1
|
González-Sandoval C, Godínez-Ramos I, Arias-Montaño JA, Barral J. Histamine H 3 receptor activation increases the firing of striatal medium spiny neurons in slices from infantile rats. Can J Physiol Pharmacol 2025; 103:134-145. [PMID: 39947140 DOI: 10.1139/cjpp-2024-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Striatal medium spiny neurons (MSN) form two subpopulations (MSN-D1 and MSN-D2) according to the expression of dopamine D1 or D2 receptors and their target regions. The activation of postsynaptic histamine H1 and H2 receptors increases MSN-D1 and MSN-D2 excitability. Since MSN also express H3 receptors (H3Rs), in this work we explored the effect of their activation on MSN firing. Electrophysiological recordings (whole-cell patch-clamp, current-clamp mode) were conducted on forebrain slices from infantile rats (12-16 postnatal days). In both MSN-D1 and MSN-D2 perfusion with the H3R agonist immepip (1 µmol/L) increased neuronal firing evoked by current injection, an effect reproduced by R-α-methylhistamine (1 µmol/L) and prevented by the antagonist clobenpropit (10 µmol/L). Blockade of N- or P/Q-type voltage-activated calcium channels by ω-conotoxin-GVIA (1 µmol/L) or ω-agatoxin-TK (400 nmol/L) increased MSN firing but did not preclude the immepip effect. The potassium channel blockers 4-aminopyridine (1 mmol/L) and tetraethylammonium (300 µmol/L) increased neuronal firing and prevented the immepip action. Likewise, the KV7 channel blocker XE-991 (10 µmol/L) and the muscarinic receptor agonist carbachol (10 µmol/L) increased MSN firing frequency and occluded the immepip effect. These data indicate that the activation of postsynaptic H3Rs facilitates MSN-D1 and MSN-D2 firing by inhibiting KV7 potassium channels.
Collapse
Affiliation(s)
- Carolina González-Sandoval
- Departamento de Neurociencias, UIICSE, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, 54090 Estado de México, México
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México
| | - Isabel Godínez-Ramos
- Departamento de Neurociencias, UIICSE, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, 54090 Estado de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco, 07360 Ciudad de México, México
| | - Jaime Barral
- Departamento de Neurociencias, UIICSE, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, 54090 Estado de México, México
| |
Collapse
|
2
|
Yang L, Zhang M, Zhou Y, Jiang D, Yu L, Xu L, Fei F, Lin W, Zheng Y, Wu J, Wang Y, Chen Z. Histamine-tuned subicular circuit mediates alert-driven accelerated locomotion in mice. Nat Commun 2024; 15:9887. [PMID: 39543166 PMCID: PMC11564525 DOI: 10.1038/s41467-024-54347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
The locomotive action involves diverse coordination, necessitating the integration of multiple motor neural circuits. However, the precise circuitry mechanism governing emotion-driven accelerated locomotion remains predominantly elusive. Here we dissect projections from the tuberomammillary nucleus (TMN) to subiculum (SUB) which promote alert-driven accelerated locomotion. We find that TMN histaminergic neurons respond to high-speed locomotion in both natural and alert acceleration. The TMN-SUB circuit is sufficient but not essential for amplifying accelerated locomotion from low to high-speed movement in basal condition, but it is both sufficient and necessary in alert condition for modulating accelerated locomotion during high-speed escape behavior. TMN histaminergic neuron activates SUB glutamatergic "fast locomotor cell" that projects to retrosplenial granular cortex (RSG) mainly through histamine H2 receptor (H2R). This study reveals the critical role of the histamine-tuned SUB circuit in alert-driven accelerated locomotion in mice, providing a theoretical foundation for comprehending neural circuit mechanisms of instinctive behaviors under alert.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Mengdi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yuan Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Dongxiao Jiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Lilong Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Lingyu Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Wenkai Lin
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Jiannong Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
- Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
3
|
Luo B. Insights into the advances in therapeutic drugs for neuroinflammation-related diseases. Int J Neurosci 2024; 134:1256-1281. [PMID: 37722706 DOI: 10.1080/00207454.2023.2260088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Studies have shown that neurodegenerative diseases such as AD and PD are related to neuroinflammation. Neuroinflammation is a common inflammatory condition that can lead to a variety of dysfunction in the body. At present, it is no medications specifically approved to prevent or cure neuroinflammation, so even though many drugs can temporarily control the neurological symptoms of neuroinflammation, but no one can reverse the progress of neuroinflammation, let al.one completely cure neuroinflammation. Therefore, it is urgent to develop new drug development for neuroinflammation treatment. In this review, we highlight the therapeutic advancement in the field of neurodegenerative disorders, by focusing on the impact of neuroinflammation treatment has on these conditions, and the effective drugs for the treatment of neuroinflammation and neurodegenerative diseases and their latest research progress are reviewed according to the related signaling pathway, as well as the prospect of their clinical application is also discussed. The purpose of this review is to enable specialists to better understand the mechanisms underlying neuroinflammation and anti-inflammatory drugs, promote the development of therapeutic drugs for neuroinflammation and neurodegenerative diseases, and further provide therapeutic references for clinical neurologists.
Collapse
Affiliation(s)
- Bozhi Luo
- School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
4
|
Szukiewicz D. Histaminergic System Activity in the Central Nervous System: The Role in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2024; 25:9859. [PMID: 39337347 PMCID: PMC11432521 DOI: 10.3390/ijms25189859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Histamine (HA), a biogenic monoamine, exerts its pleiotropic effects through four H1R-H4R histamine receptors, which are also expressed in brain tissue. Together with the projections of HA-producing neurons located within the tuberomammillary nucleus (TMN), which innervate most areas of the brain, they constitute the histaminergic system. Thus, while remaining a mediator of the inflammatory reaction and immune system function, HA also acts as a neurotransmitter and a modulator of other neurotransmitter systems in the central nervous system (CNS). Although the detailed causes are still not fully understood, neuroinflammation seems to play a crucial role in the etiopathogenesis of both neurodevelopmental and neurodegenerative (neuropsychiatric) diseases, such as autism spectrum disorders (ASDs), attention-deficit/hyperactivity disorder (ADHD), Alzheimer's disease (AD) and Parkinson's disease (PD). Given the increasing prevalence/diagnosis of these disorders and their socioeconomic impact, the need to develop effective forms of therapy has focused researchers' attention on the brain's histaminergic activity and other related signaling pathways. This review presents the current state of knowledge concerning the involvement of HA and the histaminergic system within the CNS in the development of neurodevelopmental and neurodegenerative disorders. To this end, the roles of HA in neurotransmission, neuroinflammation, and neurodevelopment are also discussed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
5
|
Benoy A, Ramaswamy S. Histamine in the neocortex: Towards integrating multiscale effectors. Eur J Neurosci 2024; 60:4597-4623. [PMID: 39032115 DOI: 10.1111/ejn.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Histamine is a modulatory neurotransmitter, which has received relatively less attention in the central nervous system than other neurotransmitters. The functional role of histamine in the neocortex, the brain region that controls higher-order cognitive functions such as attention, learning and memory, remains largely unknown. This article focuses on the emerging roles and mechanisms of histamine release in the neocortex. We describe gaps in current knowledge and propose the application of interdisciplinary tools to dissect the detailed multiscale functional logic of histaminergic action in the neocortex ranging from sub-cellular, cellular, dendritic and synaptic levels to microcircuits and mesoscale effects.
Collapse
Affiliation(s)
- Amrita Benoy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
| | - Srikanth Ramaswamy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
- Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
6
|
Tighilet B, Trico J, Marouane E, Zwergal A, Chabbert C. Histaminergic System and Vestibular Function in Normal and Pathological Conditions. Curr Neuropharmacol 2024; 22:1826-1845. [PMID: 38504566 PMCID: PMC11284731 DOI: 10.2174/1570159x22666240319123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 03/21/2024] Open
Abstract
Most neurotransmitter systems are represented in the central and peripheral vestibular system and are thereby involved both in normal vestibular signal processing and the pathophysiology of vestibular disorders. However, there is a special relationship between the vestibular system and the histaminergic system. The purpose of this review is to document how the histaminergic system interferes with normal and pathological vestibular function. In particular, we will discuss neurobiological mechanisms such as neuroinflammation that involve histamine to modulate and allow restoration of balance function in the situation of a vestibular insult. These adaptive mechanisms represent targets of histaminergic pharmacological compounds capable of restoring vestibular function in pathological situations. The clinical use of drugs targeting the histaminergic system in various vestibular disorders is critically discussed.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Jessica Trico
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| | - Emna Marouane
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Andreas Zwergal
- Department of Neurology, LMU University Hospital, Munich, Germany
- German Center for Vertigo and Balance Disorders, LMU University Hospital, Munich, Germany
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, Groupe de Recherche Vertige (GDR#2074), France
| |
Collapse
|
7
|
Olejarz-Maciej A, Mogilski S, Karcz T, Werner T, Kamińska K, Kupczyk J, Honkisz-Orzechowska E, Latacz G, Stark H, Kieć-Kononowicz K, Łażewska D. Trisubstituted 1,3,5-Triazines as Histamine H 4 Receptor Antagonists with Promising Activity In Vivo. Molecules 2023; 28:molecules28104199. [PMID: 37241939 DOI: 10.3390/molecules28104199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Pain is a very unpleasant experience that makes life extremely uncomfortable. The histamine H4 receptor (H4R) is a promising target for the treatment of inflammatory and immune diseases, as well as pain. H4R ligands have demonstrated analgesic effects in a variety of pain models, including inflammatory pain. Continuing the search for active H4R ligands among the alkyl derivatives of 1,3,5-triazine, we obtained 19 new compounds in two series: acyclic (I) and aliphatic (II). In vitro pharmacological evaluation showed their variable affinity for H4R. The majority of compounds showed a moderate affinity for this receptor (Ki > 100 nM), while all compounds tested in ß-arrestin and cAMP assays showed antagonistic activity. The most promising, compound 6, (4-(cyclopentylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine; Ki = 63 nM) was selected for further in vitro evaluation: blood-brain barrier permeability (PAMPA assay; Pe = 12.26 × 10-6 cm/s) and toxicity tests (HepG2 and SH-5YSY cells; no toxicity up to 50 µM). Next, compound 6 tested in vivo in a carrageenan-induced inflammatory pain model showed anti-inflammatory and analgesic effects (strongest at 50 mg/kg i.p.). Furthermore, in a histamine- and chloroquine-induced pruritus model, compound 6 at a dose of 25 mg/kg i.p. and 50 mg/kg i.p., respectively, reduced the number of scratch bouts. Thus, compound 6 is a promising ligand for further studies.
Collapse
Affiliation(s)
- Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Tobias Werner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katarzyna Kamińska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Jarosław Kupczyk
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
8
|
Honkisz-Orzechowska E, Popiołek-Barczyk K, Linart Z, Filipek-Gorzała J, Rudnicka A, Siwek A, Werner T, Stark H, Chwastek J, Starowicz K, Kieć-Kononowicz K, Łażewska D. Anti-inflammatory effects of new human histamine H 3 receptor ligands with flavonoid structure on BV-2 neuroinflammation. Inflamm Res 2023; 72:181-194. [PMID: 36370200 PMCID: PMC9925557 DOI: 10.1007/s00011-022-01658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Microglia play an important role in the neuroinflammation developed in response to various pathologies. In this study, we examined the anti-inflammatory effect of the new human histamine H3 receptor (H3R) ligands with flavonoid structure in murine microglial BV-2 cells. MATERIAL AND METHODS The affinity of flavonoids (E243 -flavone and IIIa-IIIc-chalcones) for human H3R was evaluated in the radioligand binding assay. The cytotoxicity on BV-2 cell viability was investigated with the MTS assay. Preliminary evaluation of anti-inflammatory properties was screened by the Griess assay in an in vitro neuroinflammation model of LPS-treated BV-2 cells. The expression and secretion of pro-inflammatory cytokines were evaluated by real-time qPCR and ELISA, respectively. The expression of microglial cell markers were determined by immunocytochemistry. RESULTS Chalcone derivatives showed high affinity at human H3R with Ki values < 25 nM. At the highest nontoxic concentration (6.25 μM) compound IIIc was the most active in reducing the level of nitrite in Griess assay. Additionally, IIIc treatment attenuated inflammatory process in murine microglia cells by down-regulating pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) at both the level of mRNA and protein level. Our immunocytochemistry studies revealed expression of microglial markers (Iba1, CD68, CD206) in BV-2 cell line. CONCLUSIONS These results emphasize the importance of further research to accurately identify the anti-inflammatory mechanism of action of chalcones.
Collapse
Affiliation(s)
- Ewelina Honkisz-Orzechowska
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688, Kraków, Poland.
| | - Katarzyna Popiołek-Barczyk
- grid.418903.70000 0001 2227 8271Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Zuzanna Linart
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Jadwiga Filipek-Gorzała
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Rudnicka
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Pharmacobiology, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Tobias Werner
- grid.411327.20000 0001 2176 9917Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- grid.411327.20000 0001 2176 9917Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Jakub Chwastek
- grid.418903.70000 0001 2227 8271Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Katarzyna Starowicz
- grid.418903.70000 0001 2227 8271Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- grid.5522.00000 0001 2162 9631Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Dorota Łażewska
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688, Kraków, Poland.
| |
Collapse
|
9
|
Beheshti S, Wasil Wesal M. Anticonvulsant activity of the histamine H3 receptor inverse agonist pitolisant in an electrical kindling model of epilepsy. Neurosci Lett 2022; 782:136685. [DOI: 10.1016/j.neulet.2022.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
10
|
Vázquez-Vázquez H, Gonzalez-Sandoval C, Vega AV, Arias-Montaño JA, Barral J. Histamine H 3 Receptor Activation Modulates Glutamate Release in the Corticostriatal Synapse by Acting at Ca V2.1 (P/Q-Type) Calcium Channels and GIRK (K IR3) Potassium Channels. Cell Mol Neurobiol 2022; 42:817-828. [PMID: 33068216 PMCID: PMC11441178 DOI: 10.1007/s10571-020-00980-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/06/2020] [Indexed: 01/24/2023]
Abstract
The striatum is innervated by histaminergic fibers and expresses a high density of histamine H3 receptors (H3Rs), present on medium spiny neurons (MSNs) and corticostriatal afferents. In this study, in sagittal slices from the rat dorsal striatum, excitatory postsynaptic potentials (EPSPs) were recorded in MSNs after electrical stimulation of corticostriatal axons. The effect of H3R activation and blockers of calcium and potassium channels was evaluated with the paired-pulse facilitation protocol. In the presence of the H3R antagonist/inverse agonist clobenpropit (1 μM), the H3R agonist immepip (1 μM) had no effect on the paired-pulse ratio (PPR), but in the absence of clobenpropit, immepip induced a significant increase in PPR, accompanied by a reduction in EPSP amplitude, suggesting presynaptic inhibition. The blockade of CaV2.1 (P/Q-type) channels with ω-agatoxin TK (400 nM) increased PPR and prevented the effect of immepip. The CaV2.2 (N-type) channel blocker ω-conotoxin GVIA (1 μM) also increased PPR, but did not occlude the immepip action. Functional KIR3 channels are present in corticostriatal terminals, and in experiments in which immepip increased PPR, the KIR3 blocker tertiapin-Q (30 nM) prevented the effect of the H3R agonist. These results indicate that the presynaptic modulation by H3Rs of corticostriatal synapses involves the inhibition of Cav2.1 calcium channels and the activation of KIR3 potassium channels.
Collapse
Affiliation(s)
- Héctor Vázquez-Vázquez
- Departamento de Neurociencias, UIICSE, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Apartado Postal 314, 54090, Tlalnepantla, Estado de México, Mexico
| | - Carolina Gonzalez-Sandoval
- Departamento de Neurociencias, UIICSE, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Apartado Postal 314, 54090, Tlalnepantla, Estado de México, Mexico
| | - Ana V Vega
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Apartado Postal 314, 54090, Tlalnepantla, Estado de México, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación Y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, 07360, Zacatenco, Ciudad de México, Mexico
| | - Jaime Barral
- Departamento de Neurociencias, UIICSE, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Apartado Postal 314, 54090, Tlalnepantla, Estado de México, Mexico.
| |
Collapse
|
11
|
Qian H, Shu C, Xiao L, Wang G. Histamine and histamine receptors: Roles in major depressive disorder. Front Psychiatry 2022; 13:825591. [PMID: 36213905 PMCID: PMC9537353 DOI: 10.3389/fpsyt.2022.825591] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Although the incidence of major depressive disorder (MDD) is high and its social impact is great, we still know very little about the pathophysiology of depression. The monoamine hypothesis of depression suggests that 5-HT, NE, and DA synergistically affect mood, which is the basis of current drug therapy for depression. However, histamine as a monoamine transmitter is rarely studied. Our review is the first time to illustrate the effect of histaminergic system on depression in order to find the way for the development of new antidepressant drugs. The brain neurotransmitter histamine is involved in MDD, and the brain histaminergic system operates through four receptors. Histamine and its receptors can also regulate the immune response to improve symptoms of depression. In addition, H3R can interact with other depression-related transmitters (including 5-HT, DA, GLU, and MCH); thus, histamine may participate in the occurrence of depression through other neural circuits. Notably, in rodent studies, several H3R and H1R antagonists were found to be safe and effective in alleviating depression-like behavior. To highlight the complex functions of histamine in depression, and reveals that histamine receptors can be used as new targets for antidepressant therapy.
Collapse
Affiliation(s)
- Hong Qian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Yang L, Wang Y, Chen Z. Central histaminergic signalling, neural excitability and epilepsy. Br J Pharmacol 2021; 179:3-22. [PMID: 34599508 DOI: 10.1111/bph.15692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a common neurological disorder characterized by repeated and spontaneous epileptic seizures and is not well controlled by current medication. Traditional theory suggests that epilepsy results from an imbalance of excitatory glutamate neurons and inhibitory GABAergic neurons. However, new evidence from clinical and preclinical research suggests that histamine in the CNS plays an important role in the modulation of neural excitability and in the pathogenesis of epilepsy. Many histamine receptor ligands have achieved curative effects in animal epilepsy models, among which the histamine H3 receptor antagonist pitolisant has shown anti-epileptic effects in clinical trials. Recent studies, therefore, have focused on the potential action of histamine receptors to control and treat epilepsy. In this review, we summarize the findings from animal and clinical epilepsy research on the role of brain histamine and its receptors. We also identify current gaps in the research and suggest where further studies are most needed.
Collapse
Affiliation(s)
- Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Falkenstein M, Elek M, Stark H. Chemical Probes for Histamine Receptor Subtypes. Curr Top Behav Neurosci 2021; 59:29-76. [PMID: 34595743 DOI: 10.1007/7854_2021_254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ligands with different properties and different selectivity are highly needed for in vitro and in vivo studies on the (patho)physiological influence of the chemical mediator histamine and its receptor subtypes. A selection of well-described ligands for the different receptor subtypes and different studies is shown with a particular focus on affinity and selectivity. In addition, compounds with radioactive or fluorescence elements will be presented with their beneficial use for other species or different investigations.
Collapse
Affiliation(s)
- Markus Falkenstein
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Milica Elek
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany.
| |
Collapse
|
14
|
Shan L, Martens GJM, Swaab DF. Histamine-4 Receptor: Emerging Target for the Treatment of Neurological Diseases. Curr Top Behav Neurosci 2021; 59:131-145. [PMID: 34432256 DOI: 10.1007/7854_2021_237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A major challenge in the field of the biogenic amine histamine is the search for new-generation histamine receptor specific drugs. Daniel Bovet and Sir James Black received their Nobel Prizes for Medicine for their work on histamine-1 receptor (H1R) and H2R antagonists to treat allergies and gastrointestinal disorders. The first H3R-targeting drug to reach the market was approved for the treatment of the neurological disorder narcolepsy in 2018. The antagonists for the most recently identified histamine receptor, H4R, are currently under clinical evaluation for their potential therapeutic effects on inflammatory diseases such as atopic dermatitis and pruritus. In this chapter, we propose that H4R antagonists are endowed with prominent anti-inflammatory and immune effects, including in the brain. To substantiate this proposition, we combine data from transcriptional analyses of postmortem human neurodegenerative disease brain samples, human genome-wide association studies (GWAS), and translational animal model studies. The results prompt us to suggest the potential involvement of the H4R in various neurodegenerative diseases and how manipulating the H4R may create new therapeutic opportunities in central nervous system diseases.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Nijmegen, GA, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Pathophysiological Roles of Histamine Receptors in Cancer Progression: Implications and Perspectives as Potential Molecular Targets. Biomolecules 2021; 11:biom11081232. [PMID: 34439898 PMCID: PMC8392479 DOI: 10.3390/biom11081232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
High levels of histamine and histamine receptors (HRs), including H1R~H4R, are found in many different types of tumor cells and cells in the tumor microenvironment, suggesting their involvement in tumor progression. This review summarizes the latest evidence demonstrating the pathophysiological roles of histamine and its cognate receptors in cancer biology. We also discuss the novel therapeutic approaches of selective HR ligands and their potential prognostic values in cancer treatment. Briefly, histamine is highly implicated in cancer development, growth, and metastasis through interactions with distinct HRs. It also regulates the infiltration of immune cells into the tumor sites, exerting an immunomodulatory function. Moreover, the effects of various HR ligands, including H1R antagonists, H2R antagonists, and H4R agonists, on tumor progression in many different cancer types are described. Interestingly, the expression levels of HR subtypes may serve as prognostic biomarkers in several cancers. Taken together, HRs are promising targets for cancer treatment, and HR ligands may offer novel therapeutic potential, alone or in combination with conventional therapy. However, due to the complexity of the pathophysiological roles of histamine and HRs in cancer biology, further studies are warranted before HR ligands can be introduced into clinical settings.
Collapse
|
16
|
Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci 2021; 15:680214. [PMID: 34335160 PMCID: PMC8317266 DOI: 10.3389/fnins.2021.680214] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
The biogenic amine, histamine, has been shown to critically modulate inflammatory processes as well as the properties of neurons and synapses in the brain, and is also implicated in the emergence of neurodevelopmental disorders. Indeed, a reduction in the synthesis of this neuromodulator has been associated with the disorders Tourette's syndrome and obsessive-compulsive disorder, with evidence that this may be through the disruption of the corticostriatal circuitry during development. Furthermore, neuroinflammation has been associated with alterations in brain development, e.g., impacting synaptic plasticity and synaptogenesis, and there are suggestions that histamine deficiency may leave the developing brain more vulnerable to proinflammatory insults. While most studies have focused on neuronal sources of histamine it remains unclear to what extent other (non-neuronal) sources of histamine, e.g., from mast cells and other sources, can impact brain development. The few studies that have started exploring this in vitro, and more limited in vivo, would indicate that non-neuronal released histamine and other preformed mediators can influence microglial-mediated neuroinflammation which can impact brain development. In this Review we will summarize the state of the field with regard to non-neuronal sources of histamine and its impact on both neuroinflammation and brain development in key neural circuits that underpin neurodevelopmental disorders. We will also discuss whether histamine receptor modulators have been efficacious in the treatment of neurodevelopmental disorders in both preclinical and clinical studies. This could represent an important area of future research as early modulation of histamine from neuronal as well as non-neuronal sources may provide novel therapeutic targets in these disorders.
Collapse
Affiliation(s)
- Elliott Carthy
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
17
|
Zak A, Lemaire L, Chalon S, Chicheri G, Marzag H, Bodard S, Sérrière S, Routier S, Buron F, Vercouillie J. [ 18 F]-labeled positron emission tomography ligand for the histamine H4 receptor. J Labelled Comp Radiopharm 2021; 64:363-372. [PMID: 34089268 DOI: 10.1002/jlcr.3929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022]
Abstract
We synthesized 5-[18 F]-fluoro-1H-indol-2-yl)(4-methyl-1-piperazinyl)methanone ([18 F]5) via a Suzuki approach starting from a protected pinacol borane precursor followed by acidic hydrolysis of the t-Boc protecting group. The non-optimized radiochemical yield was 5.7 ± 1.35%, radiochemical purity was over 99%, and molar activity was 100.7 ± 34.5 GBq/μmol (n = 3). [18 F]5 was stable in rat plasma for at least 4 h and was evaluated by μPET imaging and biodistribution using a unilateral quinolinic acid rat model of neuroinflammation. The time-activity curve showed that [18 F]5 entered the brain immediately after intravenous injection and then left it progressively with a very low level reached from 30 min after injection. The biodistribution study showed no difference in the accumulation of [18 F]5 between the lesioned and intact side of the brain and between control rats and animals pretreated with a saturating dose of JNJ-7777120 as a specific H4R antagonist. Hence, despite its in vitro nanomolar affinity for H4R, and its ability to cross the blood-brain barrier in rats, [18 F]5 does not appear suitable to image in vivo the receptor by PET.
Collapse
Affiliation(s)
- Agnieszka Zak
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, Orléans, France
| | - Lucas Lemaire
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, Orléans, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Gabrielle Chicheri
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CERRP, Université de Tours, Tours, France
| | - Hamid Marzag
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, Orléans, France
| | - Sylvie Bodard
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sophie Sérrière
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, Orléans, France
| | - Frédéric Buron
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, Orléans, France
| | - Johnny Vercouillie
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CERRP, Université de Tours, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
| |
Collapse
|
18
|
Panula P. Histamine receptors, agonists, and antagonists in health and disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:377-387. [PMID: 34225942 DOI: 10.1016/b978-0-12-820107-7.00023-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Histamine in the brain is produced by a group of tuberomamillary neurons in the posterior hypothalamus and a limited number of mast cells in different parts of the brain. Four G-protein-coupled receptors mediate the effects of histamine. Two of these receptors, H3 and H4 receptors, are high-affinity receptors in the brain and immune system, respectively. The two classic histamine receptors, H1 receptor and H2 receptor, are well known as drug targets for allergy and gastric ulcer, respectively. These receptors have lower affinity for histamine than the more recently discovered H3 and H4 receptors. The H1 and H2 receptors are important postsynaptic receptors in the brain, and they mediate many of the central effects of histamine on, e.g., alertness and wakefulness. H3 receptor is a pre- and postsynaptic receptor, which regulates release of histamine and several other neurotransmitters, including serotonin, GABA, and glutamate. H4 receptor is found in cerebral blood vessels and microglia, but its expression in neurons is not yet well established. Pitolisant, a H3 receptor antagonist, is used to treat narcolepsy and hypersomnia. H1 receptor antagonists have been used to treat insomnia, but its use requires precautions due to potential side effects. H2 receptor antagonists have shown efficacy in treatment of schizophrenia, but they are not in widespread clinical use. H4 receptor ligands may in the future be tested for neuroimmunological disorders and potentially neurodegenerative disorders in which inflammation plays a role, but clinical tests have not yet been initiated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
19
|
Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci 2020; 265:118826. [PMID: 33259863 DOI: 10.1016/j.lfs.2020.118826] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Epilepsy is a neurologicaldisorder characterized by persistent predisposition to recurrent seizurescaused by abnormal neuronal activity in the brain. Epileptic seizures maydevelop due to a relative imbalance of excitatory and inhibitory neurotransmitters. Expressional alterations of receptors and ion channelsactivated by neurotransmitters can lead to epilepsy pathogenesis. AIMS In this updated comprehensive review, we discuss the emerging implication of mutations in neurotransmitter-mediated receptors and ion channels. We aim to provide critical findings of the current literature about the role of neurotransmitters in epilepsy. MATERIALS AND METHODS A comprehensive literature review was conducted to identify and critically evaluate studies analyzing the possible relationship between epilepsy and neurotransmitters. The PubMed database was searched for related research articles. KEY FINDINGS Glutamate and gamma-aminobutyric acid (GABA) are the main neurotransmitters playing a critical role in the pathophysiology of this balance, and irreversible neuronal damage may occur as a result of abnormal changes in these molecules. Acetylcholine (ACh), the main stimulant of the autonomic nervous system, mediates signal transmission through cholinergic and nicotinic receptors. Accumulating evidence indicates that dysfunction of nicotinic ACh receptors, which are widely expressed in hippocampal and cortical neurons, may be significantly implicated in the pathogenesis of epilepsy. The dopamine-norepinephrine-epinephrine cycle activates hormonal and neuronal pathways; serotonin, norepinephrine, histamine, and melatonin can act as both hormones and neurotransmitters. Recent reports have demonstrated that nitric oxide mediates cognitive and memory-related functions via stimulating neuronal transmission. SIGNIFICANCE The elucidation of the role of the main mediators and receptors in epilepsy is crucial for developing new diagnostic and therapeutic approaches.
Collapse
|
20
|
Ravhe IS, Krishnan A, Manoj N. Evolutionary history of histamine receptors: Early vertebrate origin and expansion of the H 3-H 4 subtypes. Mol Phylogenet Evol 2020; 154:106989. [PMID: 33059072 DOI: 10.1016/j.ympev.2020.106989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022]
Abstract
Histamine receptors belonging to the superfamily of G protein-coupled receptors (GPCRs) mediate the diverse biological effects of biogenic histamine. They are classified into four phylogenetically distinct subtypes H1-H4, each with a different binding affinity for histamine and divergent downstream signaling pathways. Here we present the evolutionary history of the histamine receptors using a phylogenetic approach complemented with comparative genomics analyses of the sequences, gene structures, and synteny of gene neighborhoods. The data indicate the earliest emergence of histamine-mediated GPCR signaling by a H2 in a prebilaterian ancestor. The analyses support a revised classification of the vertebrate H3-H4 receptor subtypes. We demonstrate the presence of the H4 across vertebrates, contradicting the currently held notion that H4 is restricted to mammals. These non-mammalian vertebrate H4 orthologs have been mistaken for H3. We also identify the presence of a new H3 subtype (H3B), distinct from the canonical H3 (H3A), and propose that the H3A, H3B, and H4 likely emerged from a H3 progenitor through the 1R/2R whole genome duplications in an ancestor of the vertebrates. It is apparent that the ability of the H1, H2, and H3-4 to bind histamine was acquired convergently. We identified genomic signatures suggesting that the H1 and H3-H4 shared a last common ancestor with the muscarinic receptor in a bilaterian predecessor whereas, the H2 and the α-adrenoreceptor shared a progenitor in a prebilaterian ancestor. Furthermore, site-specific analysis of the vertebrate subtypes revealed potential residues that may account for the functional divergence between them.
Collapse
Affiliation(s)
- Infant Sagayaraj Ravhe
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arunkumar Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
21
|
Yoshikawa T, Nakamura T, Yanai K. Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br J Pharmacol 2020; 178:750-769. [PMID: 32744724 DOI: 10.1111/bph.15220] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/15/2022] Open
Abstract
Histamine plays pleiotropic roles as a neurotransmitter in the physiology of brain function, this includes the maintenance of wakefulness, appetite regulation and memory retrieval. Since numerous studies have revealed an association between histaminergic dysfunction and diverse neuropsychiatric disorders, such as Alzheimer's disease and schizophrenia, a large number of compounds acting on the brain histamine system have been developed to treat neurological disorders. In 2016, pitolisant, which was developed as a histamine H3 receptor inverse agonist by Schwartz and colleagues, was launched for the treatment of narcolepsy, emphasising the prominent role of brain histamine on wakefulness. Recent advances in neuroscientific techniques such as chemogenetic and optogenetic approaches have led to remarkable progress in the understanding of histaminergic neural circuits essential for the control of wakefulness. In this review article, we summarise the basic knowledge about the histaminergic nervous system and the mechanisms underlying sleep/wake regulation that are controlled by the brain histamine system. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadaho Nakamura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Han S, Márquez-Gómez R, Woodman M, Ellender T. Histaminergic Control of Corticostriatal Synaptic Plasticity during Early Postnatal Development. J Neurosci 2020; 40:6557-6571. [PMID: 32709692 PMCID: PMC7486653 DOI: 10.1523/jneurosci.0740-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022] Open
Abstract
A reduction in the synthesis of the neuromodulator histamine has been associated with Tourette's syndrome and obsessive-compulsive disorder. Symptoms of these disorders are thought to arise from a dysfunction or aberrant development ofcorticostriatal circuits. Here, we investigated how histamine affects developing corticostriatal circuits, both acutely and longer-term, during the first postnatal weeks, using patch-clamp and field recordings in mouse brain slices (C57Bl/6, male and female). Immunohistochemistry for histamine-containing axons reveals striatal histaminergic innervation by the second postnatal week, and qRT-PCR shows transcripts for H1, H2, and H3 histamine receptors in striatum from the first postnatal week onwards, with pronounced developmental increases in H3 receptor expression. Whole-cell patch-clamp recordings of striatal spiny projection neurons and histamine superfusion demonstrates expression of functional histamine receptors from the first postnatal week onwards, with histamine having diverse effects on their electrical properties, including depolarization of the membrane potential while simultaneously decreasing action potential output. Striatal field recordings and electrical stimulation of corticostriatal afferents revealed that histamine, acting at H3 receptors, negatively modulates corticostriatal synaptic transmission from the first postnatal week onwards. Last, we investigated effects of histamine on longer-term changes at developing corticostriatal synapses and show that histamine facilitates NMDA receptor-dependent LTP via H3 receptors during the second postnatal week, but inhibits synaptic plasticity at later developmental stages. Together, these results show that histamine acutely modulates developing striatal neurons and synapses and controls longer-term changes in developing corticostriatal circuits, thus providing insight into the possible etiology underlying neurodevelopmental disorders resulting from histamine dysregulation.SIGNIFICANCE STATEMENT Monogenic causes of neurologic disorders, although rare, can provide opportunities to both study and understand the brain. For example, a nonsense mutation in the coding gene for the histamine-synthesizing enzyme has been associated with Tourette's syndrome and obsessive-compulsive disorder, and dysfunction of corticostriatal circuits. Nevertheless, the etiology of these neurodevelopmental disorders and histamine's role in the development of corticostriatal circuits have remained understudied. Here we show that histamine is an active neuromodulator during the earliest periods of postnatal life and acts at developing striatal neurons and synapses. Crucially, we show that histamine permits NMDA receptor-dependent corticostriatal synaptic plasticity during an early critical period of postnatal development, which suggests that genetic or environmental perturbations of histamine levels can impact striatal development.
Collapse
Affiliation(s)
- Sungwon Han
- Department of Pharmacology, University of Oxford, OX1 3QT, Oxford, United Kingdom
| | | | - Myles Woodman
- Department of Pharmacology, University of Oxford, OX1 3QT, Oxford, United Kingdom
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, OX1 3QT, Oxford, United Kingdom
| |
Collapse
|
23
|
Bartole E, Grätz L, Littmann T, Wifling D, Seibel U, Buschauer A, Bernhardt G. UR-DEBa242: A Py-5-Labeled Fluorescent Multipurpose Probe for Investigations on the Histamine H3 and H4 Receptors. J Med Chem 2020; 63:5297-5311. [DOI: 10.1021/acs.jmedchem.0c00160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Edith Bartole
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Lukas Grätz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Timo Littmann
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Ulla Seibel
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
24
|
Mehta P, Miszta P, Rzodkiewicz P, Michalak O, Krzeczyński P, Filipek S. Enigmatic Histamine Receptor H 4 for Potential Treatment of Multiple Inflammatory, Autoimmune, and Related Diseases. Life (Basel) 2020; 10:E50. [PMID: 32344736 PMCID: PMC7235846 DOI: 10.3390/life10040050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
The histamine H4 receptor, belonging to the family of G-protein coupled receptors, is an increasingly attractive drug target. It plays an indispensable role in many cellular pathways, and numerous H4R ligands are being studied for the treatment of several inflammatory, allergic, and autoimmune disorders, including pulmonary fibrosis. Activation of H4R is involved in cytokine production and mediates mast cell activation and eosinophil chemotaxis. The importance of this receptor has also been shown in inflammatory models: peritonitis, respiratory tract inflammation, colitis, osteoarthritis, and rheumatoid arthritis. Recent studies suggest that H4R acts as a modulator in cancer, neuropathic pain, vestibular disorders, and type-2 diabetes, however, its role is still not fully understood.
Collapse
Affiliation(s)
- Pakhuri Mehta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| | - Przemysław Miszta
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| | - Przemysław Rzodkiewicz
- Department of General and Experimental Pathology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Olga Michalak
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 01-793 Warsaw, Poland; (O.M.); (P.K.)
| | - Piotr Krzeczyński
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 01-793 Warsaw, Poland; (O.M.); (P.K.)
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland or (P.M.); (P.M.)
| |
Collapse
|
25
|
Bartole E, Littmann T, Tanaka M, Ozawa T, Buschauer A, Bernhardt G. [ 3H]UR-DEBa176: A 2,4-Diaminopyrimidine-Type Radioligand Enabling Binding Studies at the Human, Mouse, and Rat Histamine H 4 Receptors. J Med Chem 2019; 62:8338-8356. [PMID: 31469288 DOI: 10.1021/acs.jmedchem.9b01342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Differences in sequence homology between human (h), mouse (m), and rat (r) histamine H4 receptors (H4R) cause discrepancies regarding affinities, potencies, and/or efficacies of ligands and therefore compromise translational animal models and the applicability of radioligands. Aiming at a radioligand enabling robust and comparative binding studies at the h/m/rH4Rs, 2,4-diaminopyrimidines were synthesized and pharmacologically investigated. The most notable compounds identified were two (partial) agonists with comparable potencies at the h/m/rH4Rs: UR-DEBa148 (N-neopentyl-4-(1,4,6,7-tetrahydro-5H-imidazo[4,5-c]pyridin-5-yl)pyrimidin-2-amine bis(2,2,2-trifluoroacetate), 43), the most potent [pEC50 (reporter gene assay) = 9.9/9.6/10.3] compound in the series being slightly G-protein biased and UR-DEBa176 [(R)-4-[3-(dimethylamino)pyrrolidin-1-yl]-N-neopentylpyrimidin-2-amine bis(2,2,2-trifluoroacetate), 46, pEC50 (reporter gene assay) = 8.7/9.0/9.2], a potential "cold" form of a tritiated H4R ligand. After radiolabeling, binding studies with [3H]UR-DEBa176 ([3H]46) at the h/m/rH4Rs revealed comparable Kd values (41/17/22 nM), low nonspecific binding (11-17%, ∼Kd), and fast associations/dissociations (25-30 min) and disclosed [3H]UR-DEBa176 as useful molecular tool to determine h/m/rH4R binding affinities for H4R ligands.
Collapse
Affiliation(s)
- Edith Bartole
- Institute of Pharmacy , University of Regensburg , D-93053 Regensburg , Germany
| | - Timo Littmann
- Institute of Pharmacy , University of Regensburg , D-93053 Regensburg , Germany
| | - Miho Tanaka
- Department of Chemistry, School of Science , University of Tokyo , 7-3-1 Bunkyo-ku , Hongo , Tokyo 113-0033 , Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science , University of Tokyo , 7-3-1 Bunkyo-ku , Hongo , Tokyo 113-0033 , Japan
| | - Armin Buschauer
- Institute of Pharmacy , University of Regensburg , D-93053 Regensburg , Germany
| | - Günther Bernhardt
- Institute of Pharmacy , University of Regensburg , D-93053 Regensburg , Germany
| |
Collapse
|
26
|
Yang TLB, Kim BS. Pruritus in allergy and immunology. J Allergy Clin Immunol 2019; 144:353-360. [PMID: 31395149 PMCID: PMC6690370 DOI: 10.1016/j.jaci.2019.06.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/20/2022]
Abstract
Although evolutionarily conserved to expel ectoparasites and aid in the clearance of toxins and noxious environmental stimuli from the host, the type 2 immune response can become pathologic in the setting of a variety of allergic disorders. Itch can be a behavioral extension of type 2 immunity by evoking scratching and, in the setting of disease, can become chronic and thus highly pathologic as well. Classically, our understanding of itch mechanisms has centered around the canonical IgE-mast cell-histamine axis. However, therapies aimed at blocking the histaminergic itch pathway have been largely ineffective, suggesting the existence of nonhistaminergic itch pathways. Indeed, recent advances in itch biology have provided critical new insight into a variety of novel therapeutic avenues for chronic itch in the setting of a number of allergic disorders. Here we highlight how these new developments will likely inform the problem of pruritus in a variety of well-established and emerging conditions in the field of allergy.
Collapse
Affiliation(s)
- Ting-Lin B Yang
- Center for the Study of Itch, Washington University School of Medicine, St Louis, Mo; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Brian S Kim
- Center for the Study of Itch, Washington University School of Medicine, St Louis, Mo; Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo; Department of Anesthesiology, Washington University School of Medicine, St Louis, Mo; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Mo.
| |
Collapse
|
27
|
Chu CC, Zhao SZ. Pathophysiological Role and Drug Modulation of Calcium Transport in Ocular Surface Cells. Curr Med Chem 2019; 27:5078-5091. [PMID: 31237195 DOI: 10.2174/0929867326666190619114848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/28/2019] [Accepted: 05/21/2019] [Indexed: 11/22/2022]
Abstract
The ocular surface structure and extraocular accessory organs constitute the ocular surface system, which includes the cornea, conjunctiva, eyelids, lacrimal organs, and lacrimal passages. This system is composed of, and stabilized by, the corneal epithelium, conjunctival cells, conjunctival goblet cells, lacrimal acinar cells and Tenon's fibroblasts, all of which maintain the healthy eyeball surface system. Ocular surface diseases are commonly referred to corneal and conjunctival disease and external ocular disease, resulting from damage to the ocular surface structure. A growing body of evidence has indicated that abnormal activation of the KCa3.1 channel and Ca2+/ calmodulin-dependent kinase initiates ocular injury. Signaling pathways downstream of the irregular Ca2+ influx induce cell progression and migration, and impair tight junctions, epithelial transport and secretory function. In this overview, we summarize the current knowledge regarding ocular surface disease in terms of physical and pathological alteration of the ocular system. We dissect in-depth, the mechanisms underlying disease progression, and we describe the current calcium transport therapeutics and the obstacles that remain to be solved. Finally, we summarize how to integrate the research results into clinical practice in the future.
Collapse
Affiliation(s)
- Chen-Chen Chu
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| | - Shao-Zhen Zhao
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, College of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, 300384, China
| |
Collapse
|
28
|
Obara I, Telezhkin V, Alrashdi I, Chazot PL. Histamine, histamine receptors, and neuropathic pain relief. Br J Pharmacol 2019; 177:580-599. [PMID: 31046146 PMCID: PMC7012972 DOI: 10.1111/bph.14696] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/21/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023] Open
Abstract
Histamine, acting via distinct histamine H1, H2, H3, and H4 receptors, regulates various physiological and pathological processes, including pain. In the last two decades, there has been a particular increase in evidence to support the involvement of H3 receptor and H4 receptor in the modulation of neuropathic pain, which remains challenging in terms of management. However, recent data show contrasting effects on neuropathic pain due to multiple factors that determine the pharmacological responses of histamine receptors and their underlying signal transduction properties (e.g., localization on either the presynaptic or postsynaptic neuronal membranes). This review summarizes the most recent findings on the role of histamine and the effects mediated by the four histamine receptors in response to the various stimuli associated with and promoting neuropathic pain. We particularly focus on mechanisms underlying histamine‐mediated analgesia, as we aim to clarify the analgesic potential of histamine receptor ligands in neuropathic pain. Linked Articles This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc
Collapse
Affiliation(s)
- Ilona Obara
- School of Pharmacy, Newcastle University, Newcastle upon Tyne, UK.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Vsevolod Telezhkin
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ibrahim Alrashdi
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Paul L Chazot
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
29
|
Schneider EH. Microglial histamine H4R in the pathophysiology of Parkinson’s disease—a new actor on the stage? Naunyn Schmiedebergs Arch Pharmacol 2019; 392:641-645. [DOI: 10.1007/s00210-019-01635-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
|
30
|
Alkyl derivatives of 1,3,5-triazine as histamine H4 receptor ligands. Bioorg Med Chem 2019; 27:1254-1262. [DOI: 10.1016/j.bmc.2019.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022]
|
31
|
Worm J, Falkenberg K, Olesen J. Histamine and migraine revisited: mechanisms and possible drug targets. J Headache Pain 2019; 20:30. [PMID: 30909864 PMCID: PMC6734463 DOI: 10.1186/s10194-019-0984-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/18/2019] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To review the existing literature on histamine and migraine with a focus on the molecule, its receptors, its use in inducing migraine, and antihistamines in the treatment of migraine. BACKGROUND Histamine has been known to cause a vascular type headache for almost a hundred years. Research has focused on antihistamines as a possible treatment and histamine as a migraine provoking agent but there has been little interest in this field for the last 25 years. In recent years two additional histamine (H3 and H4) receptors have been discovered and a series of non-sedating antihistamines have been developed. It is therefore timely to review the field again. METHODS For this review the PubMed/MEDLINE database was searched for eligible studies. We searched carefully for all articles on histamine, antihistamines and histamine receptors in relation to migraine and the nervous system. The following search terms were used: histamine, migraine disorders, migraine, headache, antihistamines, histamine antagonists, clinical trials, induced headache, histamine H3 receptor, histamine H4 receptor and pharmacology. Four hundred thirty-six titles were read, 135 abstracts were read, 112 articles were read in full and 53 articles were used in this review. Review process resulted in 12 articles added to a total of 65. FINDINGS Early studies of H1 and H2 antihistamines lack scientific strength and show conflicting results. Most of the antihistaminic drugs used in these trials bind also to other receptors which makes it difficult to conclude on the antihistaminic effect. Histamine is an efficient inducer of migraine attacks in migraine patients by an H1 mechanism most likely extracerebrally. These findings merit further investigation of antihistamines in clinical drug trials. The H3 and H4 receptors are found in primarily in CNS and immune tissues, respectively. H3 is likely to be involved in antinociception and has been linked with cognitive, neurodegenerative and sleep disorders. The only marketed H3 agent, pitolisant, is a brain penetrant H3 antagonist/inverse agonist which increases central histamine and causes headache. The experimental H3 agonist Nα-methylhistamine has shown promising results as a migraine preventative in studies of uncertain quality. With the current limited knowledge of the H4 receptor it is questionable whether or not the receptor is involved in migraine. CONCLUSION There is insufficient support for first generation antihistamines (both H1 and H2) as preventive migraine medications and sedation and weight gain are unacceptable side effects. Non-sedating H1 antihistamines need to be appropriately tested. Central H3 receptors seem to have a role in migraine that merit further investigation. The histaminergic system may be a goal for novel migraine drugs.
Collapse
Affiliation(s)
- Jacob Worm
- Danish Headache Center and Department of Neurology N39, University of Copenhagen, Rigshospitalet Glostrup, DK-2600 Copenhagen, Denmark
| | - Katrine Falkenberg
- Danish Headache Center and Department of Neurology N39, University of Copenhagen, Rigshospitalet Glostrup, DK-2600 Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center and Department of Neurology N39, University of Copenhagen, Rigshospitalet Glostrup, DK-2600 Copenhagen, Denmark
| |
Collapse
|
32
|
Patnaik R, Sharma A, Skaper SD, Muresanu DF, Lafuente JV, Castellani RJ, Nozari A, Sharma HS. Histamine H3 Inverse Agonist BF 2649 or Antagonist with Partial H4 Agonist Activity Clobenpropit Reduces Amyloid Beta Peptide-Induced Brain Pathology in Alzheimer's Disease. Mol Neurobiol 2019; 55:312-321. [PMID: 28861757 DOI: 10.1007/s12035-017-0743-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease (AD) is one of the leading causes for disability and death affecting millions of people worldwide. Thus, novel therapeutic strategies are needed to reduce brain pathology associated with AD. In view of increasing awareness regarding involvement of histaminergic pathways in AD, we explored the role of one H3 receptor inverse agonist BF 2649 and one selective H3 receptor antagonist with partial H4 agonist activity in amyloid beta peptide (AβP) infusion-induced brain pathology in a rat model. AD-like pathology was produced by administering AβP (1-40) intracerebroventricular (i.c.v.) in the left lateral ventricle (250 ng/10 μl, once daily) for 4 weeks. Control rats received saline. In separate group of rats, either BF 2649 (1 mg/kg, i.p.) or clobenpropit (1 mg/kg, i.p.) was administered once daily for 1 week after 3 weeks of AβP administration. After 30 days, blood-brain barrier (BBB) breakdown, edema formation, neuronal, glial injuries, and AβP deposits were examined in the brain. A significant reduction in AβP deposits along with marked reduction in neuronal or glial reactions was seen in the drug-treated group. The BBB breakdown to Evans blue albumin and radioiodine in the cortex, hippocampus, hypothalamus, and cerebellum was also significantly reduced in these drug-treated groups. Clobenpropit showed superior effects than the BF2649 in reducing brain pathology in AD. Taken together, our observations are the first to show that blockade of H3 and stimulation of H4 receptors are beneficial for the treatment of AD pathology, not reported earlier.
Collapse
Affiliation(s)
- Ranjana Patnaik
- School of Biomedical Engineering, Department of Biomaterials, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University Hospital, Uppsala University, SE-75185, Uppsala, Sweden
| | - Aruna Sharma
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University Hospital, Uppsala University, SE-75185, Uppsala, Sweden
- International Experimental Central Nervous System Injury and Repair (IECNSIR), University Hospital, Uppsala University, Frödingsgatan 12, Bldg. 28, SE-75421, Uppsala, Sweden
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "E. Meneghetti" 2, 35131, Padua, Italy
| | - Dafin F Muresanu
- "RoNeuro" Institute for Neurological Research and Diagnostic, 37 Mircea Eliade Street, 400364, Cluj-Napoca, Romania
- Department of Clinical Neurosciences, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
- Nanoneurosurgery Group, BioCruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
- Faculty of Health Science, Universidad Autónoma de Chile, Santiago de Chile, Chile
| | | | - Ala Nozari
- Anesthesiology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Hari S Sharma
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University Hospital, Uppsala University, SE-75185, Uppsala, Sweden.
- International Experimental Central Nervous System Injury and Repair (IECNSIR), University Hospital, Uppsala University, Frödingsgatan 12, Bldg. 28, SE-75421, Uppsala, Sweden.
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.
| |
Collapse
|
33
|
Zhou P, Homberg JR, Fang Q, Wang J, Li W, Meng X, Shen J, Luan Y, Liao P, Swaab DF, Shan L, Liu C. Histamine-4 receptor antagonist JNJ7777120 inhibits pro-inflammatory microglia and prevents the progression of Parkinson-like pathology and behaviour in a rat model. Brain Behav Immun 2019; 76:61-73. [PMID: 30408497 DOI: 10.1016/j.bbi.2018.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 12/20/2022] Open
Abstract
The activation of microglial cells is presumed to play a key role in the pathogenesis of Parkinson's disease (PD). The activity of microglia is regulated by the histamine-4 receptor (H4R), thus providing a novel target that may prevent the progression of PD. However, this putative mechanism has so far not been validated. In our previous study, we found that mRNA expression of H4R was upregulated in PD patients. In the present study, we validated this possible mechanism using the rotenone-induced PD rat model, in which mRNA expression levels of H4R-, and microglial markers were significantly increased in the ventral midbrain. Inhibition of H4R in rotenone-induced PD rat model by infusion of the specific H4R antagonist JNJ7777120 into the lateral ventricle resulted in blockade of microglial activation. In addition, pharmacological targeting of H4R in rotenone-lesioned rats resulted in reduced apomorphine-induced rotational behaviour, prevention of dopaminergic neuron degeneration and associated decreases in striatal dopamine levels. These changes were accompanied by a reduction of Lewy body-like neuropathology. Our results provide first proof of the efficacy of an H4R antagonist in a commonly used PD rat model, and proposes the H4R as a promising target to clinically tackle microglial activation and thereby the progression of PD.
Collapse
Affiliation(s)
- Pei Zhou
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China; Department of Clinical Laboratory, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443003, China
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Qiuyuan Fang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jiaqi Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xianzong Meng
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Junqing Shen
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yi Luan
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China; Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Peng Liao
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian, Liaoning 116044, China.
| |
Collapse
|
34
|
Farfán-García ED, Márquez-Gómez R, Barrón-González M, Pérez-Capistran T, Rosales-Hernández MC, Pinto-Almazán R, Soriano-Ursúa MA. Monoamines and their Derivatives on GPCRs: Potential Therapy for Alzheimer's Disease. Curr Alzheimer Res 2019; 16:871-894. [PMID: 30963972 DOI: 10.2174/1570159x17666190409144558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Albeit cholinergic depletion remains the key event in Alzheimer's Disease (AD), recent information describes stronger links between monoamines (trace amines, catecholamines, histamine, serotonin, and melatonin) and AD than those known in the past century. Therefore, new drug design strategies focus efforts to translate the scope on these topics and to offer new drugs which can be applied as therapeutic tools in AD. In the present work, we reviewed the state-of-art regarding genetic, neuropathology and neurochemistry of AD involving monoamine systems. Then, we compiled the effects of monoamines found in the brain of mammals as well as the reported effects of their derivatives and some structure-activity relationships. Recent derivatives have triggered exciting effects and pharmacokinetic properties in both murine models and humans. In some cases, the mechanism of action is clear, essentially through the interaction on G-protein-coupled receptors as revised in this manuscript. Additional mechanisms are inhibition of enzymes for their biotransformation, regulation of free-radicals in the central nervous system and others for the effects on Tau phosphorylation or amyloid-beta accumulation. All these data make the monoamines and their derivatives attractive potential elements for AD therapy.
Collapse
Affiliation(s)
- Eunice D Farfán-García
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Ricardo Márquez-Gómez
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, OX1 3TH, Oxford, United Kingdom
| | - Mónica Barrón-González
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Teresa Pérez-Capistran
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Martha C Rosales-Hernández
- Laboratorio de Biofisica y Biocatalisis, Seccion de Estudios de Posgrado e Investigacion Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigacion Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal Mexico-Puebla km 34.5, C.P. 56530. Ixtapaluca, State of Mexico, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| |
Collapse
|
35
|
Dettori I, Gaviano L, Melani A, Lucarini L, Durante M, Masini E, Pedata F. A Selective Histamine H 4 Receptor Antagonist, JNJ7777120, Is Protective in a Rat Model of Transient Cerebral Ischemia. Front Pharmacol 2018; 9:1231. [PMID: 30420807 PMCID: PMC6215858 DOI: 10.3389/fphar.2018.01231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023] Open
Abstract
Cerebral ischemia is a multifactorial pathology characterized by different events evolving in time. The acute injury, characterized by excitoxicity, is followed by a secondary brain injury that develops from hours to days after ischemia. Extracellular levels of histamine increase in the ischemic area after focal cerebral ischemia induced by occlusion of the middle cerebral artery (MCAo). The histamine H4 receptor (H4R) is predominantly expressed in cell types of immune system where is involved in the regulation of immunological and inflammatory responses, and in numerous area of the Central Nervous System (CNS) including cortex and striatum. Our aim was to assess the putative neuroprotective effects of the potent and selective H4R antagonist, JNJ7777120 (JNJ), chronically administered (1 mg/kg, i.p., twice/day for 7 days) on damage parameters in a rat model of focal ischemia induced by transient MCAo (tMCAo). Chronic treatment with the H4R antagonist JNJ, significantly protected from the neurological deficit and from body weight loss after tMCAo. Seven days after the ischemic insult, JNJ reduced the volume of the ischemic cortical and striatal damage, the number of activated microglia and astrocytes in the ischemic cortex and striatum and decreased the plasma levels of IL-1β and TNF-α, while increased the levels of IL-10. Two days after ischemia, JNJ has reduced granulocyte infiltration in the ischemic area. Results demonstrate that the selective antagonist of H4R, JNJ, systemically and chronically administered after ischemia, reduces the ischemic brain damage, improves the neurological deficit and decreases blood pro-inflammatory cytokines, suggesting that H4R is a valuable pharmacological target after focal brain ischemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
36
|
Studies on Anticonvulsant Effects of Novel Histamine H3R Antagonists in Electrically and Chemically Induced Seizures in Rats. Int J Mol Sci 2018; 19:ijms19113386. [PMID: 30380674 PMCID: PMC6274786 DOI: 10.3390/ijms19113386] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
A newly developed series of non-imidazole histamine H3 receptor (H3R) antagonists (1⁻16) was evaluated in vivo for anticonvulsant effects in three different seizure models in Wistar rats. Among the novel H3R antagonists examined, H3R antagonist 4 shortened the duration of tonic hind limb extension (THLE) in a dose-dependent fashion in the maximal electroshock (MES)-induced seizure and offered full protection against pentylenetetrazole (PTZ)-induced generalized tonic-clonic seizure (GTCS), following acute systemic administration (2.5, 5, 10, and 15 mg/kg, i.p.). However, only H3R antagonist 13, without appreciable protective effects in MES- and PTZ-induced seizure, fully protected animals in the strychnine (STR)-induced GTCS following acute systemic pretreatment (10 mg/kg, i.p.). Moreover, the protective effect observed with H3R antagonist 4 in MES-induced seizure was completely abolished when animals were co-administered with the H3R agonist (R)-α-methylhistamine (RAMH, 10 mg/kg, i.p.). However, RAMH failed to abolish the full protection provided by the H3R antagonist 4 in PTZ-induced seizure and H3R antagonist 13 in STR-induced seizure. Furthermore, in vitro antiproliferative effects or possible metabolic interactions could not be observed for compound 4. Additionally, the predictive in silico, as well as in vitro, metabolic stability for the most promising H3R antagonist 4 was assessed. The obtained results show prospective effects of non-imidazole H3R antagonists as innovative antiepileptic drugs (AEDs) for potential single use against epilepsy.
Collapse
|
37
|
Provensi G, Costa A, Izquierdo I, Blandina P, Passani MB. Brain histamine modulates recognition memory: possible implications in major cognitive disorders. Br J Pharmacol 2018; 177:539-556. [PMID: 30129226 DOI: 10.1111/bph.14478] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 12/24/2022] Open
Abstract
Several behavioural tests have been developed to study and measure emotionally charged or emotionally neutral memories and how these may be affected by pharmacological, dietary or environmental manipulations. In this review, we describe the experimental paradigms used in preclinical studies to unravel the brain circuits involved in the recognition and memorization of environmentally salient stimuli devoid of strong emotional value. In particular, we focus on the modulatory role of the brain histaminergic system in the elaboration of recognition memory that is based on the judgement of the prior occurrence of an event, and it is believed to be a critical component of human declarative memory. The review also addresses questions that may help improve the treatment of impaired declarative memory described in several affective and neuropsychiatric disorders such as ADHD, Alzheimer's disease and major neurocognitive disorder. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Gustavo Provensi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Costa
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Patrizio Blandina
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria Beatrice Passani
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
38
|
Differential effects of functionally different histamine H 4 receptor ligands on acute irritant dermatitis in mice. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1387-1397. [PMID: 30145688 DOI: 10.1007/s00210-018-1553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
The anti-inflammatory effects of histamine H4 receptor (H4R) antagonists opened new therapeutic options for the treatment of inflammatory/allergic diseases, but the role of H4R in inflammation is far from being solved. Aim of the present study was to investigate the role of structurally related H4R ligands of the aminopyrimidine class with different efficacies and functionalities (neutral antagonist ST-994, partial agonist ST-1006, inverse agonist ST-1012, and partial inverse agonist ST-1124) on croton oil-induced ear edema and pruritus in mice. The H4R ligands were administered subcutaneously before topical application of croton oil. While ST-1006 and ST-1124 were ineffective at any dose tested (10-100 mg/kg), both ST-994 and ST-1012 (30 and 100 mg/kg) significantly reduced croton oil-induced ear edema. Moreover, ST-994, ST-1006, and ST-1124, but not ST-1012, significantly inhibited croton oil-induced ear pruritus at 30 mg/kg. In accordance with results obtained with the reference H4R antagonist JNJ7777120 (100 mg/kg), histological examination of inflamed ear tissue indicated that treatment with ST-994 (30 mg/kg) led to a significant reduction in the inflammatory severity score and in the number of eosinophils infiltrating the tissue, while the number of degranulated mast cells in inflamed tissues was increased in comparison with the number of intact mast cells. These data indicate that croton oil-induced ear inflammation and pruritus seem to be clearly, but variably, affected by the H4R ligands tested. The potential advantage of dual effect of the H4R neutral antagonist ST-994 has to be carefully considered as a new therapeutic approach to the treatment of inflammatory diseases.
Collapse
|
39
|
He M, Lippestad M, Li D, Hodges RR, Utheim TP, Dartt DA. Activation of the EGF Receptor by Histamine Receptor Subtypes Stimulates Mucin Secretion in Conjunctival Goblet Cells. Invest Ophthalmol Vis Sci 2018; 59:3543-3553. [PMID: 30025103 PMCID: PMC6049985 DOI: 10.1167/iovs.18-2476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/18/2018] [Indexed: 01/05/2023] Open
Abstract
Purpose The purpose of this study was to determine if histamine receptors interact with the epidermal growth factor receptor (EGFR) in cultured rat conjunctival goblet cells. Methods Goblet cells from rat conjunctiva were grown in organ culture. First-passage goblet cells were used in all experiments. Phosphorylated (active) and total EGFR, AKT, and extracellular signal-regulated kinase (ERK)1/2 were measured by Western blot analysis. Cells were preincubated with the EGFR antagonist AG1478 for 30 minutes or small interfering RNA specific to the EGFR for 3 days prior to stimulation with histamine or agonists specific for histamine receptor subtypes for 2 hours. Goblet cell secretion was measured using an enzyme-linked lectin assay. Goblet cells were incubated for 1 hour with the calcium indicator molecule fura-2/AM, and intracellular [Ca2+] ([Ca2+]i) was determined. Data were collected in real time and presented as the actual [Ca2+]i with time and as the change in peak [Ca2+]i. Results Histamine increased the phosphorylation of the EGFR. Mucin secretion and increase in [Ca2+]i stimulated by histamine, and agonists specific for each histamine receptor subtype were blocked by inhibition of the EGFR. Increase in [Ca2+]i stimulated by histamine and specific agonists for each histamine receptor was also inhibited by TAPI-1, a matrix metalloproteinase (MMP) inhibitor. The histamine-stimulated increase in activation of AKT, but not ERK1/2, was blocked by AG1478. Conclusions In conjunctival goblet cells, histamine, using all four receptor subtypes, transactivates the EGFR via an MMP. This in turn phosphorylates AKT to increase [Ca2+]i and stimulate mucin secretion.
Collapse
Affiliation(s)
- Min He
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Department of Ophthalmology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Marit Lippestad
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Dayu Li
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Robin R. Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Tor P. Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Darlene A. Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
40
|
Erickson S, Nahmias Z, Rosman IS, Kim BS. Immunomodulating Agents as Antipruritics. Dermatol Clin 2018; 36:325-334. [DOI: 10.1016/j.det.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Riveros ME, Retamal MA. Are Polyunsaturated Fatty Acids Implicated in Histaminergic Dysregulation in Bipolar Disorder?: AN HYPOTHESIS. Front Physiol 2018; 9:693. [PMID: 29946266 PMCID: PMC6005883 DOI: 10.3389/fphys.2018.00693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder (BD) is an extremely disabling psychiatric disease, characterized by alternate states of mania (or hypomania) and depression with euthymic states in between. Currently, patients receive pharmacological treatment with mood stabilizers, antipsychotics, and antidepressants. Unfortunately, not all patients respond well to this type of treatment. Bipolar patients are also more prone to heart and metabolic diseases as well as a higher risk of suicide compared to the healthy population. For a correct brain function is indispensable a right protein and lipids (e.g., fatty acids) balance. In particular, the amount of fatty acids in the brain corresponds to a 50–70% of the dry weight. It has been reported that in specific brain regions of BD patients there is a reduction in the content of unsaturated n-3 fatty acids. Accordingly, a diet rich in n-3 fatty acids has beneficial effects in BD patients, while their absence or high levels of saturated fatty acids in the diet are correlated to the risk of developing the disease. On the other hand, the histamine system is likely to be involved in the pathophysiology of several psychiatric diseases such as BD. Histamine is a neuromodulator involved in arousal, motivation, and energy balance; drugs acting on the histamine receptor H3 have shown potential as antidepressants and antipsychotics. The histaminergic system as other neurotransmission systems can be altered by fatty acid membrane composition. The purpose of this review is to explore how polyunsaturated fatty acids content alterations are related to the histaminergic system modulation and their impact in BD pathophysiology.
Collapse
Affiliation(s)
- María E Riveros
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
42
|
Yamamoto K, Okui R, Yamatodani A. Effects of a histamine H 4 receptor antagonist on cisplatin-induced anorexia in mice. Neurosci Lett 2018; 676:103-107. [PMID: 29655943 DOI: 10.1016/j.neulet.2018.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 11/29/2022]
Abstract
Cancer chemotherapy often induces gastrointestinal symptoms such as anorexia, nausea, and vomiting. Antiemetic agents are effective in inhibiting nausea and vomiting, but patients still experience anorexia. We previously reported that chemotherapeutic agent-induced anorexia is associated with an increase of inflammatory cytokines. Other studies also reported that antagonism of the histamine H4 receptor is anti-inflammatory. In this study, we investigated the involvement of the H4 receptor in the development of chemotherapy-induced anorexia in mice. Cisplatin-induced anorexia occurred within 24 h of its administration and continued for 3 days. The early phase (day 1), but not the delayed phase (days 2 and 3), of anorexia was inhibited by the daily injection of a 5-HT3 receptor antagonist (granisetron). However, a corticosteroid (dexamethasone) or selective H4 receptor antagonist (JNJ7777120) abolished the delayed phases of anorexia. Cisplatin significantly increased TNF-α mRNA expression in the hypothalamus and spleen, and the period of expression increase paralleled the onset period of anorexia. In addition, pretreatment with JNJ7777120 completely inhibited the increased expression. These results suggest that TNF-α mRNA expression via H4 receptors may contribute to the development of cisplatin-induced anorexia, and that H4 receptor antagonists are potentially useful treatments.
Collapse
Affiliation(s)
- Kouichi Yamamoto
- Department of Medical Science and Technology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan.
| | - Rikuya Okui
- Department of Medical Science and Technology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka, 565-0871, Japan
| | - Atsushi Yamatodani
- Professor Emeritus, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
43
|
Histamine upregulates the expression of histamine receptors and increases the neuroprotective effect of astrocytes. J Neuroinflammation 2018; 15:41. [PMID: 29433511 PMCID: PMC5809996 DOI: 10.1186/s12974-018-1068-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Astrocytes have attracted increasing attention over recent decades for their role in neuroinflammation. Histamine, a major aminergic brain neurotransmitter, has an important influence on the main activities of astrocytes, such as ion homeostasis, energy metabolism, and neurotransmitter clearance. However, little is known about the impact of histamine on astrocyte immunomodulatory function. METHODS The expression of all known histamine receptor subtypes was examined in primary astrocytes. Then, primary astrocytes were pretreated with selective histamine receptor antagonists and stimulated with histamine. Cellular activation, proinflammatory cytokine production, and expression of neurotrophic factors were assessed. RESULTS Astrocytes could constitutively express three histamine receptors (H1R, H2R, and H3R), and these three histamine receptors could be selectively upregulated to varying degrees upon histamine treatment. Histamine also dose-dependently stimulated astrocyte activation and subsequent production of glial cell-derived neurotrophic factor (GDNF), whereas it suppressed the secretion of the proinflammatory factors tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β). The effects of histamine were completely abolished by either an H1R or H3R antagonist, while an H2R antagonist attenuated the effects partly. CONCLUSIONS The present study identified the expression of H1R, H2R, and H3R on astrocytes. We also demonstrated that negative regulation of astrocytic TNF-α and IL-1β production and the enhancement of astrocytic GDNF stimulated by histamine were receptor-mediated processes in which all three of the expressed histamine receptors (H1R, H2R, and H3R) were involved. These findings may further clarify the involvement and mechanism of astrocyte activation in neuroinflammation.
Collapse
|
44
|
Lkhagvasuren B, Oka T. The histaminergic system is involved in psychological stress-induced hyperthermia in rats. Physiol Rep 2018; 5:5/8/e13204. [PMID: 28438982 PMCID: PMC5408279 DOI: 10.14814/phy2.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 11/24/2022] Open
Abstract
The histaminergic system modulates numerous physiological functions such as wakefulness, circadian rhythm, feeding, and thermoregulation. However, it is not yet known if this system is also involved in psychological stress-induced hyperthermia (PSH) and, if so, which histamine (H) receptor subtype mediates the effect. Therefore, we investigated the effects of pretreatments with intraperitoneal injections of mepyramine (an H1 receptor inverse agonist), cimetidine (an H2 receptor antagonist), and ciproxifan (an H3 receptor inverse agonist) on cage-exchange stress-induced hyperthermia (a model of PSH) by monitoring core body temperature (Tc) during both light (10:00 am-12:00 pm) and dark (10:00 pm-12:00 am) phases in conscious, freely moving rats. We also investigated the effects of these drugs on stress-induced changes in locomotor activity (La) to rule out the possibility that effects on Tc are achieved secondary to altered La Cage-exchange stress increased Tc within 20 min followed by a gradual decrease back to baseline Tc during both phases. In the light phase, mepyramine and cimetidine markedly attenuated PSH, whereas ciproxifan did not affect it. In contrast, in the dark phase, mepyramine dropped Tc by 1°C without affecting cage-exchange stress-induced hyperthermia, whereas cimetidine and ciproxifan did not affect both postinjection Tc and PSH Cage-exchange stress induced an increase in La, especially in the light phase, but none of these drugs altered cage-exchange stress-induced La in either circadian rhythm phase. These results suggest that the histaminergic system is involved in the physiological mechanisms underlying PSH, particularly through H1 and H2 receptors, without influencing locomotor activity.
Collapse
Affiliation(s)
- Battuvshin Lkhagvasuren
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,The Neuroscience Cluster, Science and Technology Center, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Takakazu Oka
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
45
|
Sanna MD, Mello T, Masini E, Galeotti N. Activation of ERK/CREB pathway in noradrenergic neurons contributes to hypernociceptive phenotype in H4 receptor knockout mice after nerve injury. Neuropharmacology 2018; 128:340-350. [DOI: 10.1016/j.neuropharm.2017.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/27/2022]
|
46
|
Apolloni S, Fabbrizio P, Amadio S, Napoli G, Verdile V, Morello G, Iemmolo R, Aronica E, Cavallaro S, Volonté C. Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis. Front Immunol 2017; 8:1689. [PMID: 29250069 PMCID: PMC5714870 DOI: 10.3389/fimmu.2017.01689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset motor neuron disease where activated glia release pro-inflammatory cytokines that trigger a vicious cycle of neurodegeneration in the absence of resolution of inflammation. Given the well-established role of histamine as a neuron-to-glia alarm signal implicated in brain disorders, the aim of this study was to investigate the expression and regulation of the histaminergic pathway in microglial activation in ALS mouse model and in humans. By examining the contribution of the histaminergic system to ALS, we found that particularly via H1 and H4 receptors, histamine promoted an anti-inflammatory profile in microglia from SOD1-G93A mice by modulating their activation state. A decrease in NF-κB and NADPH oxidase 2 with an increase in arginase 1 and P2Y12 receptor was induced by histamine only in the ALS inflammatory environment, but not in the healthy microglia, together with an increase in IL-6, IL-10, CD163, and CD206 phenotypic markers in SOD1-G93A cells. Moreover, histaminergic H1, H2, H3, and H4 receptors, and histamine metabolizing enzymes histidine decarboxylase, histamine N-methyltransferase, and diamine oxidase were found deregulated in spinal cord, cortex, and hypothalamus of SOD1-G93A mice during disease progression. Finally, by performing a meta-analysis study, we found a modulated expression of histamine-related genes in cortex and spinal cord from sporadic ALS patients. Our findings disclose that histamine acts as anti-inflammatory agent in ALS microglia and suggest a dysregulation of the histaminergic signaling in ALS.
Collapse
Affiliation(s)
- Savina Apolloni
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy
| | - Paola Fabbrizio
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy.,National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| | - Susanna Amadio
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy
| | - Giulia Napoli
- National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| | | | - Giovanna Morello
- National Research Council, Institute of Neurological Sciences, Catania, Italy
| | - Rosario Iemmolo
- National Research Council, Institute of Neurological Sciences, Catania, Italy
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, Netherlands
| | | | - Cinzia Volonté
- Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy.,National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy
| |
Collapse
|
47
|
Thurmond RL, Venable J, Savall B, La D, Snook S, Dunford PJ, Edwards JP. Clinical Development of Histamine H 4 Receptor Antagonists. Handb Exp Pharmacol 2017; 241:301-320. [PMID: 28233185 DOI: 10.1007/164_2016_130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of the histamine H4 receptor (H4R) provided a new avenue for the exploration of the physiological role of histamine, as well as providing a new drug target for the development of novel antihistamines. The first step in this process was the identification of selective antagonists to help unravel the pharmacology of the H4R relative to other histamine receptors. The discovery of the selective H4R antagonist JNJ 7777120 was vital for showing a role for the H4R in inflammation and pruritus. While this compound has been very successful as a tool for understanding the function of the receptor, it has drawbacks, including a short in vivo half-life and hypoadrenocorticism toxicity in rats and dogs, that prevented advancing it into clinical studies. Further research let to the discovery of JNJ 39758979, which, similar to JNJ 7777120, was a potent and selective H4R antagonist and showed anti-inflammatory and anti-pruritic activity preclinically. JNJ 39758979 advanced into human clinical studies and showed efficacy in reducing experimental pruritus and in patients with atopic dermatitis. However, development of this compound was terminated due to the occurrence of drug-induced agranulocytosis. This was overcome by developing another H4R antagonist with a different chemical structure, toreforant, that does not appear to have this side effect. Toreforant has been tested in clinical studies in patients with rheumatoid arthritis, asthma, or psoriasis. In conclusions there have been many H4R antagonists reported in the literature, but only a few have been studied in humans underscoring the difficulty in finding ligands with all of the properties necessary for testing in the clinic. Nevertheless, the clinical data to date suggests that H4R antagonists can be beneficial in treating atopic dermatitis and pruritus.
Collapse
Affiliation(s)
| | | | - Brad Savall
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - David La
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - Sandra Snook
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - Paul J Dunford
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - James P Edwards
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| |
Collapse
|
48
|
Yuan H, Silberstein SD. Histamine and Migraine. Headache 2017; 58:184-193. [PMID: 28862769 DOI: 10.1111/head.13164] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Histamine is an ancient "tissue amine" preceding multicellular organisms. In the central nervous system (CNS), its fibers originate solely from the tuberomammillary nucleus and travel throughout the brain. It is mainly responsible for wakefulness, energy homeostasis, and memory consolidation. Recently, several studies suggest a potential role of histamine in migraine pathogenesis and management. METHODS Narrative review of current literature regarding histamine and migraine. RESULTS Histamine plays a crucial role in migraine pathogenesis: sustaining the neurogenic inflammation pathway. Interaction between mast cells (MC) and calcitonin-gene related protein (CGRP) results in sensitization of trigeminal afferents and trigeminal ganglia (TG). Histamine binds with differing affinities to four different histaminergic G-protein coupled receptors, activating protein kinases, or triggering calcium release with subsequent mode of actions. Histamine 1 receptor (H1 R) and histamine 2 receptor (H2 R) antagonists are frequently used for the treatment of allergy and gastric acid secretion, respectively, but their antagonism is probably ineffective for migraine. Histamine 3 receptor (H3 R) and histamine 4 receptor (H4 R) have a threefold higher affinity than H1 R/H2 R for histamine and are found almost exclusively on neurons and immune tissues, respectively. H3 R acts as an autoreceptor or as a heteroreceptor, lowering the release of histamine and other neurotransmitters. This is a potential target for anti-nociception and anti-neurogenic inflammation. To date, several small clinical trials using low dose histamine or Nα -methylhistamine have demonstrated migraine prophylactic efficacy, probably via H3 R or other undetermined pathways. CONCLUSION The histamine system interacts with multiple regions in the CNS and may hypothetically modulate the migraine response. Low dose histamine may be a promising option for migraine prevention.
Collapse
Affiliation(s)
- Hsiangkuo Yuan
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
49
|
Hu W, Chen Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol Ther 2017; 175:116-132. [DOI: 10.1016/j.pharmthera.2017.02.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Equihua-Benítez AC, Guzmán-Vásquez K, Drucker-Colín R. Understanding sleep-wake mechanisms and drug discovery. Expert Opin Drug Discov 2017; 12:643-657. [PMID: 28511597 DOI: 10.1080/17460441.2017.1329818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Although not discernible at first glance, sleep is a highly active and regulated brain state. Although we spend practically one third of our lifetimes in this stage, its importance is often taken for granted. Sleep loss can lead to disease, error and economic loss. Our understanding of how sleep is achieved has greatly advanced in recent years, and with that, the management of sleep disorders has improved. There is still room for improvement and recently many new compounds have reached clinical trials with a few being approved for commercial use. Areas covered: In this review, the authors make the case of sleep disorders as a matter of public health. The mechanisms of sleep transition are discussed emphasizing the wake and sleep promoting interaction of different brain regions. Finally, advances in pharmacotherapy are examined in the context of chronic insomnia and narcolepsy. Expert opinion: The orexinergic system is an example of a breakthrough in sleep medicine that has catalyzed drug development. Nevertheless, sleep is a topic still with many unanswered questions. That being said, the melanin-concentrating hormone system is becoming increasingly relevant and we speculate it will be the next target of sleep medication.
Collapse
Affiliation(s)
- Ana Clementina Equihua-Benítez
- a Departamento de Neuropatología Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Khalil Guzmán-Vásquez
- a Departamento de Neuropatología Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México , México
| | - René Drucker-Colín
- a Departamento de Neuropatología Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México , México
| |
Collapse
|