1
|
Colón-Mercado JM, Torrado-Tapias AI, Salgado IK, Santiago JM, Rivera SEO, Bracho-Rincon DP, Rivera LHP, Miranda JD. The sexually dimorphic expression of glutamate transporters and their implication in pain after spinal cord injury. Neural Regen Res 2025; 20:3317-3329. [PMID: 39314150 PMCID: PMC11881711 DOI: 10.4103/nrr.nrr-d-24-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00033/figure1/v/2024-12-20T164640Z/r/image-tiff In addition to the loss of motor function, ~ 60% of patients develop pain after spinal cord injury. The cellular-molecular mechanisms are not well understood, but the data suggests that plasticity within the rostral, epicenter, and caudal penumbra of the injury site initiates a cellular-molecular interplay that acts as a rewiring mechanism leading to central neuropathic pain. Sprouting can lead to the formation of new connections triggering abnormal sensory transmission. The excitatory glutamate transporters are responsible for the reuptake of extracellular glutamate which makes them a critical target to prevent neuronal hyperexcitability and excitotoxicity. Our previous studies showed a sexually dimorphic therapeutic window for spinal cord injury after treatment with the selective estrogen receptor modulator tamoxifen. In this study, we investigated the anti-allodynic effects of tamoxifen in male and female rats with spinal cord injury. We hypothesized that tamoxifen exerts anti-allodynic effects by increasing the expression of glutamate transporters, leading to reduced hyperexcitability of the secondary neuron or by decreasing aberrant sprouting. Male and female rats received a moderate contusion to the thoracic spinal cord followed by subcutaneous slow-release treatment of tamoxifen or matrix pellets as a control (placebo). We used von Frey monofilaments and the "up-down method" to evaluate mechanical allodynia. Tamoxifen treatment decreased allodynia only in female rats with spinal cord injury revealing a sex-dependent effect. The expression profile of glutamatergic transporters (excitatory amino acid transporter 1/glutamate aspartate transporter and excitatory amino acid transporter 2/glutamate transporter-1) revealed a sexual dimorphism in the rostral, epicenter, and caudal areas of the spinal cord with a pattern of expression primarily on astrocytes. Female rodents showed a significantly higher level of excitatory amino acid transporter-1 expression while male rodents showed increased excitatory amino acid transporter-2 expression compared with female rodents. Analyses of peptidergic (calcitonin gene-related peptide-α) and non-peptidergic (isolectin B4) fibers outgrowth in the dorsal horn after spinal cord injury showed an increased calcitonin gene-related peptide-α/ isolectin B4 ratio in comparison with sham, suggesting increased receptive fields in the dorsal horn. Although the behavioral assay shows decreased allodynia in tamoxifen-treated female rats, this was not associated with overexpression of glutamate transporters or alterations in the dorsal horn laminae fibers at 28 days post-injury. Our findings provide new evidence of the sexually dimorphic expression of glutamate transporters in the spinal cord. The dimorphic expression revealed in this study provides a therapeutic opportunity for treating chronic pain, an area with a critical need for treatment.
Collapse
Affiliation(s)
| | | | - Iris K. Salgado
- Universidad Central del Caribe, School of Medicine, Bayamón, PR, USA
| | | | - Samuel E. Ocasio Rivera
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | | | - Luis H. Pagan Rivera
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Jorge D. Miranda
- Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
2
|
Premarin Reduces Neurodegeneration and Promotes Improvement of Function in an Animal Model of Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms23042384. [PMID: 35216504 PMCID: PMC8875481 DOI: 10.3390/ijms23042384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Spinal cord injury (SCI) causes significant mortality and morbidity. Currently, no FDA-approved pharmacotherapy is available for treating SCI. Previously, low doses of estrogen (17β-estradiol, E2) were shown to improve the post-injury outcome in a rat SCI model. However, the range of associated side effects makes advocating its therapeutic use difficult. Therefore, this study aimed at investigating the therapeutic efficacy of Premarin (PRM) in SCI. PRM is an FDA-approved E2 (10%) formulation, which is used for hormone replacement therapy with minimal risk of serious side effects. The effects of PRM on SCI were examined by magnetic resonance imaging, immunofluorescent staining, and western blot analysis in a rat model. SCI animals treated with vehicle alone, PRM, E2 receptor antagonist (ICI), or PRM + ICI were graded in a blinded way for locomotor function by using the Basso–Beattie–Bresnahan (BBB) locomotor scale. PRM treatment for 7 days decreased post-SCI lesion volume and attenuated neuronal cell death, inflammation, and axonal damage. PRM also altered the balance of pro- and anti-apoptotic proteins in favor of cell survival and improved angiogenesis and microvascular growth. Increased expression of estrogen receptors (ERs) ERα and ERβ following PRM treatment and their inhibition by ER inhibitor indicated that the neuroprotection associated with PRM treatment might be E2-receptor mediated. The attenuation of glial activation with decreased inflammation and cell death, and increased angiogenesis by PRM led to improved functional outcome as determined by the BBB locomotor scale. These results suggest that PRM treatment has significant therapeutic implications for the improvement of post-SCI outcome.
Collapse
|
3
|
Pathophysiology, Biomarkers, and Therapeutic Modalities Associated with Skeletal Muscle Loss Following Spinal Cord Injury. Brain Sci 2020; 10:brainsci10120933. [PMID: 33276534 PMCID: PMC7761577 DOI: 10.3390/brainsci10120933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
A spinal cord injury (SCI) may lead to loss of strength, sensation, locomotion and other body functions distal to the lesion site. Individuals with SCI also develop secondary conditions due to the lack of skeletal muscle activity. As SCI case numbers increase, recent studies have attempted to determine the best options to salvage affected musculature before it is lost. These approaches include pharmacotherapeutic options, immunosuppressants, physical activity or a combination thereof. Associated biomarkers are increasingly used to determine if these treatments aid in the protection and reconstruction of affected musculature.
Collapse
|
4
|
Mollazadeh H, Mohtashami E, Mousavi SH, Soukhtanloo M, Vahedi MM, Hosseini A, Afshari AR, Sahebkar A. Deciphering the Role of Glutamate Signaling in Glioblastoma Multiforme: Current Therapeutic Modalities and Future Directions. Curr Pharm Des 2020; 26:4777-4788. [DOI: 10.2174/1381612826666200603132456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
As the most popular intrinsic neoplasm throughout the brain, glioblastoma multiforme (GBM) is resistant
to existing therapies. Due to its invasive nature, GBM shows a poor prognosis despite aggressive surgery
and chemoradiation. Therefore, identifying and understanding the critical molecules of GBM can help develop
new therapeutic strategies. Glutamatergic signaling dysfunction has been well documented in neurodegenerative
diseases as well as in GBM. Inhibition of glutamate receptor activation or extracellular glutamate release by specific
antagonists inhibits cell development, invasion, and migration and contributes to apoptosis and autophagy in
GBM cells. This review outlines the current knowledge of glutamate signaling involvement and current therapeutic
modalities for the treatment of GBM.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed H. Mousavi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad M. Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R. Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | |
Collapse
|
5
|
Role of 17 β-Estradiol on Cell Proliferation and Mitochondrial Fitness in Glioblastoma Cells. JOURNAL OF ONCOLOGY 2020; 2020:2314693. [PMID: 32148493 PMCID: PMC7042539 DOI: 10.1155/2020/2314693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Gliomas are the most common primary tumors of the central nervous system (CNS) in the adult. Previous data showed that estrogen affects cancer cells, but its effect is cell-type-dependent and controversial. The present study aimed to analyze the effects of estradiol (E2, 5 nM) in human glioblastoma multiforme U87-MG cells and how it may impact on cell proliferation and mitochondrial fitness. We monitored cell proliferation by xCELLigence technology and mitochondrial fitness by assessing the expression of genes involved in mitochondrial biogenesis (PGC1α, SIRT1, and TFAM), oxidative phosphorylation (ND4, Cytb, COX-II, COX IV, NDUFA6, and ATP synthase), and dynamics (OPA1, MNF2, MNF1, and FIS1). Finally, we evaluated Nrf2 nuclear translocation by immunocytochemical analysis. Our results showed that E2 resulted in a significant increase in cell proliferation, with a significant increase in the expression of genes involved in various mechanisms of mitochondrial fitness. Finally, E2 treatment resulted in a significant increase of Nrf2 nuclear translocation with a significant increase in the expression of one of its target genes (i.e., heme oxygenase-1). Our results suggest that E2 promotes proliferation in glioblastoma cells and regulate the expression of genes involved in mitochondrial fitness and chemoresistance pathway.
Collapse
|
6
|
Hidalgo-Lanussa O, Baez-Jurado E, Echeverria V, Ashraf GM, Sahebkar A, Garcia-Segura LM, Melcangi RC, Barreto GE. Lipotoxicity, neuroinflammation, glial cells and oestrogenic compounds. J Neuroendocrinol 2020; 32:e12776. [PMID: 31334878 DOI: 10.1111/jne.12776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
The high concentrations of free fatty acids as a consequence of obesity and being overweight have become risk factors for the development of different diseases, including neurodegenerative ailments. Free fatty acids are strongly related to inflammatory events, causing cellular and tissue alterations in the brain, including cell death, deficits in neurogenesis and gliogenesis, and cognitive decline. It has been reported that people with a high body mass index have a higher risk of suffering from Alzheimer's disease. Hormones such as oestradiol not only have beneficial effects on brain tissue, but also exert some adverse effects on peripheral tissues, including the ovary and breast. For this reason, some studies have evaluated the protective effect of oestrogen receptor (ER) agonists with more specific tissue activities, such as the neuroactive steroid tibolone. Activation of ERs positively affects the expression of pro-survival factors and cell signalling pathways, thus promoting cell survival. This review aims to discuss the relationship between lipotoxicity and the development of neurodegenerative diseases. We also elaborate on the cellular and molecular mechanisms involved in neuroprotection induced by oestrogens.
Collapse
Affiliation(s)
- Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
- Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
7
|
Vallejo R, Platt DC, Rink JA, Jones MA, Kelley CA, Gupta A, Cass CL, Eichenberg K, Vallejo A, Smith WJ, Benyamin R, Cedeño DL. Electrical Stimulation of C6 Glia-Precursor Cells In Vitro Differentially Modulates Gene Expression Related to Chronic Pain Pathways. Brain Sci 2019; 9:303. [PMID: 31683631 PMCID: PMC6896182 DOI: 10.3390/brainsci9110303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Glial cells comprise the majority of cells in the central nervous system and exhibit diverse functions including the development of persistent neuropathic pain. While earlier theories have proposed that the applied electric field specifically affects neurons, it has been demonstrated that electrical stimulation (ES) of neural tissue modulates gene expression of the glial cells. This study examines the effect of ES on the expression of eight genes related to oxidative stress and neuroprotection in cultured rodent glioma cells. Concentric bipolar electrodes under seven different ES types were used to stimulate cells for 30 min in the presence and absence of extracellular glutamate. ES consisted of rectangular pulses at 50 Hz in varying proportions of anodic and cathodic phases. Real-time reverse-transcribed quantitative polymerase chain reaction was used to determine gene expression using the ∆∆Cq method. The results demonstrate that glutamate has a significant effect on gene expression in both stimulated and non-stimulated groups. Furthermore, stimulation parameters have differential effects on gene expression, both in the presence and absence of glutamate. ES has an effect on glial cell gene expression that is dependent on waveform composition. Optimization of ES therapy for chronic pain applications can be enhanced by this understanding.
Collapse
Affiliation(s)
- Ricardo Vallejo
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
| | - David C Platt
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA.
| | - Jonathan A Rink
- Department of Biology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA.
| | - Courtney A Kelley
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
| | - Ashim Gupta
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
- South Texas Orthopaedic Research Institute, Laredo, TX 78045, USA.
| | - Cynthia L Cass
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
| | - Kirk Eichenberg
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA.
| | | | - William J Smith
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.
| | - Ramsin Benyamin
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
- College of Medicine, Department of Surgery, University of Illinois at Urbana-Champaign, Champaign-Urbana, IL 61801, USA.
| | - David L Cedeño
- Millennium Pain Center, Bloomington, IL 61704, USA.
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61701, USA.
| |
Collapse
|
8
|
Jiang M, Ma X, Zhao Q, Li Y, Xing Y, Deng Q, Shen Y. The neuroprotective effects of novel estrogen receptor GPER1 in mouse retinal ganglion cell degeneration. Exp Eye Res 2019; 189:107826. [PMID: 31586450 DOI: 10.1016/j.exer.2019.107826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Accepted: 10/01/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE To investigate the potential protective effect of novel G protein coupled estrogen receptor (GPER1) against the neurotoxicity induced by NMDA in the mouse retina. METHODS We induce retinal ganglion cells (RGCs) toxic injury through intravitreal injection of NMDA or acute ocular hypertension (AOH) induced by anterior chamber infusion with saline. Endogenous ligand 17-β-estradiol (E2), GPER1 agonist (G-1), and E2 with GPER1 antagonist (G-15) or classic estrogen receptor α and β (ERα and ERβ) antagonist tamoxifen (TAM) were subcutaneous administered before NMDA to identify the possible involved receptors. Immunofluorescence staining was performed to explore the survival of RGCs and Müller cell gliosis. TUNEL staining was used to evaluate the RGC apoptosis. The involved molecular pathway was detected via antibody array expression profiling. RESULTS Activation of estrogen receptor by E2 or G-1 could significantly rescue the RGCs injury in NMDA administration. The protective effect was carried exclusively by GPER1 activation. E2 application can still mimicked the protective function when estrogen receptor α and β (ERα and ERβ) blocked by tamoxifen (TAM), while the effects was blocked by GPER1 antagonist G-15. Moreover, the TUNEL positive RGCs and GFAP expression level were both attenuated in G-1 application and the effects could be reversed by G-15. In addition, application of the PI3K/Akt antagonist LY294002 counteracted the effect of G-1. And a number of apoptosis regulatory factors decreased dramatically in the G-1 group, including Bad, Caspase 3, Caspase 7, Smad2, P-53 and TAK1. Also, similar protective effect of G-1 was spotted in acute ocular hypertension (AOH) model. CONCLUSION Estrogen played a protective role via a novel estrogen receptor, GPER1, instead of classical receptors ERα or ERβ. Activation of GPER1 attenuated RGCs apoptosis and Müller cells gliosis, indicating GPER1 as a potential treatment target in RGCs degeneration diseases.
Collapse
Affiliation(s)
- Mengnan Jiang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Xueyun Ma
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China; Urumqi City Ophthalmology and Otolaryngology Hospital, Urumqi, 830000, Xinjiang, China
| | - Qingqing Zhao
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Ying Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China
| | - Qinqin Deng
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China.
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
9
|
Russo G, Capuozzo A, Barbato F, Irace C, Santamaria R, Grumetto L. Cytotoxicity of seven bisphenol analogues compared to bisphenol A and relationships with membrane affinity data. CHEMOSPHERE 2018; 201:432-440. [PMID: 29529570 DOI: 10.1016/j.chemosphere.2018.03.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/15/2018] [Accepted: 03/03/2018] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA) is a chemical used in numerous industrial applications. Due to its well ascertained toxicity as endocrine disruptor, industries have started to replace it with other bisphenols whose alleged greater safety is scarcely supported by literature studies. In this study, the toxicity of seven BPA analogues was evaluated using both in silico and in vitro techniques, as compared to BPA toxicity. Furthermore, their affinity indexes for phospholipids (i.e. phospholipophilicity) were determined by immobilized artificial membrane liquid chromatography (IAM-LC) and possible relationships with in vitro toxic activity were also investigated. The results on four different cell cultures yielded similar ranking of toxicity for the bisphenols considered, with IC50 values confirming their poor acute toxicity. As compared to BPA, bisphenol AF, bisphenol B, bisphenol M, and bisphenol A diglycidyl ether resulted more toxic, while bisphenol S, bisphenol F and bisphenol E were found as the less toxic congeners. These results are partly consistent with the scale of phospholipid affinity showing that toxicity increases at increasing membrane affinity. Therefore, phospholipophilicity determination can be assumed as a useful preliminary tool to select less toxic congeners to surrogate BPA in industrial applications.
Collapse
Affiliation(s)
- Giacomo Russo
- Pharm-Analysis & Bio-Pharm Laboratory - Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Antonella Capuozzo
- BioChem Laboratory - Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Francesco Barbato
- Pharm-Analysis & Bio-Pharm Laboratory - Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Carlo Irace
- BioChem Laboratory - Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy
| | - Rita Santamaria
- BioChem Laboratory - Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy.
| | - Lucia Grumetto
- Pharm-Analysis & Bio-Pharm Laboratory - Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, I-80131 Naples, Italy; Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, I-00136 Rome, Italy.
| |
Collapse
|
10
|
Colón JM, González PA, Cajigas Á, Maldonado WI, Torrado AI, Santiago JM, Salgado IK, Miranda JD. Continuous tamoxifen delivery improves locomotor recovery 6h after spinal cord injury by neuronal and glial mechanisms in male rats. Exp Neurol 2018; 299:109-121. [PMID: 29037533 PMCID: PMC5723542 DOI: 10.1016/j.expneurol.2017.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Abstract
No treatment is available for patients with spinal cord injury (SCI). Patients often arrive to the hospital hours after SCI suggesting the need of a therapy that can be used on a clinically relevant window. Previous studies showed that Tamoxifen (TAM) treatment 24h after SCI benefits locomotor recovery in female rats. Tamoxifen exerts beneficial effects in male and female rodents but a gap of knowledge exists on: the therapeutic window of TAM, the spatio-temporal mechanisms activated and if this response is sexually dimorphic. We hypothesized that TAM will favor locomotor recovery when administered up-to 24h after SCI in male Sprague-Dawley rats. Rats received a thoracic (T10) contusion using the MACSIS impactor followed by placebo or TAM (15mg/21days) pellets in a therapeutic window of 0, 6, 12, or 24h. Animals were sacrificed at 2, 7, 14, 28 or 35days post injury (DPI) to study the molecular and cellular changes in the acute and chronic stages. Immediate or delayed therapy (t=6h) improved locomotor function, increased white matter spared tissue, and neuronal survival. TAM reduced reactive gliosis during chronic stages and increased the expression of Olig-2. A significant difference was observed in estrogen receptor alpha between male and female rodents from 2 to 28 DPI suggesting a sexually dimorphic characteristic that could be related to the behavioral differences observed in the therapeutic window of TAM. This study supports the use of TAM in the SCI setting due to its neuroprotective effects but with a significant sexually dimorphic therapeutic window.
Collapse
Affiliation(s)
- Jennifer M Colón
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - Pablo A González
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - Ámbar Cajigas
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - Wanda I Maldonado
- University of Puerto Rico Carolina Campus, Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, Carolina, PR 00984, USA.
| | - Aranza I Torrado
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - José M Santiago
- University of Puerto Rico Carolina Campus, Neuroregeneration Division, Neuroscience Research Laboratory, Natural Sciences Department, Carolina, PR 00984, USA.
| | - Iris K Salgado
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| | - Jorge D Miranda
- University of Puerto Rico Medical Sciences Campus, Department of Physiology, San Juan, PR 00936, USA.
| |
Collapse
|
11
|
Wang FZ, Dai XL, Liu HY. Molecular mechanisms underlying the α-tomatine-directed apoptosis in human malignant glioblastoma cell lines A172 and U-118 MG. Exp Ther Med 2017; 14:6183-6192. [PMID: 29250143 DOI: 10.3892/etm.2017.5294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/06/2017] [Indexed: 12/25/2022] Open
Abstract
In the present study, the molecular mechanisms involved in the α-tomatine-induced apoptosis in human glioblastoma cell lines A172 and U-118 MG were investigated. Wright staining and ApopTag assays were conducted to confirm the apoptosis induced by α-tomatine treatment. Fura-2 assay determined an enhancement in free Ca2+ intracellularly, indicating the occurrence of Ca2+-dependent apoptosis induction. Western blot experiments were also performed to predict the apoptosis by measuring the changes in the Bax:Bcl-2 ratio. Increase of calpain activity triggered caspase-12 expression, which in turn further activated caspase-9. In addition, an increase in the ratio of Bax:Bcl-2 accounted for the mitochondrial release of cytochrome c into the cytosol for caspase-3 and caspase-9 activation. Elevated activity of calpain and caspase-3 yielded spectrin breakdown products with 145 and 120 kDa, respectively. Caspase-3 activation further cleaved the inhibitor of caspase activated DNase, while the apoptosis-inducing factor detected in the cytosol suggested that apoptosis was independent of caspase. The apoptosis induction was further supported by decreased expression levels of nuclear factor-κB and increased expression of the inhibitor of nuclear factor, IκBα. In conclusion, the presented experimental results revealed the stimulation of different molecular mechanisms for α-tomatine-mediated apoptosis in A172 and U-118 MG human glioblastoma cell lines.
Collapse
Affiliation(s)
- Fa-Zhao Wang
- Department of Neurosurgery, The People's Hospital of Zoucheng, Zoucheng, Shandong 273500, P.R. China
| | - Xue-Liang Dai
- Department of Neurosurgery, The People's Hospital of Zoucheng, Zoucheng, Shandong 273500, P.R. China
| | - Hong-Yi Liu
- Department of Neurosurgery, The People's Hospital of Zoucheng, Zoucheng, Shandong 273500, P.R. China
| |
Collapse
|
12
|
Hidalgo-Lanussa O, Ávila-Rodriguez M, Baez-Jurado E, Zamudio J, Echeverria V, Garcia-Segura LM, Barreto GE. Tibolone Reduces Oxidative Damage and Inflammation in Microglia Stimulated with Palmitic Acid through Mechanisms Involving Estrogen Receptor Beta. Mol Neurobiol 2017; 55:5462-5477. [DOI: 10.1007/s12035-017-0777-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
|
13
|
Hübner S, Sunny DE, Pöhlke C, Ruhnau J, Vogelgesang A, Reich B, Heckmann M. Protective Effects of Fetal Zone Steroids Are Comparable to Estradiol in Hyperoxia-Induced Cell Death of Immature Glia. Endocrinology 2017; 158:1419-1435. [PMID: 28323976 DOI: 10.1210/en.2016-1763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/24/2017] [Indexed: 12/18/2022]
Abstract
Impaired neurodevelopment in preterm infants is caused by prematurity itself; however, hypoxia/ischemia, inflammation, and hyperoxia contribute to the extent of impairment. Because preterm birth is accompanied by a dramatic decrease in 17β-estradiol (E2) and progesterone, preliminary clinical studies have been carried out to substitute these steroids in preterm infants; however, they failed to confirm significantly improved neurologic outcomes. We therefore hypothesized that the persistently high postnatal production of fetal zone steroids [mainly dehydroepiandrosterone (DHEA)] until term could interfere with E2-mediated protection. We investigated whether E2 could reduce hyperoxia-mediated apoptosis in three immature glial cell types and detected the involved receptors. Thereafter, we investigated protection by the fetal zone steroids DHEA, 16α-hydroxy-DHEA, and androstenediol. For DHEA, the involved receptors were evaluated. We examined aromatases, which convert fetal zone steroids into more estrogenic compounds. Finally, cotreatment was compared against single hormone treatment to investigate synergism. In all cell types, E2 and fetal zone steroids resulted in significant dose-dependent protection, whereas the mediating receptors differed. The neuroprotection by fetal zone steroids highly depended on the cell type-specific expression of aromatases, the receptor repertoire, and the potency of the fetal zone steroids toward these receptors. No synergism in fetal zone steroid and E2 cotreatment was detected in two of three cell types. Therefore, E2 supplementation may not be beneficial with respect to neuroprotection because fetal zone steroids circulate in persistently high concentrations until term in preterm infants. Hence, a refined experimental model for preterm infants is required to investigate potential treatments.
Collapse
Affiliation(s)
- Stephanie Hübner
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17457 Greifswald, Germany
| | - Donna E Sunny
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17457 Greifswald, Germany
| | - Christine Pöhlke
- Section of Neuroimmunology, Department of Neurology, University Medicine Greifswald, 17457 Greifswald, Germany
| | - Johanna Ruhnau
- Section of Neuroimmunology, Department of Neurology, University Medicine Greifswald, 17457 Greifswald, Germany
| | - Antje Vogelgesang
- Section of Neuroimmunology, Department of Neurology, University Medicine Greifswald, 17457 Greifswald, Germany
| | - Bettina Reich
- Pediatric Heart Center, Department of Pediatric Cardiology, Justus Liebig University, 35385 Giessen, Germany
| | - Matthias Heckmann
- Department of Neonatology and Pediatric Intensive Care, University Medicine Greifswald, 17457 Greifswald, Germany
| |
Collapse
|
14
|
CHEN JINGYU, HU RONG, GE HONGFEI, DUANMU WANGSHENG, LI YUHONG, XUE XINGSENG, HU SHENGLI, FENG HUA. G-protein-coupled receptor 30-mediated antiapoptotic effect of estrogen on spinal motor neurons following injury and its underlying mechanisms. Mol Med Rep 2015; 12:1733-1740. [PMID: 25872489 PMCID: PMC4464192 DOI: 10.3892/mmr.2015.3601] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/12/2015] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) may result in severe dysfunction of motor neurons. G-protein-coupled receptor 30 (GPR30) expression in the motor neurons of the ventral horn of the spinal cord mediates neuroprotection through estrogen signaling. The present study explored the antiapoptotic effect of estrogen, mediated by GPR30 following SCI, and the mechanisms underlying this effect. Spinal motor neurons from rats were cultured in vitro in order to establish cell models of oxygen and glucose deprivation (OGD). The effects of estrogen, the estrogen agonist, G1, and the estrogen inhibitor, G15, on motor neurons were observed using MTT assays. The effects of E2, G1 and G15 on spinal motor neuron apoptosis following OGD, were detected using flow cytometry. The role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor, LY294002, was also determined using flow cytometry. Rat SCI models were established. E2, G1 and E2+LY294002 were administered in vivo. Motor function was scored at 3, 7, 14, 21 and 28 d following injury, using Basso-Beattie-Bresnahan (BBB) standards. Cell activity in the estrogen and G1 groups was higher than that in the solvent group, whereas cell activity in the E2+G15 group was lower than that in the E2 group (P<0.05). Following OGD, the proportion of apoptotic cells significantly increased (P<0.05). The proportion in the estrogen group was significantly lower than that in the solvent group, whereas the proportion of apoptotic cells in the E2+G15 and E2+LY294002 groups was higher than that in the E2 group (P<0.05). Treatment with E2 and G1 led to upregulation of P-Akt expression in normal cells and post-OGD cells. The BBB scores of rats in the E2 and G1 groups were higher than those in the placebo group (P<0.05). The BBB scores of the E2+LY294002 group were lower than those of the E2 group (P<0.05). Estrogen thus appears to exert a protective effect on spinal motor neurons following OGD, via GPR30. The PI3K/Akt pathway may be one of those involved in the estrogen‑related antiapoptotic effects mediated by GPR30.
Collapse
Affiliation(s)
- JINGYU CHEN
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - RONG HU
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - HONGFEI GE
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - WANGSHENG DUANMU
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - YUHONG LI
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - XINGSENG XUE
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - SHENGLI HU
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - HUA FENG
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
15
|
Posada-Duque RA, Palacio-Castañeda V, Cardona-Gómez GP. CDK5 knockdown in astrocytes provide neuroprotection as a trophic source via Rac1. Mol Cell Neurosci 2015; 68:151-66. [PMID: 26160434 DOI: 10.1016/j.mcn.2015.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
Astrocytes perform metabolic and structural support functions in the brain and contribute to the integrity of the blood-brain barrier. Astrocytes influence neuronal survival and prevent gliotoxicity by capturing glutamate (Glu), reactive oxygen species, and nutrients. During these processes, astrocytic morphological changes are supported by actin cytoskeleton remodeling and require the involvement of Rho GTPases, such as Rac1. The protein cyclin-dependent kinase 5 (CDK5) may have a dual effect on astrocytes because it has been shown to be involved in migration, senescence, and the dysfunction of glutamate recapture; however, its role in astrocytes remains unclear. Treating a possible deregulation of CDK5 with RNAi is a strategy that has been proposed as a therapy for neurodegenerative diseases. Models of glutamate gliotoxicity in the C6 astroglioma cell line, primary cultures of astrocytes, and co-cultures with neurons were used to analyze the effects of CDK5 RNAi in astrocytes and the role of Rac1 in neuronal viability. In C6 cells and primary astrocytes, CDK5 RNAi prevented the cell death generated by glutamate-induced gliotoxicity, and this finding was corroborated by pharmacological inhibition with roscovitine. This effect was associated with the appearance of lamellipodia, protrusions, increased cell area, stellation, Rac1 activation, BDNF release, and astrocytic protection in neurons that were exposed to glutamate excitotoxicity. Interestingly, Rac1 inhibition in astrocytes blocked BDNF upregulation and the astrocyte-mediated neuroprotection. Actin cytoskeleton remodeling and stellation may be a functional phenotype for BDNF release that promotes neuroprotection. In summary, our findings suggest that CDK5- knockdown in astrocytes acts as a trophic source for neuronal protection in a Rac1-dependent manner.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia
| | - Valentina Palacio-Castañeda
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia.
| |
Collapse
|
16
|
Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 2015; 9:91. [PMID: 25852482 PMCID: PMC4362409 DOI: 10.3389/fncel.2015.00091] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed.
Collapse
Affiliation(s)
- Aristeidis A Kritis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Eleni G Stamoula
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Krystallenia A Paniskaki
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Theofanis D Vavilis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| |
Collapse
|
17
|
Mosquera L, Colón JM, Santiago JM, Torrado AI, Meléndez M, Segarra AC, Rodríguez-Orengo JF, Miranda JD. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha. Brain Res 2014; 1561:11-22. [PMID: 24637260 DOI: 10.1016/j.brainres.2014.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/20/2014] [Accepted: 03/05/2014] [Indexed: 12/17/2022]
Abstract
17β-Estradiol is a multi-active steroid that imparts neuroprotection via diverse mechanisms of action. However, its role as a neuroprotective agent after spinal cord injury (SCI), or the involvement of the estrogen receptor-alpha (ER-α) in locomotor recovery, is still a subject of much debate. In this study, we evaluated the effects of estradiol and of Tamoxifen (an estrogen receptor mixed agonist/antagonist) on locomotor recovery following SCI. To control estradiol cyclical variability, ovariectomized female rats received empty or estradiol filled implants, prior to a moderate contusion to the spinal cord. Estradiol improved locomotor function at 7, 14, 21, and 28 days post injury (DPI), when compared to control groups (measured with the BBB open field test). This effect was ER-α mediated, because functional recovery was blocked with an ER-α antagonist. We also observed that ER-α was up-regulated after SCI. Long-term treatment (28 DPI) with estradiol and Tamoxifen reduced the extent of the lesion cavity, an effect also mediated by ER-α. The antioxidant effects of estradiol were seen acutely at 2 DPI but not at 28 DPI, and this acute effect was not receptor mediated. Rats treated with Tamoxifen recovered some locomotor activity at 21 and 28 DPI, which could be related to the antioxidant protection seen at these time points. These results show that estradiol improves functional outcome, and these protective effects are mediated by the ER-α dependent and independent-mechanisms. Tamoxifen׳s effects during late stages of SCI support the use of this drug as a long-term alternative treatment for this condition.
Collapse
Affiliation(s)
- Laurivette Mosquera
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR 00936, USA
| | - Jennifer M Colón
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR 00936, USA
| | - José M Santiago
- University of Puerto Rico Carolina Campus, Department of Natural Sciences, Carolina, PR 00984, USA
| | - Aranza I Torrado
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR 00936, USA
| | | | - Annabell C Segarra
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR 00936, USA
| | - José F Rodríguez-Orengo
- Department of Biochemistry, University of Puerto Rico-School of Medicine, San Juan, PR 00936, USA
| | - Jorge D Miranda
- Department of Physiology, University of Puerto Rico-School of Medicine, San Juan, PR 00936, USA.
| |
Collapse
|
18
|
Park S, Nozaki K, Smith JA, Krause JS, Banik NL. Cross-talk between IGF-1 and estrogen receptors attenuates intracellular changes in ventral spinal cord 4.1 motoneuron cells because of interferon-gamma exposure. J Neurochem 2013; 128:904-18. [PMID: 24188094 DOI: 10.1111/jnc.12520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. To examine whether IGF-1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon-gamma (IFN-γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl-2 ratios, and expression of apoptosis-related proteases (caspase-3 and -12) in motoneurons rendered by IFN-γ in a dose-dependent manner. Post-treatment with IGF-1 attenuated these changes. In addition, IGF-1 treatment of motoneurons exposed to IFN-γ decreased expression of inflammatory markers (cyclooxygenase-2 and nuclear factor-kappa B:inhibitor of kappa B ratio). Furthermore, IGF-1 attenuated the loss of expression of IGF-1 receptors (IGF-1Rα and IGF-1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN-γ. To determine whether the protective effects of IGF-1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ-silenced VSC4.1 motoneurons following IFN-γ and IGF-1 exposure. These results suggest that IGF-1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ.
Collapse
Affiliation(s)
- Sookyoung Park
- Department of Neurosciences, Division of Neurology, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|
19
|
Ghafari E, Fararouie M, Shirazi HG, Farhangfar A, Ghaderi F, Mohammadi A. Combination of Estrogen and Antipsychotics in the Treatment of Women with Chronic Schizophrenia. ACTA ACUST UNITED AC 2013; 6:172-6. [DOI: 10.3371/csrp.ghfa.01062013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Simpkins JW, Singh M, Brock C, Etgen AM. Neuroprotection and estrogen receptors. Neuroendocrinology 2012; 96:119-30. [PMID: 22538356 PMCID: PMC6507404 DOI: 10.1159/000338409] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/18/2012] [Indexed: 11/19/2022]
Abstract
This review is intended to assess the state of current knowledge on the role of estrogen receptors (ERs) in the neuroprotective effects of estrogens in models for acute neuronal injury and death. We evaluate the overall evidence that estrogens are neuroprotective in acute injury and critically assess the role of ERα, ERβ, GPR 30, and nonreceptor-mediated mechanisms in these robust neuroprotective effects of this ovarian steroid hormone. We conclude that all three receptors, as well as nonreceptor-mediated mechanisms can be involved in neuroprotection, depending on the model used, the level of estrogen administrated, and the mode of administration of the steroid. Also, the signaling pathways used by both ER-dependent and ER-independent mechanisms to exert neuroprotection are considered. Finally, further studies that are needed to parse out the relative contribution of receptor versus nonreceptor-mediated signaling are discussed.
Collapse
Affiliation(s)
- James W. Simpkins
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Meharvan Singh
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Courtney Brock
- Department of Pharmacology & Neuroscience, Institute for Aging and Alzheimer’s Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Anne M. Etgen
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 113, Bronx, NY 10461
| |
Collapse
|
21
|
Su C, Rybalchenko N, Schreihofer DA, Singh M, Abbassi B, Cunningham RL. Cell Models for the Study of Sex Steroid Hormone Neurobiology. ACTA ACUST UNITED AC 2012; S2. [PMID: 22860237 DOI: 10.4172/2157-7536.s2-003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To date many aspects of neurons and glia biology remain elusive, due in part to the cellular and molecular complexity of the brain. In recent decades, cell models from different brain areas have been established and proven invaluable toward understanding this complexity. In the field of steroid hormone neurobiology, an important question is: what is the profile of steroid hormone receptor expression in these specific cell lines? Currently, a clear summary of such receptor profiling is lacking. For this reason, we summarized in this review the expression of estrogen, progesterone, and androgen receptors in several widely used cell lines (glial and neuronal) derived from the forebrain and midbrain, based on our own data and that from the literature. Such information will aid in the selection of specific cell lines used to test hypotheses related to the biology of estrogens, progestins, and/or androgens.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| | | | | | | | | | | |
Collapse
|
22
|
Altiok N, Ersoz M, Koyuturk M. Estradiol induces JNK-dependent apoptosis in glioblastoma cells. Oncol Lett 2011; 2:1281-1285. [PMID: 22848302 DOI: 10.3892/ol.2011.385] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/09/2011] [Indexed: 11/05/2022] Open
Abstract
Estrogens exert multiple regulatory actions on cellular events in a variety of tissues including the brain. In the present study, the signaling mechanisms of the concentration-dependent effects of 17-β-estradiol (estradiol) on glioblastoma cells were investigated. Cell viability was evaluated by the trypan blue exclusion assay. Cell growth and kinase activities were evaluated by immunocytochemistry and Western blotting. The results showed that high concentrations of estradiol inhibit growth and induce apoptosis in C6 rat glioma and T98G human glioblastoma cells. The blockade of the c-jun NH(2)-terminal kinase (JNK) signaling pathway prevented these effects of estradiol, indicating the critical role of the JNK/c-jun signaling cascade in glioblastoma cell growth inhibition and cell death in response to high concentrations of estradiol. Collectively, these findings highlight the potential of new discoveries in sensitizing estrogen-sensitive tumors to chemotherapeutic drugs, and may lead to the development of new JNK-based effective therapies.
Collapse
Affiliation(s)
- Nedret Altiok
- Department of Pharmacology, Yeni Yuzyil University School of Medicine, Istanbul, Turkey
| | | | | |
Collapse
|
23
|
Sribnick EA, Samantaray S, Das A, Smith J, Matzelle DD, Ray SK, Banik NL. Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res 2010; 88:1738-50. [PMID: 20091771 PMCID: PMC3127445 DOI: 10.1002/jnr.22337] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spinal cord injury (SCI) causes loss of neurological function and, depending on serverity, may cause paralysis. The only recommended pharmacotherapy for the treatment of SCI is high-dose methylprednisolone, and its use is controversial. We have previously shown that estrogen treatment attenuated cell death, axonal and myelin damage, calpain and caspase activities, and inflammation in acute SCI. The aim of this study was to examine whether posttreatment of SCI with estrogen would improve locomotor function by protecting cells and axons and reducing inflammation during the chronic phase following injury. Moderately severe injury (40 g . cm force) was induced in male Sprague-Dawley rats following laminectomy at T10. Three groups of animals were used: sham (laminectomy only), vehicle (dimethyl sulfoxide; DMSO)-treated injury group, and estrogen-treated injury group. Animals were treated with 4 mg/kg estrogen at 15 min and 24 hr postnjury, followed by 2 mg/kg estrogen daily for the next 5 days. After treatment, animals were sacrificed at the end of 6 weeks following injury, and 1-cm segments of spinal cord (lesion, rostral to lesion, and caudal to lesion) were removed for biochemical analyses. Estrogen treatment reduced COX-2 activity, blocked nuclear factor-kappaB translocation, prevented glial reactivity, attenuated neuron death, inhibited activation and activity of calpain and caspase-3, decreased axonal damage, reduced myelin loss in the lesion and penumbra, and improved locomotor function compared with vehicle-treated animals. These findings suggest that estrogen may be useful as a promising therapeutic agent for prevention of damage and improvement of locomotor function in chronic SCI. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Eric A. Sribnick
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Supriti Samantaray
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Arabinda Das
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Joshua Smith
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - D. Denise Matzelle
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Naren L. Banik
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
24
|
Samantaray S, Sribnick EA, Das A, Thakore NP, Matzelle D, Yu SP, Ray SK, Wei L, Banik NL. Neuroprotective efficacy of estrogen in experimental spinal cord injury in rats. Ann N Y Acad Sci 2010; 1199:90-4. [PMID: 20633113 PMCID: PMC3127450 DOI: 10.1111/j.1749-6632.2009.05357.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) leads to neurological deficits and motor dysfunction. Methylprednisolone, the only drug used for treating SCI, renders limited neuroprotection and remains controversial. Estrogen is one of the most potent multiactive neuroprotective agents and it is currently under investigation in our laboratory for its efficacy in SCI. The present review briefly summarizes our earlier findings on the therapeutic potential of pharmacological/supraphysiological levels of estrogen in SCI and outlines our ongoing research, highlighting the efficacy of physiological levels of estrogen against neuronal injury, axonal degeneration, and gliosis and also the molecular mechanisms of such neuroprotection in experimental SCI. Furthermore, our ongoing studies designed to explore the different translational potential of estrogen therapy suggest that this multiactive steroid may act as an adjunct therapy to promote angiogenesis, thus enhancing the functional recovery following chronic SCI. Taken together, these studies confirm that estrogen is a potential therapeutic agent for treating SCI.
Collapse
Affiliation(s)
- Supriti Samantaray
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eric A. Sribnick
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Arabinda Das
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Nakul P. Thakore
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Denise Matzelle
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shan P. Yu
- Department of Anesthesiology, Emory University, Atlanta, GA, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University, Atlanta, GA, USA
| | - Naren L. Banik
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
25
|
Samantaray S, Matzelle DD, Ray SK, Banik NL. Physiological low dose of estrogen-protected neurons in experimental spinal cord injury. Ann N Y Acad Sci 2010; 1199:86-9. [PMID: 20633112 PMCID: PMC3127448 DOI: 10.1111/j.1749-6632.2009.05360.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A protective role for estrogen against neurodegeneration and neurotrauma has received enormous attention in recent years, unraveling multiple facets and thus establishing this steroid as a multiactive neuroprotectant. The present study briefly reports our findings on the neuroprotective efficacy of physiologically relevant low doses of estrogen in experimental spinal cord injury (SCI) in rats. The current finding further corroborates our earlier results on efficacy of pharmacological/supraphysiological levels of estrogen in SCI and adds to the significance of conducting preclinical studies on estrogen efficacy in SCI.
Collapse
Affiliation(s)
- Supriti Samantaray
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Denise D. Matzelle
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Naren L. Banik
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
26
|
Castillo CA, León DA, Ballesteros-Yáñez I, Albasanz JL, Martín M. Glutamate differently modulates excitatory and inhibitory adenosine receptors in neuronal and glial cells. Neurochem Int 2010; 57:33-42. [PMID: 20399823 DOI: 10.1016/j.neuint.2010.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/31/2010] [Accepted: 04/03/2010] [Indexed: 12/20/2022]
Abstract
Adenosine is a neuromodulator which acts through adenosine receptors regulating functions such as inhibition of glutamate release. Adenosine A(1) and A(2A) receptor activations most often regulate opposing actions. Primary rat cortical neurons and rat C6 cells, an astrocytic derived cell line, were exposed to 100muM l-glutamate, and cell viability and transduction pathways mediated by both A(1) and A(2A) receptors were analyzed. Glutamate-induced excitotoxic damage was found only in cortical neurons, with C6 cells preserved. In C6 cells, adenosine A(1) and A(2A) receptors were increased and decreased, respectively. Consequently, A(1)-mediated adenylyl cyclase inhibition and A(2A)-mediated adenylyl cyclase stimulation were, respectively, increased and decreased after glutamate exposure. In cortical neurons, glutamate treatment increased both A(1) and A(2A) receptors. Moreover, adenylyl cyclase responsiveness to A(1) or A(2A) receptor agonists was heightened in these cells, in which pharmacological activation of AC induced cell death. Finally, activation of A(1) receptor or blockade of A(2A) receptor during glutamate treatment partially prevented the glutamate-induced cell death detected in cultured cortical neurons. Results show that adenosine receptors are regulated by glutamate, and that this regulation is dependent on the cell type, suggesting that adenosine receptors might be promising targets in the therapy against excitotoxic cell death.
Collapse
Affiliation(s)
- Carlos Alberto Castillo
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias Químicas, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha (UCLM), Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | | | | | | | | |
Collapse
|
27
|
Glutamate differently modulates metabotropic glutamate receptors in neuronal and glial cells. Neurochem Res 2010; 35:1050-63. [PMID: 20309728 DOI: 10.1007/s11064-010-0154-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2010] [Indexed: 12/17/2022]
Abstract
Glutamate is an excitatory neurotransmitter implicated in learning and memory processes, but at high concentrations it acts as an excitotoxin causing degeneration and neuronal death. The aim of this work was to determine the excitotoxic effect of glutamate and the regulation of metabotropic glutamate receptors (mGluR) during excitotoxicity in neurons and C6 glioma cells. Results show that glutamate causes excitotoxic damage only in cortical neurons. Loss of cell viability in neurons was glutamate concentration- and time-dependent. Total mGluR levels were significantly reduced in these cells when exposed to glutamate. However, in C6 cells, which have been used as a model of glial cells, these receptors were regulated in a biphasic manner, decreased after 6 h, and increased after 24/48 h of treatment. Results show a cell dependent mGluR regulation by glutamate exposure which could mediate the vulnerability or not to glutamate mediated excitotoxicity.
Collapse
|
28
|
Sribnick EA, Del Re AM, Ray SK, Woodward JJ, Banik NL. Estrogen attenuates glutamate-induced cell death by inhibiting Ca2+ influx through L-type voltage-gated Ca2+ channels. Brain Res 2009; 1276:159-70. [PMID: 19389388 PMCID: PMC2700344 DOI: 10.1016/j.brainres.2009.04.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/02/2009] [Accepted: 04/04/2009] [Indexed: 12/26/2022]
Abstract
Estrogen-mediated neuroprotection is observed in neurodegenerative disease and neurotrauma models; however, determining a mechanism for these effects has been difficult. We propose that estrogen may limit cell death in the nervous system tissue by inhibiting increases in intracellular free Ca(2+). Here, we present data using VSC 4.1 cell line, a ventral spinal motoneuron and neuroblastoma hybrid cell line. Treatment with 1 mM glutamate for 24 h induced apoptosis. When cells were pre-treated with 100 nM 17beta-estradiol (estrogen) for 1 h and then co-treated with glutamate, apoptotic death was significantly attenuated. Estrogen also prevented glutamate-mediated changes in resting membrane potential and membrane capacitance. Treatment with either 17 alpha-estradiol or cell impermeable estrogen did not mimic the findings seen with estrogen. Glutamate treatment significantly increased both intracellular free Ca(2+) and the activities of downstream proteases such as calpain and caspase-3. Estrogen attenuated both the increases in intracellular free Ca(2+) and protease activities. In order to determine the pathway responsible for estrogen-mediated inhibition of these increases in intracellular free Ca(2+), cells were treated with several Ca(2+) entry inhibitors, but only the L-type Ca(2+) channel blocker nifedipine demonstrated cytoprotective effects comparable to estrogen. To expand these findings, cells were treated with the L-type Ca(2+) channel agonist FPL 64176, which increased both cell death and intracellular free Ca(2+), and estrogen inhibited both effects. From these observations, we conclude that estrogen limits glutamate-induced cell death in VSC 4.1 cells through effects on L-type Ca(2+) channels, inhibiting Ca(2+) influx as well as activation of the pro-apoptotic proteases calpain and caspase-3.
Collapse
Affiliation(s)
- Eric A. Sribnick
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Angelo M. Del Re
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - John J. Woodward
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L. Banik
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
29
|
Xia Y, Xing JZ, Krukoff TL. Neuroprotective effects of R,R-tetrahydrochrysene against glutamate-induced cell death through anti-excitotoxic and antioxidant actions involving estrogen receptor-dependent and -independent pathways. Neuroscience 2009; 162:292-306. [PMID: 19410635 DOI: 10.1016/j.neuroscience.2009.04.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/21/2009] [Accepted: 04/28/2009] [Indexed: 01/21/2023]
Abstract
Glutamate-induced neural cell death is mediated by excitotoxicity and oxidative stress. Treatment of glutamate toxicity with estrogen and its related compounds for neuroprotection remains controversial. In this study, we examined the effects of selective estrogen receptor (ER) ligands on glutamate toxicity and found that R,R-tetrahydrochrysene (R,R-THC), an antagonist of ERbeta and agonist of ERalpha, has neuroprotective effects against glutamate-induced death in primary rat cortical cells and mouse N29/4 hypothalamic cells. The protective effect of R,R-THC was dose-dependent and was maintained even when added several hours after the initial glutamate exposure. R,R-THC blocked glutamate-induced depletion of intracellular glutathione, increased superoxide dismutase activity, and protected cells from hydrogen peroxide-induced death. R,R-THC also prevented glutamate-induced nuclear translocation of apoptotic inducing factor and release of mitochondrial cytochrome c. The protective effect of R,R-THC was blocked by methyl-piperidino-pyrazole (MPP; an ERalpha antagonist) in glutamate-treated cortical cells, and pretreatment with MK-801 (an NMDA receptor antagonist) but not CNQX (an AMPA/kainate receptor antagonist) increased cell survival. On the other hand, MPP did not block the protective effect of R,R-THC in glutamate-treated N29/4 cells, and neither MK-801 nor CNQX conferred protection. Activation of ERalpha and/or ERbeta with 17beta-estradiol (E2), propyl-pyrazole-triol or diarylpropionitrile did not provide effective neuroprotection, and pretreatment with ICI 182,780 did not inhibit the protective effect of R,R-THC in either type of cell. These results suggest that the use of ER agonists (including E2) has limited beneficial effects when both excitotoxicity and oxidative stress occur. In contrast to agonists of ERs, R,R-THC, which possesses anti-excitotoxic and antioxidant actions via ER-dependent and -independent pathways, provides significant neuroprotection.
Collapse
Affiliation(s)
- Y Xia
- Department of Cell Biology and Center for Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2H7.
| | | | | |
Collapse
|
30
|
Das A, Belagodu A, Reiter RJ, Ray SK, Banik NL. Cytoprotective effects of melatonin on C6 astroglial cells exposed to glutamate excitotoxicity and oxidative stress. J Pineal Res 2008; 45:117-24. [PMID: 18373557 PMCID: PMC2632944 DOI: 10.1111/j.1600-079x.2008.00582.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To preserve the central nervous system (CNS) function after a traumatic injury, therapeutic agents must be administered to protect neurons as well as glial cells. Cell death in CNS injuries and diseases are attributed to many factors including glutamate toxicity and oxidative stress. We examined whether melatonin, a potent anti-oxidant and free radical scavenger, would attenuate apoptotic death of rat C6 astroglial cells under glutamate excitotoxicity and oxidative stress. Exposure of C6 cells to 500 microM L-glutamic acid (LGA) and 100 microm hydrogen peroxide (H(2)O(2)) for 24 hr caused significant increases in apoptosis. Apoptosis was evaluated by Wright staining and ApopTag assay. Melatonin receptor 1 appeared to be involved in the protection of these cells from excitotoxic and oxidative damage. Cells undergoing excitotoxic and oxidative stress for 15 min were then treated with 150 nM melatonin, which prevented Ca(2+)influx and cell death. Western blot analyses showed alterations in Bax and Bcl-2 expression resulting in increased Bax:Bcl-2 ratio during apoptosis. Western blot analyses also showed increases in calpain and caspase-3 activities, which cleaved 270 kD alpha-spectrin at specific sites to generate 145 kD spectrin breakdown product (SBDP) and 120 kD SBDP, respectively. However, 15-min post-treatment of C6 cells with melatonin dramatically reduced Bax:Bcl-2 ratio and proteolytic activities, decreasing LGA or H(2)O(2)-induced apoptosis. Our data showed that melatonin prevented proteolysis and apoptosis in C6 astroglial cells. The results suggest that melatonin may be an effective cytoprotective agent against glutamate excitotoxicity and oxidative stress in CNS injuries and diseases.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Astrocytes/metabolism
- Astrocytes/pathology
- Blotting, Western
- Calcium/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- Glutamic Acid/pharmacology
- Melatonin/pharmacology
- Oxidative Stress/drug effects
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Arabinda Das
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Amogh Belagodu
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas, San Antonio, TX
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Naren L. Banik
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
31
|
Samantaray S, Sribnick EA, Das A, Knaryan VH, Matzelle DD, Yallapragada AV, Reiter RJ, Ray SK, Banik NL. Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats. J Pineal Res 2008; 44:348-57. [PMID: 18086148 PMCID: PMC2613550 DOI: 10.1111/j.1600-079x.2007.00534.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple investigations in vivo have shown that melatonin (MEL) has a neuroprotective effect in the treatment of spinal cord injury (SCI). This study investigates the role of MEL as an intervening agent for ameliorating Ca(2+)-mediated events, including activation of calpain, following its administration to rats sustaining experimental SCI. Calpain, a Ca(2+)-dependent neutral protease, is known to be involved in the pathogenesis of SCI. Rats were injured using a standard weight-drop method that induced a moderately severe injury (40 g.cm force) at T10. Sham controls received laminectomy only. Injured animals were given either 45 mg/kg MEL or vehicle at 15 min post-injury by intraperitoneal injection. At 48 hr post-injury, spinal cord (SC) samples were collected. Immunofluorescent labelings were used to identify calpain expression in specific cell types, such as neurons, glia, or macrophages. Combination of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) and double immunofluorescent labelings was used to identify apoptosis in specific cells in the SC. The effect of MEL on axonal damage was also investigated using antibody specific for dephosphorylated neurofilament protein (dNFP). Treatment of SCI animals with MEL attenuated calpain expression, inflammation, axonal damage (dNFP), and neuronal death, indicating that MEL provided neuroprotective effect in SCI. Further, expression and activity of calpain and caspse-3 were examined by Western blotting. The results indicated a significant decrease in expression and activity of calpain and caspse-3 in SCI animals after treatment with MEL. Taken together, this study strongly suggested that MEL could be an effective neuroprotective agent for treatment of SCI.
Collapse
Affiliation(s)
- Supriti Samantaray
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Eric A. Sribnick
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Arabinda Das
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Varduhi H. Knaryan
- Department of Neurohormones and Biochemistry, Buniatian Institute of Biochemistry, National Academy of Sciences of the Republic of Armenia, Yerevan, Republic of Armenia
| | - D. Denise Matzelle
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Anil V. Yallapragada
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Swapan K. Ray
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Naren L. Banik
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
32
|
Yu J, Yu J, Cordero KE, Johnson MD, Ghosh D, Rae JM, Chinnaiyan AM, Lippman ME. A transcriptional fingerprint of estrogen in human breast cancer predicts patient survival. Neoplasia 2008; 10:79-88. [PMID: 18231641 PMCID: PMC2213902 DOI: 10.1593/neo.07859] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 09/17/2007] [Accepted: 11/08/2007] [Indexed: 02/01/2023]
Abstract
Estrogen signaling plays an essential role in breast cancer progression, and estrogen receptor (ER) status has long been a marker of hormone responsiveness. However, ER status alone has been an incomplete predictor of endocrine therapy, as some ER+ tumors, nevertheless, have poor prognosis. Here we sought to use expression profiling of ER+ breast cancer cells to screen for a robust estrogen-regulated gene signature that may serve as a better indicator of cancer outcome. We identified 532 estrogen-induced genes and further developed a 73-gene signature that best separated a training set of 286 primary breast carcinomas into prognostic subtypes by stepwise cross-validation. Notably, this signature predicts clinical outcome in over 10 patient cohorts as well as their respective ER+ subcohorts. Further, this signature separates patients who have received endocrine therapy into two prognostic subgroups, suggesting its specificity as a measure of estrogen signaling, and thus hormone sensitivity. The 73-gene signature also provides additional predictive value for patient survival, independent of other clinical parameters, and outperforms other previously reported molecular outcome signatures. Taken together, these data demonstrate the power of using cell culture systems to screen for robust gene signatures of clinical relevance.
Collapse
Affiliation(s)
- Jianjun Yu
- Bioinformatigram, The University of of Michigan Medical Center, Ann Arbor, MI 48109 USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
González A, Martínez-Campa C, Mediavilla MD, Alonso-González C, Sánchez-Barceló EJ, Cos S. Inhibitory effects of pharmacological doses of melatonin on aromatase activity and expression in rat glioma cells. Br J Cancer 2007; 97:755-60. [PMID: 17700567 PMCID: PMC2360391 DOI: 10.1038/sj.bjc.6603935] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Melatonin exerts oncostatic effects on different kinds of neoplasias, especially on oestrogen-dependent tumours. Recently, it has been described that melatonin, on the basis of its antioxidant properties, inhibits the growth of glioma cells. Glioma cells express oestrogen receptors and have the ability to synthesise oestrogens from androgens. In the present study, we demonstrate that pharmacological concentrations of melatonin decreases the growth of C6 glioma cells and reduces the local biosynthesis of oestrogens, through the inhibition of aromatase, the enzyme that catalyses the conversion of androgens into oestrogens. These results are supported by three types of evidence. Firstly, melatonin counteracts the growth stimulatory effects of testosterone on glioma cells, which is dependent on the local synthesis of oestrogens from testosterone. Secondly, we found that melatonin reduces the aromatase activity of C6 cells, measured by the tritiated water release assay. Finally, by (RT)–PCR, we found that melatonin downregulates aromatase mRNA steady-state levels in these glioma cells. We conclude that melatonin inhibits the local production of oestrogens decreasing aromatase activity and expression. By analogy to the implications of aromatase in other forms of oestrogen-sensitive tumours, it is conceivable that the modulation of the aromatase by pharmacological melatonin may play a role in the growth of glioblastomas.
Collapse
Affiliation(s)
- A González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander 39011, Spain
| | - C Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander 39011, Spain
| | - M D Mediavilla
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander 39011, Spain
| | - C Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander 39011, Spain
| | - E J Sánchez-Barceló
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander 39011, Spain
| | - S Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander 39011, Spain
- E-mail:
| |
Collapse
|
34
|
SAMANTARAY S, KNARYAN VH, GUYTON MK, MATZELLE DD, RAY SK, BANIK NL. The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 2007; 146:741-55. [PMID: 17367952 PMCID: PMC1940329 DOI: 10.1016/j.neuroscience.2007.01.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/13/2007] [Accepted: 01/23/2007] [Indexed: 12/12/2022]
Abstract
Exposure to environmental toxins increases the risk of neurodegenerative diseases including Parkinson's disease (PD). Rotenone is a neurotoxin that has been used to induce experimental Parkinsonism in rats. We used the rotenone model of experimental Parkinsonism to explore a novel aspect of extra-nigral degeneration, the neurodegeneration of spinal cord (SC), in PD. Rotenone administration to male Lewis rats caused significant neuronal cell death in cervical and lumbar SC as compared with control animals. Dying neurons were motoneurons as identified by double immunofluorescent labeling for terminal deoxynucleotidyl transferase, recombinant-mediated dUTP nick-end labeling-positive (TUNEL(+)) cells and choline acetyltransferase (ChAT)-immunoreactivity. Neuronal death was accompanied by abundant astrogliosis and microgliosis as evidenced from glial fibrillary acidic protein (GFAP)-immunoreactivity and OX-42-immunoreactivity, respectively, implicating an inflammatory component during neurodegeneration in SC. However, the integrity of the white matter in SC was not affected by rotenone administration as evidenced from the non co-localization of any TUNEL(+) cells with GFAP-immunoreactivity and myelin basic protein (MBP)-immunoreactivity, the selective markers for astrocytes and oligodendrocytes, respectively. Increased activities of 76 kD active m-calpain and 17/19 kD active caspase-3 further demonstrated involvement of these enzymes in cell death in SC. The finding of ChAT(+) cell death also suggested degeneration of SC motoneurons in rotenone-induced experimental Parkinsonism. Thus, this is the first report of its kind in which the selective vulnerability of a putative parkinsonian target outside of nigrostriatal system has been tested using an environmental toxin to understand the pathophysiology of PD. Moreover, rotenone-induced degeneration of SC motoneuron in this model of experimental Parkinsonism progressed with upregulation of calpain and caspase-3.
Collapse
Affiliation(s)
- S. SAMANTARAY
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, P.O. Box 250606, Charleston, SC 29425, USA
| | - V. H. KNARYAN
- H. Buniatian Institute of Biochemistry, Department of Neurohormones Biochemistry, National Academy of Sciences of the Republic of Armenia, 5/1 Paruir Sevak Str., 375014 Yerevan, Republic of Armenia
| | - M. K. GUYTON
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, P.O. Box 250606, Charleston, SC 29425, USA
| | - D. D. MATZELLE
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, P.O. Box 250606, Charleston, SC 29425, USA
| | - S. K. RAY
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, P.O. Box 250606, Charleston, SC 29425, USA
| | - N. L. BANIK
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309 CSB, P.O. Box 250606, Charleston, SC 29425, USA
| |
Collapse
|
35
|
Hayashi Y, Kitaoka Y, Munemasa Y, Ohtani-Kaneko R, Kikusui T, Uematsu A, Takeda H, Hirata K, Mori Y, Ueno S. Neuroprotective effect of 17beta-estradiol against N-methyl-D-aspartate-induced retinal neurotoxicity via p-ERK induction. J Neurosci Res 2007; 85:386-94. [PMID: 17131424 DOI: 10.1002/jnr.21127] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We investigated whether the neuroprotective effect of estrogen is mediated by the estrogen receptor (ER) and whether extracellular signal-regulated kinase (ERK) is involved in the protective effect of estrogen against N-methyl-D-aspartate (NMDA)-induced retinal neurotoxicity. Retrograde labeling of retinal ganglion cells (RGCs) showed that pretreatment with 17beta-estradiol (E2) using a silastic implant significantly attenuated the loss of RGCs induced by intravitreal injection of NMDA. Simultaneous administration of U0126, an ERK inhibitor, with NMDA completely abolished the protective effect of E2. Moreover, ICI182,780, an ER antagonist, also significantly diminished the protective effect of E2. Pretreatment with E2 significantly reduced the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells in the retinal ganglion cell layer (RGCL) and the inner nuclear layer (INL) 12 hr after NMDA injection. Moreover, ICI182,780 inhibited the ameliorative effect of E2 on TUNEL-positive cells in a dose-dependent manner. Immunostaining of anti-ERalpha monoclonal antibody was observed mainly in the RGCL and the INL. Western blot analysis showed a significant increase in the level of phosphorylated ERK (p-ERK) 6 hr after NMDA injection. However, NMDA did not increase the level of p-ERK protein 7 days after injection. Pretreatment of E2 induced further increases of p-ERK expression 6 hr and 7 days after NMDA injection, and U0126 and ICI182,780 significantly inhibited E2-induced p-ERK expression after 6 hr. These results suggest that E2 has an ER-mediated neuroprotective effect against NMDA-induced retinal neurotoxicity and that this effect may be associated with induction of p-ERK in the retina.
Collapse
Affiliation(s)
- Yasuhiro Hayashi
- Department of Ophthalmology, St. Marianna University School of Medicine, Miyamae-ku, Kawasaki-shi, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sribnick EA, Matzelle DD, Ray SK, Banik NL. Estrogen treatment of spinal cord injury attenuates calpain activation and apoptosis. J Neurosci Res 2006; 84:1064-75. [PMID: 16902996 DOI: 10.1002/jnr.21016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurologic injury, and currently, the only recommended pharmacotherapy is high-dose methylprednisolone, which has limited efficacy. Estrogen is a multi-active steroid with anti-oxidant and anti-apoptotic effects. Estrogen may modulate intracellular Ca2+ and prevent inflammation. For this study, male rats were divided into three groups. Sham-group animals received a laminectomy at T12. Injured rats received both laminectomy and 40 gram centimeter force SCI. Estrogen-group rats received 4 mg/kg 17beta-estradiol (estrogen) at 15 min and 24 hr post-injury, and vehicle-group rats received equal volumes of dimethyl sulfoxide. Animals were sacrificed at 48 hr post-injury, and 1-cm segments of the lesion, rostral penumbra, and caudal penumbra were excised. The degradation of 68 kD neurofilament protein (NFP) and estrogen receptors (ER) was examined by Western blot analysis. Protein levels of calpain and the activities of calpain and caspase-3 were also examined. Levels of cytochrome c were determined in both cytosolic and mitochondrial fractions. Cell death with DNA fragmentation was examined using the TUNEL assay. At the lesion, samples from both vehicle and estrogen treated animals showed increased levels of 68 kD NFP degradation, calpain content, calpain activity, cytochrome c release, and degradation of ERalpha and ERbeta, as compared to sham. In the caudal penumbra, estrogen treatment significantly attenuated 68 kD NFP degradation, calpain content, calpain activity, levels of cytosolic cytochrome c, and ERbeta degradation. At the lesion, vehicle-treated animals displayed more TUNEL+ cells, and estrogen treatment significantly attenuated this cell death marker. We conclude that estrogen may inhibit cell death in SCI through calpain inhibition.
Collapse
Affiliation(s)
- Eric Anthony Sribnick
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | |
Collapse
|
37
|
Karmakar S, Weinberg MS, Banik NL, Patel SJ, Ray SK. Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience 2006; 141:1265-80. [PMID: 16765523 DOI: 10.1016/j.neuroscience.2006.04.075] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 04/25/2006] [Accepted: 04/28/2006] [Indexed: 01/09/2023]
Abstract
Glioblastoma is the most malignant and prevalent brain tumor that still remains incurable. Recent studies reported anti-cancer effect of the broccoli-derived compound sulforaphane. We explored the mechanisms of sulforaphane-mediated apoptosis in human glioblastoma T98G and U87MG cells. Wright staining and ApopTag assay confirmed apoptosis in glioblastoma cells treated with sulforaphane. Increase in intracellular free Ca2+ was detected by fura-2 assay, suggesting activation of Ca2+-dependent pathways for apoptosis. Western blotting was used to detect changes in expression of Bax and Bcl-2 proteins resulting in increased Bax:Bcl-2 ratio that indicated a commitment of glioblastoma cells to apoptosis. Upregulation of calpain, a Ca2+-dependent cysteine protease, activated caspase-12 that in turn caused activation of caspase-9. With the increased Bax:Bcl-2 ratio, cytochrome c was released from mitochondria to cytosol for sequential activation of caspase-9 and caspase-3. Increased calpain and caspase-3 activities generated 145 kD spectrin breakdown product and 120 kD spectrin breakdown product, respectively. Activation of caspase-3 also cleaved the inhibitor-of-caspase-activated-DNase. Accumulation of apoptosis-inducing-factor in cytosol suggested caspase-independent pathway of apoptosis as well. Two of the inhibitor-of-apoptosis proteins were downregulated because of an increase in 'second mitochondrial activator of caspases/Direct inhibitor-of-apoptosis protein binding protein with low pI.' Decrease in nuclear factor kappa B and increase in inhibitor of nuclear factor kappa B alpha expression favored the process of apoptosis. Collectively, our results indicated activation of multiple molecular mechanisms for apoptosis in glioblastoma cells following treatment with sulforaphane.
Collapse
Affiliation(s)
- S Karmakar
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 323K, P.O. Box 250606, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
38
|
Fester L, Ribeiro-Gouveia V, Prange-Kiel J, von Schassen C, Böttner M, Jarry H, Rune GM. Proliferation and apoptosis of hippocampal granule cells require local oestrogen synthesis. J Neurochem 2006; 97:1136-44. [PMID: 16579833 DOI: 10.1111/j.1471-4159.2006.03809.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ovarian oestrogens have been demonstrated to influence neurogenesis in the dentate gyrus. As considerable amounts of oestrogens are synthesized in hippocampal neurones, we focused on the role of hippocampus-derived estradiol on proliferation and apoptosis of granule cells in vitro. We used hippocampal dispersion cultures, which allowed for cultivation of the cells under steroid- and serum-free conditions and monitoring of oestrogen synthesis. To address the influence of hippocampus-derived estradiol on neurogenesis, we inhibited oestrogen synthesis by treatment of hippocampal cell cultures with letrozole, a specific aromatase inhibitor. Alternatively, we used siRNA against steroidogenic acute regulatory protein (StAR). The number of proliferative cells decreased whereas the number of apoptotic cells increased dose-dependently, in response to reduced estradiol release into the medium after treatment with letrozole. This also held true for siRNA against StAR transfected cell cultures. Application of estradiol to the medium had no effect on proliferation and apoptosis whereas the anti-proliferative and pro-apoptotic effects of StAR knock-down and letrozole treatment were restored by treatment of the cultures with estradiol. Our findings suggest that neurogenesis and apoptosis in the hippocampus require a defined range of estradiol concentrations that is physiologically provided by hippocampal cells but not by gonads.
Collapse
Affiliation(s)
- L Fester
- Institute of Anatomy I: Cellular Neurobiology, University Medical Center, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Ray SK, Karmakar S, Nowak MW, Banik NL. Inhibition of calpain and caspase-3 prevented apoptosis and preserved electrophysiological properties of voltage-gated and ligand-gated ion channels in rat primary cortical neurons exposed to glutamate. Neuroscience 2006; 139:577-95. [PMID: 16504408 DOI: 10.1016/j.neuroscience.2005.12.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/25/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
Glutamate toxicity in traumatic brain injury, ischemia, and Huntington's disease causes cortical neuron death and dysfunction. We tested the efficacy of calpain and caspase-3 inhibitors alone and in combination to prevent neuronal death and preserve electrophysiological functions in rat primary cortical neurons following glutamate exposure. Cortical neurons exposed to 0.5 microM glutamate for 24 h committed mostly apoptotic death as determined by Wright staining and ApopTag assay. Levels of expression, formation of active forms, and activities of calpain and caspase-3 were increased following glutamate exposure. Also, in situ double labeling identified conformationally active caspase-3-p20 fragment and chromatin condensation in apoptotic neurons. Pretreatment of cortical neurons with 0.2 microM N-benzyloxylcarbonyl-Leu-Nle-aldehyde (calpain-specific inhibitor) and 100 microM N-benzyloxylcarbonyl-Asp(OCH3)-Glu(OCH3)-Val-Asp(OCH3)-fluoromethyl ketone (caspase-3-specific inhibitor) provided strong neuroprotection. Standard patch-clamp techniques were used to measure the whole-cell currents associated with Na+ channels, N-methyl-D-aspartate receptors, and kainate receptors. The lack of a change in capacitance indicated that neurons treated with inhibitor(s) plus glutamate did not undergo apoptotic shrinkage and maintained the same size as the control neurons. Whole-cell currents associated with Na+ channels, N-methyl-D-aspartate receptors, and kainate receptors were similar in amplitude and activation/inactivation kinetics for cells untreated and treated with inhibitor(s) and glutamate. Spontaneous synaptic activity as observed by miniature end-plate currents was also similar. Prevention of glutamate-induced apoptosis by calpain and caspase-3 inhibitors preserved normal activities of crucial ion channels such as Na+ channels, N-methyl-D-aspartate receptors, and kainate receptors in neurons. Our studies strongly imply that calpain and caspase-3 inhibitors may also provide functional neuroprotection in the animal models of traumatic brain injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- S K Ray
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, P.O. Box 250606, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|