibility may be improved by consideration of this factor. We evaluate a "humanized" environmental cycling protocol, where mice sleep in warm temperature housing, and are cool during the wake cycle. We show that this protocol suppresses adaptation to cool exposure, with consequence for adipose-associated lipid storage. To evaluate systemic cues in mice housed at thermoneutral temperatures, we characterized the circulating lipidome, and show that sera are highly depleted in some HDL-associated phospholipids, specifically phospholipids containing the essential fatty acid, 18:2 linoleic acid, and its derivative, arachidonic acid (20:4) and related ether-phospholipids. Given the role of these fatty acids in inflammatory responses, we propose they may underlie the differences in disease progression observed at thermoneutrality.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Colleen Cuncannan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Julian Michaud
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Dave Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Chi-Liang E Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Judi Simcox
- Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, United States
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States.
| |
Collapse
|
14
|
Kupari J, Ernfors P. Molecular taxonomy of nociceptors and pruriceptors. Pain 2023; 164:1245-1257. [PMID: 36718807 PMCID: PMC10184562 DOI: 10.1097/j.pain.0000000000002831] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Coiffard B, Merdji H, Boucekine M, Helms J, Clere-Jehl R, Mege JL, Meziani F. Changes in Body Temperature Patterns Are Predictive of Mortality in Septic Shock: An Observational Study. BIOLOGY 2023; 12:biology12050638. [PMID: 37237452 DOI: 10.3390/biology12050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Biological rhythms are important regulators of immune functions. In intensive care unit (ICU), sepsis is known to be associated with rhythm disruption. Our objectives were to determine factors associated with rhythm disruption of the body temperature and to assess the relationship between temperature and mortality in septic shock patients; In a cohort of septic shock, we recorded body temperature over a 24-h period on day 2 after ICU admission. For each patient, the temperature rhythmicity was assessed by defining period and amplitude, and the adjusted average (mesor) of the temperature by sinusoidal regression and cosinor analysis. Analyses were performed to assess factors associated with the three temperature parameters (period, amplitude, and mesor) and mortality. 162 septic shocks were enrolled. The multivariate analysis demonstrates that the period of temperature was associated with gender (women, coefficient -2.2 h, p = 0.031) and acetaminophen use (coefficient -4.3 h, p = 0.002). The mesor was associated with SOFA score (coefficient -0.05 °C per SOFA point, p = 0.046), procalcitonin (coefficient 0.001 °C per ng/mL, p = 0.005), and hydrocortisone use (coefficient -0.5 °C, p = 0.002). The amplitude was associated with the dialysis (coefficient -0.5 °C, p = 0.002). Mortality at day 28 was associated with lower mesor (adjusted hazard ratio 0.50, 95% CI 0.28 to 0.90; p = 0.02), and higher amplitude (adjusted hazard ratio 5.48, 95% CI 1.66 to 18.12; p = 0.005) of temperature. Many factors, such as therapeutics, influence the body temperature during septic shock. Lower mesor and higher amplitude were associated with mortality and could be considered prognostic markers in ICU. In the age of artificial intelligence, the incorporation of such data in an automated scoring alert could compete with physicians to identify high-risk patients during septic shock.
Collapse
Affiliation(s)
- Benjamin Coiffard
- IHU-Méditerranée Infection, IRD, AP-HM, MEPHI, Aix Marseille Université, 13005 Marseille, France
- Médecine Intensive-Réanimation, APHM, Hôpital Nord, Aix Marseille Université, 13015 Marseille, France
| | - Hamid Merdji
- Service de Réanimation, Nouvel Hôpital Civil, Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- UMR 1260, Regenerative Nano Medecine, INSERM, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Mohamed Boucekine
- Health Service Research and Quality of Life Center, APHM, EA 3279 CEReSS, School of Medicine-La Timone Medical Campus, Aix Marseille Université, 13005 Marseille, France
| | - Julie Helms
- Service de Réanimation, Nouvel Hôpital Civil, Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Raphaël Clere-Jehl
- Service de Réanimation, Nouvel Hôpital Civil, Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Jean-Louis Mege
- IHU-Méditerranée Infection, IRD, AP-HM, MEPHI, Aix Marseille Université, 13005 Marseille, France
| | - Ferhat Meziani
- Service de Réanimation, Nouvel Hôpital Civil, Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- UMR 1260, Regenerative Nano Medecine, INSERM, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
16
|
Wong CP, Branscum AJ, Fichter AR, Sargent J, Iwaniec UT, Turner RT. Cold stress during room temperature housing alters skeletal response to simulated microgravity (hindlimb unloading) in growing female C57BL6 mice. Biochimie 2022:S0300-9084(22)00333-9. [PMID: 36584865 DOI: 10.1016/j.biochi.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Laboratory mice are typically housed at temperatures below the thermoneutral zone for the species, resulting in cold stress and premature cancellous bone loss. Furthermore, mice are more dependent upon non-shivering thermogenesis to maintain body temperature during spaceflight, suggesting that microgravity-induced bone loss may be due, in part, to altered thermogenesis. Consequently, we assessed whether housing mice at room temperature modifies the skeletal response to simulated microgravity. This possibility was tested using the hindlimb unloading (HLU) model to mechanically unload femora. Humeri were also assessed as they remain weight bearing during HLU. Six-week-old female C57BL6 (B6) mice were housed at room temperature (22 °C) or near thermoneutral (32 °C) and HLU for 2 weeks. Compared to baseline, HLU resulted in cortical bone loss in femur, but the magnitude of reduction was greater in mice housed at 22 °C. Cancellous osteopenia in distal femur (metaphysis and epiphysis) was noted in HLU mice housed at both temperatures. However, bone loss occurred at 22 °C, whereas the bone deficit at 32 °C was due to failure to accrue bone. HLU resulted in cortical and cancellous bone deficits (compared to baseline) in humeri of mice housed at 22 °C. In contrast, fewer osteopenic changes were detected in mice housed at 32 °C. These findings support the hypothesis that environmental temperature alters the skeletal response to HLU in growing female mice in a bone compartment-specific manner. Taken together, species differences in thermoregulation should be taken into consideration when interpreting the skeletal response to simulated microgravity.
Collapse
Affiliation(s)
- Carmen P Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Aidan R Fichter
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Jennifer Sargent
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331 USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA; Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA; Center for Healthy Aging Research, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
17
|
Abstract
Sleep is a fundamental, evolutionarily conserved, plastic behavior that is regulated by circadian and homeostatic mechanisms as well as genetic factors and environmental factors, such as light, humidity, and temperature. Among environmental cues, temperature plays an important role in the regulation of sleep. This review presents an overview of thermoreception in animals and the neural circuits that link this process to sleep. Understanding the influence of temperature on sleep can provide insight into basic physiologic processes that are required for survival and guide strategies to manage sleep disorders.
Collapse
|
18
|
Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, Magalhães KG. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022; 19:61. [PMID: 36068578 PMCID: PMC9446768 DOI: 10.1186/s12986-022-00694-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissues are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. Although white adipose tissue and brown adipose tissue are currently considered key endocrine organs, they differ functionally and morphologically. The existence of the beige or brite adipocytes, cells displaying intermediary characteristics between white and brown adipocytes, illustrates the plastic nature of the adipose tissue. These cells are generated through white adipose tissue browning, a process associated with augmented non-shivering thermogenesis and metabolic capacity. This process involves the upregulation of the uncoupling protein 1, a molecule that uncouples the respiratory chain from Adenosine triphosphate synthesis, producing heat. β-3 adrenergic receptor system is one important mediator of white adipose tissue browning, during cold exposure. Surprisingly, hyperthermia may also induce beige activation and white adipose tissue beiging. Physical exercising copes with increased levels of specific molecules, including Beta-Aminoisobutyric acid, irisin, and Fibroblast growth factor 21 (FGF21), which induce adipose tissue browning. FGF21 is a stress-responsive hormone that interacts with beta-klotho. The central roles played by hormones in the browning process highlight the relevance of the individual lifestyle, including circadian rhythm and diet. Circadian rhythm involves the sleep-wake cycle and is regulated by melatonin, a hormone associated with UCP1 level upregulation. In contrast to the pro-inflammatory and adipose tissue disrupting effects of the western diet, specific food items, including capsaicin and n-3 polyunsaturated fatty acids, and dietary interventions such as calorie restriction and intermittent fasting, favor white adipose tissue browning and metabolic efficiency. The intestinal microbiome has also been pictured as a key factor in regulating white tissue browning, as it modulates bile acid levels, important molecules for the thermogenic program activation. During embryogenesis, in which adipose tissue formation is affected by Bone morphogenetic proteins that regulate gene expression, the stimuli herein discussed influence an orchestra of gene expression regulators, including a plethora of transcription factors, and chromatin remodeling enzymes, and non-coding RNAs. Considering the detrimental effects of adipose tissue browning and the disparities between adipose tissue characteristics in mice and humans, further efforts will benefit a better understanding of adipose tissue plasticity biology and its applicability to managing the overwhelming burden of several chronic diseases.
Collapse
Affiliation(s)
- Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | | | - Debora Santos da Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Luana Borges Baptista
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
19
|
Pani P, Bal NC. Avian adjustments to cold and non-shivering thermogenesis: whats, wheres and hows. Biol Rev Camb Philos Soc 2022; 97:2106-2126. [PMID: 35899483 DOI: 10.1111/brv.12885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Avian cold adaptation is hallmarked by innovative strategies of both heat conservation and thermogenesis. While minimizing heat loss can reduce the thermogenic demands of body temperature maintenance, it cannot eliminate the requirement for thermogenesis. Shivering and non-shivering thermogenesis (NST) are the two synergistic mechanisms contributing to endothermy. Birds are of particular interest in studies of NST as they lack brown adipose tissue (BAT), the major organ of NST in mammals. Critical analysis of the existing literature on avian strategies of cold adaptation suggests that skeletal muscle is the principal site of NST. Despite recent progress, isolating the mechanisms involved in avian muscle NST has been difficult as shivering and NST co-exist with its primary locomotory function. Herein, we re-evaluate various proposed molecular bases of avian skeletal muscle NST. Experimental evidence suggests that sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) and ryanodine receptor 1 (RyR1) are key in avian muscle NST, through their mediation of futile Ca2+ cycling and thermogenesis. More recent studies have shown that SERCA regulation by sarcolipin (SLN) facilitates muscle NST in mammals; however, its role in birds is unclear. Ca2+ signalling in the muscle seems to be common to contraction, shivering and NST, but elucidating its roles will require more precise measurement of local Ca2+ levels inside avian myofibres. The endocrine control of avian muscle NST is still poorly defined. A better understanding of the mechanistic details of avian muscle NST will provide insights into the roles of these processes in regulatory thermogenesis, which could further inform our understanding of the evolution of endothermy among vertebrates.
Collapse
Affiliation(s)
- Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
20
|
Heal DJ, Smith SL. Prospects for new drugs to treat binge-eating disorder: Insights from psychopathology and neuropharmacology. J Psychopharmacol 2022; 36:680-703. [PMID: 34318734 PMCID: PMC9150143 DOI: 10.1177/02698811211032475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Binge-eating disorder (BED) is a common psychiatric condition with adverse psychological and metabolic consequences. Lisdexamfetamine (LDX) is the only approved BED drug treatment. New drugs to treat BED are urgently needed. METHODS A comprehensive review of published psychopathological, pharmacological and clinical findings. RESULTS The evidence supports the hypothesis that BED is an impulse control disorder with similarities to ADHD, including responsiveness to catecholaminergic drugs, for example LDX and dasotraline. The target product profile (TPP) of the ideal BED drug combines treating the psychopathological drivers of the disorder with an independent weight-loss effect. Drugs with proven efficacy in BED have a common pharmacology; they potentiate central noradrenergic and dopaminergic neurotransmission. Because of the overlap between pharmacotherapy in attention deficit hyperactivity disorder (ADHD) and BED, drug-candidates from diverse pharmacological classes, which have already failed in ADHD would also be predicted to fail if tested in BED. The failure in BED trials of drugs with diverse pharmacological mechanisms indicates many possible avenues for drug discovery can probably be discounted. CONCLUSIONS (1) The efficacy of drugs for BED is dependent on reducing its core psychopathologies of impulsivity, compulsivity and perseveration and by increasing cognitive control of eating. (2) The analysis revealed a large number of pharmacological mechanisms are unlikely to be productive in the search for effective new BED drugs. (3) The most promising areas for new treatments for BED are drugs, which augment noradrenergic and dopaminergic neurotransmission and/or those which are effective in ADHD.
Collapse
Affiliation(s)
- David J Heal
- David J Heal, DevelRx Ltd, BioCity, Nottingham, NG1 1GF, UK.
| | | |
Collapse
|
21
|
Tang ZR, Chen SY, Lu W, Zhang HD, Li M, Liu JS. Morphological and physiological correlates of among- individual variation in basal metabolic rate in two passerine birds. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111160. [PMID: 35124186 DOI: 10.1016/j.cbpa.2022.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Basal metabolic rate (BMR) has been shown to be a highly phenotypic flexibility trait within species. A significant proportion of an individual's energy budget is accounted for by BMR, hence among-individual variation in this trait may affect other energetic processes, as well as fitness. In this study, we measured BMR, organ mass, mitochondrial respiration capacities and cytochrome c oxidase (COX) activities in muscle and liver and circulating levels of plasma triiodothyronine (T3) in Chinese bulbuls (Pycnonotus sinensis) and Eurasian tree sparrows (Passer montanus). Our results showed that heart and kidney mass was positively correlated with BMR in Chinese bulbuls, whereas liver and kidney mass was positively correlated with BMR in Eurasian tree sparrows. Regarding metabolic biochemical markers of tissues, state 4 respiration and COX activity in the muscles of the Chinese bulbuls was correlated with BMR, while state 4 respiration in the muscle and liver was correlated with BMR in Eurasian tree sparrows. T3 was significantly and positively correlated with BMR in Chinese bulbuls and Eurasian tree sparrows. Consistent with the above results, our findings suggest that T3 levels play an important role in modulating BMR in Chinese bulbuls and Eurasian tree sparrows. Moreover, individual variation in BMR can be explained partly by morphological and physiological mechanisms.
Collapse
Affiliation(s)
- Zhong-Ru Tang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Shen-Yue Chen
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Wei Lu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Hao-Di Zhang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Ming Li
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| | - Jin-Song Liu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
22
|
Coloman II, Levin OS. [Thermoregulatory dysfunction in Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:69-75. [PMID: 34870917 DOI: 10.17116/jnevro202112110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Thermoregulatory dysfunction is considered to be the least investigated among all the autonomic disorders in Parkinson disease. Pathophysiological mechanisms of this phenomena involve as central, as peripheric parts of nervous system. Dopamine deficiency in combination with peripheric autonomic dysfunction leads to temperature balance disturbance, which may be expressed by various clinical symptoms. Dopaminergic innervation of preoptic-anterior hypothalamus area plays a crucial role in thermoregulation function of central nervous system. Current thermoregulatory tests give possibility not only to reveal sudomotor and heat dissipation disorders in patients with Parkinson disease, but also to make differential diagnosis with other neurodegenerative disorders. Early detection and treatment of thermoregulatory dysfunction may improve quality of life in patients with Parkinson disease.
Collapse
Affiliation(s)
- I I Coloman
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - O S Levin
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
23
|
Smith LL. The Central Role of Hypothermia and Hyperactivity in Anorexia Nervosa: A Hypothesis. Front Behav Neurosci 2021; 15:700645. [PMID: 34421554 PMCID: PMC8377352 DOI: 10.3389/fnbeh.2021.700645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Typically, the development of anorexia nervosa (AN) is attributed to psycho-social causes. Several researchers have recently challenged this view and suggested that hypothermia and hyperactivity (HyAc) are central to AN. The following hypothesis will attempt to clarify their role in AN. Anorexia nervosa patients (ANs) have significantly lower core temperatures (Tcore) compared to healthy controls (HCs). This reduced temperature represents a reset Tcore that needs to be maintained. However, ANs cannot maintain this Tcore due primarily to a reduced basal metabolic rate (BMR); BMR usually supplies heat to sustain Tcore. Therefore, to generate the requisite heat, ANs revert to the behavioral-thermoregulatory strategy of HyAc. The majority of ANs (~89%) are reportedly HyAc. Surprisingly, engagement in HyAc is not motivated by a conscious awareness of low Tcore, but rather by the innocuous sensation of "cold- hands" frequently reported by ANs. That is, local hand-thermoreceptors signal the brain to initiate HyAc, which boosts perfusion of the hands and alters the sensation of "cold-discomfort" to one of "comfort." This "rewarding" consequence encourages repetition/habit formation. Simultaneously, hyperactivity increases the availability of heat to assist with the preservation of Tcore. Additionally, HyAc induces the synthesis of specific brain neuromodulators that suppress food intake and further promote HyAc; this outcome helps preserve low weight and perpetuates this vicious cycle. Based on this hypothesis and supported by rodent research, external heat availability should reduce the compulsion to be HyAc to thermoregulate. A reduction in HyAc should decrease the production of brain neuromodulators that suppress appetite. If verified, hopefully, this hypothesis will assist with the development of novel treatments to aid in the resolution of this intractable condition.
Collapse
Affiliation(s)
- Lucille Lakier Smith
- Human Performance Laboratory, Department of Kinesiology, School of Health Sciences, East Carolina University, Greenville, NC, United States
| |
Collapse
|
24
|
Opsins outside the eye and the skin: a more complex scenario than originally thought for a classical light sensor. Cell Tissue Res 2021; 385:519-538. [PMID: 34236517 DOI: 10.1007/s00441-021-03500-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Since the discovery of melanopsin as a retinal non-visual photopigment, opsins have been described in several organs and cells. This distribution is strikingly different from the classical localization of photopigments in light-exposed tissues such as the eyes and the skin. More than 10 years ago, a new paradigm in the field was created as opsins were shown, to detect not only light, but also thermal energy in Drosophila. In agreement with these findings, thermal detection by opsins was also reported in mammalian cells. Considering the presence of opsins in tissues not reached by light, an intriguing question has emerged: What is the role of a classical light-sensor, and more recently appreciated thermo-sensor, in these tissues? To tackle this question, we address in this review the most recent studies in the field, with emphasis in mammals. We provide the present view about the role of opsins in peripheral tissues, aiming to integrate the current knowledge of the presence and function of opsins in organs that are not directly affected by light.
Collapse
|
25
|
Castellanos-Jankiewicz A, Guzmán-Quevedo O, Fénelon VS, Zizzari P, Quarta C, Bellocchio L, Tailleux A, Charton J, Fernandois D, Henricsson M, Piveteau C, Simon V, Allard C, Quemener S, Guinot V, Hennuyer N, Perino A, Duveau A, Maitre M, Leste-Lasserre T, Clark S, Dupuy N, Cannich A, Gonzales D, Deprez B, Mithieux G, Dombrowicz D, Bäckhed F, Prevot V, Marsicano G, Staels B, Schoonjans K, Cota D. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab 2021; 33:1483-1492.e10. [PMID: 33887197 DOI: 10.1016/j.cmet.2021.04.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Bile acids (BAs) improve metabolism and exert anti-obesity effects through the activation of the Takeda G protein-coupled receptor 5 (TGR5) in peripheral tissues. TGR5 is also found in the brain hypothalamus, but whether hypothalamic BA signaling is implicated in body weight control and obesity pathophysiology remains unknown. Here we show that hypothalamic BA content is reduced in diet-induced obese mice. Central administration of BAs or a specific TGR5 agonist in these animals decreases body weight and fat mass by activating the sympathetic nervous system, thereby promoting negative energy balance. Conversely, genetic downregulation of hypothalamic TGR5 expression in the mediobasal hypothalamus favors the development of obesity and worsens established obesity by blunting sympathetic activity. Lastly, hypothalamic TGR5 signaling is required for the anti-obesity action of dietary BA supplementation. Together, these findings identify hypothalamic TGR5 signaling as a key mediator of a top-down neural mechanism that counteracts diet-induced obesity.
Collapse
Affiliation(s)
| | - Omar Guzmán-Quevedo
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France; Laboratory of Neuronutrition and Metabolic Disorders, Instituto Tecnológico Superior de Tacámbaro, 61650 Tacámbaro, Michoacán, Mexico; Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco, 50732-970 Recife, Pernambuco, Brazil
| | - Valérie S Fénelon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Philippe Zizzari
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Luigi Bellocchio
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Anne Tailleux
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Julie Charton
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000 Lille, France
| | - Daniela Fernandois
- University of Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, F-59000, Lille, France
| | - Marcus Henricsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Catherine Piveteau
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Vincent Simon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Sandrine Quemener
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Valentine Guinot
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Nathalie Hennuyer
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Alessia Perino
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alexia Duveau
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Marlène Maitre
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | | | - Samantha Clark
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Nathalie Dupuy
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Astrid Cannich
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Delphine Gonzales
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Benoit Deprez
- University of Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000 Lille, France
| | - Gilles Mithieux
- INSERM U1213 Nutrition, Diabetes and the Brain, University of Lyon 1 Faculté de Médecine Lyon-Est, 69372 Lyon, France
| | - David Dombrowicz
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, 2200 N Copenhagen, Denmark; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Vincent Prevot
- University of Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, F-59000, Lille, France
| | - Giovanni Marsicano
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France
| | - Bart Staels
- University of Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59019 Lille, France
| | - Kristina Schoonjans
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300 Bordeaux, France.
| |
Collapse
|
26
|
Evidence for increased thermogenesis in female C57BL/6J mice housed aboard the international space station. NPJ Microgravity 2021; 7:23. [PMID: 34145277 PMCID: PMC8213760 DOI: 10.1038/s41526-021-00150-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/12/2021] [Indexed: 11/09/2022] Open
Abstract
Sixteen-week-old female C57BL/6J mice were sacrificed aboard the International Space Station after 37 days of flight (RR-1 mission) and frozen carcasses returned to Earth. RNA was isolated from interscapular brown adipose tissue (BAT) and gonadal white adipose tissue (WAT). Spaceflight resulted in differential expression of genes in BAT consistent with increased non-shivering thermogenesis and differential expression of genes in WAT consistent with increased glucose uptake and metabolism, adipogenesis, and β-oxidation.
Collapse
|
27
|
de Assis LVM, Oster H. The circadian clock and metabolic homeostasis: entangled networks. Cell Mol Life Sci 2021; 78:4563-4587. [PMID: 33683376 PMCID: PMC8195959 DOI: 10.1007/s00018-021-03800-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock exerts an important role in systemic homeostasis as it acts a keeper of time for the organism. The synchrony between the daily challenges imposed by the environment needs to be aligned with biological processes and with the internal circadian clock. In this review, it is provided an in-depth view of the molecular functioning of the circadian molecular clock, how this system is organized, and how central and peripheral clocks communicate with each other. In this sense, we provide an overview of the neuro-hormonal factors controlled by the central clock and how they affect peripheral tissues. We also evaluate signals released by peripheral organs and their effects in the central clock and other brain areas. Additionally, we evaluate a possible communication between peripheral tissues as a novel layer of circadian organization by reviewing recent studies in the literature. In the last section, we analyze how the circadian clock can modulate intracellular and tissue-dependent processes of metabolic organs. Taken altogether, the goal of this review is to provide a systemic and integrative view of the molecular clock function and organization with an emphasis in metabolic tissues.
Collapse
Affiliation(s)
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, University of Lübeck, Institute of Neurobiology, Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
28
|
You H, Chu P, Guo W, Lu B. A subpopulation of Bdnf-e1-expressing glutamatergic neurons in the lateral hypothalamus critical for thermogenesis control. Mol Metab 2019; 31:109-123. [PMID: 31918913 PMCID: PMC6920260 DOI: 10.1016/j.molmet.2019.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Brown adipose tissue (BAT)–mediated thermogenesis plays a key role in energy homeostasis and the maintenance of body temperature. Previous work suggests that brain-derived neurotrophic factor (BDNF) is involved in BAT thermogenesis, but the underlying neural circuits and molecular mechanism remain largely unknown. This is in part due to the difficulties in manipulating BDNF expression in different brain regions through different promoters and the lack of tools to identify neurons in the brain specifically involved in BAT thermogenesis. Methods We have created several lines of mutant mice in which BDNF transcription from a specific promoter was selectively disrupted by replacing Bdnf with green fluorescent protein (GFP; Bdnf-e1, -e4, and -e6−/− mice). As such, cells expressing Bdnf-e1, -e4, or -e6 were labeled with GFP. To identify BAT-connected thermogenesis neurons in brain, we applied the retrograde pseudorabies virus labeling method from BAT. We also used chemogenetic tools to manipulate specific neurons coupled with BAT temperature recording. Moreover, we developed a new TrkB agonist antibody to rescue the BAT thermogenesis deficits. Results We show that selective disruption of Bdnf expression from promoter 1 (Bdnf-e1) resulted in severe obesity and deficits of BAT-mediated thermogenesis. Body temperature response to cold was impaired in Bdnf-e1−/− mice. BAT expression of Ucp1 and Pcg1a, genes known to regulate thermogenesis, was also reduced, accompanying a decrease in the sympathetic activity of BAT. Staining of cells expressing Bdnf-e1 transcript, combined with transsynaptic, retrograde-tracing labeling of BAT-connected neurons, identified a group of excitatory neurons in lateral hypothalamus (LH) critical for thermogenesis regulation. Moreover, an adaptive thermogenesis defect in Bdnf-e1−/− mice was rescued by injecting an agonistic antibody for TrkB, the BDNF receptor, into LH. Remarkably, activation of the excitatory neurons (VGLUT2+) in LH through chemogenetic tools resulted in a rise of BAT temperature. Conclusions These results reveal a specific role of BDNF promoter I in thermogenesis regulation and define a small subset of neurons in LH that contribute to such regulation. Only Bdnf-e1−/−, but not Bdnf-e4−/− or Bdnf-e6−/−, mutant mice exhibited deficiencies of BAT thermogenesis. Neurons that are both Bdnf-e1 expressing and BAT-connected were found only in LH. BAT-connected neurons in LH are glutamatergic. Activation of the LH glutamatergic neurons resulted in an increase in BAT temperature. Administration of TrkB agonist antibody in LH rescued thermogenesis deficits.
Collapse
Affiliation(s)
- He You
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pengcheng Chu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Bai Lu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
29
|
Harari Y, Gershon L, Alonso-Perez E, Klein S, Berneman Y, Choudhari K, Singh P, Sau S, Liefshitz B, Kupiec M. Telomeres and stress in yeast cells: When genes and environment interact. Fungal Biol 2019; 124:311-315. [PMID: 32389293 DOI: 10.1016/j.funbio.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
Telomeres are structures composed of simple DNA repeats and specific proteins that protect the eukaryotic chromosomal ends from degradation, and facilitate the replication of the genome. They are central to the maintenance of the genome integrity, and play important roles in the development of cancer and in the process of aging in humans. The yeast Saccharomyces cerevisiae has greatly contributed to our understanding of basic telomere biology. Our laboratory has carried out systematic screen for mutants that affect telomere length, and identified ∼500 genes that, when mutated, affect telomere length. Remarkably, all ∼500 TLM (Telomere Length Maintenance) genes participate in a very tight homeostatic process, and it is enough to mutate one of them to change the steady-state telomere length. Despite this complex network of balances, it is also possible to change telomere length in yeast by applying several types of external stresses. We summarize our insights about the molecular mechanisms by which genes and environment interact to affect telomere length.
Collapse
Affiliation(s)
- Yaniv Harari
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Lihi Gershon
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Elisa Alonso-Perez
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Shir Klein
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Yael Berneman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Karan Choudhari
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Pragyan Singh
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Soumitra Sau
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Batia Liefshitz
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
30
|
Orlande HRB, Lutaif NA, Gontijo JAR. Estimation of the kidney metabolic heat generation rate. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3224. [PMID: 31166657 DOI: 10.1002/cnm.3224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/11/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Thermogenesis results from the cellular metabolism and has a fundamental role for body thermoregulation in endothermic species. The motivation for this work is the analysis of the kidneys' contribution for thermoregulation. An inverse problem is solved for the estimation of the heat generation rate that results from the metabolic activities in the kidney, by using transient temperature measurements of the urine. The Markov chain Monte Carlo (MCMC) method is applied for the solution of the inverse problem, which presents inherent difficulties associated with low sensitivity of the parameters of main interest that represent the transient heat source term and strong correlation of the remaining model parameters. Such difficulties are dealt with in this work by using a version of the Metropolis-Hastings algorithm that samples the parameters in blocks. Simulated temperature measurements are used for the inverse problem solution, and the convergence of the Markov chains is verified with two different techniques.
Collapse
Affiliation(s)
- Helcio R B Orlande
- Department of Mechanical Engineering, Politécnica/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nelson Afonso Lutaif
- Department of Medical Clinic, School of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| | - José Antonio Rocha Gontijo
- Department of Medical Clinic, School of Medical Sciences, State University of Campinas-UNICAMP, Campinas, Brazil
| |
Collapse
|
31
|
Wang Y, Shan S, Zhang H, Dong B, Zheng W, Liu J. Physiological and Biochemical Thermoregulatory Responses in Male Chinese Hwameis to Seasonal Acclimatization: Phenotypic Flexibility in a Small Passerine. Zool Stud 2019; 58:e6. [PMID: 31966307 PMCID: PMC6759861 DOI: 10.6620/zs.2019.58-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/24/2019] [Indexed: 11/18/2022]
Abstract
Many small birds living in regions with seasonal fluctuations and ambient temperatures typically respond to cold by increasing metabolic thermogenesis, internal organ mass and the oxidative capacity of certain tissues. In this study, we investigated seasonal adjustments in body mass, resting metabolic rate (RMR), evaporative water loss (EWL), the mass of selected internal organs, and two indicators of cellular aerobic respiration (mitochondrial state-4 respiration and cytochrome c oxidase activity) in Chinese hwamei (Garrulax canorus) that had been captured in summer or winter from Wenzhou, China. RMR and EWL were higher in winter than in summer. State-4 respiration in the heart, liver, kidneys and pectoral muscle, as well as cytochrome c oxidase activity in the liver, kidneys and pectoral muscle were also higher in winter than summer. In addition, there was a positive correlation between RMR and EWL, and between RMR and indicators of cellular metabolic activity in the heart, liver, kidneys and pectoral muscle. This phenotypic flexibility in physiological and biochemical thermoregulatory responses may be important to the hwamei's ability to survive the unpredictable, periodic, cold temperatures commonly experienced in Wenzhou in winter.
Collapse
Affiliation(s)
- Ying Wang
- College of Life and Environmental Sciences, Wenzhou
University, Wenzhou 325035, China.
| | - Shuangshuang Shan
- College of Life and Environmental Sciences, Wenzhou
University, Wenzhou 325035, China.
| | - Haodi Zhang
- College of Life and Environmental Sciences, Wenzhou
University, Wenzhou 325035, China.
| | - Beibei Dong
- College of Life and Environmental Sciences, Wenzhou
University, Wenzhou 325035, China.
| | - Weihong Zheng
- College of Life and Environmental Sciences, Wenzhou
University, Wenzhou 325035, China.
- Zhejiang Provincial Key Lab for Subtropical Water
Environment and Marine Biological Resources Protection, Wenzhou 325035,
China
| | - Jinsong Liu
- College of Life and Environmental Sciences, Wenzhou
University, Wenzhou 325035, China.
- Zhejiang Provincial Key Lab for Subtropical Water
Environment and Marine Biological Resources Protection, Wenzhou 325035,
China
| |
Collapse
|
32
|
Carotid chemoreceptor denervation does not impair hypoxia-induced thermal downregulation but vitiates recovery from a hypothermic and hypometabolic state in mice. Sci Rep 2019; 9:5132. [PMID: 30914789 PMCID: PMC6435667 DOI: 10.1038/s41598-019-41546-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/05/2019] [Indexed: 01/03/2023] Open
Abstract
Induction of hypothermia and consequent hypometabolism by pharmacological downmodulation of the internal thermostat could be protective in various medical situations such as ischemia/reperfusion. Systemic hypoxia is a trigger of thermostat downregulation in some mammals, which is sensed though carotid chemoreceptors (carotid bodies, CBs). Using non-invasive thermographic imaging in mice, we demonstrated that surgical bilateral CB denervation does not hamper hypoxia-induced hypothermia. However, the recovery from a protective and reversible hypothermic state after restoration to normoxic conditions was impaired in CB-resected mice versus control animals. Therefore, the carotid chemoreceptors play an important role in the central regulation of hypoxia-driven hypothermia in mice, but only in the rewarming phase.
Collapse
|
33
|
Mao LY, Xu JY, Shi L, Zheng WH, Liu JS. Food restriction decreases thermoregulation in the silky starling Sturnus sericeus (Aves: Passeriformes). THE EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1665114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- L.-Y. Mao
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - J.-Y. Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - L. Shi
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - W.-H. Zheng
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - J.-S. Liu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
34
|
Bokiniec P, Zampieri N, Lewin GR, Poulet JF. The neural circuits of thermal perception. Curr Opin Neurobiol 2018; 52:98-106. [PMID: 29734030 PMCID: PMC6191924 DOI: 10.1016/j.conb.2018.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/13/2018] [Accepted: 04/07/2018] [Indexed: 01/01/2023]
Abstract
Thermal information about skin surface temperature is a key sense for the perception of object identity and valence. The identification of ion channels involved in the transduction of thermal changes has provided a genetic access point to the thermal system. However, from sensory specific 'labeled-lines' to multimodal interactive pathways, the functional organization and identity of the neural circuits mediating innocuous thermal perception have been debated for over 100 years. Here we highlight points in the system that require further attention and review recent advances using in vivo electrophysiology, cellular resolution calcium imaging, optogenetics and thermal perceptual tasks in behaving mice that have begun to uncover the anatomical principles and neural processing mechanisms underlying innocuous thermal perception.
Collapse
Affiliation(s)
- Phillip Bokiniec
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany; Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin, Berlin, Germany
| | - Niccolò Zampieri
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany; Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin, Berlin, Germany
| | - Gary R Lewin
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany; Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin, Berlin, Germany
| | - James Fa Poulet
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Germany; Neuroscience Research Center and Cluster of Excellence NeuroCure, Charité-Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
35
|
Grant AD, Wilsterman K, Smarr BL, Kriegsfeld LJ. Evidence for a Coupled Oscillator Model of Endocrine Ultradian Rhythms. J Biol Rhythms 2018; 33:475-496. [PMID: 30132387 DOI: 10.1177/0748730418791423] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Whereas long-period temporal structures in endocrine dynamics have been well studied, endocrine rhythms on the scale of hours are relatively unexplored. The study of these ultradian rhythms (URs) has remained nascent, in part, because a theoretical framework unifying ultradian patterns across systems has not been established. The present overview proposes a conceptual coupled oscillator network model of URs in which oscillating hormonal outputs, or nodes, are connected by edges representing the strength of node-node coupling. We propose that variable-strength coupling exists both within and across classic hormonal axes. Because coupled oscillators synchronize, such a model implies that changes across hormonal systems could be inferred by surveying accessible nodes in the network. This implication would at once simplify the study of URs and open new avenues of exploration into conditions affecting coupling. In support of this proposed framework, we review mammalian evidence for (1) URs of the gut-brain axis and the hypothalamo-pituitary-thyroid, -adrenal, and -gonadal axes, (2) UR coupling within and across these axes; and (3) the relation of these URs to body temperature. URs across these systems exhibit behavior broadly consistent with a coupled oscillator network, maintaining both consistent URs and coupling within and across axes. This model may aid the exploration of mammalian physiology at high temporal resolution and improve the understanding of endocrine system dynamics within individuals.
Collapse
Affiliation(s)
- Azure D Grant
- The Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Kathryn Wilsterman
- Department of Integrative Biology, University of California, Berkeley, California
| | - Benjamin L Smarr
- Department of Psychology, University of California, Berkeley, California
| | - Lance J Kriegsfeld
- The Helen Wills Neuroscience Institute, University of California, Berkeley, California.,Department of Psychology, University of California, Berkeley, California
| |
Collapse
|
36
|
Fisher TA, Petrov SA, Dotsenko EL, Suhovei YG. [Dynamics of the emotional state and physiological parameters of the organism during long-term aqua-thermal impact]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2018; 95:57-62. [PMID: 29985382 DOI: 10.17116/kurort201895357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The data presented in this article illustrate the dynamics of the affective sphere of the mental processes associated with the higher nervous activity and the characteristics of the neuroendocrine system (including the vegetative index of Kerdo, cortisol and serotonin levels) in the participants of the marathon swimming competition covering the distance of 101.4 km. We investigated the relationship between the levels of the above hormones and the functional activity of the vegetative nervous system. AIM The objectives of the present study were (1) to determine the dynamics of the changes in the psychophysiological characteristics of the participants in the marathon swimming competition during which the world record for the covering of the 101,4 km distance in the ice water was set and (2) to follow up the development of the stress response at different levels of the life support system. MATERIAL AND METHODS A total of 22 participants in the competition were available for the examination designed to evaluate their psychological status and hemodynamic parameters as well as to determine the cortisol and serotonin levels in the blood sera of these subjects. RESULTS The data obtained in this study give evidence that before the start and during the marathon distance swimming, only positive emotions prevailed among the participants whereas the setting of the world record was followed by the progressive development of the state of indifference. The dynamics of the Kerdo vegetative index suggests the balance between the functioning of the sympathetic and parasympathetic parts of the autonomous nervous system at the start of the competition and the prevalence of sympathetic activity in the autonomic nervous system at its finish. The dynamics of the level of cortisol in the serum indicates the presence of a stress. CONCLUSIONS Despite the lack of the proper sports training, the participants in the marathon distance swimming competition proved capable of overcoming a variety of physical and psychological workloads which made it possible to set the world record. On the one hand, this confirms that the experience with winter swimming gained during a few years is sufficient to enable the swimmers to participate in such events. On the other hand, the results of the study give the idea of the 'price' to be paid by the physiological and psychological components of the life support system of the participants in the marathon distance swimming competitions seeking to set a world record.
Collapse
Affiliation(s)
- T A Fisher
- Tyumen Federal Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Tyumen, Russia
| | - S A Petrov
- Tyumen Federal Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Tyumen, Russia
| | | | - Yu G Suhovei
- Tyumen Branch of the Institute of Clinical Immunology, Tyumen, Russia
| |
Collapse
|
37
|
de Git KCG, van Tuijl DC, Luijendijk MCM, Wolterink‐Donselaar IG, Ghanem A, Conzelmann K, Adan RAH. Anatomical projections of the dorsomedial hypothalamus to the periaqueductal grey and their role in thermoregulation: a cautionary note. Physiol Rep 2018; 6:e13807. [PMID: 30047252 PMCID: PMC6060107 DOI: 10.14814/phy2.13807] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/03/2018] [Accepted: 07/01/2018] [Indexed: 02/03/2023] Open
Abstract
The DMH is known to regulate brown adipose tissue (BAT) thermogenesis via projections to sympathetic premotor neurons in the raphe pallidus, but there is evidence that the periaqueductal gray (PAG) is also an important relay in the descending pathways regulating thermogenesis. The anatomical projections from the DMH to the PAG subdivisions and their function are largely elusive, and may differ per anterior-posterior level from bregma. We here aimed to investigate the anatomical projections from the DMH to the PAG along the entire anterior-posterior axis of the PAG, and to study the role of these projections in thermogenesis in Wistar rats. Anterograde channel rhodopsin viral tracing showed that the DMH projects especially to the dorsal and lateral PAG. Retrograde rabies viral tracing confirmed this, but also indicated that the PAG receives a diffuse input from the DMH and adjacent hypothalamic subregions. We aimed to study the role of the identified DMH to PAG projections in thermogenesis in conscious rats by specifically activating them using a combination of canine adenovirus-2 (CAV2Cre) and Cre-dependent designer receptor exclusively activated by designer drugs (DREADD) technology. Chemogenetic activation of DMH to PAG projections increased BAT temperature and core body temperature, but we cannot exclude the possibility that at least some thermogenic effects were mediated by adjacent hypothalamic subregions due to difficulties in specifically targeting the DMH and distinct subdivisions of the PAG because of diffuse virus expression. To conclude, our study shows the complexity of the anatomical and functional connection between the hypothalamus and the PAG, and some technical challenges in studying their connection.
Collapse
Affiliation(s)
- Kathy C. G. de Git
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Diana C. van Tuijl
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Mieneke C. M. Luijendijk
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Inge G. Wolterink‐Donselaar
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Alexander Ghanem
- VirologyFaculty of MedicineMax von Pettenkofer Institute & Gene CenterLMU MünchenMunichGermany
| | - Karl‐Klaus Conzelmann
- VirologyFaculty of MedicineMax von Pettenkofer Institute & Gene CenterLMU MünchenMunichGermany
| | - Roger A. H. Adan
- Brain Center Rudolf MagnusDepartment of Translational NeuroscienceUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
38
|
Ladyman SR, Khant Aung Z, Grattan DR. Impact of Pregnancy and Lactation on the Long-Term Regulation of Energy Balance in Female Mice. Endocrinology 2018; 159:2324-2336. [PMID: 29659786 DOI: 10.1210/en.2018-00057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/05/2018] [Indexed: 01/03/2023]
Abstract
During pregnancy and lactation, the maternal body undergoes many changes in the regulation of appetite, body weight, and glucose homeostasis to deal with the metabolic demands of the growing fetus and subsequent demands of providing milk for offspring. The aim of the current study was to investigate the consequences of one reproductive cycle of pregnancy and lactation on the long-term regulation of energy homeostasis. After weaning of pups, reproductively experienced (RE) mice maintained a higher body weight compared with age-matched control mice. Although there was no difference in daily food intake or the feeding response to exogenous leptin administration, RE mice were less active than age-matched control mice as measured by average daily x + y beam breaks or average daily ambulatory distance. RE and age-matched controls were also subjected to either a high-fat diet or control diet for 6 weeks to determine if experiencing a major challenge to energy homeostasis such as pregnancy and lactation leads to increased susceptibility to a second challenge to this system. Although both RE and control mice gained a similar amount of body weight on the high-fat diet, only the RE mice had impaired glucose tolerance when consuming the high-fat diet, thus demonstrating an increased susceptibility to the negative consequences of a high-fat diet after pregnancy and lactation. Overall, these data indicate that pregnancy and lactation have long-term consequences on energy homeostasis in mothers.
Collapse
Affiliation(s)
- Sharon Rachel Ladyman
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David Ross Grattan
- Centre for Neuroendocrinology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
39
|
Willemze RA, Welting O, van Hamersveld HP, Meijer SL, Folgering JHA, Darwinkel H, Witherington J, Sridhar A, Vervoordeldonk MJ, Seppen J, de Jonge WJ. Neuronal control of experimental colitis occurs via sympathetic intestinal innervation. Neurogastroenterol Motil 2018; 30. [PMID: 28745812 DOI: 10.1111/nmo.13163] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Vagus nerve stimulation is currently clinically evaluated as a treatment for inflammatory bowel disease. However, the mechanism by which this therapeutic intervention can have an immune-regulatory effect in colitis remains unclear. We determined the effect of intestine-specific vagotomy or intestine-specific sympathectomy of the superior mesenteric nerve (SMN) on dextran sodium sulfate (DSS)-induced colitis in mice. Furthermore, we tested the efficacy of therapeutic SMN stimulation to treat DSS-induced colitis in rats. METHODS Vagal and SMN fibers were surgically dissected to achieve intestine-specific vagotomy and sympathectomy. Chronic SMN stimulation was achieved by implantation of a cuff electrode. Stimulation was done twice daily for 5 minutes using a biphasic pulse (10 Hz, 200 μA, 2 ms). Disease activity index (DAI) was used as a clinical parameter for colitis severity. Colonic cytokine expression was measured by quantitative PCR and ELISA. KEY RESULTS Intestine-specific vagotomy had no effect on DSS-induced colitis in mice. However, SMN sympathectomy caused a significantly higher DAI compared to sham-operated mice. Conversely, SMN stimulation led to a significantly improved DAI compared to sham stimulation, although no other parameters of colitis were affected significantly. CONCLUSIONS & INFERENCES Our results indicate that sympathetic innervation regulates the intestinal immune system as SMN denervation augments, and SMN stimulation ameliorates DSS-induced colitis. Surprisingly, intestine-specific vagal nerve denervation had no effect in DSS-induced colitis.
Collapse
Affiliation(s)
- R A Willemze
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - O Welting
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - H P van Hamersveld
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - S L Meijer
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | | | - H Darwinkel
- Brains On-Line B.V., Groningen, The Netherlands
| | | | - A Sridhar
- Galvani Bioelectronics, Stevenage, UK
| | | | - J Seppen
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - W J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Exogenous hydrogen sulfide gas does not induce hypothermia in normoxic mice. Sci Rep 2018; 8:3855. [PMID: 29497053 PMCID: PMC5832815 DOI: 10.1038/s41598-018-21729-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S, 80 ppm) gas in an atmosphere of 17.5% oxygen reportedly induces suspended animation in mice; a state analogous to hibernation that entails hypothermia and hypometabolism. However, exogenous H2S in combination with 17.5% oxygen is able to induce hypoxia, which in itself is a trigger of hypometabolism/hypothermia. Using non-invasive thermographic imaging, we demonstrated that mice exposed to hypoxia (5% oxygen) reduce their body temperature to ambient temperature. In contrast, animals exposed to 80 ppm H2S under normoxic conditions did not exhibit a reduction in body temperature compared to normoxic controls. In conclusion, mice induce hypothermia in response to hypoxia but not H2S gas, which contradicts the reported findings and putative contentions.
Collapse
|
41
|
|
42
|
Viano M, Alotto D, Aillon A, Castagnoli C, Silvagno F. A thermal gradient modulates the oxidative metabolism and growth of human keratinocytes. FEBS Open Bio 2017; 7:1843-1853. [PMID: 29226072 PMCID: PMC5715247 DOI: 10.1002/2211-5463.12303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 11/09/2022] Open
Abstract
During their spatial and differentiative progression, keratinocytes face a thermal gradient, from 37 °C in the proliferating basal layer to 32 °C found in skin surface. In our study, we hypothesized that this difference in temperature must be balanced by increasing the heat produced during respiratory activity. We demonstrated that at 33 °C human primary keratinocytes and HaCaT cells raised mitochondrial energy metabolism, but not glycolytic activity. At 33 °C, the increased mitochondrial ATP synthesis was associated with a strong induction of the modulator of the respiratory chain estrogen receptor β, whereas uncoupling protein 1 expression was not changed. The enhanced mitochondrial oxidative metabolism was accompanied by a remarkable reduction in proliferation. These results suggest that environmental temperature can modulate the energy metabolism and proliferation of human keratinocytes.
Collapse
Affiliation(s)
- Marta Viano
- Dipartimento di Oncologia University of Torino Italy
| | - Daniela Alotto
- Dipartimento di Chirurgia Generale e Specialistiche Banca della Cute University of Torino Italy
| | | | - Carlotta Castagnoli
- Dipartimento di Chirurgia Generale e Specialistiche Banca della Cute University of Torino Italy
| | | |
Collapse
|
43
|
Sun JJ, Huang TW, Neul JL, Ray RS. Embryonic hindbrain patterning genes delineate distinct cardio-respiratory and metabolic homeostatic populations in the adult. Sci Rep 2017; 7:9117. [PMID: 28831138 PMCID: PMC5567350 DOI: 10.1038/s41598-017-08810-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Previous studies based on mouse genetic mutations suggest that proper partitioning of the hindbrain into transient, genetically-defined segments called rhombomeres is required for normal respiratory development and function in neonates. Less clear is what role these genes and the neurons they define play in adult respiratory circuit organization. Several Cre drivers are used to access and study developmental rhombomeric domains (Eng1Cre, HoxA2-Cre, Egr2Cre, HoxB1Cre, and HoxA4-Cre) in the adult. However, these drivers show cumulative activity beyond the brainstem while being used in intersectional genetic experiments to map central respiratory circuitry. We crossed these drivers to conditional DREADD mouse lines to further characterize the functional contributions of Cre defined populations. In the adult, we show that acute DREADD inhibition of targeted populations results in a variety of not only respiratory phenotypes but also metabolic and temperature changes that likely play a significant role in the observed respiratory alterations. DREADD mediated excitation of targeted domains all resulted in death, with unique differences in the patterns of cardio-respiratory failure. These data add to a growing body of work aimed at understanding the role of early embryonic patterning genes in organizing adult respiratory homeostatic networks that may be perturbed in congenital pathophysiologies.
Collapse
Affiliation(s)
- Jenny J Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Jeffrey L Neul
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
| | - Russell S Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA. .,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA. .,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA. .,McNair Medical Institute, TX-77030, Houston, USA.
| |
Collapse
|
44
|
Handrakis JP, Ni Guan Z, Nulty JW, Tascione O, Rosado-Rivera D, White D, Bang C, Spungen AM, Bauman WA. Effect of Heat Exposure on Cognition in Persons with Tetraplegia. J Neurotrauma 2017; 34:3372-3380. [PMID: 28462685 DOI: 10.1089/neu.2016.4850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Individuals with cervical spinal cord injury (SCI) have impaired thermoregulatory mechanisms attributed to interruption of motor, sensory, and autonomic neuropathways. To determine the effects of heat exposure on core body temperature (Tcore) and cognitive performance in persons with tetraplegia, 8 individuals with chronic tetraplegia (C3-C7, American Spinal Cord Injury Association Impairment Scale A-B) and 9 able-bodied controls were acclimated to 27°C at baseline (BL) before being exposed to 35°C for up to 120 min (Heat Challenge). Rectal temperature (Tcore), distal skin temperatures (Tskavg), sweat rate (QSavg), microvascular skin perfusion (LDFavg), and plasma norepinephrine (NE) were measured. Cognitive performance was assessed using Stroop Color and Word and Wechsler Adult Intelligence Scale-Fourth Edition Digit Span tests at BL and at the end of Heat Challenge. After Heat Challenge, Tcore increased 0.78 ± 0.18°C (p < 0.001) in tetraplegics after an average of 118 ± 5 min. Tcore did not change in controls after 120 min. The increase in QSavg was larger in controls than in tetraplegics (946 ± 672% vs. 51 ± 12%; p = 0.007, respectively). LDFavg increased only in controls (109 ± 93%; p = 0.008). Tskavg appeared to increase less in tetraplegics than in controls. Plasma NE levels remained lower in tetraplegics compared to controls after Heat Challenge (86 ± 64 vs. 297 ± 84 pg/mL, respectively; p < 0.001). Stroop Color, Interference, and WAIS-IV Sequence scores increased only in tetraplegics (19.4 ± 17.2%; p < 0.05, 8.3 ± 5.9%; p < 0.05, 29.1 ± 27.4%; p < 0.05, respectively). Dysfunctional thermoregulatory mechanisms in the tetraplegic group allowed Tcore to rise from subnormal levels to normothermia during heat exposure. Normothermia was associated with improvements in attention, working memory, and executive function.
Collapse
Affiliation(s)
- John P Handrakis
- 1 VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center , Bronx, New York.,5 New York Institute of Technology , Department of Physical Therapy, School of Health Professions, Old Westbury, New York
| | - Zhen Ni Guan
- 1 VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center , Bronx, New York.,5 New York Institute of Technology , Department of Physical Therapy, School of Health Professions, Old Westbury, New York
| | - John W Nulty
- 1 VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center , Bronx, New York.,5 New York Institute of Technology , Department of Physical Therapy, School of Health Professions, Old Westbury, New York
| | - Oriana Tascione
- 1 VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center , Bronx, New York
| | - Dwindally Rosado-Rivera
- 1 VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center , Bronx, New York
| | - Daniel White
- 1 VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center , Bronx, New York
| | - Charlene Bang
- 2 Medical Service, James J. Peters VA Medical Center , Bronx, New York.,3 Department of Medicine, The Icahn School of Medicine at Mount Sinai , New York, New York
| | - Ann M Spungen
- 1 VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center , Bronx, New York.,2 Medical Service, James J. Peters VA Medical Center , Bronx, New York.,3 Department of Medicine, The Icahn School of Medicine at Mount Sinai , New York, New York.,4 Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai , New York, New York
| | - William A Bauman
- 1 VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center , Bronx, New York.,2 Medical Service, James J. Peters VA Medical Center , Bronx, New York.,3 Department of Medicine, The Icahn School of Medicine at Mount Sinai , New York, New York.,4 Department of Rehabilitation Medicine, The Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
45
|
Heal DJ, Hallam M, Prow M, Gosden J, Cheetham S, Choi YK, Tarazi F, Hutson P. Dopamine and μ-opioid receptor dysregulation in the brains of binge-eating female rats - possible relevance in the psychopathology and treatment of binge-eating disorder. J Psychopharmacol 2017; 31:770-783. [PMID: 28376679 DOI: 10.1177/0269881117699607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Adult, female rats given irregular, limited access to chocolate develop binge-eating behaviour with normal bodyweight and compulsive/perseverative and impulsive behaviours similar to those in binge-eating disorder. We investigated whether (a) dysregulated central nervous system dopaminergic and opioidergic systems are part of the psychopathology of binge-eating and (b) these neurotransmitter systems may mediate the actions of drugs ameliorating binge-eating disorder psychopathology. Binge-eating produced a 39% reduction of striatal D1 receptors with 22% and 23% reductions in medial and lateral caudate putamen and a 22% increase of striatal μ-opioid receptors. There was no change in D1 receptor density in nucleus accumbens, medial prefrontal cortex or dorsolateral frontal cortex, striatal D2 receptors and dopamine reuptake transporter sites, or μ-opioid receptors in frontal cortex. There were no changes in ligand affinities. The concentrations of monoamines, metabolites and estimates of dopamine (dopamine/dihydroxyphenylacetic acid ratio) and serotonin/5-hydroxyindolacetic acid ratio turnover rates were unchanged in striatum and frontal cortex. However, turnover of dopamine and serotonin in the hypothalamus was increased ~20% and ~15%, respectively. Striatal transmission via D1 receptors is decreased in binge-eating rats while μ-opioid receptor signalling may be increased. These changes are consistent with the attenuation of binge-eating by lisdexamfetamine, which increases catecholaminergic neurotransmission, and nalmefene, a μ-opioid antagonist.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong K Choi
- 2 Department of Psychiatry and Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Frank Tarazi
- 2 Department of Psychiatry and Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Peter Hutson
- 3 Shire Development Inc., Lexington, MA, USA.,4 Neurobiology, Teva Pharmaceuticals, West Chester, PA, USA
| |
Collapse
|
46
|
Forearm to fingertip skin temperature gradients in the thermoneutral zone were significantly related to resting metabolic rate: potential implications for nutrition research. Eur J Clin Nutr 2017; 71:1074-1079. [PMID: 28378846 DOI: 10.1038/ejcn.2017.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Resting metabolic rate (RMR) should be measured in the thermoneutral zone (TNZ). Forearm to fingertip skin temperature gradients (FFG) could serve as an objective measure of this pre-condition. SUBJECTS/METHODS Eighty-six adult Australians were studied at 25 °C in a temperature-controlled chamber. Measurements of overnight fasted RMR, respiratory quotient (RQ) and FFG were complemented by clinical biochemistry. McAuley's Index of insulin sensitivity (McA_ISI) and presence of metabolic syndrome was determined. Physical activity was estimated from the short version of the International Physical Activity Questionnaire. Fat mass (FM) and fat-free mass (FFM) were obtained from dual-energy x-ray absorptiometry. Twenty-nine participants were assessed for changes in RMR (ΔRMR), RQ (ΔRQ) and FFG (ΔFFG) following a 6-month free-living period. Multiple linear regression analyses of RMR and RQ on FFG, and of ΔRMR and ΔRQ on ΔFFG were conducted after controlling for 12 known determinants of energy metabolism. RESULTS There were wide between-subject variations in unadjusted FFG ranging from -4.25 to +7.8 °C. The final parsimonious model for cross-sectional observations of RMR included age, FM, FFM, McA_ISI and FFG (β=63 kJ/d (95% confidence interval (CI): 14.2, 112.1, P=0.012)). However, FFG was unrelated to RQ.In the longitudinal cohort, adjusted ΔRMR significantly associated only with ΔFFG (β=100 kJ/d (95% CI: 10.3, 189.1; P=0.030)), and adjusted ΔRQ associated with ΔFFG (-0.003 (95% CI: -0.005, 0.0002, P=0.038)), age and McA_ISI. CONCLUSIONS Sizeable between-subject variations in FFG at 25 °C were associated with RMR and RQ. Monitoring FFG may serve as an objective assessment of the TNZ during RMR measurements.
Collapse
|
47
|
Moraes MN, Mezzalira N, de Assis LVM, Menaker M, Guler A, Castrucci AML. TRPV1 participates in the activation of clock molecular machinery in the brown adipose tissue in response to light-dark cycle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:324-335. [DOI: 10.1016/j.bbamcr.2016.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/07/2016] [Accepted: 11/12/2016] [Indexed: 02/02/2023]
|
48
|
Fournel A, Drougard A, Duparc T, Marlin A, Brierley SM, Castro J, Le-Gonidec S, Masri B, Colom A, Lucas A, Rousset P, Cenac N, Vergnolle N, Valet P, Cani PD, Knauf C. Apelin targets gut contraction to control glucose metabolism via the brain. Gut 2017; 66:258-269. [PMID: 26565000 PMCID: PMC5284480 DOI: 10.1136/gutjnl-2015-310230] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/02/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The gut-brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. DESIGN We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. RESULTS In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. CONCLUSIONS Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders.
Collapse
Affiliation(s)
- Audren Fournel
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Anne Drougard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Thibaut Duparc
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Catholique de Louvain (UCL), Louvain Drug Research Institute, LDRI, Metabolism and Nutrition research group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Brussels, Belgium
| | - Alysson Marlin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Stuart M Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia,Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, South Australia, Australia,Discipline of Physiology, Faculty of Health Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Sophie Le-Gonidec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Bernard Masri
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), CHU Rangueil, Toulouse, Cedex 4, France
| | - André Colom
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Alexandre Lucas
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Perrine Rousset
- Université Paul Sabatier, Toulouse, France,Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), CHU Purpan, Toulouse, Cedex 03, France
| | - Nicolas Cenac
- Université Paul Sabatier, Toulouse, France,Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), CHU Purpan, Toulouse, Cedex 03, France
| | - Nathalie Vergnolle
- Université Paul Sabatier, Toulouse, France,Institut National de la Santé et de la Recherche Médicale (INSERM), U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), CHU Purpan, Toulouse, Cedex 03, France
| | - Philippe Valet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| | - Patrice D Cani
- NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Catholique de Louvain (UCL), Louvain Drug Research Institute, LDRI, Metabolism and Nutrition research group, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Brussels, Belgium
| | - Claude Knauf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse Cedex 4, France,NeuroMicrobiota, European Associated Laboratory (EAL) INSERM/UCL,Université Paul Sabatier, Toulouse, France
| |
Collapse
|
49
|
Hu SN, Zhu YY, Lin L, Zheng WH, Liu JS. Temperature and photoperiod as environmental cues affect body mass and thermoregulation in Chinese bulbuls, Pycnonotus sinensis. ACTA ACUST UNITED AC 2017; 220:844-855. [PMID: 28082615 DOI: 10.1242/jeb.143842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/13/2016] [Indexed: 11/20/2022]
Abstract
Seasonal changes in temperature and photoperiod are important environmental cues used by small birds to adjust their body mass (Mb) and thermogenesis. However, the relative importance of these cues with respect to seasonal adjustments in Mb and thermogenesis is difficult to distinguish. In particular, the effects of temperature and photoperiod on energy metabolism and thermoregulation are not well known in many passerines. To address this problem, we measured the effects of temperature and photoperiod on Mb, energy intake, resting metabolic rate (RMR), organ mass and physiological and biochemical markers of metabolic activity in the Chinese bulbul (Pycnonotus sinensis). Groups of Chinese bulbuls were acclimated in a laboratory to the following conditions: (1) warm and long photoperiod, (2) warm and short photoperiod, (3) cold and long photoperiod, and (4) cold and short photoperiod, for 4 weeks. The results indicate that Chinese bulbuls exhibit adaptive physiological regulation when exposed to different temperatures and photoperiods. Mb, RMR, gross energy intake and digestible energy intake were higher in cold-acclimated than in warm-acclimated bulbuls, and in the short photoperiod than in the long photoperiod. The resultant flexibility in energy intake and RMR allows Chinese bulbuls exposed to different temperatures and photoperiods to adjust their energy balance and thermogenesis accordingly. Cold-acclimated birds had heightened state-4 respiration and cytochrome c oxidase activity in their liver and muscle tissue compared with warm-acclimated birds indicating the cellular mechanisms underlying their adaptive thermogenesis. Temperature appears to be a primary cue for adjusting energy budget and thermogenic ability in Chinese bulbuls; photoperiod appears to intensify temperature-induced changes in energy metabolism and thermoregulation.
Collapse
Affiliation(s)
- Shi-Nan Hu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Ying-Yang Zhu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Lin Lin
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Wei-Hong Zheng
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China.,Department of Biology, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou 325035, China
| | - Jin-Song Liu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China .,Department of Biology, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou 325035, China
| |
Collapse
|
50
|
FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun 2016; 7:12733. [PMID: 27681312 PMCID: PMC5056402 DOI: 10.1038/ncomms12733] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/28/2016] [Indexed: 01/05/2023] Open
Abstract
Dopaminergic (DA) neurons are involved in the integration of neuronal and hormonal signals to regulate food consumption and energy balance. Forkhead transcriptional factor O1 (FoxO1) in the hypothalamus plays a crucial role in mediation of leptin and insulin function. However, the homoeostatic role of FoxO1 in DA system has not been investigated. Here we report that FoxO1 is highly expressed in DA neurons and mice lacking FoxO1 specifically in the DA neurons (FoxO1 KODAT) show markedly increased energy expenditure and interscapular brown adipose tissue (iBAT) thermogenesis accompanied by reduced fat mass and improved glucose/insulin homoeostasis. Moreover, FoxO1 KODAT mice exhibit an increased sucrose preference in concomitance with higher dopamine and norepinephrine levels. Finally, we found that FoxO1 directly targets and negatively regulates tyrosine hydroxylase (TH) expression, the rate-limiting enzyme of the catecholamine synthesis, delineating a mechanism for the KO phenotypes. Collectively, these results suggest that FoxO1 in DA neurons is an important transcriptional factor that directs the coordinated control of energy balance, thermogenesis and glucose homoeostasis. Dopaminergic neurons are important for regulating energy homeostasis. Here, the authors show the transcription factor FoxO1 negatively regulates tyrosine hydroxylase expression in midbrain dopaminergic neurons, and plays an important role in regulation of glucose homeostasis, energy expenditure, and resistance to diet-induced obesity.
Collapse
|