1
|
Li SS, Liu QJ, Bao JX, Lu MT, Deng BQ, Li WW, Cao CC. Counteracting TGM2 by a Fibroin peptide ameliorated Adriamycin-induced nephropathy via regulation of lipid metabolism through PANX1-PPAR α/PANK1 pathway. Transl Res 2024; 271:26-39. [PMID: 38734063 DOI: 10.1016/j.trsl.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Peptide drug discovery for the treatment of chronic kidney disease (CKD) has attracted much attention in recent years due to the urge to find novel drugs and mechanisms to delay the progression of the disease. In this study, we identified a novel short peptide (named YR-7, primary sequence 'YEVEDYR') from the natural Fibroin protein, and demonstrated that it significantly alleviated pathological renal changes in ADR-induced nephropathy. PANX1 was identified as the most notably upregulated component by RNA-sequencing. Further analysis showed that YR-7 alleviated the accumulation of lipid droplets via regulation of the lipid metabolism-related proteins PPAR α and PANK1. Using chemical proteomics, fluorescence polarization, microscale thermophoresis, surface plasmon resonance, and molecular docking, YR-7 was proven to directly bind to β-barrel domains of TGM2 protein to inhibit lipid accumulation. TGM2 knockdown in vivo increased the protein levels of PPAR α and PANK1 while decreased the levels of fibrotic-related proteins to alleviate nephropathy. In vitro, overexpression TGM2 reversed the protective effects of YR-7. Co-immunoprecipitation indicated that TGM2 interacted with PANX1 to promote lipid deposition, and pharmacological inhibition or knockdown of PANX1 decreased the levels of PPAR α and PANK1 induced by ADR. Taken together, our findings revealed that TGM2-PANX1 interaction in promoting lipid deposition may be a new signaling in promoting ADR-induced nephropathy. And a novel natural peptide could ameliorate renal fibrosis through TGM2-PANX1-PPAR α/PANK1 pathway, which highlight the potential of it in the treatment of CKD.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Qiao-Juan Liu
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Jia-Xin Bao
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Meng-Ting Lu
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Bing-Quan Deng
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Wen Li
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Chang-Chun Cao
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Wise TJ, Ott ME, Joseph MS, Welsby IJ, Darrow CC, McMahon TJ. Modulation of the allosteric and vasoregulatory arms of erythrocytic oxygen transport. Front Physiol 2024; 15:1394650. [PMID: 38915775 PMCID: PMC11194670 DOI: 10.3389/fphys.2024.1394650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 06/26/2024] Open
Abstract
Efficient distribution of oxygen (O2) to the tissues in mammals depends on the evolved ability of red blood cell (RBC) hemoglobin (Hb) to sense not only O2 levels, but metabolic cues such as pH, PCO2, and organic phosphates, and then dispense or take up oxygen accordingly. O2 delivery is the product of not only oxygen release from RBCs, but also blood flow, which itself is also governed by vasoactive molecular mediators exported by RBCs. These vascular signals, including ATP and S-nitrosothiols (SNOs) are produced and exported as a function of the oxygen and metabolic milieu, and then fine-tune peripheral metabolism through context-sensitive vasoregulation. Emerging and repurposed RBC-oriented therapeutics can modulate either or both of these allosteric and vasoregulatory activities, with a single molecule or other intervention influencing both arms of O2 transport in some cases. For example, organic phosphate repletion of stored RBCs boosts the negative allosteric effector 2,3 biphosphoglycerate (BPG) as well as the anti-adhesive molecule ATP. In sickle cell disease, aromatic aldehydes such as voxelotor can disfavor sickling by increasing O2 affinity, and in newer generations, these molecules have been coupled to vasoactive nitric oxide (NO)-releasing adducts. Activation of RBC pyruvate kinase also promotes a left shift in oxygen binding by consuming and lowering BPG, while increasing the ATP available for cell health and export on demand. Further translational and clinical investigation of these novel allosteric and/or vasoregulatory approaches to modulating O2 transport are expected to yield new insights and improve the ability to correct or compensate for anemia and other O2 delivery deficits.
Collapse
Affiliation(s)
- Thomas J. Wise
- Duke University School of Medicine, Durham, NC, United States
| | - Maura E. Ott
- Duke University School of Medicine, Durham, NC, United States
| | - Mahalah S. Joseph
- Duke University School of Medicine, Durham, NC, United States
- Florida International University School of Medicine, Miami, FL, United States
| | - Ian J. Welsby
- Duke University School of Medicine, Durham, NC, United States
| | - Cole C. Darrow
- Duke University School of Medicine, Durham, NC, United States
| | - Tim J. McMahon
- Duke University School of Medicine, Durham, NC, United States
- Durham VA Health Care System, Durham, NC, United States
| |
Collapse
|
3
|
Golenkina EA, Viryasova GM, Galkina SI, Iakushkina IV, Gaponova TV, Romanova YM, Sud’ina GF. ATP and Formyl Peptides Facilitate Chemoattractant Leukotriene-B4 Synthesis and Drive Calcium Fluxes, Which May Contribute to Neutrophil Swarming at Sites of Cell Damage and Pathogens Invasion. Biomedicines 2024; 12:1184. [PMID: 38927391 PMCID: PMC11201259 DOI: 10.3390/biomedicines12061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Here, we demonstrate that human neutrophil interaction with the bacterium Salmonella typhimurium fuels leukotriene B4 synthesis induced by the chemoattractant fMLP. In this work, we found that extracellular ATP (eATP), the amount of which increases sharply during tissue damage, can effectively regulate fMLP-induced leukotriene B4 synthesis. The vector of influence strongly depends on the particular stage of sequential stimulation of neutrophils by bacteria and on the stage at which fMLP purinergic signaling occurs. Activation of 5-lipoxygenase (5-LOX), key enzyme of leukotriene biosynthesis, depends on an increase in the cytosolic concentration of Ca2+. We demonstrate that eATP treatment prior to fMLP, by markedly reducing the amplitude of the fMLP-induced Ca2+ transient jump, inhibits leukotriene synthesis. At the same time, when added with or shortly after fMLP, eATP effectively potentiates arachidonic acid metabolism, including by Ca2+ fluxes stimulation. Flufenamic acid, glibenclamide, and calmodulin antagonist R24571, all of which block calcium signaling in different ways, all suppressed 5-LOX product synthesis in our experimental model, indicating the dominance of calcium-mediated mechanisms in eATP regulatory potential. Investigation into the adhesive properties of neutrophils revealed the formation of cell clusters when adding fMLP to neutrophils exposed to the bacterium Salmonella typhimurium. eATP added simultaneously with fMLP supported neutrophil polarization and clustering. A cell-derived chemoattractant such as leukotriene B4 plays a crucial role in the recruitment of additional neutrophils to the foci of tissue damage or pathogen invasion, and eATP, through the dynamics of changes in [Ca2+]i, plays an important decisive role in fMLP-induced leukotrienes synthesis during neutrophil interactions with the bacterium Salmonella typhimurium.
Collapse
Affiliation(s)
- Ekaterina A. Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Galina M. Viryasova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Svetlana I. Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Iuliia V. Iakushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, 125167 Moscow, Russia;
| | - Yulia M. Romanova
- Department of Genetics and Molecular Biology, Gamaleya National Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Galina F. Sud’ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.A.G.); (G.M.V.); (S.I.G.); (I.V.I.)
| |
Collapse
|
4
|
Rangel-Sandoval C, Soula M, Li WP, Castillo PE, Hunt DL. NMDAR-mediated activation of pannexin1 channels contributes to the detonator properties of hippocampal mossy fiber synapses. iScience 2024; 27:109681. [PMID: 38680664 PMCID: PMC11046245 DOI: 10.1016/j.isci.2024.109681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Pannexins are large-pore ion channels expressed throughout the mammalian brain that participate in various neuropathologies; however, their physiological roles remain obscure. Here, we report that pannexin1 channels (Panx1) can be synaptically activated under physiological recording conditions in rodent acute hippocampal slices. Specifically, NMDA receptor (NMDAR)-mediated responses at the mossy fiber to CA3 pyramidal cell synapse were followed by a slow postsynaptic inward current that could activate CA3 pyramidal cells but was absent in Panx1 knockout mice. Immunoelectron microscopy revealed that Panx1 was localized near the postsynaptic density. Further, Panx1-mediated currents were potentiated by metabotropic receptors and bidirectionally modulated by burst-timing-dependent plasticity of NMDAR-mediated transmission. Lastly, Panx1 channels were preferentially recruited when NMDAR activation enters a supralinear regime, resulting in temporally delayed burst-firing. Thus, Panx1 can contribute to synaptic amplification and broadening the temporal associativity window for co-activated pyramidal cells, thereby supporting the auto-associative functions of the CA3 region.
Collapse
Affiliation(s)
- Cinthia Rangel-Sandoval
- Department of Neurosurgery, Department of Neurology, Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marisol Soula
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences. Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei-Ping Li
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Pablo E. Castillo
- Dominick P. Purpura Department of Neuroscience, Department of Psychiatry and Behavioral Sciences. Albert Einstein College of Medicine, Bronx, NY, USA
| | - David L. Hunt
- Department of Neurosurgery, Department of Neurology, Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Luo Y, Zheng S, Xiao W, Zhang H, Li Y. Pannexins in the musculoskeletal system: new targets for development and disease progression. Bone Res 2024; 12:26. [PMID: 38705887 PMCID: PMC11070431 DOI: 10.1038/s41413-024-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
During cell differentiation, growth, and development, cells can respond to extracellular stimuli through communication channels. Pannexin (Panx) family and connexin (Cx) family are two important types of channel-forming proteins. Panx family contains three members (Panx1-3) and is expressed widely in bone, cartilage and muscle. Although there is no sequence homology between Panx family and Cx family, they exhibit similar configurations and functions. Similar to Cxs, the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later. Here, we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis, chondrogenesis, and muscle growth. We also focus on the comparison between Cx and Panx. As a new key target, Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Shengyuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, 410008, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hang Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
6
|
Xing Q, Cibelli A, Yang GL, Dohare P, Li QH, Scemes E, Guan FX, Spray DC. Neuronal Panx1 drives peripheral sensitization in experimental plantar inflammatory pain. Mil Med Res 2024; 11:27. [PMID: 38685116 PMCID: PMC11057180 DOI: 10.1186/s40779-024-00525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The channel-forming protein Pannexin1 (Panx1) has been implicated in both human studies and animal models of chronic pain, but the underlying mechanisms remain incompletely understood. METHODS Wild-type (WT, n = 24), global Panx1 KO (n = 24), neuron-specific Panx1 KO (n = 20), and glia-specific Panx1 KO (n = 20) mice were used in this study at Albert Einstein College of Medicine. The von Frey test was used to quantify pain sensitivity in these mice following complete Freund's adjuvant (CFA) injection (7, 14, and 21 d). The qRT-PCR was employed to measure mRNA levels of Panx1, Panx2, Panx3, Cx43, Calhm1, and β-catenin. Laser scanning confocal microscopy imaging, Sholl analysis, and electrophysiology were utilized to evaluate the impact of Panx1 on neuronal excitability and morphology in Neuro2a and dorsal root ganglion neurons (DRGNs) in which Panx1 expression or function was manipulated. Ethidium bromide (EtBr) dye uptake assay and calcium imaging were employed to investigate the role of Panx1 in adenosine triphosphate (ATP) sensitivity. β-galactosidase (β-gal) staining was applied to determine the relative cellular expression levels of Panx1 in trigeminal ganglia (TG) and DRG of transgenic mice. RESULTS Global or neuron-specific Panx1 deletion markedly decreased pain thresholds after CFA stimuli (7, 14, and 21 d; P < 0.01 vs. WT group), indicating that Panx1 was positively correlated with pain sensitivity. In Neuro2a, global Panx1 deletion dramatically reduced neurite extension and inward currents compared to the WT group (P < 0.05), revealing that Panx1 enhanced neurogenesis and excitability. Similarly, global Panx1 deletion significantly suppressed Wnt/β-catenin dependent DRG neurogenesis following 5 d of nerve growth factor (NGF) treatment (P < 0.01 vs. WT group). Moreover, Panx1 channels enhanced DRG neuron response to ATP after CFA injection (P < 0.01 vs. Panx1 KO group). Furthermore, ATP release increased Ca2+ responses in DRGNs and satellite glial cells surrounding them following 7 d of CFA treatment (P < 0.01 vs. Panx1 KO group), suggesting that Panx1 in glia also impacts exaggerated neuronal excitability. Interestingly, neuron-specific Panx1 deletion was found to markedly reduce differentiation in cultured DRGNs, as evidenced by stunted neurite outgrowth (P < 0.05 vs. Panx1 KO group; P < 0.01 vs. WT group or GFAP-Cre group), blunted activation of Wnt/β-catenin signaling (P < 0.01 vs. WT, Panx1 KO and GFAP-Cre groups), and diminished cell excitability (P < 0.01 vs. GFAP-Cre group) and response to ATP stimulation (P < 0.01 vs. WT group). Analysis of β-gal staining showed that cellular expression levels of Panx1 in neurons are significantly higher (2.5-fold increase) in the DRG than in the TG. CONCLUSIONS The present study revealed that neuronal Panx1 is a prominent driver of peripheral sensitivity in the setting of inflammatory pain through cell-autonomous effects on neuronal excitability. This hyperexcitability dependence on neuronal Panx1 contrasts with inflammatory orofacial pain, where similar studies revealed a prominent role for glial Panx1. The apparent differences in Panx1 expression in neuronal and non-neuronal TG and DRG cells are likely responsible for the distinct impact of these cell types in the two pain models.
Collapse
Affiliation(s)
- Qu Xing
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Antonio Cibelli
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, 70125, Italy
| | - Greta Luyuan Yang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, 06459, USA
| | - Preeti Dohare
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Qing-Hua Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eliana Scemes
- Department of Anatomy and Cell Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Fang-Xia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450001, China.
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
7
|
Lucero CM, Navarro L, Barros-Osorio C, Cáceres-Conejeros P, Orellana JA, Gómez GI. Activation of Pannexin-1 channels causes cell dysfunction and damage in mesangial cells derived from angiotensin II-exposed mice. Front Cell Dev Biol 2024; 12:1387234. [PMID: 38660621 PMCID: PMC11041381 DOI: 10.3389/fcell.2024.1387234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic kidney disease (CKD) is a prevalent health concern associated with various pathological conditions, including hypertensive nephropathy. Mesangial cells are crucial in maintaining glomerular function, yet their involvement in CKD pathogenesis remains poorly understood. Recent evidence indicates that overactivation of Pannexin-1 (Panx1) channels could contribute to the pathogenesis and progression of various diseases. Although Panx1 is expressed in the kidney, its contribution to the dysfunction of renal cells during pathological conditions remains to be elucidated. This study aimed to investigate the impact of Panx1 channels on mesangial cell function in the context of hypertensive nephropathy. Using an Ang II-infused mouse model and primary mesangial cell cultures, we demonstrated that in vivo exposure to Ang II sensitizes cultured mesangial cells to show increased alterations when they are subjected to subsequent in vitro exposure to Ang II. Particularly, mesangial cell cultures treated with Ang II showed elevated activity of Panx1 channels and increased release of ATP. The latter was associated with enhanced basal intracellular Ca2+ ([Ca2+]i) and increased ATP-mediated [Ca2+]i responses. These effects were accompanied by increased lipid peroxidation and reduced cell viability. Crucially, all the adverse impacts evoked by Ang II were prevented by the blockade of Panx1 channels, underscoring their critical role in mediating cellular dysfunction in mesangial cells. By elucidating the mechanisms by which Ang II negatively impacts mesangial cell function, this study provides valuable insights into the pathogenesis of renal damage in hypertensive nephropathy.
Collapse
Affiliation(s)
- Claudia M. Lucero
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Laura Navarro
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Cristián Barros-Osorio
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Patricio Cáceres-Conejeros
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo I. Gómez
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
8
|
McAllister BB, Stokes-Heck S, Harding EK, van den Hoogen NJ, Trang T. Targeting Pannexin-1 Channels: Addressing the 'Gap' in Chronic Pain. CNS Drugs 2024; 38:77-91. [PMID: 38353876 DOI: 10.1007/s40263-024-01061-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/22/2024]
Abstract
Chronic pain complicates many diseases and is notoriously difficult to treat. In search of new therapeutic targets, pannexin-1 (Panx1) channels have sparked intense interest as a key mechanism involved in a variety of chronic pain conditions. Panx1 channels are transmembrane proteins that release ions and small molecules, such as adenosine triphosphate (ATP). They are expressed along important nodes of the pain pathway, modulating activity of diverse cell types implicated in the development and progression of chronic pain caused by injury or pathology. This review highlights advances that have unlocked the core structure and machinery controlling Panx1 function with a focus on understanding and treating chronic pain.
Collapse
Affiliation(s)
- Brendan B McAllister
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Sierra Stokes-Heck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Erika K Harding
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Nynke J van den Hoogen
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Tuan Trang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
9
|
Mezache L, Soltisz AM, Johnstone SR, Isakson BE, Veeraraghavan R. Vascular Endothelial Barrier Protection Prevents Atrial Fibrillation by Preserving Cardiac Nanostructure. JACC Clin Electrophysiol 2023; 9:2444-2458. [PMID: 38032579 PMCID: PMC11134328 DOI: 10.1016/j.jacep.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Atrial fibrillation (AF), the most common cardiac arrhythmia, is widely associated with inflammation, vascular dysfunction, and elevated levels of the vascular leak-inducing cytokine, vascular endothelial growth factor (VEGF). Mechanisms underlying AF are poorly understood and current treatments only manage this progressive disease, rather than arresting the underlying pathology. The authors previously identified edema-induced disruption of sodium channel (NaV1.5)-rich intercalated disk nanodomains as a novel mechanism for AF initiation secondary to acute inflammation. Therefore, we hypothesized that protecting the vascular barrier can prevent vascular leak-induced atrial arrhythmias. OBJECTIVES In this study the authors tested the hypothesis that protecting the vascular barrier can prevent vascular leak-induced atrial arrhythmias. They identified 2 molecular targets for vascular barrier protection, connexin43 (Cx43) hemichannels and pannexin-1 (Panx1) channels, which have been implicated in cytokine-induced vascular leak. METHODS The authors undertook in vivo electrocardiography, electron microscopy, and super-resolution light microscopy studies in mice acutely treated with a clinically relevant level of VEGF. RESULTS AF incidence was increased in untreated mice exposed to VEGF relative to vehicle control subjects. VEGF also increased the average number of AF episodes. VEGF shifted NaV1.5 signal to longer distances from Cx43 gap junctions, measured by a distance transformation-based spatial analysis of 3-dimensional confocal images of intercalated disks. Similar effects were observed with NaV1.5 localized near mechanical junctions composed of neural cadherin. Blocking connexin43 hemichannels (αCT11 peptide) or Panx1 channels (PxIL2P peptide) significantly reduced the duration of AF episodes compared with VEGF alone with no treatment. Concurrently, both peptide therapies preserved NaV1.5 distance from gap junctions to control levels and reduced mechanical junction-adjacent intermembrane distance in these hearts. Notably, similar antiarrhythmic efficacy was also achieved with clinically-relevant small-molecule inhibitors of Cx43 and Panx1. CONCLUSIONS These results highlight vascular barrier protection as an antiarrhythmic strategy following inflammation-induced vascular leak.
Collapse
Affiliation(s)
- Louisa Mezache
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Andrew M Soltisz
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at VTC, Centre for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA; Virginia Tech Carilion School of Medicine, Department of Surgery, Roanoke, Virginia, USA
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, Virginia, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
10
|
Lamouroux A, Tournier M, Iaculli D, Caufriez A, Rusiecka OM, Martin C, Bes V, Carpio LE, Girardin Y, Loris R, Tabernilla A, Molica F, Gozalbes R, Mayán MD, Vinken M, Kwak BR, Ballet S. Structure-Based Design and Synthesis of Stapled 10Panx1 Analogues for Use in Cardiovascular Inflammatory Diseases. J Med Chem 2023; 66:13086-13102. [PMID: 37703077 PMCID: PMC10544015 DOI: 10.1021/acs.jmedchem.3c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 09/14/2023]
Abstract
Following a rational design, a series of macrocyclic ("stapled") peptidomimetics of 10Panx1, the most established peptide inhibitor of Pannexin1 (Panx1) channels, were developed and synthesized. Two macrocyclic analogues SBL-PX1-42 and SBL-PX1-44 outperformed the linear native peptide. During in vitro adenosine triphosphate (ATP) release and Yo-Pro-1 uptake assays in a Panx1-expressing tumor cell line, both compounds were revealed to be promising bidirectional inhibitors of Panx1 channel function, able to induce a two-fold inhibition, as compared to the native 10Panx1 sequence. The introduction of triazole-based cross-links within the peptide backbones increased helical content and enhanced in vitro proteolytic stability in human plasma (>30-fold longer half-lives, compared to 10Panx1). In adhesion assays, a "double-stapled" peptide, SBL-PX1-206 inhibited ATP release from endothelial cells, thereby efficiently reducing THP-1 monocyte adhesion to a TNF-α-activated endothelial monolayer and making it a promising candidate for future in vivo investigations in animal models of cardiovascular inflammatory disease.
Collapse
Affiliation(s)
- Arthur Lamouroux
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Malaury Tournier
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Debora Iaculli
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Anne Caufriez
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Olga M. Rusiecka
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Charlotte Martin
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Viviane Bes
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Laureano E. Carpio
- ProtoQSAR
SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, Avda. Benjamin Franklin 12, 46980 Paterna, Spain
| | - Yana Girardin
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Centre for
Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Remy Loris
- Structural
Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Centre for
Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Andrés Tabernilla
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Filippo Molica
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Rafael Gozalbes
- ProtoQSAR
SL, Centro Europeo de Empresas Innovadoras, Parque Tecnológico de Valencia, Avda. Benjamin Franklin 12, 46980 Paterna, Spain
- MolDrug
AI Systems SL, c/Olimpia
Arozena 45, 46018 Valencia, Spain
| | - María D. Mayán
- CellCOM
Research Group, Instituto de Investigación Biomédica
de A Coruña, Servizo Galego de Saúde, Universidade da Coruña, 15071 A Coruña, Spain
| | - Mathieu Vinken
- Research
Unit of In Vitro Toxicology and Dermato-Cosmetology, Department of
Pharmaceutical Sciences, Vrije Universiteit
Brussel, Laarbeeklaan
103, 1090 Brussels, Belgium
| | - Brenda R. Kwak
- Department
of Pathology and Immunology and Geneva Center for Inflammation Research,
Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Steven Ballet
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
11
|
Chen X, Yuan S, Mi L, Long Y, He H. Pannexin1: insight into inflammatory conditions and its potential involvement in multiple organ dysfunction syndrome. Front Immunol 2023; 14:1217366. [PMID: 37711629 PMCID: PMC10498923 DOI: 10.3389/fimmu.2023.1217366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Sepsis represents a global health concern, and patients with severe sepsis are at risk of experiencing MODS (multiple organ dysfunction syndrome), which is associated with elevated mortality rates and a poorer prognosis. The development of sepsis involves hyperactive inflammation, immune disorder, and disrupted microcirculation. It is crucial to identify targets within these processes to develop therapeutic interventions. One such potential target is Panx1 (pannexin-1), a widely expressed transmembrane protein that facilitates the passage of molecules smaller than 1 KDa, such as ATP. Accumulating evidence has implicated the involvement of Panx1 in sepsis-associated MODS. It attracts immune cells via the purinergic signaling pathway, mediates immune responses via the Panx1-IL-33 axis, promotes immune cell apoptosis, regulates blood flow by modulating VSMCs' and vascular endothelial cells' tension, and disrupts microcirculation by elevating endothelial permeability and promoting microthrombosis. At the level of organs, Panx1 contributes to inflammatory injury in multiple organs. Panx1 primarily exacerbates injury and hinders recovery, making it a potential target for sepsis-induced MODS. While no drugs have been developed explicitly against Panx1, some compounds that inhibit Panx1 hemichannels have been used extensively in experiments. However, given that Panx1's role may vary during different phases of sepsis, more investigations are required before interventions against Panx1 can be applied in clinical. Overall, Panx1 may be a promising target for sepsis-induced MODS. Nevertheless, further research is needed to understand its complex role in different stages of sepsis fully and to develop suitable pharmaceutical interventions for clinical use.
Collapse
Affiliation(s)
| | | | | | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huaiwu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Zhao J, Harrison S, Levy D. Meningeal P2X7 Signaling Mediates Migraine-Related Intracranial Mechanical Hypersensitivity. J Neurosci 2023; 43:5975-5985. [PMID: 37487740 PMCID: PMC10436684 DOI: 10.1523/jneurosci.0368-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 07/26/2023] Open
Abstract
Cortical spreading depolarization (CSD) is a key pathophysiological event that underlies visual and sensory auras in migraine. CSD is also thought to drive the headache phase in migraine by promoting the activation and mechanical sensitization of trigeminal primary afferent nociceptive neurons that innervate the cranial meninges. The factors underlying meningeal nociception in the wake of CSD remain poorly understood but potentially involve the parenchymal release of algesic mediators and damage-associated molecular patterns, particularly ATP. Here, we explored the role of ATP-P2X purinergic receptor signaling in mediating CSD-evoked meningeal afferent activation and mechanical sensitization. Male rats were subjected to a single CSD episode. In vivo, extracellular single-unit recording was used to measure meningeal afferent ongoing activity changes. Quantitative mechanical stimuli using a servomotor force-controlled stimulator assessed changes in the afferent's mechanosensitivity. Manipulation of meningeal P2X receptors was achieved via local administration of pharmacological agents. Broad-spectrum P2X receptor inhibition, selective blockade of the P2X7 receptor, and its related Pannexin 1 channel suppressed CSD-evoked afferent mechanical sensitization but did not affect the accompanying afferent activation response. Surprisingly, inhibition of the pronociceptive P2X2/3 receptor did not affect the activation or sensitization of meningeal afferents post-CSD. P2X7 signaling underlying afferent mechanosensitization was localized to the meninges and did not affect CSD susceptibility. We propose that meningeal P2X7 and Pannexin 1 signaling, potentially in meningeal macrophages or neutrophils, mediates the mechanical sensitization of meningeal afferents, which contributes to migraine pain by exacerbating the headache during normally innocuous physical activities.SIGNIFICANCE STATEMENT Activation and sensitization of meningeal afferents play a key role in migraine headache, but the underlying mechanisms remain unclear. Here, using a rat model of migraine with aura involving cortical spreading depolarization (CSD), we demonstrate that meningeal purinergic P2X7 signaling and its related Pannexin 1 pore, but not nociceptive P2X2/3 receptors, mediate prolonged meningeal afferent sensitization. Additionally, we show that meningeal P2X signaling does not contribute to the increased afferent ongoing activity in the wake of CSD. Our finding points to meningeal P2X7 signaling as a critical mechanism underlying meningeal nociception in migraine, the presence of distinct mechanisms underlying the activation and sensitization of meningeal afferents in migraine, and highlight the need to target both processes for effective migraine therapy.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Samantha Harrison
- Center for Anesthesia Research Excellence, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
13
|
Zhao J, Harrison S, Levy D. Meningeal P2X7 signaling mediates migraine-related intracranial mechanical hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526853. [PMID: 36778299 PMCID: PMC9915648 DOI: 10.1101/2023.02.02.526853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cortical spreading depolarization (CSD) is a key pathophysiological event that underlies visual and sensory auras in migraine. CSD is also thought to drive the headache phase in migraine by promoting the activation and mechanical sensitization of trigeminal primary afferent nociceptive neurons that innervate the cranial meninges. The factors underlying meningeal nociception in the wake of CSD remain poorly understood but potentially involve the parenchymal release of algesic mediators and damage-associated molecular patterns, particularly ATP. Here, we explored the role of ATP-P2X purinergic receptor signaling in mediating CSD-evoked meningeal afferent activation and mechanical sensitization. Male rats were subjected to a single CSD episode. In vivo, extracellular single-unit recording was used to measure meningeal afferent ongoing activity changes. Quantitative mechanical stimuli using a servomotor force-controlled stimulator assessed changes in the afferent's mechanosensitivity. Manipulation of meningeal P2X receptors was achieved via local administration of pharmacological agents. Broad-spectrum P2X receptor inhibition, selective blockade of the P2X7 receptor, and its related pannexin 1 channel suppressed CSD-evoked afferent mechanical sensitization but did not affect the accompanying afferent activation response. Surprisingly, inhibition of the pronociceptive P2X2/3 receptor did not affect the activation or sensitization of meningeal afferents post-CSD. P2X7 signaling underlying afferent mechanosensitization was localized to the meninges and did not affect CSD susceptibility. We propose that meningeal P2X7 and Pannexin 1 signaling, potentially in meningeal macrophages or neutrophils, mediates the mechanical sensitization of meningeal afferents, which contributes to migraine pain by exacerbating the headache during normally innocuous physical activities. Significance Statement Activation and sensitization of meningeal afferents play a key role in migraine headache, but the underlying mechanisms remain unclear. Here, using a rat model of migraine with aura involving cortical spreading depolarization (CSD), we demonstrate that meningeal purinergic P2X7 signaling and its related Pannexin 1 pore, but not nociceptive P2X2/3 receptors, mediate prolonged meningeal afferent sensitization. Additionally, we show that meningeal P2X signaling does not contribute to the increased afferent ongoing activity in the wake of CSD. Our finding points to meningeal P2X7 signaling as a critical mechanism underlying meningeal nociception in migraine, the presence of distinct mechanisms underlying the activation and sensitization of meningeal afferents in migraine, and highlight the need to target both processes for effective migraine therapy.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| | - Samantha Harrison
- Center for Anesthesia Research Excellence, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
14
|
Oliveira-Mendes BBR, Alameh M, Ollivier B, Montnach J, Bidère N, Souazé F, Escriou N, Charpentier F, Baró I, De Waard M, Loussouarn G. SARS-CoV-2 E and 3a Proteins Are Inducers of Pannexin Currents. Cells 2023; 12:1474. [PMID: 37296595 PMCID: PMC10252541 DOI: 10.3390/cells12111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Controversial reports have suggested that SARS-CoV E and 3a proteins are plasma membrane viroporins. Here, we aimed at better characterizing the cellular responses induced by these proteins. First, we show that expression of SARS-CoV-2 E or 3a protein in CHO cells gives rise to cells with newly acquired round shapes that detach from the Petri dish. This suggests that cell death is induced upon expression of E or 3a protein. We confirmed this by using flow cytometry. In adhering cells expressing E or 3a protein, the whole-cell currents were not different from those of the control, suggesting that E and 3a proteins are not plasma membrane viroporins. In contrast, recording the currents on detached cells uncovered outwardly rectifying currents much larger than those observed in the control. We illustrate for the first time that carbenoxolone and probenecid block these outwardly rectifying currents; thus, these currents are most probably conducted by pannexin channels that are activated by cell morphology changes and also potentially by cell death. The truncation of C-terminal PDZ binding motifs reduces the proportion of dying cells but does not prevent these outwardly rectifying currents. This suggests distinct pathways for the induction of these cellular events by the two proteins. We conclude that SARS-CoV-2 E and 3a proteins are not viroporins expressed at the plasma membrane.
Collapse
Affiliation(s)
| | - Malak Alameh
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
- Labex Ion Channels, Science and Therapeutics, F-06560 Valbonne, France
| | - Béatrice Ollivier
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
| | - Jérôme Montnach
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
| | - Nicolas Bidère
- Team SOAP, CRCI2NA, INSERM, CNRS, Nantes Université, Université d’Angers, F-44000 Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, F-75006 Paris, France
| | | | - Nicolas Escriou
- Institut Pasteur, Université Paris Cité, Département de Santé Globale, F-75015 Paris, France
| | - Flavien Charpentier
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
| | - Isabelle Baró
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
| | - Michel De Waard
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
- Labex Ion Channels, Science and Therapeutics, F-06560 Valbonne, France
| | - Gildas Loussouarn
- L’institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (B.B.R.O.-M.); (M.A.)
| |
Collapse
|
15
|
Jaque-Fernandez F, Allard B, Monteiro L, Lafoux A, Huchet C, Jaimovich E, Berthier C, Jacquemond V. Probenecid affects muscle Ca2+ homeostasis and contraction independently from pannexin channel block. J Gen Physiol 2023; 155:e202213203. [PMID: 36820799 PMCID: PMC9998970 DOI: 10.1085/jgp.202213203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Tight control of skeletal muscle contractile activation is secured by the excitation-contraction (EC) coupling protein complex, a molecular machinery allowing the plasma membrane voltage to control the activity of the ryanodine receptor Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. This machinery has been shown to be intimately linked to the plasma membrane protein pannexin-1 (Panx1). We investigated whether the prescription drug probenecid, a widely used Panx1 blocker, affects Ca2+ signaling, EC coupling, and muscle force. The effect of probenecid was tested on membrane current, resting Ca2+, and SR Ca2+ release in isolated mouse muscle fibers, using a combination of whole-cell voltage-clamp and Ca2+ imaging, and on electrically triggered contraction of isolated muscles. Probenecid (1 mM) induces SR Ca2+ leak at rest and reduces peak voltage-activated SR Ca2+ release and contractile force by 40%. Carbenoxolone, another Panx1 blocker, also reduces Ca2+ release, but neither a Panx1 channel inhibitory peptide nor a purinergic antagonist affected Ca2+ release, suggesting that probenecid and carbenoxolone do not act through inhibition of Panx1-mediated ATP release and consequently altered purinergic signaling. Probenecid may act by altering Panx1 interaction with the EC coupling machinery, yet the implication of another molecular target cannot be excluded. Since probenecid has been used both in the clinic and as a masking agent for doping in sports, these results should encourage evaluation of possible effects on muscle function in treated individuals. In addition, they also raise the question of whether probenecid-induced altered Ca2+ homeostasis may be shared by other tissues.
Collapse
Affiliation(s)
- Francisco Jaque-Fernandez
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène—Pathophysiology and Genetics of Neuron and Muscle, Lyon, France
| | - Bruno Allard
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène—Pathophysiology and Genetics of Neuron and Muscle, Lyon, France
| | - Laloé Monteiro
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène—Pathophysiology and Genetics of Neuron and Muscle, Lyon, France
| | - Aude Lafoux
- Therassay Platform, CAPACITES, Université de Nantes, Nantes, France
| | - Corinne Huchet
- Therassay Platform, CAPACITES, Université de Nantes, Nantes, France
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, Nantes, France
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christine Berthier
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène—Pathophysiology and Genetics of Neuron and Muscle, Lyon, France
| | - Vincent Jacquemond
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène—Pathophysiology and Genetics of Neuron and Muscle, Lyon, France
| |
Collapse
|
16
|
Koval M, Schug WJ, Isakson BE. Pharmacology of pannexin channels. Curr Opin Pharmacol 2023; 69:102359. [PMID: 36858833 PMCID: PMC10023479 DOI: 10.1016/j.coph.2023.102359] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 03/02/2023]
Abstract
Pannexin channels play fundamental roles in regulating inflammation and have been implicated in many diseases including hypertension, stroke, and neuropathic pain. Thus, the ability to pharmacologically block these channels is a vital component of several therapeutic approaches. Pharmacologic interrogation of model systems also provides a means to discover new roles for pannexins in cell physiology. Here, we review the state of the art for agents that can be used to block pannexin channels, with a focus on chemical pharmaceuticals and peptide mimetics that act on pannexin 1. Guidance on interpreting results obtained with pannexin pharmacologics in experimental systems is discussed, as well as strengths and caveats of different agents, including specificity and feasibility of clinical application.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wyatt J Schug
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
17
|
He Z, Zhao Y, Rau MJ, Fitzpatrick JAJ, Sah R, Hu H, Yuan P. Structural and functional analysis of human pannexin 2 channel. Nat Commun 2023; 14:1712. [PMID: 36973289 PMCID: PMC10043284 DOI: 10.1038/s41467-023-37413-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The pannexin 2 channel (PANX2) participates in multiple physiological processes including skin homeostasis, neuronal development, and ischemia-induced brain injury. However, the molecular basis of PANX2 channel function remains largely unknown. Here, we present a cryo-electron microscopy structure of human PANX2, which reveals pore properties contrasting with those of the intensely studied paralog PANX1. The extracellular selectivity filter, defined by a ring of basic residues, more closely resembles that of the distantly related volume-regulated anion channel (VRAC) LRRC8A, rather than PANX1. Furthermore, we show that PANX2 displays a similar anion permeability sequence as VRAC, and that PANX2 channel activity is inhibited by a commonly used VRAC inhibitor, DCPIB. Thus, the shared channel properties between PANX2 and VRAC may complicate dissection of their cellular functions through pharmacological manipulation. Collectively, our structural and functional analysis provides a framework for development of PANX2-specific reagents that are needed for better understanding of channel physiology and pathophysiology.
Collapse
Affiliation(s)
- Zhihui He
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yonghui Zhao
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael J Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Rajan Sah
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Direct cell extraction of membrane proteins for structure-function analysis. Sci Rep 2023; 13:1420. [PMID: 36697499 PMCID: PMC9876986 DOI: 10.1038/s41598-023-28455-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Membrane proteins are the largest group of therapeutic targets in a variety of disease areas and yet, they remain particularly difficult to investigate. We have developed a novel one-step approach for the incorporation of membrane proteins directly from cells into lipid Salipro nanoparticles. Here, with the pannexin1 channel as a case study, we demonstrate the applicability of this method for structure-function analysis using SPR and cryo-EM.
Collapse
|
19
|
Structure-based discovery and in vitro validation of inhibitors of chloride intracellular channel 4 protein. Comput Struct Biotechnol J 2022; 21:688-701. [PMID: 36659928 PMCID: PMC9826898 DOI: 10.1016/j.csbj.2022.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
The use of computer-aided methods have continued to propel accelerated drug discovery across various disease models, interestingly allowing the specific inhibition of pathogenic targets. Chloride Intracellular Channel Protein 4 (CLIC4) is a novel class of intracellular ion channel highly implicated in tumor and vascular biology. It regulates cell proliferation, apoptosis and angiogenesis; and is involved in multiple pathologic signaling pathways. Absence of specific inhibitors however impedes its advancement to translational research. Here, we integrate structural bioinformatics and experimental research approaches for the discovery and validation of small-molecule inhibitors of CLIC4. High-affinity allosteric binders were identified from a library of 1615 Food and Drug Administration (FDA)-approved drugs via a high-performance computing-powered blind-docking approach, resulting in the selection of amphotericin B and rapamycin. NMR assays confirmed the binding and conformational disruptive effects of both drugs while they also reversed stress-induced membrane translocation of CLIC4 and inhibited endothelial cell migration. Structural and dynamics simulation studies further revealed that the inhibitory mechanisms of these compounds were hinged on the allosteric modulation of the catalytic glutathione (GSH)-like site loop and the extended catalytic β loop which may elicit interference with the catalytic activities of CLIC4. Structure-based insights from this study provide the basis for the selective targeting of CLIC4 to treat the associated pathologies.
Collapse
Key Words
- A9C, 9-Anthracenecarboxylic acid
- AMPhB, Amphotericin B
- Ad, Adenovirus
- Allosteric inhibition
- Bad, BCL2 associated agonist of cell death
- Bcl-2, B-cell lymphoma 2
- Bcl-xL, B-cell lymphoma-extra large
- CDK, Cyclin-dependent kinases
- CLIC, Chloride intracellular channel protein
- Chloride intracellular channel protein 4
- Computational high-throughput screening
- DAPI, 4′,6-diamidino-2-phenylindole
- DIDS, 4,4′-Diisothiocyano-2,2′-stilbenedisulfonic acid
- DMSO, Dimethyl sulfoxide
- DOPE, Discrete optimized protein energy
- GPU, Graphics Processing Unit
- GSH-like catalytic site
- GST, glutathione S-transferases
- GUI, Graphical User Interface
- HEPES, (4-(2-hydroxyethyl)− 1-piperazineethanesulfonic acid;
- HIF, Hypoxia-inducible factor
- HSQC, Heteronuclear single quantum coherence spectroscopy
- HUVEC, Human umbilical vein endothelial cells
- IKKβ, Inhibitor of nuclear kappa-B-kinase subunit beta
- JNK, c-Jun N-terminal kinase
- MKK6, Mitogen-activated protein kinase kinase-6
- MOI, Multiplicity of infection
- NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells
- NMR, Nuclear magnetic resonance
- NPT, The constant-temperature, constant-pressure ensemble
- NaCL, Sodium chloride
- Nuclear magnetic resonance
- PAH, Pulmonary arterial hypertension
- RAPA, Rapamycin
- SASA, Solvent accessible surface area
- SEK1, Dual specificity mitogen-activated protein kinase kinase 4
- Smad, Suppressor of Mothers against Decapentaplegic
- Structure-based drug discovery
- TEV, Tobacco etch virus
- TIP3P, Transferable intermolecular potential 3 P
- TROSY, Transverse relaxation optimized spectroscopy
- UCSF, University of California, San Francisco
- VEGF, Vascular endothelial growth factor
- p38, Mitogen activated protein kinases
Collapse
|
20
|
Hypertensive Nephropathy: Unveiling the Possible Involvement of Hemichannels and Pannexons. Int J Mol Sci 2022; 23:ijms232415936. [PMID: 36555574 PMCID: PMC9785367 DOI: 10.3390/ijms232415936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypertension is one of the most common risk factors for developing chronic cardiovascular diseases, including hypertensive nephropathy. Within the glomerulus, hypertension causes damage and activation of mesangial cells (MCs), eliciting the production of large amounts of vasoactive and proinflammatory agents. Accordingly, the activation of AT1 receptors by the vasoactive molecule angiotensin II (AngII) contributes to the pathogenesis of renal damage, which is mediated mostly by the dysfunction of intracellular Ca2+ ([Ca2+]i) signaling. Similarly, inflammation entails complex processes, where [Ca2+]i also play crucial roles. Deregulation of this second messenger increases cell damage and promotes fibrosis, reduces renal blood flow, and impairs the glomerular filtration barrier. In vertebrates, [Ca2+]i signaling depends, in part, on the activity of two families of large-pore channels: hemichannels and pannexons. Interestingly, the opening of these channels depends on [Ca2+]i signaling. In this review, we propose that the opening of channels formed by connexins and/or pannexins mediated by AngII induces the ATP release to the extracellular media, with the subsequent activation of purinergic receptors. This process could elicit Ca2+ overload and constitute a feed-forward mechanism, leading to kidney damage.
Collapse
|
21
|
Zeng Y, Riquelme MA, Hua R, Zhang J, Acosta FM, Gu S, Jiang JX. Mechanosensitive piezo1 calcium channel activates connexin 43 hemichannels through PI3K signaling pathway in bone. Cell Biosci 2022; 12:191. [PMID: 36457052 PMCID: PMC9716748 DOI: 10.1186/s13578-022-00929-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Mechanical loading promotes bone formation and osteocytes are a major mechanosensory cell in the bone. Both Piezo1 channels and connexin 43 hemichannels (Cx43 HCs) in osteocytes are important players in mechanotransduction and anabolic function by mechanical loading. However, the mechanism underlying mechanotransduction involving Piezo1 channels and Cx43 HCs in osteocytes and bone remains unknown. RESULTS We showed that, like mechanical loading, Piezo1 specific agonist Yoda1 was able to increase intracellular Ca2+ signaling and activate Cx43 HCs, while Yoda1 antagonist Dooku1 inhibited Ca2+ and Cx43 HC activation induced by both mechanical loading and Yoda1. Moreover, the intracellular Ca2+ signal activated by Yoda1 was reduced by the inhibition of Cx43 HCs and pannexin1 (Panx1) channels, as well as ATP-P2X receptor signaling. Piezo1 and Cx43 HCs were co-localized on the osteocyte cell surface, and Yoda1-activated PI3K-Akt signaling regulated the opening of Cx43 HCs. Furthermore, Cx43 HCs opening by mechanical loading on tibias was ablated by inhibition of Piezo1 activation in vivo. CONCLUSION We demonstrated that upon mechanical stress, increased intracellular Ca2+ activated by Piezo1 regulates the opening of HCs through PI3K-Akt and opened Cx43 HCs, along with Panx1 channels, and ATP-P2X signaling sustain the intracellular Ca2+ signal, leading to bone anabolic function.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jingruo Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Francisca M Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
22
|
Rusiecka OM, Tournier M, Molica F, Kwak BR. Pannexin1 channels-a potential therapeutic target in inflammation. Front Cell Dev Biol 2022; 10:1020826. [PMID: 36438559 PMCID: PMC9682086 DOI: 10.3389/fcell.2022.1020826] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 08/11/2023] Open
Abstract
An exaggerated inflammatory response is the hallmark of a plethora of disorders. ATP is a central signaling molecule that orchestrates the initiation and resolution of the inflammatory response by enhancing activation of the inflammasome, leukocyte recruitment and activation of T cells. ATP can be released from cells through pannexin (Panx) channels, a family of glycoproteins consisting of three members, Panx1, Panx2, and Panx3. Panx1 is ubiquitously expressed and forms heptameric channels in the plasma membrane mediating paracrine and autocrine signaling. Besides their involvement in the inflammatory response, Panx1 channels have been shown to contribute to different modes of cell death (i.e., pyroptosis, necrosis and apoptosis). Both genetic ablation and pharmacological inhibition of Panx1 channels decrease inflammation in vivo and contribute to a better outcome in several animal models of inflammatory disease involving various organs, including the brain, lung, kidney and heart. Up to date, several molecules have been identified to inhibit Panx1 channels, for instance probenecid (Pbn), mefloquine (Mfq), flufenamic acid (FFA), carbenoxolone (Cbx) or mimetic peptides like 10Panx1. Unfortunately, the vast majority of these compounds lack specificity and/or serum stability, which limits their application. The recent availability of detailed structural information on the Panx1 channel from cryo-electron microscopy studies may open up innovative approaches to acquire new classes of synthetic Panx1 channel blockers with high target specificity. Selective inhibition of Panx1 channels may not only limit acute inflammatory responses but may also prove useful in chronic inflammatory diseases, thereby improving human health. Here, we reviewed the current knowledge on the role of Panx1 in the initiation and resolution of the inflammatory response, we summarized the effects of Panx1 inhibition in inflammatory pathologies and recapitulate current Panx1 channel pharmacology with an outlook towards future approaches.
Collapse
Affiliation(s)
- Olga M. Rusiecka
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Malaury Tournier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
MØLLER SOPHIE, HANSEN CAMILLACOLLIN, EHLERS THOMASSVARE, TAMARIZ-ELLEMANN ANDREA, TOLBORG SARAHÁRÒGVI, KURELL MELANIEEMMONDS, PÉREZ-GÓMEZ JORGE, PATRZALEK SIMONSCHULTZ, MAULITZ CHRISTINE, HELLSTEN YLVA, GLIEMANN LASSE. Exercise Training Lowers Arterial Blood Pressure Independently of Pannexin 1 in Men with Essential Hypertension. Med Sci Sports Exerc 2022; 54:1417-1427. [DOI: 10.1249/mss.0000000000002936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
25
|
Wang Q, He R, Chen L, Zhang Q, Shan J, Wang P, Wang X, Zhao Y. MIG-23 is involved in sperm migration by modulating extracellular ATP levels in Ascaris suum. Development 2022; 149:275964. [DOI: 10.1242/dev.200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/24/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In nematodes, spermiogenesis is a process of sperm activation in which nonmotile spermatids are transformed into crawling spermatozoa. Sperm motility acquisition during this process is essential for successful fertilization, but the underlying mechanisms remain to be clarified. Herein, we have found that extracellular adenosine-5′-triphosphate (ATP) level regulation by MIG-23, which is a homolog of human ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), was required for major sperm protein (MSP) filament dynamics and sperm motility in the nematode Ascaris suum. During sperm activation, a large amount of ATP was produced in mitochondria and was stored in refringent granules (RGs). Some of the produced ATP was released to the extracellular space through innexin channels. MIG-23 was localized in the sperm plasma membrane and contributed to the ecto-ATPase activity of spermatozoa. Blocking MIG-23 activity resulted in a decrease in the ATP hydrolysis activity of spermatozoa and an increase in the depolymerization rate of MSP filaments in pseudopodia, which eventually affected sperm migration. Overall, our data suggest that MIG-23, which contributes to the ecto-ATPase activity of spermatozoa, regulates sperm migration by modulating extracellular ATP levels.
Collapse
Affiliation(s)
- Qiushi Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
| | - Ruijun He
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
| | - Lianwan Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
| | - Qi Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of Chinese Academy of Sciences 2 , Beijing 100049 , China
| | - Jin Shan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of Chinese Academy of Sciences 2 , Beijing 100049 , China
| | - Peng Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
- University of Chinese Academy of Sciences 2 , Beijing 100049 , China
| | - Xia Wang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 3 , Beijing 100101 , China
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 1 , Beijing 100101 , China
| |
Collapse
|
26
|
Zheng Q, Dong X, Green DP, Dong X. Peripheral mechanisms of chronic pain. MEDICAL REVIEW 2022; 2:251-270. [PMID: 36067122 PMCID: PMC9381002 DOI: 10.1515/mr-2022-0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Acutely, pain serves to protect us from potentially harmful stimuli, however damage to the somatosensory system can cause maladaptive changes in neurons leading to chronic pain. Although acute pain is fairly well controlled, chronic pain remains difficult to treat. Chronic pain is primarily a neuropathic condition, but studies examining the mechanisms underlying chronic pain are now looking beyond afferent nerve lesions and exploring new receptor targets, immune cells, and the role of the autonomic nervous system in contributing chronic pain conditions. The studies outlined in this review reveal how chronic pain is not only confined to alterations in the nervous system and presents findings on new treatment targets and for this debilitating disease.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dustin P. Green
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
27
|
Whyte-Fagundes P, Taskina D, Safarian N, Zoidl C, Carlen PL, Donaldson LW, Zoidl GR. Panx1 channels promote both anti- and pro-seizure-like activities in the zebrafish via p2rx7 receptors and ATP signaling. Commun Biol 2022; 5:472. [PMID: 35585187 PMCID: PMC9117279 DOI: 10.1038/s42003-022-03356-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
The molecular mechanisms of excitation/inhibition imbalances promoting seizure generation in epilepsy patients are not fully understood. Evidence suggests that Pannexin1 (Panx1), an ATP release channel, modulates the excitability of the brain. In this report, we performed electrophysiological, behavioral, and molecular phenotyping experiments on zebrafish larvae bearing genetic or pharmacological knockouts of Panx1a and Panx1b channels, each homologous to human PANX1. When Panx1a function is lost, or both channels are under pharmacological blockade, seizures with ictal-like events and seizure-like locomotion are reduced in the presence of pentylenetetrazol. Transcriptome profiling by RNA-seq demonstrates a spectrum of distinct metabolic and cell signaling states which correlate with the loss of Panx1a. Furthermore, the pro- and anticonvulsant activities of both Panx1 channels affect ATP release and involve the purinergic receptor P2rx7. Our findings suggest a subfunctionalization of Panx1 enabling dual roles in seizures, providing a unique and comprehensive perspective to understanding seizure mechanisms in the context of this channel.
Collapse
Affiliation(s)
- Paige Whyte-Fagundes
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada.
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada.
| | - Daria Taskina
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Nickie Safarian
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada
- Department of Medicine, Physiology and BME, University of Toronto, 399 Bathurst St., 5w442, Toronto, ON, M5T 2S8, Canada
| | | | - Georg R Zoidl
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada.
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada.
| |
Collapse
|
28
|
Pannexin1 channels regulate mechanically stimulated but not spontaneous adenosine release. Anal Bioanal Chem 2022; 414:3781-3789. [PMID: 35381855 DOI: 10.1007/s00216-022-04047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/01/2022]
Abstract
Fast-scan cyclic voltammetry (FSCV) is a rapid technique to measure neuromodulators, and using FSCV, two modes of rapid adenosine have been discovered. Spontaneous transients occur randomly in the brain, while mechanical stimulation also causes a rapid adenosine event. Pannexin1 channels are membrane channels that transport ions, including ATP, out of the cell where it is rapidly broken down into adenosine. Pannexin 1 channels (Panx1) have a flickering mode of rapid opening and are also mechanically stimulated. Here, we test the extent to which pannexin channels, specifically pannexin1 (Panx1) channels, are responsible for rapid adenosine events. Spontaneous adenosine release or mechanosensitive adenosine release were measured using fast-scan cyclic voltammetry in hippocampal (CA1) brain slices. In global Panx1KO mice, there is no significant difference in the frequency or concentration of spontaneous adenosine release, indicating Panx1 is not a release mechanism for spontaneous adenosine. Spontaneous adenosine frequency decreased slightly after administration of a large (100 µM) dose of carbenoxolone, a nonspecific inhibitor of many pannexin and connexin channels, suggesting other hemichannels only play a small role at most. For mechanically stimulated adenosine release, the concentration of each adenosine event significantly decreased 30% in Panx1KO mice and the frequency of stimulations that evoked adenosine also decreased. The response was similar in WT mice with carbenoxolone. Thus, Panx1 is a release mechanism for mechanically stimulated adenosine release, but not the only mechanism. These results demonstrate that pannexin channels differentially regulate rapid adenosine release and could be targeted to differentially affect mechanically stimulated adenosine due to brain damage.
Collapse
|
29
|
Sui S, Yu H, Wang X, Wang W, Yang X, Pan X, Zhou Q, Xin C, Du R, Wu S, Zhang J, Cao Q, Wang N, Kuehn MH, Zhu W. iPSC-Derived Trabecular Meshwork Cells Stimulate Endogenous TM Cell Division Through Gap Junction in a Mouse Model of Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:28. [PMID: 34427623 PMCID: PMC8399400 DOI: 10.1167/iovs.62.10.28] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Decreased trabecular meshwork (TM) cellularity has been implicated as a major reason for TM dysfunction and aqueous humor (AH) outflow abnormalities in primary open angle glaucoma. We previously found that transplantation of induced pluripotent stem cell (iPSC)-derived TM cells can restore TM function and stimulate endogenous TM cell division. The goal of the present study is to investigate whether signaling via gap junctions is involved in this process. Methods Differentiated iPSCs were characterized morphologically, transcriptionally, and immunohistochemically. After purification, iPSC-TM were co-cultured with mouse TM (MTM) cells to mimic the transplantation procedure. Through the pharmacological antagonists and short hairpin RNA (shRNA) technique, the gap junction function in iPSC-based therapy was determined. Results In the co-culture system, iPSC-TM increase MTM cell division as well as transfer of Ca2+ to MTM. This effect was blocked by treatment with the gap junction inhibitors carbenoxolone (CBX) or flufenamic acid (FFA). The shRNA mediated knock down of connexin 43 (Cx43) expression in iPSC-TM also results in decreased Ca2+ transfer and lower MTM proliferation rates. In vivo, Cx43 downregulation in transplanted iPSC-TM weakened their regenerative role in an Ad5.myocilinY437H mouse model of glaucoma. Mice receiving these cells exhibited lower TM cellularity and higher intraocular pressure (IOP) than those receiving unmodified iPSC-TM. Conclusions Our findings reveal a crucial role of gap junction, especially Cx43, in iPSC-based TM regeneration, and provides insights to enhance the regenerative effect of iPSCs in glaucoma therapy.
Collapse
Affiliation(s)
- Shangru Sui
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hongxia Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangji Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Wenyan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xuejiao Yang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojing Pan
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Chen Xin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Rong Du
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd., Qingdao, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing University & Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Barros Lamus ER, Carotti V, de Vries CRS, Witsel F, Arntz OJ, van de Loo FAJ, Carvajal CA, Bindels RJM, Hoenderop JGJ, Rigalli JP. Extracellular vesicles regulate purinergic signaling and epithelial sodium channel expression in renal collecting duct cells. FASEB J 2021; 35:e21506. [PMID: 33811695 DOI: 10.1096/fj.202002559r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Purinergic signaling regulates several renal physiological and pathophysiological processes. Extracellular vesicles (EVs) are nanoparticles released by most cell types, which, in non-renal tissues, modulate purinergic signaling. The aim of this study was to investigate the effect of EVs from renal proximal tubule (HK2) and collecting duct cells (HCD) on intra- and intersegment modulation of extracellular ATP levels, the underlying molecular mechanisms, and the impact on the expression of the alpha subunit of the epithelial sodium channel (αENaC). HK2 cells were exposed to HK2 EVs, while HCD cells were exposed to HK2 and HCD EVs. Extracellular ATP levels and αENaC expression were measured by chemiluminescence and qRT-PCR, respectively. ATPases in EV populations were identified by mass spectrometry. The effect of aldosterone was assessed using EVs from aldosterone-treated cells and urinary EVs (uEVs) from primary aldosteronism (PA) patients. HK2 EVs downregulated ectonucleoside-triphosphate-diphosphohydrolase-1 (ENTPD1) expression, increased extracellular ATP and downregulated αENaC expression in HCD cells. ENTPD1 downregulation could be attributed to increased miR-205-3p and miR-505 levels. Conversely, HCD EVs decreased extracellular ATP levels and upregulated αENaC expression in HCD cells, probably due to enrichment of 14-3-3 isoforms with ATPase activity. Pretreatment of donor cells with aldosterone or exposure to uEVs from PA patients enhanced the effects on extracellular ATP and αENaC expression. We demonstrated inter- and intrasegment modulation of renal purinergic signaling by EVs. Our findings postulate EVs as carriers of information along the renal tubules, whereby processes affecting EV release and/or cargo may impact on purinergically regulated processes.
Collapse
Affiliation(s)
- Eric R Barros Lamus
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Carotti
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christine R S de Vries
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Femke Witsel
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Onno J Arntz
- Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fons A J van de Loo
- Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Juan P Rigalli
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
31
|
Design and synthesis of the first indole-based blockers of Panx-1 channel. Eur J Med Chem 2021; 223:113650. [PMID: 34174741 DOI: 10.1016/j.ejmech.2021.113650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
Panx-1 is a membrane channel protein involved in some pathologies such as ischemic stroke, cancer and neuropathic pain, thus representing a promising therapeutic target. We present here a study aimed at obtaining the first class of selective Panx-1 blockers, a new topic for pharmaceutical chemistry, since all compounds used so far for the study of this channel have different primary targets. Among various scaffolds analyzed, the indole nucleous emerged, whose elaboration yielded interesting Panx-1 blockers, such as the potent 5-sulfamoyl derivatives 14c and 15b (I% = 100 at 50 μM). In vivo tests performed in the mouse model of oxaliplatin-induced neuropathy, demonstrated that the hypersensitivity was completely reverted by treatment with 15b (1 nmol, administered intrathecally), suggesting a relationship between this effect and the channel blocking ability. Finally, we decided to perform a virtual screening study on compounds 5b, 6l and 14c using a recently resolved cryo-EM structure of hPanx-1 channel, to try to relate the potency of our new inhibitors.
Collapse
|
32
|
Güiza J, Arriagada J, Rodríguez L, Gutiérrez C, Duarte Y, Sáez JC, Vega JL. Anti-parasitic drugs modulate the non-selective channels formed by connexins or pannexins. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166188. [PMID: 34102257 DOI: 10.1016/j.bbadis.2021.166188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/03/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The proteins connexins, innexins, and pannexins are the subunits of non-selective channels present in the cell membrane in vertebrates (connexins and pannexins) and invertebrates (innexins). These channels allow the transfer of ions and molecules across the cell membrane or, and in many cases, between the cytoplasm of neighboring cells. These channels participate in various physiological processes, particularly under pathophysiological conditions, such as bacterial, viral, and parasitic infections. Interestingly, some anti-parasitic drugs also block connexin- or pannexin-formed channels. Their effects on host channels permeable to molecules that favor parasitic infection can further explain the anti-parasitic effects of some of these compounds. In this review, the effects of drugs with known anti-parasitic activity that modulate non-selective channels formed by connexins or pannexins are discussed. Previous studies that have reported the presence of these proteins in worms, ectoparasites, and protozoa that cause parasitic infections have also been reviewed.
Collapse
Affiliation(s)
- Juan Güiza
- Laboratory of Gap Junction and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Javiera Arriagada
- Laboratory of Gap Junction and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Luis Rodríguez
- Laboratory of Gap Junction and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Camila Gutiérrez
- Laboratory of Gap Junction and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Yorley Duarte
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile; Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - José L Vega
- Laboratory of Gap Junction and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile.
| |
Collapse
|
33
|
Moroz LL, Romanova DY, Kohn AB. Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190762. [PMID: 33550949 PMCID: PMC7935107 DOI: 10.1098/rstb.2019.0762] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Transmitter signalling is the universal chemical language of any nervous system, but little is known about its early evolution. Here, we summarize data about the distribution and functions of neurotransmitter systems in basal metazoans as well as outline hypotheses of their origins. We explore the scenario that neurons arose from genetically different populations of secretory cells capable of volume chemical transmission and integration of behaviours without canonical synapses. The closest representation of this primordial organization is currently found in Placozoa, disk-like animals with the simplest known cell composition but complex behaviours. We propose that injury-related signalling was the evolutionary predecessor for integrative functions of early transmitters such as nitric oxide, ATP, protons, glutamate and small peptides. By contrast, acetylcholine, dopamine, noradrenaline, octopamine, serotonin and histamine were recruited as canonical neurotransmitters relatively later in animal evolution, only in bilaterians. Ligand-gated ion channels often preceded the establishment of novel neurotransmitter systems. Moreover, lineage-specific diversification of neurotransmitter receptors occurred in parallel within Cnidaria and several bilaterian lineages, including acoels. In summary, ancestral diversification of secretory signal molecules provides unique chemical microenvironments for behaviour-driven innovations that pave the way to complex brain functions and elementary cognition. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience, McKnight Brain Institute and Whitney laboratory, University of Florida, 9505 Ocean shore Blvd, St Augustine, FL 32080, USA
| | - Daria Y. Romanova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of RAS, 5A Butlerova Street, Moscow 117485, Russia
| | - Andrea B. Kohn
- Department of Neuroscience, McKnight Brain Institute and Whitney laboratory, University of Florida, 9505 Ocean shore Blvd, St Augustine, FL 32080, USA
| |
Collapse
|
34
|
Purinergic signaling in nervous system health and disease: Focus on pannexin 1. Pharmacol Ther 2021; 225:107840. [PMID: 33753132 DOI: 10.1016/j.pharmthera.2021.107840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Purinergic signaling encompasses the cycle of adenosine 5' triphosphate (ATP) release and its metabolism into nucleotide and nucleoside derivatives, the direct release of nucleosides, and subsequent receptor-triggered downstream intracellular pathways. Since the discovery of nerve terminal and glial ATP release into the neuropil, purinergic signaling has been implicated in the modulation of nervous system development, function, and disease. In this review, we detail our current understanding of the roles of the pannexin 1 (PANX1) ATP-release channel in neuronal development and plasticity, glial signaling, and neuron-glial-immune interactions. We additionally provide an overview of PANX1 structure, activation, and permeability to orientate readers and highlight recent research developments. We identify areas of convergence between PANX1 and purinergic receptor actions. Additional highlights include data on PANX1's participation in the pathophysiology of nervous system developmental, degenerative, and inflammatory disorders. Our aim in combining this knowledge is to facilitate the movement of our current understanding of PANX1 in the context of other nervous system purinergic signaling mechanisms one step closer to clinical translation.
Collapse
|
35
|
Zhang C, Yan Z, Maknojia A, Riquelme MA, Gu S, Booher G, Wallace DJ, Bartanusz V, Goswami A, Xiong W, Zhang N, Mader MJ, An Z, Sayre NL, Jiang JX. Inhibition of astrocyte hemichannel improves recovery from spinal cord injury. JCI Insight 2021; 6:134611. [PMID: 33682795 PMCID: PMC8021110 DOI: 10.1172/jci.insight.134611] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Spinal cord injury (SCI) causes severe disability, and the current inability to restore function to the damaged spinal cord leads to lasting detrimental consequences to patients. One strategy to reduce SCI morbidity involves limiting the spread of secondary damage after injury. Previous studies have shown that connexin 43 (Cx43), a gap junction protein richly expressed in spinal cord astrocytes, is a potential mediator of secondary damage. Here, we developed a specific inhibitory antibody, mouse-human chimeric MHC1 antibody (MHC1), that inhibited Cx43 hemichannels, but not gap junctions, and reduced secondary damage in 2 incomplete SCI mouse models. MHC1 inhibited the activation of Cx43 hemichannels in both primary spinal astrocytes and astrocytes in situ. In both SCI mouse models, administration of MHC1 after SCI significantly improved hind limb locomotion function. Remarkably, a single administration of MHC1 30 minutes after injury improved the recovery up to 8 weeks post-SCI. Moreover, MHC1 treatment decreased gliosis and lesion sizes, increased white and gray matter sparing, and improved neuronal survival. Together, these results suggest that inhibition of Cx43 hemichannel function after traumatic SCI reduces secondary damage, limits perilesional gliosis, and improves functional recovery. By targeting hemichannels specifically with an antibody, this study provides a potentially new, innovative therapeutic approach in treating SCI.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhao Yan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Asif Maknojia
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Grant Booher
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - David J Wallace
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Viktor Bartanusz
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Akshay Goswami
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael J Mader
- Audie L. Murphy VA Hospital, South Texas Veteran's Health Care System, San Antonio, Texas, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Naomi L Sayre
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Audie L. Murphy VA Hospital, South Texas Veteran's Health Care System, San Antonio, Texas, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
36
|
Lamb IR, Novielli-Kuntz NM, Murrant CL. Capillaries communicate with the arteriolar microvascular network by a pannexin/purinergic-dependent pathway in hamster skeletal muscle. Am J Physiol Heart Circ Physiol 2021; 320:H1699-H1711. [PMID: 33606585 DOI: 10.1152/ajpheart.00493.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to determine if a pannexin/purinergic-dependent intravascular communication pathway exists in skeletal muscle microvasculature that facilitates capillary communication with upstream arterioles that control their perfusion. Using the hamster cremaster muscle and intravital microscopy, we locally stimulated capillaries and observed the vasodilatory response in the associated upstream 4A arteriole. We stimulated capillaries with vasodilators relevant to muscle contraction: 10-6 M S-nitroso-N-acetyl-dl-penicillamine (SNAP; nitric oxide donor), 10-6 M adenosine, 10 mM potassium chloride, 10-5 M pinacidil, as well as a known initiator of gap-junction-dependent intravascular communication, acetylcholine (10-5 M), in the absence and the presence of the purinergic membrane receptor blocker suramin (10-5 M), pannexin blocker mefloquine (2 × 10-5 M), or probenecid (5 × 10-6 M) and gap-junction inhibitor halothane (0.07%) applied in the transmission pathway, between the capillary stimulation site and the upstream 4A observation site. Potassium chloride, SNAP, and adenosine-induced upstream vasodilations were significantly inhibited by suramin, mefloquine, and probenecid but not halothane, indicating the involvement of a pannexin/purinergic-dependent signaling pathway. Conversely, SNAP-induced upstream vasodilation was only inhibited by halothane indicating that communication was facilitated by gap junctions. Both pinacidil and acetylcholine were inhibited by suramin but only acetylcholine was inhibited by halothane. These data demonstrate the presence of a pannexin/purinergic-dependent communication pathway between capillaries and upstream arterioles controlling their perfusion. This pathway adds to the gap-junction-dependent pathway that exists at this vascular level as well. Given that vasodilators relevant to muscle contraction can use both of these pathways, our data implicate the involvement of both pathways in the coordination of skeletal muscle blood flow.NEW & NOTEWORTHY Blood flow control during increased metabolic demand in skeletal muscle is not fully understood. Capillaries have been implicated in controlling blood flow to active skeletal muscle, but how capillaries communicate to the arteriolar vascular network is not clear. Our study uncovers a novel pathway through which capillaries can communicate to upstream arterioles to cause vasodilation and therefore control perfusion. This work implicates a new vascular communication pathway in blood flow control in skeletal muscle.
Collapse
Affiliation(s)
- Iain R Lamb
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicole M Novielli-Kuntz
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
37
|
Senthivinayagam S, Serbulea V, Upchurch CM, Polanowska-Grabowska R, Mendu SK, Sahu S, Jayaguru P, Aylor KW, Chordia MD, Steinberg L, Oberholtzer N, Uchiyama S, Inada N, Lorenz UM, Harris TE, Keller SR, Meher AK, Kadl A, Desai BN, Kundu BK, Leitinger N. Adaptive thermogenesis in brown adipose tissue involves activation of pannexin-1 channels. Mol Metab 2021; 44:101130. [PMID: 33248294 PMCID: PMC7779784 DOI: 10.1016/j.molmet.2020.101130] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/06/2020] [Accepted: 11/21/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) is specialized in thermogenesis. The conversion of energy into heat in brown adipocytes proceeds via stimulation of β-adrenergic receptor (βAR)-dependent signaling and activation of mitochondrial uncoupling protein 1 (UCP1). We have previously demonstrated a functional role for pannexin-1 (Panx1) channels in white adipose tissue; however, it is not known whether Panx1 channels play a role in the regulation of brown adipocyte function. Here, we tested the hypothesis that Panx1 channels are involved in brown adipocyte activation and thermogenesis. METHODS In an immortalized brown pre-adipocytes cell line, Panx1 currents were measured using patch-clamp electrophysiology. Flow cytometry was used for assessment of dye uptake and luminescence assays for adenosine triphosphate (ATP) release, and cellular temperature measurement was performed using a ratiometric fluorescence thermometer. We used RNA interference and expression plasmids to manipulate expression of wild-type and mutant Panx1. We used previously described adipocyte-specific Panx1 knockout mice (Panx1Adip-/-) and generated brown adipocyte-specific Panx1 knockout mice (Panx1BAT-/-) to study pharmacological or cold-induced thermogenesis. Glucose uptake into brown adipose tissue was quantified by positron emission tomography (PET) analysis of 18F-fluorodeoxyglucose (18F-FDG) content. BAT temperature was measured using an implantable telemetric temperature probe. RESULTS In brown adipocytes, Panx1 channel activity was induced either by apoptosis-dependent caspase activation or by β3AR stimulation via a novel mechanism that involves Gβγ subunit binding to Panx1. Inactivation of Panx1 channels in cultured brown adipocytes resulted in inhibition of β3AR-induced lipolysis, UCP-1 expression, and cellular thermogenesis. In mice, adiponectin-Cre-dependent genetic deletion of Panx1 in all adipose tissue depots resulted in defective β3AR agonist- or cold-induced thermogenesis in BAT and suppressed beigeing of white adipose tissue. UCP1-Cre-dependent Panx1 deletion specifically in brown adipocytes reduced the capacity for adaptive thermogenesis without affecting beigeing of white adipose tissue and aggravated diet-induced obesity and insulin resistance. CONCLUSIONS These data demonstrate that Gβγ-dependent Panx1 channel activation is involved in β3AR-induced thermogenic regulation in brown adipocytes. Identification of Panx1 channels in BAT as novel thermo-regulatory elements downstream of β3AR activation may have therapeutic implications.
Collapse
Affiliation(s)
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Clint M Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | | | - Suresh K Mendu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Srabani Sahu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Prathiba Jayaguru
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Mahendra D Chordia
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Limor Steinberg
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nathaniel Oberholtzer
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Seichii Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Noriko Inada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Ulrike M Lorenz
- Department of Microbiology, Immunology and Cancer Biology, Center for Cell Clearance, the Beirne B. Carter Center for Immunology Research, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Susanna R Keller
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Akshaya K Meher
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alexandra Kadl
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bijoy K Kundu
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
38
|
Qiao LY, Tiwari N. Spinal neuron-glia-immune interaction in cross-organ sensitization. Am J Physiol Gastrointest Liver Physiol 2020; 319:G748-G760. [PMID: 33084399 PMCID: PMC7792669 DOI: 10.1152/ajpgi.00323.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), historically considered as regional gastrointestinal disorders with heightened colonic sensitivity, are increasingly recognized to have concurrent dysfunction of other visceral and somatic organs, such as urinary bladder hyperactivity, leg pain, and skin hypersensitivity. The interorgan sensory cross talk is, at large, termed "cross-organ sensitization." These organs, anatomically distant from one another, physiologically interlock through projecting their sensory information into dorsal root ganglia (DRG) and then the spinal cord for integrative processing. The fundamental question of how sensitization of colonic afferent neurons conveys nociceptive information to activate primary afferents that innervate distant organs remains ambiguous. In DRG, primary afferent neurons are surrounded by satellite glial cells (SGCs) and macrophage accumulation in response to signals of injury to form a neuron-glia-macrophage triad. Astrocytes and microglia are major resident nonneuronal cells in the spinal cord to interact, physically and chemically, with sensory synapses. Cumulative evidence gathered so far indicate the indispensable roles of paracrine/autocrine interactions among neurons, glial cells, and immune cells in sensory cross-activation. Dichotomizing afferents, sensory convergency in the spinal cord, spinal nerve comingling, and extensive sprouting of central axons of primary afferents each has significant roles in the process of cross-organ sensitization; however, more results are required to explain their functional contributions. DRG that are located outside the blood-brain barrier and reside upstream in the cascade of sensory flow from one organ to the other in cross-organ sensitization could be safer therapeutic targets to produce less central adverse effects.
Collapse
Affiliation(s)
- Liya Y. Qiao
- 1Department of Physiology and Biophysics, Commonwealth University School of Medicine, Richmond, Virginia,2Department of Internal Medicine, Commonwealth University School of Medicine, Richmond, Virginia
| | - Namrata Tiwari
- 1Department of Physiology and Biophysics, Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
39
|
Tchernookova BK, Gongwer MW, George A, Goeglein B, Powell AM, Caringal HL, Leuschner T, Phillips AG, Schantz AW, Kiedrowski L, Chappell R, Kreitzer MA, Malchow RP. ATP-mediated increase in H + flux from retinal Müller cells: a role for Na +/H + exchange. J Neurophysiol 2020; 125:184-198. [PMID: 33206577 DOI: 10.1152/jn.00546.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Small alterations in extracellular H+ can profoundly alter neurotransmitter release by neurons. We examined mechanisms by which extracellular ATP induces an extracellular H+ flux from Müller glial cells, which surround synaptic connections throughout the vertebrate retina. Müller glia were isolated from tiger salamander retinae and H+ fluxes examined using self-referencing H+-selective microelectrodes. Experiments were performed in 1 mM HEPES with no bicarbonate present. Replacement of extracellular sodium by choline decreased H+ efflux induced by 10 µM ATP by 75%. ATP-induced H+ efflux was also reduced by Na+/H+ exchange inhibitors. Amiloride reduced H+ efflux initiated by 10 µM ATP by 60%, while 10 µM cariporide decreased H+ flux by 37%, and 25 µM zoniporide reduced H+ flux by 32%. ATP-induced H+ fluxes were not significantly altered by the K+/H+ pump blockers SCH28080 or TAK438, and replacement of all extracellular chloride with gluconate was without effect on H+ fluxes. Recordings of ATP-induced H+ efflux from cells that were simultaneously whole cell voltage clamped revealed no effect of membrane potential from -70 mV to 0 mV. Restoration of extracellular potassium after cells were bathed in 0 mM potassium produced a transient alteration in ATP-dependent H+ efflux. The transient response to extracellular potassium occurred only when extracellular sodium was present and was abolished by 1 mM ouabain, suggesting that alterations in sodium gradients were mediated by Na+/K+-ATPase activity. Our data indicate that the majority of H+ efflux elicited by extracellular ATP from isolated Müller cells is mediated by Na+/H+ exchange.NEW & NOTEWORTHY Glial cells are known to regulate neuronal activity, but the exact mechanism(s) whereby these "support" cells modulate synaptic transmission remains unclear. Small changes in extracellular levels of acidity are known to be particularly powerful regulators of neurotransmitter release. Here, we show that extracellular ATP, known to be a potent activator of glial cells, induces H+ efflux from retinal Müller (glial) cells and that the bulk of the H+ efflux is mediated by Na+/H+ exchange.
Collapse
Affiliation(s)
| | | | - Alexis George
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Brock Goeglein
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Alyssa M Powell
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | | | - Thomas Leuschner
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Anna G Phillips
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Adam W Schantz
- Department of Biology, Indiana Wesleyan University, Marion, Indiana
| | - Lech Kiedrowski
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois.,Spot Cells LLC, Chicago, Illinois
| | - Richard Chappell
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York.,Eugene Bell Center, Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 2020; 21:485-498. [PMID: 32699292 PMCID: PMC7374656 DOI: 10.1038/s41583-020-0333-z] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Satellite glial cells (SGCs) closely envelop cell bodies of neurons in sensory, sympathetic and parasympathetic ganglia. This unique organization is not found elsewhere in the nervous system. SGCs in sensory ganglia are activated by numerous types of nerve injury and inflammation. The activation includes upregulation of glial fibrillary acidic protein, stronger gap junction-mediated SGC-SGC and neuron-SGC coupling, increased sensitivity to ATP, downregulation of Kir4.1 potassium channels and increased cytokine synthesis and release. There is evidence that these changes in SGCs contribute to chronic pain by augmenting neuronal activity and that these changes are consistent in various rodent pain models and likely also in human pain. Therefore, understanding these changes and the resulting abnormal interactions of SGCs with sensory neurons could provide a mechanistic approach that might be exploited therapeutically in alleviation and prevention of pain. We describe how SGCs are altered in rodent models of four common types of pain: systemic inflammation (sickness behaviour), post-surgical pain, diabetic neuropathic pain and post-herpetic pain.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - David C Spray
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
41
|
Mazzarda F, D'Elia A, Massari R, De Ninno A, Bertani FR, Businaro L, Ziraldo G, Zorzi V, Nardin C, Peres C, Chiani F, Tettey-Matey A, Raspa M, Scavizzi F, Soluri A, Salvatore AM, Yang J, Mammano F. Organ-on-chip model shows that ATP release through connexin hemichannels drives spontaneous Ca 2+ signaling in non-sensory cells of the greater epithelial ridge in the developing cochlea. LAB ON A CHIP 2020; 20:3011-3023. [PMID: 32700707 DOI: 10.1039/d0lc00427h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Prior work supports the hypothesis that ATP release through connexin hemichannels drives spontaneous Ca2+ signaling in non-sensory cells of the greater epithelial ridge (GER) in the developing cochlea; however, direct proof is lacking. To address this issue, we plated cochlear organotypic cultures (COCs) and whole cell-based biosensors with nM ATP sensitivity (ATP-WCBs) at the bottom and top of an ad hoc designed transparent microfluidic chamber, respectively. By performing dual multiphoton Ca2+ imaging, we monitored the propagation of intercellular Ca2+ waves in the GER of COCs and ATP-dependent Ca2+ responses in overlying ATP-WCBs. Ca2+ signals in both COCs and ATP-WCBs were inhibited by supplementing the extracellular medium with ATP diphosphohydrolase (apyrase). Spontaneous Ca2+ signals were strongly depressed in the presence of Gjb6-/- COCs, in which connexin 30 (Cx30) is absent and connexin 26 (Cx26) is strongly downregulated. In contrast, spontaneous Ca2+ signals were not affected by replacement of Panx1-/- with Panx1+/+ COCs in the microfluidic chamber. Similar results were obtained by estimating ATP release from COCs using a classical luciferin-luciferase bioluminescence assay. Therefore, connexin hemichannels and not pannexin 1 channels mediate the release of ATP that is responsible for Ca2+ wave propagation in the developing mouse cochlea. The technological advances presented here have the potential to shed light on a plethora of unrelated open issues that involve paracrine signaling in physiology and pathology and cannot be addressed with standard methods.
Collapse
Affiliation(s)
- Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Science, Università degli Studi di Roma3, Rome, Italy
| | - Annunziata D'Elia
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Science, Università degli Studi di Roma3, Rome, Italy
| | - Roberto Massari
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Adele De Ninno
- CNR Institute for Photonics and Nanotechnology, Rome, Italy.
| | | | - Luca Businaro
- CNR Institute for Photonics and Nanotechnology, Rome, Italy.
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Alessandro Soluri
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy.
| | | | - Jun Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. and Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, Italy. and Department of Physics and Astronomy "G. Galilei", University of Padova, Padua, Italy.
| |
Collapse
|
42
|
Navis KE, Fan CY, Trang T, Thompson RJ, Derksen DJ. Pannexin 1 Channels as a Therapeutic Target: Structure, Inhibition, and Outlook. ACS Chem Neurosci 2020; 11:2163-2172. [PMID: 32639715 DOI: 10.1021/acschemneuro.0c00333] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pannexin 1 (Panx1) channels are transmembrane proteins that release adenosine triphosphate and play an important role in intercellular communication. They are widely expressed in somatic and nervous system tissues, and their activity has been associated with many pathologies such as stroke, epilepsy, inflammation, and chronic pain. While there are a variety of small molecules known to inhibit Panx1, currently little is known about the mechanism of channel inhibition, and there is a dearth of sufficiently potent and selective drugs targeting Panx1. Herein we provide a review of the current literature on Panx1 structural biology and known pharmacological agents that will help provide a basis for rational development of Panx1 chemical modulators.
Collapse
Affiliation(s)
- Kathleen E. Navis
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Churmy Y. Fan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Tuan Trang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Roger J. Thompson
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Darren J. Derksen
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
43
|
Giaume C, Naus CC, Sáez JC, Leybaert L. Glial Connexins and Pannexins in the Healthy and Diseased Brain. Physiol Rev 2020; 101:93-145. [PMID: 32326824 DOI: 10.1152/physrev.00043.2018] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Christian C Naus
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Juan C Sáez
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Luc Leybaert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; University Pierre et Marie Curie, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France; Department of Cellular & Physiological Sciences, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituo de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile; Physiology Group, Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
44
|
Yeung AK, Patil CS, Jackson MF. Pannexin‐1 in the CNS: Emerging concepts in health and disease. J Neurochem 2020; 154:468-485. [DOI: 10.1111/jnc.15004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Albert K. Yeung
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Chetan S. Patil
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Michael F. Jackson
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
45
|
Role of an Aromatic-Aromatic Interaction in the Assembly and Trafficking of the Zebrafish Panx1a Membrane Channel. Biomolecules 2020; 10:biom10020272. [PMID: 32053881 PMCID: PMC7072349 DOI: 10.3390/biom10020272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/28/2022] Open
Abstract
Pannexin 1 (Panx1) is a ubiquitously expressed hexameric integral membrane protein known to function as an adenosine triphosphate (ATP) release channel. Panx1 proteins exist in unglycosylated core form (Gly0). They undergo critical post-translational modifications forming the high mannose glycosylation state (Gly1) in the endoplasmic reticulum (ER) and the complex glycosylation state (Gly2) in the Golgi apparatus. The regulation of transition from the ER to the cell membrane is not fully understood. Using site-specific mutagenesis, dye uptake assays, and interaction testing, we identified two conserved aromatic residues, Trp123 and Tyr205, in the transmembrane domains 2 and 3 of the zebrafish panx1a protein. Results suggest that both residues primarily govern the assembly of panx1a subunits into channels, with mutant proteins failing to interact. The results provide insight into a mechanism enabling regulation of Panx1 oligomerization, glycosylation, and trafficking.
Collapse
|
46
|
Brocardo L, Acosta LE, Piantanida AP, Rela L. Beneficial and Detrimental Remodeling of Glial Connexin and Pannexin Functions in Rodent Models of Nervous System Diseases. Front Cell Neurosci 2019; 13:491. [PMID: 31780897 PMCID: PMC6851021 DOI: 10.3389/fncel.2019.00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/17/2019] [Indexed: 01/30/2023] Open
Abstract
A variety of glial cell functions are supported by connexin and pannexin proteins. These functions include the modulation of synaptic gain, the control of excitability through regulation of the ion and neurotransmitter composition of the extracellular milieu and the promotion of neuronal survival. Connexins and pannexins support these functions through diverse molecular mechanisms, including channel and non-channel functions. The former comprise the formation of gap junction-mediated networks supported by connexin intercellular channels and the formation of pore-like membrane structures or hemichannels formed by both connexins and pannexins. Non-channel functions involve adhesion properties and the participation in signaling intracellular cascades. Pathological conditions of the nervous system such as ischemia, neurodegeneration, pathogen infection, trauma and tumors are characterized by distinctive remodeling of connexin expression and function. However, whether these changes can be interpreted as part of the pathogenesis, or as beneficial compensatory effects, remains under debate. Here we review the available evidence addressing this matter with a special emphasis in mouse models with selective manipulation of glial connexin and pannexin proteins in vivo. We postulate that the beneficial vs. detrimental effects of glial connexin remodeling in pathological conditions depend on the impact of remodeling on the different connexin and pannexin channel and non-channel functions, on the characteristics of the inflammatory environment and on the type of interaction among glial cells types.
Collapse
Affiliation(s)
- Lucila Brocardo
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Ernesto Acosta
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Piantanida
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lorena Rela
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
47
|
Ziraldo G, Buratto D, Kuang Y, Xu L, Carrer A, Nardin C, Chiani F, Salvatore AM, Paludetti G, Lerner RA, Yang G, Zonta F, Mammano F. A Human-Derived Monoclonal Antibody Targeting Extracellular Connexin Domain Selectively Modulates Hemichannel Function. Front Physiol 2019; 10:392. [PMID: 31263420 PMCID: PMC6584803 DOI: 10.3389/fphys.2019.00392] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/21/2019] [Indexed: 11/30/2022] Open
Abstract
Connexin hemichannels, which are plasma membrane hexameric channels (connexons) composed of connexin protein protomers, have been implicated in a host of physiological processes and pathological conditions. A number of single point pathological mutations impart a “leaky” character to the affected hemichannels, i.e., make them more active or hyperactive, suggesting that normal physiological condition could be recovered using selective hemichannel inhibitors. Recently, a human-derived monoclonal antibody named abEC1.1 has been shown to inhibit both wild type and hyperactive hemichannels composed of human (h) connexin 26 (hCx26) subunits. The aims of this work were (1) to characterize further the ability of abEC1.1 to selectively modulate connexin hemichannel function and (2) to assess its in vitro stability in view of future translational applications. In silico analysis of abEC1.1 interaction with the hCx26 hemichannel identified critically important extracellular domain amino acids that are conserved in connexin 30 (hCx30) and connexin 32 (hCx32). Patch clamp experiments performed in HeLa DH cells confirmed the inhibition efficiency of abEC1.1 was comparable for hCx26, hCx30 and hCx32 hemichannels. Of note, even a single amino acid difference in the putative binding region reduced drastically the inhibitory effects of the antibody on all the other tested hemichannels, namely hCx30.2/31.3, hCx30.3, hCx31, hCx31.1, hCx37, hCx43 and hCx45. Plasma membrane channels composed of pannexin 1 were not affected by abEC1.1. Finally, size exclusion chromatography assays showed the antibody does not aggregate appreciably in vitro. Altogether, these results indicate abEC1.1 is a promising tool for further translational studies.
Collapse
Affiliation(s)
- Gaia Ziraldo
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Liang Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Andrea Carrer
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,Department of Physics and Astronomy "G. Galilei", University of Padova, Padua, Italy
| | - Chiara Nardin
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,Department of Physics and Astronomy "G. Galilei", University of Padova, Padua, Italy
| | - Francesco Chiani
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | | | - Gaetano Paludetti
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Richard A Lerner
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Fabio Mammano
- CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,Department of Physics and Astronomy "G. Galilei", University of Padova, Padua, Italy
| |
Collapse
|
48
|
Bosutti A, Bernareggi A, Massaria G, D'Andrea P, Taccola G, Lorenzon P, Sciancalepore M. A "noisy" electrical stimulation protocol favors muscle regeneration in vitro through release of endogenous ATP. Exp Cell Res 2019; 381:121-128. [PMID: 31082374 DOI: 10.1016/j.yexcr.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 02/04/2023]
Abstract
An in vitro system of electrical stimulation was used to explore whether an innovative "noisy" stimulation protocol derived from human electromyographic recordings (EMGstim) could promote muscle regeneration. EMGstim was delivered to cultured mouse myofibers isolated from Flexor Digitorum Brevis, preserving their satellite cells. In response to EMGstim, immunostaining for the myogenic regulatory factor myogenin, revealed an increased percentage of elongated myogenin-positive cells surrounding the myofibers. Conditioned medium collected from EMGstim-treated cell cultures, promoted satellite cells differentiation in unstimulated myofiber cell cultures, suggesting that extracellular soluble factors could mediate the process. Interestingly, the myogenic effect of EMGstim was mimicked by exogenously applied ATP (0.1 μM), reduced by the ATP diphosphohydrolase apyrase and prevented by blocking endogenous ATP release with carbenoxolone. In conclusion, our results show that "noisy" electrical stimulations favor muscle progenitor cell differentiation most likely via the release of endogenous ATP from contracting myofibres. Our data also suggest that "noisy" stimulation protocols could be potentially more efficient than regular stimulations to promote in vivo muscle regeneration after traumatic injury or in neuropathological diseases.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Annalisa Bernareggi
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Gabriele Massaria
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy; Area Science Park, Padriciano, 99, I-34149, Trieste, Italy
| | - Paola D'Andrea
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Giuliano Taccola
- Department of Neuroscience, SISSA, Via Bonomea 265, 34136, Trieste, Italy; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, 33100, Udine, Italy
| | - Paola Lorenzon
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Marina Sciancalepore
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy.
| |
Collapse
|
49
|
Johnsen B, Kaschubowski KE, Nader S, Schneider E, Nicola JA, Fliegert R, Wolf IMA, Guse AH, Nikolaev VO, Koch-Nolte F, Haag F. P2X7-mediated ATP secretion is accompanied by depletion of cytosolic ATP. Purinergic Signal 2019; 15:155-166. [PMID: 31016551 PMCID: PMC6635544 DOI: 10.1007/s11302-019-09654-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 03/13/2019] [Indexed: 01/23/2023] Open
Abstract
ATP and its metabolites are important extracellular signal transmitters acting on purinergic P2 and P1 receptors. Most cells can actively secrete ATP in response to a variety of external stimuli such as gating of the P2X7 receptor. We used Yac-1 murine lymphoma cells to study P2X7-mediated ATP release. These cells co-express P2X7 and ADP-ribosyltransferase ARTC2, permitting gating of P2X7 by NAD+-dependent ADP-ribosylation without the need to add exogenous ATP. Yac-1 cells released ATP into the extracellular space within minutes after stimulation with NAD+. This was blocked by pre-incubation with the inhibitory P2X7-specific nanobody 13A7. Gating of P2X7 for 3 h significantly decreased intracellular ATP levels in living cells, but these had returned to normal by 20 h. P2X7-mediated ATP release was dependent on a rise in cytosolic calcium and the depletion of intracellular potassium, but was not blocked by inhibitors of pannexins or connexins. We used genetically encoded FRET-based ATP sensors targeted to the cytosol to image P2X7-mediated changes in the distribution of ATP in 3T3 fibroblasts co-expressing P2X7 and ARTC2 and in Yac-1 cells. In response to NAD+, we observed a marked depletion of ATP in the cytosol. This study demonstrates the potential of ATP sensors as tools to study regulated ATP release by other cell types under other conditions.
Collapse
Affiliation(s)
- Bjarne Johnsen
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Klaus Eric Kaschubowski
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sorush Nader
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Enja Schneider
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Jan-Andrei Nicola
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralf Fliegert
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Insa M A Wolf
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
50
|
Battistone MA, Merkulova M, Park Y, Peralta MA, Gombar F, Brown D, Breton S. Unravelling purinergic regulation in the epididymis: activation of V-ATPase-dependent acidification by luminal ATP and adenosine. J Physiol 2019; 597:1957-1973. [PMID: 30746715 PMCID: PMC6441927 DOI: 10.1113/jp277565] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS In the epididymis, elaborate communication networks between epithelial cells are important with respect to establishing an optimal acidic luminal environment for the maturation and storage of spermatozoa, which is essential for male fertility. Proton secretion by epididymal clear cells is achieved via the proton pumping V-ATPase located in their apical membrane. In the present study, we dissect the molecular mechanisms by which clear cells respond to luminal ATP and adenosine to modulate their acidifying activity via the adenosine receptor ADORA2B and the pH-sensitive ATP receptor P2X4. We demonstrate that the hydrolysis of ATP to produce adenosine by ectonucleotidases plays a key role in V-ATPase-dependent proton secretion, and is part of a feedback loop that ensures acidification of the luminal compartment These results help us better understand how professional proton-secreting cells respond to extracellular cues to modulate their functions, and how they communicate with neighbouring cells. ABSTRACT Cell-cell cross-talk is crucial for the dynamic function of epithelia, although how epithelial cells detect and respond to variations in extracellular stimuli to modulate their environment remains incompletely understood. In the present study, we used the epididymis as a model system to investigate epithelial cell regulation by luminal factors. In the epididymis, elaborate communication networks between the different epithelial cell types are important for establishing an optimal acidic luminal environment for the maturation and storage of spermatozoa. In particular, clear cells (CCs) secrete protons into the lumen via the proton pumping V-ATPase located in their apical membrane, a process that is activated by luminal alkalinization. However, how CCs detect luminal pH variations to modulate their function remains uncharacterized. Purinergic regulation of epithelial transport is modulated by extracellular pH in other tissues. In the present study, functional analysis of the mouse cauda epididymis perfused in vivo showed that luminal ATP and adenosine modulate the acidifying activity of CCs via the purinergic ADORA2B and P2X4 receptors, and that luminal adenosine content is itself regulated by luminal pH. Altogether, our observations illustrate mechanisms by which CCs are activated by pH sensitive P2X4 receptor and ectonucleotidases, providing a feedback mechanism for the maintenance of luminal pH. These novel mechanisms by which professional proton-secreting cells respond to extracellular cues to modulate their functions, as well as how they communicate with neighbouring cells, might be translatable to other acidifying epithelia.
Collapse
Affiliation(s)
- Maria A. Battistone
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Maria Merkulova
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Yoo‐Jin Park
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Maria A. Peralta
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Flavia Gombar
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Dennis Brown
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Sylvie Breton
- Program in Membrane Biology, Center for System Biology, Nephrology Division, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|