1
|
Pardasani M, Ramakrishnan AM, Mahajan S, Kantroo M, McGowan E, Das S, Srikanth P, Pandey S, Abraham NM. Perceptual learning deficits mediated by somatostatin releasing inhibitory interneurons of olfactory bulb in an early life stress mouse model. Mol Psychiatry 2023; 28:4693-4706. [PMID: 37726451 PMCID: PMC10914616 DOI: 10.1038/s41380-023-02244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023]
Abstract
Early life adversity (ELA) causes aberrant functioning of neural circuits affecting the health of an individual. While ELA-induced behavioural disorders resulting from sensory and cognitive disabilities can be assessed clinically, the neural mechanisms need to be probed using animal models by employing multi-pronged experimental approaches. As ELA can alter sensory perception, we investigated the effect of early weaning on murine olfaction. By implementing go/no-go odour discrimination paradigm, we observed olfactory learning and memory impairments in early life stressed (ELS) male mice. As olfactory bulb (OB) circuitry plays a critical role in odour learning, we studied the plausible changes in the OB of ELS mice. Lowered c-Fos activity in the external plexiform layer and a reduction in the number of dendritic processes of somatostatin-releasing, GABAergic interneurons (SOM-INs) in the ELS mice led us to hypothesise the underlying circuit. We recorded reduced synaptic inhibitory feedback on mitral/tufted (M/T) cells, in the OB slices from ELS mice, explaining the learning deficiency caused by compromised refinement of OB output. The reduction in synaptic inhibition was nullified by the photo-activation of ChR2-expressing SOM-INs in ELS mice. The role of SOM-INs was revealed by learning-dependent refinement of Ca2+dynamics quantified by GCaMP6f signals, which was absent in ELS mice. Further, the causal role of SOM-INs involving circuitry was investigated by optogenetic modulation during the odour discrimination learning. Photo-activating these neurons rescued the ELA-induced learning deficits. Conversely, photo-inhibition caused learning deficiency in control animals, while it completely abolished the learning in ELS mice, confirming the adverse effects mediated by SOM-INs. Our results thus establish the role of specific inhibitory circuit in pre-cortical sensory area in orchestrating ELA-dependent changes.
Collapse
Affiliation(s)
- Meenakshi Pardasani
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Anantha Maharasi Ramakrishnan
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Sarang Mahajan
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Meher Kantroo
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Eleanor McGowan
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Susobhan Das
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Priyadharshini Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Sanyukta Pandey
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India
| | - Nixon M Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, 411008, India.
| |
Collapse
|
2
|
Vettorazzi S, Nalbantoglu D, Gebhardt JCM, Tuckermann J. A guide to changing paradigms of glucocorticoid receptor function-a model system for genome regulation and physiology. FEBS J 2021; 289:5718-5743. [PMID: 34213830 DOI: 10.1111/febs.16100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The glucocorticoid receptor (GR) is a bona fide ligand-regulated transcription factor. Cloned in the 80s, the GR has become one of the best-studied and clinically most relevant members of the nuclear receptor superfamily. Cooperative activity of GR with other transcription factors and a plethora of coregulators contribute to the tissue- and context-specific response toward the endogenous and pharmacological glucocorticoids (GCs). Furthermore, nontranscriptional activities in the cytoplasm are emerging as an additional function of GR. Over the past 40 years, the concepts of GR mechanisms of action had been constantly changing. Different methodologies in the pregenomic and genomic era of molecular biological research and recent cutting-edge technology in single-cell and single-molecule analysis are steadily evolving the views, how the GR in particular and transcriptional regulation in general act in physiological and pathological processes. In addition to the development of technologies for GR analysis, the use of model organisms provides insights how the GR in vivo executes GC action in tissue homeostasis, inflammation, and energy metabolism. The model organisms, namely the mouse, but also rats, zebrafish, and recently fruit flies carrying mutations of the GR became a major driving force to analyze the molecular function of GR in disease models. This guide provides an overview of the exciting research and paradigm shifts in the GR field from past to present with a focus on GR transcription factor networks, GR DNA-binding and single-cell analysis, and model systems.
Collapse
Affiliation(s)
- Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | - Denis Nalbantoglu
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| | | | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Germany
| |
Collapse
|
3
|
Kerr N, Holmes FE, Hobson SA, Vanderplank P, Leard A, Balthasar N, Wynick D. The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2. Mol Cell Neurosci 2015; 68:258-71. [PMID: 26292267 PMCID: PMC4604734 DOI: 10.1016/j.mcn.2015.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 12/12/2022] Open
Abstract
The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1-3 gene products). There is a wealth of data on expression of Gal1-3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluorescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe nucleus. Gal2-hrGFP mRNA was detected in DRG, but live-cell fluorescence was at the limits of detection, drawing attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized potential for translational control by upstream open reading frames (uORFs).
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Cells, Cultured
- Ganglia, Spinal/cytology
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mice
- Mice, Transgenic
- Microscopy, Confocal
- Neurons/physiology
- RNA, Messenger/metabolism
- Receptor, Galanin, Type 1/genetics
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- Spinal Cord/metabolism
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Niall Kerr
- Schools of Physiology and Pharmacology and Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Fiona E Holmes
- Schools of Physiology and Pharmacology and Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Sally-Ann Hobson
- Schools of Physiology and Pharmacology and Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Penny Vanderplank
- Schools of Physiology and Pharmacology and Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Alan Leard
- Wolfson Bioimaging Facility, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Nina Balthasar
- Schools of Physiology and Pharmacology and Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David Wynick
- Schools of Physiology and Pharmacology and Clinical Sciences, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
4
|
Matsusue Y, Horii-Hayashi N, Kirita T, Nishi M. Distribution of corticosteroid receptors in mature oligodendrocytes and oligodendrocyte progenitors of the adult mouse brain. J Histochem Cytochem 2013; 62:211-26. [PMID: 24309510 DOI: 10.1369/0022155413517700] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of glucocorticoid receptors (GRs) was investigated immunohistochemically in two different lineages of oligodendrocytes, using carbonic anhydrase (CA) II and neuron glial antigen (NG) 2 as markers of mature oligodendrocytes and oligodendrocyte progenitors, respectively. We focused on the gray matter regions, including CA1, CA3 and the dentate gyrus of the hippocampus, the primary somatosensory cortex barrel field and the basolateral amygdala, and the white matter regions, including the corpus callosum, external capsule and fimbria of the hippocampus. More than 80% of CAII-immunoreactive (IR) cells and more than 95% of NG2-IR cells expressed GRs in various regions of the brain. In contrast, neither CAII-IR cells nor NG2-IR cells expressed mineralocorticoid receptors (MRs) in the same regions. The intensity of GR expression was drastically reduced in CA II-IR cells and NG2-IR cells in the same regions in adrenalectomized mice. Finally, steroid receptor co-activator (SRC)-1 and p300, both of which are cofactors for GR, were expressed in the gray and white matter regions in NG2-IR cells, but not in CAII-IR cells. These results suggest that the expression of GRs in oligodendrocytes and their progenitor cells mediates several functions in vivo, including differentiation and myelination, as a major target of glucocorticoids and their cofactors.
Collapse
Affiliation(s)
- Yumiko Matsusue
- Department of Oral and Maxillofacial Surgery, Nara Medical University (YM, TK)
| | | | | | | |
Collapse
|
5
|
Dickmeis T, Weger BD, Weger M. The circadian clock and glucocorticoids--interactions across many time scales. Mol Cell Endocrinol 2013; 380:2-15. [PMID: 23707790 DOI: 10.1016/j.mce.2013.05.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022]
Abstract
Glucocorticoids are steroid hormones of the adrenal gland that are an integral component of the stress response and regulate many physiological processes, including metabolism and immune response. Their release into the blood is highly dynamic and occurs in about hourly pulses, the amplitude of which is modulated in a daytime dependent fashion. In addition, in many species seasonal changes in basal glucocorticoid levels have been reported. In their target tissues, glucocorticoids bind to cytoplasmic receptors of the nuclear receptor superfamily. Upon binding, these receptors regulate transcription in a highly dynamic fashion, which involves stochastic binding to regulatory DNA elements on a time scale of seconds and heat shock protein mediated receptor-ligand complex recycling within minutes. The glucocorticoid hormone system interacts with another highly dynamic system, the circadian clock. The circadian clock is an endogenous biological timing mechanism that allows organisms to anticipate regular daily changes in their environment. It regulates daily rhythms of glucocorticoid release by a variety of mechanisms, modulates glucocorticoid signaling and is itself influenced by glucocorticoids. Here, we discuss mechanisms, functions and interactions of the circadian and glucocorticoid systems across time scales ranging from seconds (DNA binding by transcriptional regulators) to years (seasonal rhythms).
Collapse
Affiliation(s)
- Thomas Dickmeis
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Campus Nord, Postfach 3640, D-76021 Karlsruhe, Germany.
| | | | | |
Collapse
|
6
|
Tsiarli MA, Monaghan AP, DeFranco DB. Differential subcellular localization of the glucocorticoid receptor in distinct neural stem and progenitor populations of the mouse telencephalon in vivo. Brain Res 2013; 1523:10-27. [PMID: 23751362 PMCID: PMC3749785 DOI: 10.1016/j.brainres.2013.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 05/16/2013] [Accepted: 06/01/2013] [Indexed: 01/12/2023]
Abstract
Glucocorticoids are given to pregnant women at risk for premature delivery to promote lung maturation. Despite reports of detrimental effects of glucocorticoids on telencephalic neural stem/progenitor cells (NSPCs), the regional and cellular expressions of the glucocorticoid receptor (GR) in various NSPC populations in the intact brain have not been thoroughly assessed. Therefore in this study we performed a detailed analysis of GR protein expression in the developing mouse ventral and dorsal telencephalon in vivo. At embryonic day 11.5 (E11.5), the majority of Pax6-positive radial glial cells (RGCs) and Tbr2-positive intermediate progenitor cells (IPCs) expressed nuclear GR, while a small number of RGCs on the apical ventricular zone (aVZ), expressed cytoplasmic GR. However, on E13.5, the latter population of RGCs increased in size, whereas abventricular NSPCs and especially neurons of the cortical plate, expressed nuclear GR. In IPCs, GR was always nuclear. A similar expression profile was observed throughout the ventral telencephalon, hippocampus and olfactory bulb, with NSPCs of the aVZ primarily expressing cytoplasmic GR, while abventricular NSPCs and mature cells primarily expressed nuclear GR. Close to birth, nuclear GR accumulated within specific cortical areas such as layer V, the subplate and CA1 area of the hippocampus. In summary, our data show that GR protein is present in early NSPCs of the dorsal and ventral telencephalon at E11.5 and primarily occupies the nucleus. Moreover, our study suggests that the subcellular localization of the receptor may be subjected to region and neurodevelopmental stage-specific regulation.
Collapse
Affiliation(s)
- Maria A. Tsiarli
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - A. Paula Monaghan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Donald B. DeFranco
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
7
|
Matsuda KI, Yanagisawa M, Sano K, Ochiai I, Musatov S, Okoshi K, Tsukahara S, Ogawa S, Kawata M. Visualisation and characterisation of oestrogen receptor α-positive neurons expressing green fluorescent protein under the control of the oestrogen receptor α promoter. Eur J Neurosci 2013; 38:2242-9. [PMID: 23601009 DOI: 10.1111/ejn.12227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 03/21/2013] [Indexed: 12/20/2022]
Abstract
Oestrogen receptor (ER)α plays important roles in the development and function of various neuronal systems through activation by its ligands, oestrogens. To visualise ERα-positive neurons, we generated transgenic (tg) mice expressing green fluorescent protein (GFP) under the control of the ERα promoter. In three independent tg lines, GFP-positive neurons were observed in areas previously reported to express ERα mRNA, including the lateral septum, bed nucleus of the stria terminalis, medial preoptic nucleus (MPO), hypothalamus, and amygdala. In these areas, GFP signals mostly overlapped with ERα immunoreactivity. GFP fluorescence was seen in neurites and cell bodies of neurons. In addition, the network and detailed structure of neurites were visible in dissociated and slice cultures of hypothalamic neurons. We examined the effect of oestrogen deprivation by ovariectomy on the structure of the GFP-positive neurons. The area of ERα-positive cell bodies in the bed nucleus of the stria terminalis and MPO was measured by capturing the GFP signal and was found to be significantly smaller in ovariectomy mice than in control mice. When neurons in the MPO were infected with an adeno-associated virus that expressed small hairpin RNA targeting the ERα gene, an apparent induction of GFP was observed in this area, suggesting a negative feedback mechanism in which ERα controls expression of the ERα gene itself. Thus, the ERα promoter-GFP tg mice will be useful to analyse the development and plastic changes of the structure of ERα-expressing neurons and oestrogen and its receptor-mediated neuronal responses.
Collapse
Affiliation(s)
- Ken Ichi Matsuda
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, 465 Kawaramachi Hirokoji, Kamigyoku, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Robertson S, Hapgood JP, Louw A. Glucocorticoid receptor concentration and the ability to dimerize influence nuclear translocation and distribution. Steroids 2013. [PMID: 23178279 DOI: 10.1016/j.steroids.2012.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid receptor (GR) concentrations and the ability of the GR to dimerize are factors which influence sensitivity to glucocorticoids. Upon glucocorticoid binding, the GR is actively transported into the nucleus, a crucial step in determining GR function. We examined the effects of GR concentration and the ability to dimerize on GR nuclear import, export and nuclear distribution using both live cell microscopy of GFP-tagged GR and immunofluorescence of untagged GR, with both wild type GR (GRwt) and dimerization deficient GR (GRdim). We found that the observed rate of GR nuclear import increases significantly at higher GR concentrations, at saturating concentrations of dexamethasone (10(-6) M) using GFP-tagged GR, while with untagged GR it is only discernable at sub-saturating ligand concentrations (10(-10)-10(-9) M). Loss of dimerization results in a slower observed rate of nuclear import (2.5- to 3.3-fold decrease for GFP-GRdim) as well as a decreased extent of GR nuclear localization (18-27% decrease for untagged GRdim). These results were linked to an increased rate of GR export at low GR concentrations (1.4- to 1.6-fold increase for untagged GR) and where GR dimerization is abrogated (1.5- to 1.7-fold increase for GFP-GRdim). Furthermore, GR dimerization was shown to be required for the appearance of discrete GC-dependent GR nuclear foci, the loss of which may explain the increased rate of GR export for the GRdim. The reduction in the observed rate of nuclear import and increased rate of nuclear export displayed at low GR concentrations and by the GRdim could explain the lowered glucocorticoid response under these conditions.
Collapse
Affiliation(s)
- Steven Robertson
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa
| | | | | |
Collapse
|
9
|
Wisłowska-Stanek A, Lehner M, Skórzewska A, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A. Corticosterone attenuates conditioned fear responses and potentiates the expression of GABA-A receptor alpha-2 subunits in the brain structures of rats selected for high anxiety. Behav Brain Res 2012; 235:30-5. [DOI: 10.1016/j.bbr.2012.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
|
10
|
Abstract
Recent advances in the technologies of both molecular biology and regenerative medicine have made it possible to identify bone marrow (BM)-derived cells migrating into various fibrotic organs including the liver. A number of studies have reported that BM-derived cells migrating into fibrotic liver tissue exhibit a myofibroblast-like phenotype and may participate in the progression of liver fibrosis. On the other hand, it has also been shown that BM-derived cells express matrix metalloproteinases and contribute to the regression of experimental liver fibrosis. These contradictory results may arise, at least in part, from the uncertainty of various different methods that have been used in those studies. In this review article, we describe the interplay between BM and liver in the progression and regression of liver fibrosis, with an emphasis on the necessity of qualified methods with high specificity and sensitivity to evaluate the role of BM-derived cells in collagen production.
Collapse
Affiliation(s)
- Yutaka Inagaki
- Department of Regenerative Medicine, Tokai University School of Medicine and the Institute of Medical Sciences, Isehara, Japan
| | | |
Collapse
|
11
|
Shin SY, Han TH, Lee SY, Han SK, Park JB, Erdelyi F, Szabo G, Ryu PD. Direct Corticosteroid Modulation of GABAergic Neurons in the Anterior Hypothalamic Area of GAD65-eGFP Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:163-9. [PMID: 21860595 DOI: 10.4196/kjpp.2011.15.3.163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 02/07/2023]
Abstract
Corticosterone is known to modulate GABAergic synaptic transmission in the hypothalamic paraventricular nucleus. However, the underlying receptor mechanisms are largely unknown. In the anterior hypothalamic area (AHA), the sympathoinhibitory center that project GABAergic neurons onto the PVN, we examined the expression of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) of GABAergic neurons using intact GAD65-eGFP transgenic mice, and the effects of corticosterone on the burst firing using adrenalectomized transgenic mice. GR or MR immunoreactivity was detected from the subpopulations of GABAergic neurons in the AHA. The AHA GABAergic neurons expressed mRNA of GR (42%), MR (38%) or both (8%). In addition, in brain slices incubated with corticosterone together with RU486 (MR-dominant group), the proportion of neurons showing a burst firing pattern was significantly higher than those in the slices incubated with vehicle, corticosterone, or corticosterone with spironolactone (GR-dominant group; 64 vs. 11~14%, p< 0.01 by χ(2)-test). Taken together, the results show that the corticosteroid receptors are expressed on the GABAergic neurons in the AHA, and can mediate the corticosteroid-induced plasticity in the firing pattern of these neurons. This study newly provides the experimental evidence for the direct glucocorticoid modulation of GABAergic neurons in the AHA in the vicinity of the PVN.
Collapse
Affiliation(s)
- Seung Yub Shin
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Korzh V, Teh C, Kondrychyn I, Chudakov DM, Lukyanov S. Visualizing Compound Transgenic Zebrafish in Development: A Tale of Green Fluorescent Protein and KillerRed. Zebrafish 2011; 8:23-9. [DOI: 10.1089/zeb.2011.0689] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vladimir Korzh
- Genomics and Development Division, Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cathleen Teh
- Genomics and Development Division, Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Igor Kondrychyn
- Genomics and Development Division, Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Dmitry M. Chudakov
- Shemiakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Sergey Lukyanov
- Shemiakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
13
|
Nishi M. Dynamics of corticosteroid receptors: lessons from live cell imaging. Acta Histochem Cytochem 2011; 44:1-7. [PMID: 21448312 PMCID: PMC3061448 DOI: 10.1267/ahc.10028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 10/05/2010] [Indexed: 01/24/2023] Open
Abstract
Adrenal corticosteroids (cortisol in humans or corticosterone in rodents) exert numerous effects on the central nervous system that regulates the stress response, mood, learning and memory, and various neuroendocrine functions. Corticosterone (CORT) actions in the brain are mediated via two receptor systems: the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). It has been shown that GR and MR are highly colocalized in the hippocampus. These receptors are mainly distributed in the cytoplasm without hormones and translocated into the nucleus after treatment with hormones to act as transcriptional factors. Thus the subcellular dynamics of both receptors are one of the most important issues. Given the differential action of MR and GR in the central nervous system, it is of great consequence to clarify how these receptors are trafficked between cytoplasm and nucleus and their interactions are regulated by hormones and/or other molecules to exert their transcriptional activity. In this review, we focus on the nucleocytoplasmic and subnuclear trafficking of GR and MR in neural cells and non-neural cells analyzed by using molecular imaging techniques with green fluorescent protein (GFP) including fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET), and discuss various factors affecting the dynamics of these receptors. Furthermore, we discuss the future directions of in vivo molecular imaging of corticosteroid receptors at the whole brain level.
Collapse
Affiliation(s)
- Mayumi Nishi
- Department of Anatomy and Cell Biology, Nara Medical University
| |
Collapse
|
14
|
Wang XD, Chen Y, Wolf M, Wagner KV, Liebl C, Scharf SH, Harbich D, Mayer B, Wurst W, Holsboer F, Deussing JM, Baram TZ, Müller MB, Schmidt MV. Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling. Neurobiol Dis 2011; 42:300-10. [PMID: 21296667 DOI: 10.1016/j.nbd.2011.01.020] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/04/2011] [Accepted: 01/27/2011] [Indexed: 01/31/2023] Open
Abstract
Chronic stress evokes profound structural and molecular changes in the hippocampus, which may underlie spatial memory deficits. Corticotropin-releasing hormone (CRH) and CRH receptor 1 (CRHR1) mediate some of the rapid effects of stress on dendritic spine morphology and modulate learning and memory, thus providing a potential molecular basis for impaired synaptic plasticity and spatial memory by repeated stress exposure. Using adult male mice with CRHR1 conditionally inactivated in the forebrain regions, we investigated the role of CRH-CRHR1 signaling in the effects of chronic social defeat stress on spatial memory, the dendritic morphology of hippocampal CA3 pyramidal neurons, and the hippocampal expression of nectin-3, a synaptic cell adhesion molecule important in synaptic remodeling. In chronically stressed wild-type mice, spatial memory was disrupted, and the complexity of apical dendrites of CA3 neurons reduced. In contrast, stressed mice with forebrain CRHR1 deficiency exhibited normal dendritic morphology of CA3 neurons and mild impairments in spatial memory. Additionally, we showed that the expression of nectin-3 in the CA3 area was regulated by chronic stress in a CRHR1-dependent fashion and associated with spatial memory and dendritic complexity. Moreover, forebrain CRHR1 deficiency prevented the down-regulation of hippocampal glucocorticoid receptor expression by chronic stress but induced increased body weight gain during persistent stress exposure. These findings underscore the important role of forebrain CRH-CRHR1 signaling in modulating chronic stress-induced cognitive, structural and molecular adaptations, with implications for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, 80804 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Cytometric techniques are continually being improved, refined, and adapted to new applications. This chapter briefly outlines recent advances in the field of cytometry with the main focus on new instrumentations in flow and image cytometry as well as new probes suitable for multiparametric analyses. There is a remarkable trend for miniaturizing cytometers, developing label-free and fluorescence-free analytical approaches, and designing "intelligent" probes. Furthermore, new methods for analyzing complex data for extracting relevant information are reviewed.
Collapse
|
16
|
Higashiyama R, Nakao S, Shibusawa Y, Ishikawa O, Moro T, Mikami K, Fukumitsu H, Ueda Y, Minakawa K, Tabata Y, Bou-Gharios G, Inagaki Y. Differential contribution of dermal resident and bone marrow-derived cells to collagen production during wound healing and fibrogenesis in mice. J Invest Dermatol 2010; 131:529-36. [PMID: 20962852 DOI: 10.1038/jid.2010.314] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent studies show that bone marrow (BM)-derived cells migrating into a dermal wound promote healing by producing collagen type I. However, their contribution to the repair process has not been fully verified yet. It is also unclear whether BM-derived cells participate in dermal fibrogenesis. We have addressed these issues using transgenic mice that harbor tissue-specific enhancer/promoter sequences of α2(I) collagen gene linked to either enhanced green fluorescent protein (COL/EGFP) or the luciferase (COL/LUC) reporter gene. Following dermal excision or subcutaneous bleomycin administration, a large number of EGFP-positive collagen-producing cells appeared in the dermis of COL/EGFP reporter mice. When wild-type mice were transplanted with BM cells from transgenic COL/EGFP animals and subjected to dermal excision, no EGFP-positive BM-derived collagen-producing cells were detected throughout the repair process. Luciferase assays of dermal tissues from COL/LUC recipient mice also excluded collagen production by BM-derived cells during dermal excision healing. In contrast, a limited but significant number of CD45-positive collagen-producing cells migrated from BM following bleomycin injection. These results indicate that resident cells in the skin are the major source of de novo collagen deposition in both physiological and pathological conditions, whereas BM-derived cells participate, in part, in collagen production during dermal fibrogenesis.
Collapse
Affiliation(s)
- Reiichi Higashiyama
- Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Specificity of glucocorticoid receptor primary antibodies for analysis of receptor localization patterns in cultured cells and rat hippocampus. Brain Res 2010; 1331:1-11. [PMID: 20307510 DOI: 10.1016/j.brainres.2010.03.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/02/2010] [Accepted: 03/14/2010] [Indexed: 01/09/2023]
Abstract
After glucocorticoid stimulation, glucocorticoid receptors (GRs) are translocated to the nucleus to modulate transcription of glucocorticoid target genes. The subcellular distribution and trafficking of GR in cultured cells has been studied quite intensively using several techniques. However, the intracellular localization of nuclear receptors in ligand-free and stimulated conditions in vivo is still controversial, in part because of inconsistent results with different antibodies. Knowledge of trafficking of GR in vivo could greatly contribute to understanding nuclear receptor signaling. Therefore, in this study we systematically compared a panel of different primary GR antibodies using immunohistochemistry and confocal imaging. Nuclear translocation patterns at different time points after glucocorticoid stimulation were compared in cultured AtT20 cells and rat hippocampal CA1 and dentate gyrus cells. The BuGR2 antibody consistently detected GR nuclear translocation patterns between in vivo and in vitro settings, but the other GR primary antibodies provided contradictory results. While GR H300 and P20 strongly detected nuclear GR immunoreactivity after glucocorticoid stimulation in both CA1 and dentate gyrus cells, the same antibodies provided poor results in cultured cells. The opposite was found for the primary GR M20 antibody. These data indicate that with a particular glucocorticoid receptor antibody the findings in cell culture studies cannot always be extrapolated to in vivo situations. Moreover, different antibodies disclose different features of the glucocorticoid receptor translocation process.
Collapse
|
18
|
Wüstner D, Landt Larsen A, Faergeman NJ, Brewer JR, Sage D. Selective Visualization of Fluorescent Sterols in Caenorhabditis elegans by Bleach-Rate-Based Image Segmentation. Traffic 2010; 11:440-54. [DOI: 10.1111/j.1600-0854.2010.01040.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Mice overexpressing corticotropin-releasing factor show brain atrophy and motor dysfunctions. Neurosci Lett 2010; 473:11-5. [PMID: 20132869 DOI: 10.1016/j.neulet.2010.01.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 11/22/2022]
Abstract
Chronic stress and persistently high glucocorticoid levels can induce brain atrophy. Corticotropin-releasing factor (CRF)-overexpressing (OE) mice are a genetic model of chronic stress with elevated brain CRF and plasma corticosterone levels and Cushing's syndrome. The brain structural alterations in the CRF-OE mice, however, are not well known. We found that adult male and female CRF-OE mice had significantly lower whole brain and cerebellum weights than their wild type (WT) littermates (347.7+/-3.6mg vs. 460.1+/-4.3mg and 36.3+/-0.8mg vs. 50.0+/-1.3mg, respectively) without sex-related difference. The epididymal/parametrial fat mass was significantly higher in CRF-OE mice. The brain weight was inversely correlated to epididymal/parametrial fat weight, but not to body weight. Computerized image analysis system in Nissl-stained brain sections of female mice showed that the anterior cingulate and sensorimotor cortexes of CRF-OE mice were significantly thinner, and the volumes of the hippocampus, hypothalamic paraventricular nucleus and amygdala were significantly reduced compared to WT, while the locus coeruleus showed a non-significant increase. Motor functions determined by beam crossing and gait analysis showed that CRF-OE mice took longer time and more steps to traverse a beam with more errors, and displayed reduced stride length compared to their WT littermates. These data show that CRF-OE mice display brain size reduction associated with alterations of motor coordination and an increase in visceral fat mass providing a novel animal model to study mechanisms involved in brain atrophy under conditions of sustained elevation of brain CRF and circulating glucocorticoid levels.
Collapse
|
20
|
Lehner M, Wisłowska-Stanek A, Taracha E, Maciejak P, Szyndler J, Skórzewska A, Turzyńska D, Sobolewska A, Hamed A, Bidziński A, Płaźnik A. The expression of c-Fos and colocalisation of c-Fos and glucocorticoid receptors in brain structures of low and high anxiety rats subjected to extinction trials and re-learning of a conditioned fear response. Neurobiol Learn Mem 2009; 92:535-43. [DOI: 10.1016/j.nlm.2009.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/16/2009] [Accepted: 07/03/2009] [Indexed: 02/05/2023]
|
21
|
Higashiyama R, Moro T, Nakao S, Mikami K, Fukumitsu H, Ueda Y, Ikeda K, Adachi E, Bou-Gharios G, Okazaki I, Inagaki Y. Negligible contribution of bone marrow-derived cells to collagen production during hepatic fibrogenesis in mice. Gastroenterology 2009; 137:1459-66.e1. [PMID: 19596008 DOI: 10.1053/j.gastro.2009.07.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 06/19/2009] [Accepted: 07/07/2009] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Recent studies have reported that bone marrow (BM)-derived cells migrating into fibrotic liver tissue exhibit a myofibroblast-like phenotype and may participate in the progression of liver fibrosis. However, their contribution to collagen production has not been fully verified yet. We revisited this issue by using 2 mechanistically distinct liver fibrosis models introduced into transgenic collagen reporter mice and their BM recipients. METHODS BM of wild-type mice was replaced by cells obtained from transgenic animals harboring tissue-specific enhancer/promoter sequences of alpha2(I) collagen gene (COL1A2) linked to enhanced green fluorescent protein (EGFP) or firefly luciferase (LUC) gene. Liver fibrosis was introduced into those mice by repeated carbon tetrachloride injections or ligation of the common bile duct. Activation of COL1A2 promoter was assessed by confocal microscopic examination detecting EGFP signals and luciferase assays of liver homogenates. RESULTS The tissue-specific COL1A2 enhancer/promoter was activated in hepatic stellate cells following a single carbon tetrachloride injection or during primary culture on plastic. A large number of EGFP-positive collagen-expressing cells were observed in liver tissue of transgenic COL1A2/EGFP mice in both liver fibrosis models. In contrast, there were few EGFP-positive BM-derived collagen-producing cells detected in fibrotic liver tissue of COL1A2/EGFP recipients. Luciferase assays of liver tissues from COL1A2/LUC-recipient mice further indicated that BM-derived cells produced little collagen in response to fibrogenic stimuli. CONCLUSIONS By using a specific and sensitive experimental system, which detects exclusively BM-derived collagen-producing cells, we conclude an unexpectedly limited role of BM-derived cells in collagen production during hepatic fibrogenesis.
Collapse
Affiliation(s)
- Reiichi Higashiyama
- Research Unit for Tissue Remodeling and Regeneration, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Regional distribution of importin subtype mRNA expression in the nervous system: study of early postnatal and adult mouse. Neuroscience 2008; 157:864-77. [PMID: 18950688 DOI: 10.1016/j.neuroscience.2008.09.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 01/26/2023]
Abstract
Importin-alpha and beta1 mediate the translocation of macromolecules bearing nuclear localization signals across the nuclear pore complex. Five importin-alpha isoforms have been identified in mice and six in human. Some of these importins play an important role in neural activity such as long term potentiation, but the functional differences of each isoform in the CNS are still unclear. We performed in situ hybridization (ISH) using non-isotopic probes to clarify the expression patterns of importin-alpha subtypes (alpha5, alpha7, alpha1, alpha4, alpha3) and importin-beta1 in the mouse CNS of adult and early postnatal stages. The mRNAs of the importin-alpha subtypes and importin beta1 were expressed throughout the CNS with specific patterns; importin-alpha5, alpha7, alpha3, and beta1 showed moderate to high expression levels throughout the brain and spinal cord; importin-alpha4 showed a lack of expression in limited regions; and importin-alpha1 showed a low expression level throughout the brain and spinal cord but with a moderate expression level in the olfactory bulb and reticular system. We also demonstrated that importin-alphas and beta1 mRNAs were predominantly expressed in neurons in the adult mouse brain by using double-labeling fluorescence ISH and immunohistochemistry. Moreover, importin-alphas and beta1 mRNAs were detected throughout the CNS of postnatal mice and were highly expressed in the external granule layer of the cerebellar cortex on postnatal days 0, 4, and 10. This is the first report of importin-alphas and beta1 expression throughout the CNS of adult mice, as well as in the developing brain, including cell type specific localization.
Collapse
|
23
|
Yoshii T, Sakamoto H, Kawasaki M, Ozawa H, Ueta Y, Onaka T, Fukui K, Kawata M. The single-prolonged stress paradigm alters both the morphology and stress response of magnocellular vasopressin neurons. Neuroscience 2008; 156:466-74. [PMID: 18723079 DOI: 10.1016/j.neuroscience.2008.07.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/11/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
Abstract
Vasopressin (AVP) plays an important role in anxiety-related and social behaviors. Single-prolonged stress (SPS) has been established as an animal acute severe stress model and has been shown to induce a lower adrenocorticotropic hormone (ACTH) response upon cortisol challenge. Here, we show results from immunoassays for AVP, ACTH, and corticosterone (CORT), and in situ hybridizations for AVP mRNA performed 7 days after SPS exposure. Immunofluorescence for AVP was also performed during the 7-day period following SPS exposure and after an additional forced swimming stress paradigm. We observed that the plasma concentrations of AVP, ACTH, and CORT were not altered by SPS; ACTH content in the pituitary and AVP mRNA expression in the supraoptic nucleus (SON) were significantly reduced by SPS. During the 7-day period following SPS, the intensity of immunoreactivity, the size of the soma, and the immunoreactive optical density of the dendrites of AVP neurons in the SON all increased. An apparent reduction in the intensity of AVP immunoreactivity was observed in the SON at 4 h after additional stress. Additional forced swimming led to a rapid increase in the dendritic AVP content only in the controls and not in the SPS-treated rats. These findings suggest that AVP is a potential biomarker for past exposure to severe stress and that alterations in AVP may affect the development of pathogenesis in stress-related disorders.
Collapse
Affiliation(s)
- T Yoshii
- Department of Psychiatry, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kawata M, Nishi M, Matsuda K, Sakamoto H, Kaku N, Masugi-Tokita M, Fujikawa K, Hirahara-Wada Y, Takanami K, Mori H. Steroid receptor signalling in the brain--lessons learned from molecular imaging. J Neuroendocrinol 2008; 20:673-6. [PMID: 18601688 DOI: 10.1111/j.1365-2826.2008.01727.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies with green fluorescent protein (GFP) have revealed the subcellular distribution of many steroid hormone receptors to be much more dynamic than previously thought. Fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching (FRAP) are powerful techniques with which to examine protein-protein interaction and the mobility of tagged proteins, respectively. FRET analysis revealed that steroid treatment (with corticosterone or testosterone) induces direct interaction of the glucocorticoid receptor (GR) and importin alpha in the cytoplasm and that, shortly after nuclear entry, the GR detaches from importin alpha. The mineralocorticoid receptor (MR) and androgen receptor (AR) show the same trafficking. Upon oestradiol treatment, ERalpha and ERbeta in the same cell are relocalised to form a discrete pattern and are localised in the same discrete cluster (subnuclear foci). FRAP analysis showed that nuclear ERalpha and ERbeta are most dynamic and mobile in the absence of the ligand, and that mobility decreases slightly after ligand treatment. Genomic as well as non-genomic actions of steroid hormones influence the cellular function of target tissues spacio-temporally.
Collapse
Affiliation(s)
- M Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Groenink L, Dirks A, Verdouw PM, de Graaff M, Peeters BW, Millan MJ, Olivier B. CRF1 not glucocorticoid receptors mediate prepulse inhibition deficits in mice overexpressing CRF. Biol Psychiatry 2008; 63:360-8. [PMID: 17716630 DOI: 10.1016/j.biopsych.2007.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/29/2007] [Accepted: 06/04/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Both corticotropin-releasing factor (CRF) and glucocorticoid receptors (GR) are implicated in the psychotic symptoms of psychiatric disorders. Correspondingly, it is of interest to determine their respective involvement in the sensorimotor gating deficits displayed by transgenic mice overexpressing CRF. These mice reveal lifelong elevations of CRF and corticosterone levels. METHODS Effects of the GR antagonists ORG34517 (5-45 mg/kg by mouth [PO]) and mifepristone (5-45 mg/kg PO) and the CRF(1) receptor antagonists CP154,526 (20-80 mg/kg intraperitoneally [IP]) and DMP695 (2.5-40.0 mg/kg IP) on prepulse inhibition (PPI) of the acoustic startle response were studied in mice overexpressing CRF and in their wild-type littermates. In addition, PPI was measured in both genotypes 2 weeks after adrenalectomy with or without exogenous corticosterone administration via subcutaneous pellet implant (20 mg corticosterone). RESULTS ORG34517 and mifepristone did not influence perturbation of PPI in mice overexpressing CRF; reducing corticosterone levels by adrenalectomy likewise did not improve PPI. Further, elevation in corticosterone levels by pellet implantation did not disrupt PPI in wild-type mice. Conversely, both CRF(1) receptor antagonists, CP154,526 (40-80 mg/kg IP) and DMP695 (40 mg/kg IP), significantly restored PPI in CRF-overexpressing mice. CONCLUSIONS Sustained overactivation of CRF(1) receptors rather than excessive GR receptor stimulation underlies impaired sensorimotor gating in CRF-overexpressing mice. CRF(1) receptors thus may play a role in the expression of psychotic features in stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Lucianne Groenink
- Psychopharmacology, Department of Pharmaceutical Sciences, Rudolf Magnus Institute of Neuroscience and Utrecht Institute of Pharmaceutical Sciences, Utrecht, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Fitzsimons CP, Ahmed S, Wittevrongel CFW, Schouten TG, Dijkmans TF, Scheenen WJJM, Schaaf MJM, de Kloet ER, Vreugdenhil E. The microtubule-associated protein doublecortin-like regulates the transport of the glucocorticoid receptor in neuronal progenitor cells. Mol Endocrinol 2008; 22:248-62. [PMID: 17975023 PMCID: PMC5419639 DOI: 10.1210/me.2007-0233] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 10/23/2007] [Indexed: 02/05/2023] Open
Abstract
In neuronal cells, activated glucocorticoid receptor (GR) translocates to the nucleus guided by the cytoskeleton. However, the detailed mechanisms underlying GR translocation remain unclear. Using gain and loss of function studies, we report here for the first time that the microtubule-associated protein doublecortin-like (DCL) controls GR translocation to the nucleus. DCL overexpression in COS-1 cells, neuroblastoma cells, and rat hippocampus organotypic slice cultures impaired GR translocation and decreased GR-dependent transcriptional activity, measured by a specific reporter gene assay, in COS-1 cells. Moreover, DCL and GR directly interact on microtubule bundles formed by DCL overexpression. A C-terminal truncated DCL with conserved microtubule-bundling activity did not influence GR translocation. In N1E-115 mouse neuroblastoma cells and neuronal progenitor cells in rat hippocampus organotypic slice cultures, laser-scanning confocal microscopy showed colabeling of endogenously expressed DCL and GR. In these systems, RNA-interference-mediated DCL knockdown hampered GR translocation. Thus, we conclude that DCL expression is tightly regulated to adequately control GR transport. Because DCL is primarily expressed in neuronal progenitor cells, our results introduce this microtubule-associated protein as a new modulator of GR signaling in this cell type and suggest the existence of cell-specific mechanisms regulating GR translocation to the nucleus.
Collapse
Affiliation(s)
- Carlos P Fitzsimons
- Leiden/Amsterdam Center for Drug Research/Medical Pharmacology Department, Einsteinweg 55, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Stress, acting through glucocorticoids (GC), has profound effects on brain physiology and pathology and is causally implicated in depressive illness. Here, we consider the information derived from genetic models generated to probe the role of the hypothalamo-pituitary-adrenal axis in depression. This essay also briefly reviews the status of knowledge regarding GC actions on neuronal birth, survival and death from the perspective of the importance of these phenomena in depression.
Collapse
Affiliation(s)
- Shuang Yu
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | | | | |
Collapse
|
28
|
Cui H, Sakamoto H, Higashi S, Kawata M. Effects of single-prolonged stress on neurons and their afferent inputs in the amygdala. Neuroscience 2007; 152:703-12. [PMID: 18308474 DOI: 10.1016/j.neuroscience.2007.12.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 12/14/2007] [Accepted: 01/16/2008] [Indexed: 11/24/2022]
Abstract
The amygdala modulates memory consolidation with the storage of emotionally relevant information and plays a critical role in fear and anxiety. We examined changes in neuronal morphology and neurotransmitter content in the amygdala of rats exposed to a single prolonged stress (SPS) as a putative animal model for human post-traumatic stress disorder (PTSD). Rats were perfused 7 days after SPS, and intracellular injections of Lucifer Yellow were administered to neurons of the basolateral (BLA) and central amygdala (CeA) to analyze morphological changes at the cellular level. A significant increase of dendritic arborization in BLA pyramidal neurons was observed, but there was no effect on CeA neurons. Neuropeptide Y (NPY) was abundant in BLA under normal conditions. The local concentration and number of immunoreactive fibers of NPY in the BLA of SPS-exposed rats were increased compared with the control. No differences were observed in this regard in the CeA. Double immunostaining by fluorescence and electron microscopy revealed that NPY immunoreactive terminals were closely associated with calcium/calmodulin II-dependent protein kinase (CaMKII: a marker for pyramidal neurons)-positive neurons in the BLA, which were immunopositive to glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). SPS had no significant effect on the expression of CaMKII and MR/GR expression in the BLA. Based on these findings, we suggest that changes in the morphology of pyramidal neurons in the BLA by SPS could be mediated through the enhancement of NPY functions, and this structural plasticity in the amygdala provides a cellular and molecular basis to understand for affective disorders.
Collapse
Affiliation(s)
- H Cui
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | |
Collapse
|
29
|
Gong A, Zhang Z, Xiao D, Yang Y, Wang Y, Chen Y. Localization of phosphorylated TrkA in carrier vesicles involved in its nuclear translocation in U251 cell line. ACTA ACUST UNITED AC 2007; 50:141-6. [PMID: 17447019 DOI: 10.1007/s11427-007-0022-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 12/18/2006] [Indexed: 01/21/2023]
Abstract
A number of transmembrane receptors are targeted to the nucleus and convincingly localized therein. However, what remains a conundrum is how these cell-surface receptors end up in the nucleus. In this study, we reported that the transmembrane receptor phosphorylated TrkA was located in a series of carrier vesicles, including ring-like vesicles near the plasma membrane, large core vesicles and small dense core vesicles around the nuclei, as well as in the nucleus in human glioma cell line U251 using immunocytochemistry and immunofluorescence staining. Meanwhile, we also showed that small dense core vesicles budded from large core vesicles, and interacted with the nuclear envelope. Accordingly, our results suggested that such a series of membrane compartments might be involved in the pathway of nuclear translocation of the transmembrane receptor TrkA.
Collapse
Affiliation(s)
- AiHua Gong
- School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | | | | | | | | | | |
Collapse
|
30
|
Nishi M, Usuku T, Itose M, Fujikawa K, Hosokawa K, Matsuda KI, Kawata M. Direct visualization of glucocorticoid receptor positive cells in the hippocampal regions using green fluorescent protein transgenic mice. Neuroscience 2007; 146:1555-60. [PMID: 17467182 DOI: 10.1016/j.neuroscience.2007.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 02/26/2007] [Accepted: 03/10/2007] [Indexed: 10/23/2022]
Abstract
The hippocampal formation is a plastic brain structure important for certain types of learning and memory, and also vulnerable to the effects of stress and trauma. Since hippocampal neurons express high levels of corticosteroid receptor, the morphological changes, including alterations in the size of soma, and the length and number of neurites and spines, in response to glucocorticoids released as a result of stress are intriguing. In order to highlight the morphology of neurons that express glucocorticoid receptor (GR), we have generated a transgenic mouse line expressing green fluorescent protein (GFP) under the control of the GR promoter. We found strong green fluorescence in the pyramidal cell layer of the CA1 and CA2 regions and the granule cell layer of the dentate gyrus of the hippocampus in brain sections of the transgenic mice. GFP fluorescence was observed not only in somas, but also in neurites including both dendrites and axons. In dissociated culture, we also observed GFP fluorescence in the soma, neurites including both dendrites and axons, and dendritic spines. Microtubule-associated protein 2 immunopositive pyramidal-shaped neurons clearly showed two different populations, GFP positive and GFP negative neurons. These results indicate that this transgenic mouse line should be useful for live imaging of neuronal structure in animals as well as GR-positive cultured cells using GFP as a specific indicator.
Collapse
Affiliation(s)
- M Nishi
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Higashiyama R, Inagaki Y, Hong YY, Kushida M, Nakao S, Niioka M, Watanabe T, Okano H, Matsuzaki Y, Shiota G, Okazaki I. Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology 2007; 45:213-22. [PMID: 17187438 DOI: 10.1002/hep.21477] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Liver fibrosis is usually progressive, but it can occasionally be reversible if the causative agents are adequately removed or if patients are treated effectively. However, molecular mechanisms responsible for this reversibility of liver fibrosis have been poorly understood. To reveal the contribution of bone marrow (BM)-derived cells to the spontaneous regression of liver fibrosis, mice were treated with repeated carbon tetrachloride injections after hematopoietic reconstitution with enhanced green fluorescent protein (EGFP)-expressing BM cells. The distribution and characteristics of EGFP-positive (EGFP(+)) cells present in fibrotic liver tissue were examined at different time points after cessation of carbon tetrachloride intoxication. A large number of EGFP(+) cells were observed in liver tissue at peak fibrosis, which decreased during the recovery from liver fibrosis. Some of them, as well as EGFP-negative (EGFP(-)) liver resident cells, expressed matrix metalloproteinase (MMP)-13 and MMP-9. Whereas MMP-13 was transiently expressed mainly in the cells clustering in the periportal areas, MMP-9 expression and enzymatic activity were detected over the resolution process in several different kinds of cells located in the portal areas and along the fibrous septa. Therapeutic recruitment of BM cells by granulocyte colony-stimulating factor (G-CSF) treatment significantly enhanced migration of BM-derived cells into fibrotic liver and accelerated the regression of liver fibrosis. Experiments using transgenic mice overexpressing hepatocyte growth factor (HGF) indicated that G-CSF and HGF synergistically increased MMP-9 expression along the fibrous septa. CONCLUSION Autologous BM cells contribute to the spontaneous regression of liver fibrosis, and their therapeutic derivation could be a new treatment strategy for intractable liver fibrosis.
Collapse
Affiliation(s)
- Reiichi Higashiyama
- Liver Fibrosis Research Unit, Department of Community Health, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Du W, Wang Y, Luo Q, Liu BF. Optical molecular imaging for systems biology: from molecule to organism. Anal Bioanal Chem 2006; 386:444-57. [PMID: 16850295 PMCID: PMC1592253 DOI: 10.1007/s00216-006-0541-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 05/01/2006] [Accepted: 05/09/2006] [Indexed: 11/25/2022]
Abstract
The development of highly efficient analytical methods capable of probing biological systems at system level is an important task that is required in order to meet the requirements of the emerging field of systems biology. Optical molecular imaging (OMI) is a very powerful tool for studying the temporal and spatial dynamics of specific biomolecules and their interactions in real time in vivo. In this article, recent advances in OMI are reviewed extensively, such as the development of molecular probes that make imaging brighter, more stable and more informative (e.g., FPs and semiconductor nanocrystals, also referred to as quantum dots), the development of imaging approaches that provide higher resolution and greater tissue penetration, and applications for measuring biological events from molecule to organism level, including gene expression, protein and subcellular compartment localization, protein activation and interaction, and low-mass molecule dynamics. These advances are of great significance in the field of biological science and could also be applied to disease diagnosis and pharmaceutical screening. Further developments in OMI for systems biology are also proposed.
Collapse
Affiliation(s)
- Wei Du
- The Key Laboratory of Biomedical Photonics of MOE—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Ying Wang
- The Key Laboratory of Biomedical Photonics of MOE—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Qingming Luo
- The Key Laboratory of Biomedical Photonics of MOE—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Bi-Feng Liu
- The Key Laboratory of Biomedical Photonics of MOE—Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| |
Collapse
|
33
|
Dondi D, Piccolella M, Messi E, Demissie M, Cariboni A, Selleri S, Piva F, Samara A, Consalez GG, Maggi R. Expression and differential effects of the activation of glucocorticoid receptors in mouse gonadotropin-releasing hormone neurons. Neuroendocrinology 2005; 82:151-63. [PMID: 16498266 DOI: 10.1159/000091693] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 12/12/2005] [Indexed: 12/27/2022]
Abstract
Prenatal exposure of rodents to glucocorticoids (Gc) affects the sexual development of the offspring, possibly interfering with the differentiation of the hypothalamic-pituitary-gonadal axis. Glucocorticoid receptors (GR) are present on gonadotropin-releasing hormone (GnRH) neurons in the rat hypothalamus, suggesting a direct effect of Gc in the control of the synthesis and/or release of the hormone. In this study, we demonstrate the colocalization of immunoreactive GR with GnRH in a subpopulation of mouse hypothalamic GnRH neurons, confirming the possible involvement of Gc in mouse GnRH neuronal physiology. Receptor-binding assay, RT-PCR, immunocytochemistry, and immunoblotting experiments carried out in GN11 immortalized GnRH neurons show the presence of GR even in the more immature mouse GnRH neurons and confirm the expression of GR in GT1-7 mature GnRH cells. In GN11 cells, the activation of GR with dexamethasone produces nuclear translocation, but does not lead to the inhibition of GnRH gene expression already reported in GT1-7 cells. Long-term exposure of GN11 cells to dexamethasone induces an epithelial-like phenotype with a reorganization of F-actin in stress fibers. Finally, we found that Gc treatment significantly decreases the migratory activity in vitro and the levels of phosphorylated focal adhesion kinase of GN11 immature neurons. In conclusion, these data indicate that GR are expressed in mouse hypothalamic GnRH neurons in vivo as well as in the immature GN11 GnRH neurons in vitro. Moreover, the effects of the GR activation in GN11 and in GT1-7 cells may be related to the neuronal maturational stage of the two cell lines, suggesting a differential role of Gc in neuronal development.
Collapse
Affiliation(s)
- Donatella Dondi
- Department of Endocrinology, Center of Excellence on Neurodegenerative Diseases, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|