1
|
Cárdenas-García SP, Ijaz S, Pereda AE. The components of an electrical synapse as revealed by expansion microscopy of a single synaptic contact. eLife 2024; 13:e91931. [PMID: 38994821 PMCID: PMC11333041 DOI: 10.7554/elife.91931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.
Collapse
Affiliation(s)
- Sandra P Cárdenas-García
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
2
|
Silwal P, Singhal P, Senecal JM, Senecal JE, Lynn BD, Nagy JI. Patterns of connexin36 and eGFP reporter expression among motoneurons in spinal sexually dimorphic motor nuclei in mouse. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:55-76. [PMID: 39021417 PMCID: PMC11249853 DOI: 10.62347/ogwv9376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Sexually dimorphic spinal motoneurons (MNs) in the dorsomedial nucleus (DMN) and dorsolateral nucleus (DLN) as well as those in the cremaster nucleus are involved in reproductive behaviours, and the cremaster nucleus additionally contributes to testicular thermoregulation. It has been reported that MNs in DMN and DLN are extensively linked by gap junctions forming electrical synapses composed of connexin36 (Cx36) and there is evidence that subpopulation of MNs in the cremaster nucleus are also electrically coupled by these synapses. METHODOLOGY We used immunofluorescence methods to detect enhanced green fluorescent protein (eGFP) reporter for Cx36 expression in these motor nuclei. RESULTS We document in male mice that about half the MNs in each of DMN and DLN express eGFP, while the remaining half do not. Further, we found that the eGFP+ vs. eGFP- subsets of MNs in each of these motor nuclei innervate different target muscles; eGFP+ MNs in DMN and DLN project to sexually dimorphic bulbocavernosus and ischiocavernosus muscles, while the eGFP- subsets project to sexually non-dimorphic anal and external urethral sphincter muscles. Similarly, eGFP+ vs. eGFP- cremaster MNs were found to project to anatomically distinct portions of the cremaster muscle. By immunofluorescence, nearly all motoneurons in both DMN and DLN displayed punctate labelling for Cx36, including at eGFP+/eGFP+, eGFP+/eGFP- and eGFP-/eGFP- cell appositions. CONCLUSIONS Most if not all motoneurons in DMN and DLN are electrically coupled, including sexually dimorphic and non-dimorphic motoneurons with each other, despite absence of eGFP reporter in the non-dimorphic populations in these nuclei that have selective projections to sexually non-dimorphic target muscles.
Collapse
Affiliation(s)
- Prabhisha Silwal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Pratyaksh Singhal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Joanne Mm Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Julie Em Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - Bruce D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
3
|
Thomas D, Recabal-Beyer A, Senecal JMM, Serletis D, Lynn BD, Jackson MF, Nagy JI. Association of connexin36 with adherens junctions at mixed synapses and distinguishing electrophysiological features of those at mossy fiber terminals in rat ventral hippocampus. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2024; 16:28-54. [PMID: 39021415 PMCID: PMC11249852 DOI: 10.62347/rtmh4490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Granule cells in the hippocampus project axons to hippocampal CA3 pyramidal cells where they form large mossy fiber terminals. We have reported that these terminals contain the gap junction protein connexin36 (Cx36) specifically in the stratum lucidum of rat ventral hippocampus, thus creating morphologically mixed synapses that have the potential for dual chemical/electrical transmission. METHODOLOGY Here, we used various approaches to characterize molecular and electrophysiological relationships between the Cx36-containing gap junctions at mossy fiber terminals and their postsynaptic elements and to examine molecular relationships at mixed synapses in the brainstem. RESULTS In rat and human ventral hippocampus, many of these terminals, identified by their selective expression of vesicular zinc transporter-3 (ZnT3), displayed multiple, immunofluorescent Cx36-puncta representing gap junctions, which were absent at mossy fiber terminals in the dorsal hippocampus. In rat, these were found in close proximity to the protein constituents of adherens junctions (i.e., N-cadherin and nectin-1) that are structural hallmarks of mossy fiber terminals, linking these terminals to the dendritic shafts of CA3 pyramidal cells, thus indicating the loci of gap junctions at these contacts. Cx36-puncta were also associated with adherens junctions at mixed synapses in the brainstem, supporting emerging views of the structural organization of the adherens junction-neuronal gap junction complex. Electrophysiologically induced long-term potentiation (LTP) of field responses evoked by mossy fiber stimulation was greater in the ventral than dorsal hippocampus. CONCLUSIONS The electrical component of transmission at mossy fiber terminals may contribute to enhanced LTP responses in the ventral hippocampus.
Collapse
Affiliation(s)
- Deepthi Thomas
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| | - Antonia Recabal-Beyer
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de ConcepciónVíctor Lamas 1290, Casilla 160, Concepción, Chile
| | - Joanne MM Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| | - Demitre Serletis
- Epilepsy Center, Neurological Institute, Cleveland ClinicCleveland, Ohio, USA
| | - Bruce D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| | - Michael F Jackson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Health Science CentreWinnipeg, Manitoba, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of ManitobaWinnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Mao W, Chen S. Assembly mechanisms of the neuronal gap junction channel connexin 36 elucidated by Cryo-EM. Arch Biochem Biophys 2024; 754:109959. [PMID: 38490311 DOI: 10.1016/j.abb.2024.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Electrical synapses are essential components of neural circuits. Neuronal signal transduction across electrical synapses is primarily mediated by gap junction channels composed of Connexin36 (Cx36), the lack of which causes impaired electrical coupling between certain neurons including cortical interneurons and thalamic reticular nucleus (TRN) neurons. However, the structural basis underlying Cx36 function and assembly remains elusive. Recently, Lee et al. reported cryo-EM structures of Cx36, thus provided first insights of its gating mechanism. Here, we report a consistent cryo-EM structure of Cx36 determined in parallel, and describe unique interactions underpinning its assembly mechanism in complementary to the competing work. In particular, we found non-canonical electrostatic interactions between protomers from opposing hemichannels and a steric complementary site between adjacent protomers within a hemichannel, which together provide a structural explanation for the assembly specificity in homomeric and heteromeric gap junction channels.
Collapse
Affiliation(s)
- Wenxuan Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshuang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Ribelayga CP, O’Brien J. When microscopy and electrophysiology meet connectomics-Steve Massey's contribution to unraveling the structure and function of the rod/cone gap junction. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1305131. [PMID: 38983007 PMCID: PMC11182179 DOI: 10.3389/fopht.2023.1305131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/31/2023] [Indexed: 07/11/2024]
Abstract
Electrical synapses, formed of gap junctions, are ubiquitous components of the central nervous system (CNS) that shape neuronal circuit connectivity and dynamics. In the retina, electrical synapses can create a circuit, control the signal-to-noise ratio in individual neurons, and support the coordinated neuronal firing of ganglion cells, hence, regulating signal processing at the network, single-cell, and dendritic level. We, the authors, and Steve Massey have had a long interest in gap junctions in retinal circuits, in general, and in the network of photoreceptors, in particular. Our combined efforts, based on a wide array of techniques of molecular biology, microscopy, and electrophysiology, have provided fundamental insights into the molecular structure and properties of the rod/cone gap junction. Yet, a full understanding of how rod/cone coupling controls circuit dynamics necessitates knowing its operating range. It is well established that rod/cone coupling can be greatly reduced or eliminated by bright-light adaptation or pharmacological treatment; however, the upper end of its dynamic range has long remained elusive. This held true until Steve Massey's recent interest for connectomics led to the development of a new strategy to assess this issue. The effort proved effective in establishing, with precision, the connectivity rules between rods and cones and estimating the theoretical upper limit of rod/cone electrical coupling. Comparing electrophysiological measurements and morphological data indicates that under pharmacological manipulation, rod/cone coupling can reach the theoretical maximum of its operating range, implying that, under these conditions, all the gap junction channels present at the junctions are open. As such, channel open probability is likely the main determinant of rod/cone coupling that can change momentarily in a time-of-day- and light-dependent manner. In this article we briefly review our current knowledge of the molecular structure of the rod/cone gap junction and of the mechanisms behind its modulation, and we highlight the recent work led by Steve Massey. Steve's contribution has been critical toward asserting the modulation depth of rod/cone coupling as well as elevating the rod/cone gap junction as one of the most suitable models to examine the role of electrical synapses and their plasticity in neural processing.
Collapse
Affiliation(s)
- Christophe P. Ribelayga
- Department of Vision Sciences, University of Houston College of Optometry, Houston, TX, United States
| | | |
Collapse
|
6
|
Gebicke-Haerter PJ. The computational power of the human brain. Front Cell Neurosci 2023; 17:1220030. [PMID: 37608987 PMCID: PMC10441807 DOI: 10.3389/fncel.2023.1220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
At the end of the 20th century, analog systems in computer science have been widely replaced by digital systems due to their higher computing power. Nevertheless, the question keeps being intriguing until now: is the brain analog or digital? Initially, the latter has been favored, considering it as a Turing machine that works like a digital computer. However, more recently, digital and analog processes have been combined to implant human behavior in robots, endowing them with artificial intelligence (AI). Therefore, we think it is timely to compare mathematical models with the biology of computation in the brain. To this end, digital and analog processes clearly identified in cellular and molecular interactions in the Central Nervous System are highlighted. But above that, we try to pinpoint reasons distinguishing in silico computation from salient features of biological computation. First, genuinely analog information processing has been observed in electrical synapses and through gap junctions, the latter both in neurons and astrocytes. Apparently opposed to that, neuronal action potentials (APs) or spikes represent clearly digital events, like the yes/no or 1/0 of a Turing machine. However, spikes are rarely uniform, but can vary in amplitude and widths, which has significant, differential effects on transmitter release at the presynaptic terminal, where notwithstanding the quantal (vesicular) release itself is digital. Conversely, at the dendritic site of the postsynaptic neuron, there are numerous analog events of computation. Moreover, synaptic transmission of information is not only neuronal, but heavily influenced by astrocytes tightly ensheathing the majority of synapses in brain (tripartite synapse). At least at this point, LTP and LTD modifying synaptic plasticity and believed to induce short and long-term memory processes including consolidation (equivalent to RAM and ROM in electronic devices) have to be discussed. The present knowledge of how the brain stores and retrieves memories includes a variety of options (e.g., neuronal network oscillations, engram cells, astrocytic syncytium). Also epigenetic features play crucial roles in memory formation and its consolidation, which necessarily guides to molecular events like gene transcription and translation. In conclusion, brain computation is not only digital or analog, or a combination of both, but encompasses features in parallel, and of higher orders of complexity.
Collapse
Affiliation(s)
- Peter J. Gebicke-Haerter
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
7
|
Cárdenas-García SP, Ijaz S, Pereda AE. The components of an electrical synapse as revealed by expansion microscopy of a single synaptic contact. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550347. [PMID: 37546897 PMCID: PMC10402082 DOI: 10.1101/2023.07.25.550347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact defines the anatomical limits of a synapse. Expansion microscopy of these contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area works as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of AJs. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.
Collapse
Affiliation(s)
- Sandra P. Cárdenas-García
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Singhal P, Senecal JMM, Senecal JEM, Silwal P, Lynn BD, Nagy JI. Characteristics of Electrical Synapses, C-terminals and Small-conductance Ca 2+ activated Potassium Channels in the Sexually Dimorphic Cremaster Motor Nucleus in Spinal Cord of Mouse and Rat. Neuroscience 2023; 521:58-76. [PMID: 37100373 DOI: 10.1016/j.neuroscience.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Sexually dimorphic motoneurons (MNs) located in lower lumbar spinal cord are involved in mating and reproductive behaviours and are known to be coupled by electrical synapses. The cremaster motor nucleus in upper lumbar spinal cord has also been suggested to support physiological processes associated with sexual behaviours in addition to its thermoregulatory and protective role in maintaining testes integrity. Using immunofluorescence approaches, we investigated whether cremaster MNs also exhibit features reflecting their potential for electrical synaptic communication and examined some of their other synaptic characteristics. Both mice and rats displayed punctate immunolabelling of Cx36 associated with cremaster MNs, indicative of gap junction formation. Transgenic mice with enhanced green fluorescent protein (eGFP) reporter for connexin36 expression showed that subpopulations of cremaster MNs in both male and female mice express eGFP, with greater proportions of those in male mice. The eGFP+ MNs within the cremaster nucleus vs. eGFP- MNs inside and outside this nucleus displayed a 5-fold greater density of serotonergic innervation and exhibited a paucity of innervation by C-terminals arising from cholinergic V0c interneurons. All MNs within the cremaster motor nucleus displayed prominent patches of immunolabelling for SK3 (K+) channels around their periphery, suggestive of their identity as slow MNs, many though not all of which were in apposition to C-terminals. The results provide evidence for electrical coupling of a large proportion of cremaster MNs and suggest the existence of two populations of these MNs with possibly differential innervation of their peripheral target muscles serving different functions.
Collapse
Affiliation(s)
- P Singhal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J E M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - P Silwal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - B D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - J I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada.
| |
Collapse
|
9
|
Recabal-Beyer A, Tavakoli H, M M Senecal J, Stecina K, Nagy JI. Interrelationships between spinal sympathetic preganglionic neurons, autonomic systems and electrical synapses formed by connexin36-containing gap junctions. Neuroscience 2023:S0306-4522(23)00220-8. [PMID: 37225049 DOI: 10.1016/j.neuroscience.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/24/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
Spinal sympathetic preganglionic neurons (SPNs) are among the many neuronal populations in the mammalian central nervous system (CNS) where there is evidence for electrical coupling between cell pairs linked by gap junctions composed of connexin36 (Cx36). Understanding the organization of this coupling in relation to autonomic functions of spinal sympathetic systems requires knowledge of how these junctions are deployed among SPNs. Here, we document the distribution of immunofluorescence detection of Cx36 among SPNs identified by immunolabelling of their various markers, including choline acetyltransferase, nitric oxide and peripherin in adult and developing mouse and rat. In adult animals, labelling of Cx36 was exclusively punctate and dense concentrations of Cx36-puncta were distributed along the entire length of the spinal thoracic intermediolateral cell column (IML). These puncta were also seen in association with SPN dendritic processes in the lateral funiculus, the intercalated and central autonomic areas and those within and extending medially from the IML. All labelling for Cx36 was absent in spinal cords of Cx36 knockout mice. High densities of Cx36-puncta were already evident among clusters of SPNs in the IML of mouse and rat at postnatal days 10-12. In Cx36BAC::eGFP mice, eGFP reporter was absent in SPNs, thus representing false negative detection, but was localized to some glutamatergic and GABAergic synaptic terminals. Some eGFP+ terminals were found contacting SPN dendrites. These results indicate widespread Cx36 expression in SPNs, further supporting evidence of electrical coupling between these cells, and suggest that SPNs are innervated by neurons that themselves may be electrically coupled.
Collapse
Affiliation(s)
- A Recabal-Beyer
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - H Tavakoli
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - K Stecina
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9
| | - J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada R3E 0J9.
| |
Collapse
|
10
|
Ishibashi M, Keung J, Morgans CW, Aicher SA, Carroll JR, Singer JH, Jia L, Li W, Fahrenfort I, Ribelayga CP, Massey SC. Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals. eLife 2022; 11:73039. [PMID: 35471186 PMCID: PMC9170248 DOI: 10.7554/elife.73039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Electrical coupling, mediated by gap junctions, contributes to signal averaging, synchronization, and noise reduction in neuronal circuits. In addition, gap junctions may also provide alternative neuronal pathways. However, because they are small and especially difficult to image, gap junctions are often ignored in large-scale 3D reconstructions. Here, we reconstruct gap junctions between photoreceptors in the mouse retina using serial blockface-scanning electron microscopy, focused ion beam-scanning electron microscopy, and confocal microscopy for the gap junction protein Cx36. An exuberant spray of fine telodendria extends from each cone pedicle (including blue cones) to contact 40-50 nearby rod spherules at sites of Cx36 labeling, with approximately 50 Cx36 clusters per cone pedicle and 2-3 per rod spherule. We were unable to detect rod/rod or cone/cone coupling. Thus, rod/cone coupling accounts for nearly all gap junctions between photoreceptors. We estimate a mean of 86 Cx36 channels per rod/cone pair, which may provide a maximum conductance of ~1200 pS, if all gap junction channels were open. This is comparable to the maximum conductance previously measured between rod/cone pairs in the presence of a dopamine antagonist to activate Cx36, suggesting that the open probability of gap junction channels can approach 100% under certain conditions.
Collapse
Affiliation(s)
- Munenori Ishibashi
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Joyce Keung
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - James R Carroll
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, United States
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, College Park, United States
| | - Li Jia
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Iris Fahrenfort
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Christophe P Ribelayga
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| | - Stephen C Massey
- Richard Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas at Houston, Houston, United States
| |
Collapse
|
11
|
Network Architecture of Gap Junctional Coupling among Parallel Processing Channels in the Mammalian Retina. J Neurosci 2020; 40:4483-4511. [PMID: 32332119 DOI: 10.1523/jneurosci.1810-19.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 03/27/2020] [Accepted: 04/12/2020] [Indexed: 01/04/2023] Open
Abstract
Gap junctions are ubiquitous throughout the nervous system, mediating critical signal transmission and integration, as well as emergent network properties. In mammalian retina, gap junctions within the Aii amacrine cell-ON cone bipolar cell (CBC) network are essential for night vision, modulation of day vision, and contribute to visual impairment in retinal degenerations, yet neither the extended network topology nor its conservation is well established. Here, we map the network contribution of gap junctions using a high-resolution connectomics dataset of an adult female rabbit retina. Gap junctions are prominent synaptic components of ON CBC classes, constituting 5%-25% of all axonal synaptic contacts. Many of these mediate canonical transfer of rod signals from Aii cells to ON CBCs for night vision, and we find that the uneven distribution of Aii signals to ON CBCs is conserved in rabbit, including one class entirely lacking direct Aii coupling. However, the majority of gap junctions formed by ON CBCs unexpectedly occur between ON CBCs, rather than with Aii cells. Such coupling is extensive, creating an interconnected network with numerous lateral paths both within, and particularly across, these parallel processing streams. Coupling patterns are precise with ON CBCs accepting and rejecting unique combinations of partnerships according to robust rulesets. Coupling specificity extends to both size and spatial topologies, thereby rivaling the synaptic specificity of chemical synapses. These ON CBC coupling motifs dramatically extend the coupled Aii-ON CBC network, with implications for signal flow in both scotopic and photopic retinal networks during visual processing and disease.SIGNIFICANCE STATEMENT Electrical synapses mediated by gap junctions are fundamental components of neural networks. In retina, coupling within the Aii-ON CBC network shapes visual processing in both the scotopic and photopic networks. In retinal degenerations, these same gap junctions mediate oscillatory activity that contributes to visual impairment. Here, we use high-resolution connectomics strategies to identify gap junctions and cellular partnerships. We describe novel, pervasive motifs both within and across classes of ON CBCs that dramatically extend the Aii-ON CBC network. These motifs are highly specific with implications for both signal processing within the retina and therapeutic interventions for blinding conditions. These findings highlight the underappreciated contribution of coupling motifs in retinal circuitry and the necessity of their detection in connectomics studies.
Collapse
|
12
|
Totland MZ, Rasmussen NL, Knudsen LM, Leithe E. Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol Life Sci 2020; 77:573-591. [PMID: 31501970 PMCID: PMC7040059 DOI: 10.1007/s00018-019-03285-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
Abstract
Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junctions have a wide diversity of physiological functions, playing critical roles in both excitable and non-excitable tissues. Gap junction channels are formed by integral membrane proteins called connexins. Inherited or acquired alterations in connexins are associated with numerous diseases, including heart failure, neuropathologies, deafness, skin disorders, cataracts and cancer. Gap junctions are highly dynamic structures and by modulating the turnover rate of connexins, cells can rapidly alter the number of gap junction channels at the plasma membrane in response to extracellular or intracellular cues. Increasing evidence suggests that ubiquitination has important roles in the regulation of endoplasmic reticulum-associated degradation of connexins as well as in the modulation of gap junction endocytosis and post-endocytic sorting of connexins to lysosomes. In recent years, researchers have also started to provide insights into the physiological roles of connexin ubiquitination in specific tissue types. This review provides an overview of the advances made in understanding the roles of connexin ubiquitination in the regulation of gap junction intercellular communication and discusses the emerging physiological and pathophysiological implications of these processes.
Collapse
Affiliation(s)
- Max Zachrisson Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Nikoline Lander Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Lars Mørland Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway.
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
13
|
Nagy JI, Pereda AE, Rash JE. On the occurrence and enigmatic functions of mixed (chemical plus electrical) synapses in the mammalian CNS. Neurosci Lett 2019; 695:53-64. [PMID: 28911821 PMCID: PMC5845811 DOI: 10.1016/j.neulet.2017.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/28/2017] [Accepted: 09/10/2017] [Indexed: 12/31/2022]
Abstract
Electrical synapses with diverse configurations and functions occur at a variety of interneuronal appositions, thereby significantly expanding the physiological complexity of neuronal circuitry over that provided solely by chemical synapses. Gap junctions between apposed dendritic and somatic plasma membranes form "purely electrical" synapses that allow for electrical communication between coupled neurons. In addition, gap junctions at axon terminals synapsing on dendrites and somata allow for "mixed" (dual chemical+electrical) synaptic transmission. "Dual transmission" was first documented in the autonomic nervous system of birds, followed by its detection in the central nervous systems of fish, amphibia, and reptiles. Subsequently, mixed synapses have been detected in several locations in the mammalian CNS, where their properties and functional roles remain undetermined. Here, we review available evidence for the presence, complex structural composition, and emerging functional properties of mixed synapses in the mammalian CNS.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, 745 Bannatyne Ave, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
14
|
Lynn BD, Li X, Hormuzdi SG, Griffiths EK, McGlade CJ, Nagy JI. E3 ubiquitin ligases LNX1 and LNX2 localize at neuronal gap junctions formed by connexin36 in rodent brain and molecularly interact with connexin36. Eur J Neurosci 2018; 48:3062-3081. [PMID: 30295974 DOI: 10.1111/ejn.14198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
Abstract
Electrical synapses in the mammalian central nervous system (CNS) are increasingly recognized as highly complex structures for mediation of neuronal communication, both with respect to their capacity for dynamic short- and long-term modification in efficacy of synaptic transmission and their multimolecular regulatory and structural components. These two characteristics are inextricably linked, such that understanding of mechanisms that contribute to electrical synaptic plasticity requires knowledge of the molecular composition of electrical synapses and the functions of proteins associated with these synapses. Here, we provide evidence that the key component of gap junctions that form the majority of electrical synapses in the mammalian CNS, namely connexin36 (Cx36), directly interacts with the related E3 ubiquitin ligase proteins Ligand of NUMB protein X1 (LNX1) and Ligand of NUMB protein X2 (LNX2). This is based on immunofluorescence colocalization of LNX1 and LNX2 with Cx36-containing gap junctions in adult mouse brain versus lack of such coassociation in LNX null mice, coimmunoprecipitation of LNX proteins with Cx36, and pull-down of Cx36 with the second PDZ domain of LNX1 and LNX2. Furthermore, cotransfection of cultured cells with Cx36 and E3 ubiquitin ligase-competent LNX1 and LNX2 isoforms led to loss of Cx36-containing gap junctions between cells, whereas these junctions persisted following transfection with isoforms of these proteins that lack ligase activity. Our results suggest that a LNX protein mediates ubiquitination of Cx36 at neuronal gap junctions, with consequent Cx36 internalization, and may thereby contribute to intracellular mechanisms that govern the recently identified modifiability of synaptic transmission at electrical synapses.
Collapse
Affiliation(s)
- Bruce D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xinbo Li
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Sheriar G Hormuzdi
- D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emily K Griffiths
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Jane McGlade
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
15
|
Nagy JI, Lynn BD. Structural and Intermolecular Associations Between Connexin36 and Protein Components of the Adherens Junction-Neuronal Gap Junction Complex. Neuroscience 2018; 384:241-261. [PMID: 29879437 DOI: 10.1016/j.neuroscience.2018.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
Intimate structural and functional relationships between gap junctions and adherens junctions have been demonstrated in peripheral tissues, but have not been thoroughly examined in the central nervous system, where adherens junctions are often found in close proximity to neuronal gap junctions. Here, we used immunofluorescence approaches to document the localization of various protein components of adherens junctions in relation to those that we have previously reported to occur at electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36). The adherens junction constituents N-cadherin and nectin-1 were frequently found to localize near or overlap with Cx36-containing gap junctions in several brain regions examined. This was also true of the adherens junction-associated proteins α-catenin and β-catenin, as well as the proteins zonula occludens-1 and AF6 (aka, afadin) that were reported constituents of both adherens junctions and gap junctions. The deployment of the protein constituents of these junctions was especially striking at somatic contacts between primary afferent neurons in the mesencephalic trigeminal nucleus (MesV), where the structural components of adherens junctions appeared to be maintained in connexin36 null mice. These results support emerging views concerning the multi-molecular composition of electrical synapses and raise possibilities for various structural and functional protein-protein interactions at what now can be considered the adherens junction-neuronal gap junction complex. Further, the results point to intracellular signaling pathways that could potentially contribute to the assembly, maintenance and turnover of this complex, as well as to the dynamic nature of neuronal communication at electrical synapses.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - B D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
16
|
Nagy JI, Lynn BD, Senecal JMM, Stecina K. Connexin36 Expression in Primary Afferent Neurons in Relation to the Axon Reflex and Modality Coding of Somatic Sensation. Neuroscience 2018; 383:216-234. [PMID: 29746988 DOI: 10.1016/j.neuroscience.2018.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/02/2018] [Accepted: 04/26/2018] [Indexed: 01/25/2023]
Abstract
Electrical coupling mediated by connexin36-containing gap junctions that form electrical synapses is known to be prevalent in the central nervous system, but such coupling was long ago reported also to occur between cutaneous sensory fibers. Here, we provide evidence supporting the capability of primary afferent fibers to engage in electrical coupling. In transgenic mice with enhanced green fluorescent protein (eGFP) serving as a reporter for connexin36 expression, immunofluorescence labeling of eGFP was found in subpopulations of neurons in lumbar dorsal root and trigeminal sensory ganglia, and in fibers within peripheral nerves and tissues. Immunolabeling of connexin36 was robust in the sciatic nerve, weaker in sensory ganglia than in peripheral nerve, and absent in these tissues from Cx36 null mice. Connexin36 mRNA was detected in ganglia from wild-type mice, but not in those from Cx36 null mice. Labeling of eGFP was localized within a subpopulation of ganglion cells containing substance P and calcitonin gene-releasing peptide, and in peripheral fibers containing these peptides. Expression of eGFP was also found in various proportions of sensory ganglion neurons containing transient receptor potential (TRP) channels, including TRPV1 and TRPM8. Ganglion cells labeled for isolectin B4 and tyrosine hydroxylase displayed very little co-localization with eGFP. Our results suggest that previously observed electrical coupling between peripheral sensory fibers occurs via electrical synapses formed by Cx36-containing gap junctions, and that some degree of selectivity in the extent of electrical coupling may occur between fibers belonging to subpopulations of sensory neurons identified according to their sensory modality responsiveness.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| | - B D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - K Stecina
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
17
|
Elgueta C, Leroy F, Vielma AH, Schmachtenberg O, Palacios AG. Electrical coupling between A17 cells enhances reciprocal inhibitory feedback to rod bipolar cells. Sci Rep 2018; 8:3123. [PMID: 29449585 PMCID: PMC5814567 DOI: 10.1038/s41598-018-21119-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 01/29/2018] [Indexed: 11/09/2022] Open
Abstract
A17 amacrine cells are an important part of the scotopic pathway. Their synaptic varicosities receive glutamatergic inputs from rod bipolar cells (RBC) and release GABA onto the same RBC terminal, forming a reciprocal feedback that shapes RBC depolarization. Here, using patch-clamp recordings, we characterized electrical coupling between A17 cells of the rat retina and report the presence of strongly interconnected and non-coupled A17 cells. In coupled A17 cells, evoked currents preferentially flow out of the cell through GJs and cross-synchronization of presynaptic signals in a pair of A17 cells is correlated to their coupling degree. Moreover, we demonstrate that stimulation of one A17 cell can induce electrical and calcium transients in neighboring A17 cells, thus confirming a functional flow of information through electrical synapses in the A17 coupled network. Finally, blocking GJs caused a strong decrease in the amplitude of the inhibitory feedback onto RBCs. We therefore propose that electrical coupling between A17 cells enhances feedback onto RBCs by synchronizing and facilitating GABA release from inhibitory varicosities surrounding each RBC axon terminal. GJs between A17 cells are therefore critical in shaping the visual flow through the scotopic pathway.
Collapse
Affiliation(s)
- Claudio Elgueta
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany.
| | - Felix Leroy
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Neuroscience department, Columbia University Medical Center, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Alex H Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Physiology Institute I, Alberts Ludwig University, Freiburg, Germany
| |
Collapse
|
18
|
Nagy JI, Pereda AE, Rash JE. Electrical synapses in mammalian CNS: Past eras, present focus and future directions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:102-123. [PMID: 28577972 PMCID: PMC5705454 DOI: 10.1016/j.bbamem.2017.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/19/2022]
Abstract
Gap junctions provide the basis for electrical synapses between neurons. Early studies in well-defined circuits in lower vertebrates laid the foundation for understanding various properties conferred by electrical synaptic transmission. Knowledge surrounding electrical synapses in mammalian systems unfolded first with evidence indicating the presence of gap junctions between neurons in various brain regions, but with little appreciation of their functional roles. Beginning at about the turn of this century, new approaches were applied to scrutinize electrical synapses, revealing the prevalence of neuronal gap junctions, the connexin protein composition of many of those junctions, and the myriad diverse neural systems in which they occur in the mammalian CNS. Subsequent progress indicated that electrical synapses constitute key elements in synaptic circuitry, govern the collective activity of ensembles of electrically coupled neurons, and in part orchestrate the synchronized neuronal network activity and rhythmic oscillations that underlie fundamental integrative processes. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - John E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
19
|
Pearsall EA, Cheng R, Zhou K, Takahashi Y, Matlock HG, Vadvalkar SS, Shin Y, Fredrick TW, Gantner ML, Meng S, Fu Z, Gong Y, Kinter M, Humphries KM, Szweda LI, Smith LEH, Ma JX. PPARα is essential for retinal lipid metabolism and neuronal survival. BMC Biol 2017; 15:113. [PMID: 29183319 PMCID: PMC5706156 DOI: 10.1186/s12915-017-0451-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022] Open
Abstract
Background Peroxisome proliferator activated receptor-alpha (PPARα) is a ubiquitously expressed nuclear receptor. The role of endogenous PPARα in retinal neuronal homeostasis is unknown. Retinal photoreceptors are the highest energy-consuming cells in the body, requiring abundant energy substrates. PPARα is a known regulator of lipid metabolism, and we hypothesized that it may regulate lipid use for oxidative phosphorylation in energetically demanding retinal neurons. Results We found that endogenous PPARα is essential for the maintenance and survival of retinal neurons, with Pparα-/- mice developing retinal degeneration first detected at 8 weeks of age. Using extracellular flux analysis, we identified that PPARα mediates retinal utilization of lipids as an energy substrate, and that ablation of PPARα ultimately results in retinal bioenergetic deficiency and neurodegeneration. This may be due to PPARα regulation of lipid transporters, which facilitate the internalization of fatty acids into cell membranes and mitochondria for oxidation and ATP production. Conclusion We identify an endogenous role for PPARα in retinal neuronal survival and lipid metabolism, and furthermore underscore the importance of fatty acid oxidation in photoreceptor survival. We also suggest PPARα as a putative therapeutic target for age-related macular degeneration, which may be due in part to decreased mitochondrial efficiency and subsequent energetic deficits. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0451-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Pearsall
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Yusuke Takahashi
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA.,Section of Diabetes and Endocrinology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - H Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Shraddha S Vadvalkar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Younghwa Shin
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Thomas W Fredrick
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, CA, 92037, USA
| | - Steven Meng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yan Gong
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Luke I Szweda
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA. .,Section of Diabetes and Endocrinology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
20
|
Nagy JI, Rash JE. Cx36, Cx43 and Cx45 in mouse and rat cerebellar cortex: species-specific expression, compensation in Cx36 null mice and co-localization in neurons vs. glia. Eur J Neurosci 2017; 46:1790-1804. [PMID: 28561933 DOI: 10.1111/ejn.13614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/13/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022]
Abstract
Electrical synapses formed by connexin36 (Cx36)-containing gap junctions between interneurons in the cerebellar cortex have been well characterized, including those formed between basket cells and between Golgi cells, and there is gene reporter-based evidence for the expression of connexin45 (Cx45) in the cerebellar molecular layer. Here, we used immunofluorescence approaches to further investigate expression patterns of Cx36 and Cx45 in this layer and to examine localization relationships of these connexins with each other and with glial connexin43 (Cx43). In mice, strain differences were found, such that punctate labelling for Cx36 was differentially distributed in the molecular layer of C57BL/6 vs. CD1 mice. In mice with EGFP reporter representing Cx36 expression, Cx36-puncta were localized to processes of stellate cells and other cerebellar interneurons. Punctate labelling of Cx45 was faint in the molecular layer of wild-type mice and was increased in intensity in mice with Cx36 gene ablation. The vast majority of Cx36-puncta co-localized with Cx45-puncta, which in turn was associated with the scaffolding protein zonula occludens-1. In rats, Cx45-puncta were also co-localized with Cx36-puncta and additionally occurred along Bergmann glial processes adjacent to Cx43-puncta. The results indicate strain and species differences in Cx36 as well as Cx45 expression, possible compensatory processes after loss of Cx36 expression and localization of Cx45 to both neuronal and Bergmann glial gap junctions. Further, expression of both Cx43 and Cx45 in Bergmann glia of rat may contribute to the complex properties of junctional coupling between these cells and perhaps to their reported coupling with Purkinje cells.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB, R3E 0J9, Canada
| | - J E Rash
- Department of Biomedical Sciences, and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Wang SG, Tsao DD, Vanderpool KG, Yasumura T, Rash JE, Nagy JI. Connexin36 localization to pinealocytes in the pineal gland of mouse and rat. Eur J Neurosci 2017; 45:1594-1605. [PMID: 28474748 PMCID: PMC5507615 DOI: 10.1111/ejn.13602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/07/2023]
Abstract
Several cell types in the pineal gland are known to establish intercellular gap junctions, but the connexin constituents of those junctions have not been fully characterized. Specifically, the expression of connexin36 (Cx36) protein and mRNA has been examined in the pineal, but the identity of cells that produce Cx36 and that form Cx36-containing gap junctions has not been determined. We used immunofluorescence and freeze fracture replica immunogold labelling (FRIL) of Cx36 to investigate the cellular and subcellular localization of Cx36 in the pineal gland of adult mouse and rat. Immunofluorescence labelling of Cx36 was visualized exclusively as puncta or short immunopositive strands that were distributed throughout the pineal, and which were absent in pineal sections from Cx36 null mice. By double immunofluorescence labelling, Cx36 was localized to tryptophan hydroxylase-positive and 5-hydroxytryptamine-positive pinealocyte cell bodies and their large initial processes, including at intersections of those processes and at sites displaying a confluence of processes. Labelling for the cell junction marker zonula occludens-1 (ZO-1) either overlapped or was closely associated with labelling for Cx36. Pinealocytes thus form Cx36-containing gap junctions that also incorporate the scaffolding protein ZO-1. FRIL revealed labelling of Cx36 at ultrastructurally defined gap junctions between pinealocytes, most of which was at gap junctions having reticular, ribbon or string configurations. The results suggest that the endocrine functions of pinealocytes and their secretion of melatonin is supported by their intercellular communication via Cx36-containing gap junctions, which may now be tested by the use of Cx36 null mice.
Collapse
Affiliation(s)
- S G Wang
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB, R3E 0J9, Canada
| | - D D Tsao
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB, R3E 0J9, Canada
| | - K G Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - T Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - J E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - J I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
22
|
Szoboszlay M, Lőrincz A, Lanore F, Vervaeke K, Silver RA, Nusser Z. Functional Properties of Dendritic Gap Junctions in Cerebellar Golgi Cells. Neuron 2016; 90:1043-56. [PMID: 27133465 PMCID: PMC4893164 DOI: 10.1016/j.neuron.2016.03.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/03/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
Abstract
The strength and variability of electrical synaptic connections between GABAergic interneurons are key determinants of spike synchrony within neuronal networks. However, little is known about how electrical coupling strength is determined due to the inaccessibility of gap junctions on the dendritic tree. We investigated the properties of gap junctions in cerebellar interneurons by combining paired somato-somatic and somato-dendritic recordings, anatomical reconstructions, immunohistochemistry, electron microscopy, and modeling. By fitting detailed compartmental models of Golgi cells to their somato-dendritic voltage responses, we determined their passive electrical properties and the mean gap junction conductance (0.9 nS). Connexin36 immunofluorescence and freeze-fracture replica immunogold labeling revealed a large variability in gap junction size and that only 18% of the 340 channels are open in each plaque. Our results establish that the number of gap junctions per connection is the main determinant of both the strength and variability in electrical coupling between Golgi cells.
Collapse
Affiliation(s)
- Miklos Szoboszlay
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest 1083, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest 1085, Hungary
| | - Andrea Lőrincz
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest 1083, Hungary
| | - Frederic Lanore
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - Koen Vervaeke
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, UK.
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest 1083, Hungary.
| |
Collapse
|
23
|
Rash JE, Vanderpool KG, Yasumura T, Hickman J, Beatty JT, Nagy JI. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 2016; 115:1836-59. [PMID: 26763782 PMCID: PMC4869480 DOI: 10.1152/jn.01077.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 11/22/2022] Open
Abstract
Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K(+)-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed "rosettes" of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K(+)conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000-400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K(+)conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in mammalian myelinated axons.
Collapse
Affiliation(s)
- John E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado; and
| | - Kimberly G Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jordan Hickman
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jonathan T Beatty
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - James I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
24
|
Beckmann A, Grissmer A, Krause E, Tschernig T, Meier C. Pannexin-1 channels show distinct morphology and no gap junction characteristics in mammalian cells. Cell Tissue Res 2015; 363:751-63. [PMID: 26386583 DOI: 10.1007/s00441-015-2281-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
Pannexins (Panx) are proteins with a similar membrane topology to connexins, the integral membrane protein of gap junctions. Panx1 channels are generally of major importance in a large number of system and cellular processes and their function has been thoroughly characterized. In contrast, little is known about channel structure and subcellular distribution. We therefore determine the subcellular localization of Panx1 channels in cultured cells and aim at the identification of channel morphology in vitro. Using freeze-fracture replica immunolabeling on EYFP-Panx1-overexpressing HEK 293 cells, large particles were identified in plasma membranes, which were immunogold-labeled using either GFP or Panx1 antibodies. There was no labeling or particles in the nuclear membranes of these cells, pointing to plasma membrane localization of Panx1-EYFP channels. The assembly of particles was irregular, this being in contrast to the regular pattern of gap junctions. The fact that no counterparts were identified on apposing cells, which would have been indicative of intercellular signaling, supported the idea of Panx1 channels within one membrane. Control cells (transfected with EYFP only, non-transfected) were devoid of both particles and immunogold labeling. Altogether, this study provides the first demonstration of Panx1 channel morphology and assembly in intact cells. The identification of Panx1 channels as large particles within the plasma membrane provides the knowledge required to enable recognition of Panx1 channels in tissues in future studies. Thus, these results open up new avenues for the detailed analysis of the subcellular localization of Panx1 and of its nearest neighbors such as purinergic receptors in vivo.
Collapse
Affiliation(s)
- Anja Beckmann
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Alexander Grissmer
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Elmar Krause
- Department of Physiology, Saarland University, 66421, Homburg/Saar, Germany
| | - Thomas Tschernig
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany
| | - Carola Meier
- Department of Anatomy and Cell Biology, Saarland University, Building 61, 66421, Homburg/Saar, Germany.
| |
Collapse
|
25
|
Heterotypic gap junctions at glutamatergic mixed synapses are abundant in goldfish brain. Neuroscience 2014; 285:166-93. [PMID: 25451276 DOI: 10.1016/j.neuroscience.2014.10.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 11/22/2022]
Abstract
Gap junctions provide for direct intercellular electrical and metabolic coupling. The abundance of gap junctions at "large myelinated club ending (LMCE)" synapses on Mauthner cells (M-cells) of the teleost brain provided a convenient model to correlate anatomical and physiological properties of electrical synapses. There, presynaptic action potentials were found to evoke short-latency electrical "pre-potentials" immediately preceding their accompanying glutamate-induced depolarizations, making these the first unambiguously identified "mixed" (i.e., chemical plus electrical) synapses in the vertebrate CNS. We recently showed that gap junctions at these synapses exhibit asymmetric electrical resistance (i.e., electrical rectification), which we correlated with total molecular asymmetry of connexin composition in their apposing gap junction hemiplaques, with connexin35 (Cx35) restricted to axon terminal hemiplaques and connexin34.7 (Cx34.7) restricted to apposing M-cell plasma membranes. We now show that similarly heterotypic neuronal gap junctions are abundant throughout goldfish brain, with labeling exclusively for Cx35 in presynaptic hemiplaques and exclusively for Cx34.7 in postsynaptic hemiplaques. Moreover, the vast majority of these asymmetric gap junctions occur at glutamatergic axon terminals. The widespread distribution of heterotypic gap junctions at glutamatergic mixed synapses throughout goldfish brain and spinal cord implies that pre- vs. postsynaptic asymmetry at electrical synapses evolved early in the chordate lineage. We propose that the advantages of the molecular and functional asymmetry of connexins at electrical synapses that are so prominently expressed in the teleost CNS are unlikely to have been abandoned in higher vertebrates. However, to create asymmetric coupling in mammals, where most gap junctions are composed of connexin36 (Cx36) on both sides, would require some other mechanism, such as differential phosphorylation of connexins on opposite sides of the same gap junction or on asymmetric differences in the complement of their scaffolding and regulatory proteins.
Collapse
|
26
|
Yao C, Vanderpool KG, Delfiner M, Eddy V, Lucaci AG, Soto-Riveros C, Yasumura T, Rash JE, Pereda AE. Electrical synaptic transmission in developing zebrafish: properties and molecular composition of gap junctions at a central auditory synapse. J Neurophysiol 2014; 112:2102-13. [PMID: 25080573 PMCID: PMC4274921 DOI: 10.1152/jn.00397.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022] Open
Abstract
In contrast to the knowledge of chemical synapses, little is known regarding the properties of gap junction-mediated electrical synapses in developing zebrafish, which provide a valuable model to study neural function at the systems level. Identifiable "mixed" (electrical and chemical) auditory synaptic contacts known as "club endings" on Mauthner cells (2 large reticulospinal neurons involved in tail-flip escape responses) allow exploration of electrical transmission in fish. Here, we show that paralleling the development of auditory responses, electrical synapses at these contacts become anatomically identifiable at day 3 postfertilization, reaching a number of ∼6 between days 4 and 9. Furthermore, each terminal contains ∼18 gap junctions, representing between 2,000 and 3,000 connexon channels formed by the teleost homologs of mammalian connexin 36. Electrophysiological recordings revealed that gap junctions at each of these contacts are functional and that synaptic transmission has properties that are comparable with those of adult fish. Thus a surprisingly small number of mixed synapses are responsible for the acquisition of auditory responses by the Mauthner cells, and these are likely sufficient to support escape behaviors at early developmental stages.
Collapse
Affiliation(s)
- Cong Yao
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Kimberly G Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; and
| | - Matthew Delfiner
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Vanessa Eddy
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Alexander G Lucaci
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Carolina Soto-Riveros
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; and
| | - John E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; and Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York;
| |
Collapse
|
27
|
Serrano-Velez JL, Rodriguez-Alvarado M, Torres-Vazquez II, Fraser SE, Yasumura T, Vanderpool KG, Rash JE, Rosa-Molinar E. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons. Front Neural Circuits 2014; 8:66. [PMID: 25018700 PMCID: PMC4072101 DOI: 10.3389/fncir.2014.00066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/28/2014] [Indexed: 11/13/2022] Open
Abstract
"Dye-coupling", whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35), and freeze-fracture replica immunogold labeling (FRIL) reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish). To study gap junctions' role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in <20 mS) spermatozeugmata into the female reproductive tract. Dye-coupling in the 14th spinal segment controlling the gonopodium reveals coupling between motor neurons and a commissural primary ascending interneuron (CoPA IN) and shows that the 14th segment has an extensive and elaborate dendritic arbor and more gap junctions than do other segments. Whole-mount immunohistochemistry for Cx35 results confirm dye-coupling and show it occurs via gap junctions. Finally, FRIL shows that gap junctions are at mixed synapses and reveals that >50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment. Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions' role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.
Collapse
Affiliation(s)
| | | | | | - Scott E Fraser
- Molecular and Computational Biology Section, University of Southern California Los Angeles, CA, USA
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University Fort Collins, CO, USA
| | | | - John E Rash
- Department of Biomedical Sciences, Colorado State University Fort Collins, CO, USA ; Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University Fort Collins, CO, USA
| | - Eduardo Rosa-Molinar
- Biological Imaging Group, University of Puerto Rico San Juan, PR, USA ; Institute of Neurobiology, School of Medicine, University of Puerto Rico San Juan, PR, USA
| |
Collapse
|
28
|
Bautista W, Nagy JI. Connexin36 in gap junctions forming electrical synapses between motoneurons in sexually dimorphic motor nuclei in spinal cord of rat and mouse. Eur J Neurosci 2014; 39:771-87. [PMID: 24304165 PMCID: PMC3943632 DOI: 10.1111/ejn.12439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/01/2022]
Abstract
Pools of motoneurons in the lumbar spinal cord innervate the sexually dimorphic perineal musculature, and are themselves sexually dimorphic, showing differences in number and size between male and female rodents. In two of these pools, the dorsomedial nucleus (DMN) and the dorsolateral nucleus (DLN), dimorphic motoneurons are intermixed with non-dimorphic neurons innervating anal and external urethral sphincter muscles. As motoneurons in these nuclei are reportedly linked by gap junctions, we examined immunofluorescence labeling for the gap junction-forming protein connexin36 (Cx36) in male and female mice and rats. Fluorescent Cx36-labeled puncta occurred in distinctly greater amounts in the DMN and DLN of male rodents than in other spinal cord regions. These puncta were localized to motoneuron somata, proximal dendrites, and neuronal appositions, and were distributed either as isolated or large patches of puncta. In both rats and mice, Cx36-labeled puncta were associated with nearly all (> 94%) DMN and DLN motoneurons. The density of Cx36-labeled puncta increased dramatically from postnatal days 9 to 15, unlike the developmental decreases in these puncta observed in other central nervous system regions. In females, Cx36 labeling of puncta in the DLN was similar to that in males, but was sparse in the DMN. In enhanced green fluorescent protein (EGFP)-Cx36 transgenic mice, motoneurons in the DMN and DLN were intensely labeled for the EGFP reporter in males, but less so in females. The results indicate the presence of Cx36-containing gap junctions in the sexually dimorphic DMN and DLN of both male and female rodents, suggesting coupling of not only sexually dimorphic but also non-dimorphic motoneurons in these nuclei.
Collapse
Affiliation(s)
- W. Bautista
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - J. I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
29
|
Bautista W, Rash JE, Vanderpool KG, Yasumura T, Nagy JI. Re-evaluation of connexins associated with motoneurons in rodent spinal cord, sexually dimorphic motor nuclei and trigeminal motor nucleus. Eur J Neurosci 2013; 39:757-70. [PMID: 24313680 DOI: 10.1111/ejn.12450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/06/2013] [Accepted: 11/09/2013] [Indexed: 11/30/2022]
Abstract
Electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36) are a common feature in mammalian brain circuitry, but less is known about their deployment in spinal cord. It has been reported based on connexin mRNA and/or protein detection that developing and/or mature motoneurons express a variety of connexins, including Cx26, Cx32, Cx36 and Cx43 in trigeminal motoneurons, Cx36, Cx37, Cx40, Cx43 and Cx45 in spinal motoneurons, and Cx32 in sexually dimorphic motoneurons. We re-examined the localization of these connexins during postnatal development and in adult rat and mouse using immunofluorescence labeling for each connexin. We found Cx26 in association only with leptomeninges in the trigeminal motor nucleus (Mo5), Cx32 only with oligodendrocytes and myelinated fibers among motoneurons in this nucleus and in the spinal cord, and Cx37, Cx40 and Cx45 only with blood vessels in the ventral horn of spinal cord, including those among motoneurons. By freeze-fracture replica immunolabeling, > 100 astrocyte gap junctions but no neuronal gap junctions were found based on immunogold labeling for Cx43, whereas 16 neuronal gap junctions at postnatal day (P)4, P7 and P18 were detected based on Cx36 labeling. Punctate labeling for Cx36 was localized to the somatic and dendritic surfaces of peripherin-positive motoneurons in the Mo5, motoneurons throughout the spinal cord, and sexually dimorphic motoneurons at lower lumbar levels. In studies of electrical synapses and electrical transmission between developing and between adult motoneurons, our results serve to focus attention on mediation of this transmission by gap junctions composed of Cx36.
Collapse
Affiliation(s)
- W Bautista
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
30
|
Nagy JI, Bautista W, Blakley B, Rash JE. Morphologically mixed chemical-electrical synapses formed by primary afferents in rodent vestibular nuclei as revealed by immunofluorescence detection of connexin36 and vesicular glutamate transporter-1. Neuroscience 2013; 252:468-88. [PMID: 23912039 PMCID: PMC3795837 DOI: 10.1016/j.neuroscience.2013.07.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 11/23/2022]
Abstract
Axon terminals forming mixed chemical/electrical synapses in the lateral vestibular nucleus of rat were described over 40 years ago. Because gap junctions formed by connexins are the morphological correlate of electrical synapses, and with demonstrations of widespread expression of the gap junction protein connexin36 (Cx36) in neurons, we investigated the distribution and cellular localization of electrical synapses in the adult and developing rodent vestibular nuclear complex, using immunofluorescence detection of Cx36 as a marker for these synapses. In addition, we examined Cx36 localization in relation to that of the nerve terminal marker vesicular glutamate transporter-1 (vglut-1). An abundance of immunolabeling for Cx36 in the form of Cx36-puncta was found in each of the four major vestibular nuclei of adult rat and mouse. Immunolabeling was associated with somata and initial dendrites of medium and large neurons, and was absent in vestibular nuclei of Cx36 knockout mice. Cx36-puncta were seen either dispersed or aggregated into clusters on the surface of neurons, and were never found to occur intracellularly. Nearly all Cx36-puncta were localized to large nerve terminals immunolabeled for vglut-1. These terminals and their associated Cx36-puncta were substantially depleted after labyrinthectomy. Developmentally, labeling for Cx36 was already present in the vestibular nuclei at postnatal day 5, where it was only partially co-localized with vglut-1, and did not become fully associated with vglut-1-positive terminals until postnatal day 20-25. The results show that vglut-1-positive primary afferent nerve terminals form mixed synapses throughout the vestibular nuclear complex, that the gap junction component of these synapses contains Cx36, that multiple Cx36-containing gap junctions are associated with individual vglut-1 terminals and that the development of these mixed synapses is protracted over several postnatal weeks.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
31
|
Marc RE, Jones BW, Watt CB, Anderson JR, Sigulinsky C, Lauritzen S. Retinal connectomics: towards complete, accurate networks. Prog Retin Eye Res 2013; 37:141-62. [PMID: 24016532 PMCID: PMC4045117 DOI: 10.1016/j.preteyeres.2013.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 08/22/2013] [Accepted: 08/28/2013] [Indexed: 11/17/2022]
Abstract
Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 10(12)-10(15) byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies of complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication.
Collapse
Affiliation(s)
- Robert E. Marc
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Bryan W. Jones
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Carl B. Watt
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - James R. Anderson
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Crystal Sigulinsky
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Scott Lauritzen
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| |
Collapse
|
32
|
Nagy JI. Evidence for connexin36 localization at hippocampal mossy fiber terminals suggesting mixed chemical/electrical transmission by granule cells. Brain Res 2012; 1487:107-22. [PMID: 22771400 PMCID: PMC3501615 DOI: 10.1016/j.brainres.2012.05.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 11/25/2022]
Abstract
Electrical synaptic transmission via gap junctions has become an accepted feature of neuronal communication in the mammalian brain, and occurs often between dendrites of interneurons in major brain structures, including the hippocampus. Electrical and dye-coupling has also been reported to occur between pyramidal cells in the hippocampus, but ultrastructurally-identified gap junctions between these cells have so far eluded detection. Gap junctions can be formed by nerve terminals, where they contribute the electrical component of mixed chemical/electrical synaptic transmission, but mixed synapses have only rarely been described in mammalian CNS. Here, we used immunofluorescence localization of the major gap junction forming protein connexin36 to examine its possible association with hippocampal pyramidal cells. In addition to labeling associated with gap junctions between dendrites of parvalbumin-positive interneurons, a high density of fine, punctate immunolabeling for Cx36, non-overlapping with parvalbumin, was found in subregions of the stratum lucidum in the ventral hippocampus of rat brain. A high percentage of Cx36-positive puncta in the stratum lucidum was localized to mossy fiber terminals, as indicated by co-localization of Cx36-puncta with the mossy terminal marker vesicular glutamate transporter-1, as well as with other proteins that are highly concentrated in, and diagnostic markers of, these terminals. These results suggest that mossy fiber terminals abundantly form mixed chemical/electrical synapses with pyramidal cells, where they may serve as intermediaries for the reported electrical and dye-coupling between ensembles of these principal cells. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- James I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, Canada R3E 0J9.
| |
Collapse
|
33
|
Bautista W, Nagy JI, Dai Y, McCrea DA. Requirement of neuronal connexin36 in pathways mediating presynaptic inhibition of primary afferents in functionally mature mouse spinal cord. J Physiol 2012; 590:3821-39. [PMID: 22615430 PMCID: PMC3476635 DOI: 10.1113/jphysiol.2011.225987] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 05/17/2012] [Indexed: 01/28/2023] Open
Abstract
Electrical synapses formed by gap junctions containing connexin36 (Cx36) promote synchronous activity of interneurones in many regions of mammalian brain; however, there is limited information on the role of electrical synapses in spinal neuronal networks. Here we show that Cx36 is widely distributed in the spinal cord and is involved in mechanisms that govern presynaptic inhibition of primary afferent terminals. Electrophysiological recordings were made in spinal cord preparations from 8- to 11-day-old wild-type and Cx36 knockout mice. Several features associated with presynaptic inhibition evoked by conditioning stimulation of low threshold hindlimb afferents were substantially compromised in Cx36 knockout mice. Dorsal root potentials (DRPs) evoked by low intensity stimulation of sensory afferents were reduced in amplitude by 79% and in duration by 67% in Cx36 knockouts. DRPs were similarly affected in wild-types by bath application of gap junction blockers. Consistent with presynaptic inhibition of group Ia muscle spindle afferent terminals on motoneurones described in adult cats, conditioning stimulation of an adjacent dorsal root evoked a long duration inhibition of monosynaptic reflexes recorded from the ventral root in wild-type mice, and this inhibition was antagonized by bicuculline. The same conditioning stimulation failed to inhibit monosynaptic reflexes in Cx36 knockout mice. Immunofluorescence labelling for Cx36 was found throughout the dorsal and ventral horns of the spinal cord of juvenile mice and persisted in mature animals. In deep dorsal horn laminae, where interneurones involved in presynaptic inhibition of large diameter muscle afferents are located, cells were extensively dye-coupled following intracellular neurobiotin injection. Coupled cells displayed Cx36-positive puncta along their processes. Our results indicate that gap junctions formed by Cx36 in spinal cord are required for maintenance of presynaptic inhibition, including the regulation of transmission from Ia muscle spindle afferents. In addition to a role in presynaptic inhibition in juvenile animals, the persistence of Cx36 expression among spinal neuronal populations in the adult mouse suggests that the contribution of electrical synapses to integrative processes in fully mature spinal cord may be as diverse as that found in other areas of the CNS.
Collapse
Affiliation(s)
- Wendy Bautista
- Spinal Cord Research Centre, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | | | | | | |
Collapse
|
34
|
Marc RE, Jones BW, Lauritzen JS, Watt CB, Anderson JR. Building retinal connectomes. Curr Opin Neurobiol 2012; 22:568-74. [PMID: 22498714 PMCID: PMC3415605 DOI: 10.1016/j.conb.2012.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 01/22/2023]
Abstract
Understanding vertebrate vision depends on knowing, in part, the complete network graph of at least one representative retina. Acquiring such graphs is the business of synaptic connectomics, emerging as a practical technology due to improvements in electron imaging platform control, management software for large-scale datasets, and availability of data storage. The optimal strategy for building complete connectomes uses transmission electron imaging with 2 nm or better resolution, molecular tags for cell identification, open-access data volumes for navigation, and annotation with open-source tools to build 3D cell libraries, complete network diagrams and connectivity databases. The first forays into retinal connectomics have shown that even nominally well-studied cells have much richer connection graphs than expected.
Collapse
Affiliation(s)
- Robert E. Marc
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Bryan W. Jones
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - J. Scott Lauritzen
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - Carl B. Watt
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| | - James R. Anderson
- University of Utah School of Medicine, Department of Ophthalmology / John A. Moran Eye Center, 65 Mario Capecchi Dr, Salt Lake City UT 84132
| |
Collapse
|
35
|
Rhett JM, Ongstad EL, Jourdan J, Gourdie RG. Cx43 associates with Na(v)1.5 in the cardiomyocyte perinexus. J Membr Biol 2012; 245:411-22. [PMID: 22811280 DOI: 10.1007/s00232-012-9465-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/20/2012] [Indexed: 01/24/2023]
Abstract
Gap junctions (GJs) are aggregates of channels that provide for direct cytoplasmic connection between cells. Importantly, this connection is thought responsible for cell-to-cell transfer of the cardiac action potential. The GJ channels of ventricular myocytes are composed of connexin43 (Cx43). Interaction of Cx43 with zonula occludens-1 (ZO-1) is localized not only at the GJ plaque, but also to the region surrounding the GJ, the perinexus. Cx43 in the perinexus is not detectable by immunofluorescence, yet localization of Cx43/ZO-1 interaction to this region indicated the presence of Cx43. Therefore, we hypothesized that Cx43 occurs in the perinexus at a lower concentration per unit membrane than in the GJ itself, making it difficult to visualize. To overcome this, the Duolink protein-protein interaction assay was used to detect Cx43. Duolink labeling of cardiomyocytes localized Cx43 to the perinexus. Quantification demonstrated that signal in the perinexus was lower than in the GJ but significantly higher than in nonjunctional regions. Additionally, Duolink of Triton X-100-extracted cultures suggested that perinexal Cx43 is nonjunctional. Importantly, the voltage gated sodium channel Na(v)1.5, which is responsible for initiation of the action potential, was found to interact with perinexal Cx43 but not with ZO-1. This work provides a detailed characterization of the structure of the perinexus at the GJ edge and indicates that one of its potential functions in the heart may be in facilitating conduction of action potential.
Collapse
Affiliation(s)
- J Matthew Rhett
- Department of Regenerative Medicine, Medical University of South Carolina, 173 Ashley Ave, CRI Room 616, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
36
|
Connexin composition in apposed gap junction hemiplaques revealed by matched double-replica freeze-fracture replica immunogold labeling. J Membr Biol 2012; 245:333-44. [PMID: 22760604 PMCID: PMC3401501 DOI: 10.1007/s00232-012-9454-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Despite the combination of light-microscopic immunocytochemistry, histochemical mRNA detection techniques and protein reporter systems, progress in identifying the protein composition of neuronal versus glial gap junctions, determination of the differential localization of their constituent connexin proteins in two apposing membranes and understanding human neurological diseases caused by connexin mutations has been problematic due to ambiguities introduced in the cellular and subcellular assignment of connexins. Misassignments occurred primarily because membranes and their constituent proteins are below the limit of resolution of light microscopic imaging techniques. Currently, only serial thin-section transmission electron microscopy and freeze-fracture replica immunogold labeling have sufficient resolution to assign connexin proteins to either or both sides of gap junction plaques. However, freeze-fracture replica immunogold labeling has been limited because conventional freeze fracturing allows retrieval of only one of the two membrane fracture faces within a gap junction, making it difficult to identify connexin coupling partners in hemiplaques removed by fracturing. We now summarize progress in ascertaining the connexin composition of two coupled hemiplaques using matched double-replicas that are labeled simultaneously for multiple connexins. This approach allows unambiguous identification of connexins and determination of the membrane "sidedness" and the identities of connexin coupling partners in homotypic and heterotypic gap junctions of vertebrate neurons.
Collapse
|
37
|
Curti S, Hoge G, Nagy JI, Pereda AE. Electrical transmission between mammalian neurons is supported by a small fraction of gap junction channels. J Membr Biol 2012; 245:283-90. [PMID: 22729690 DOI: 10.1007/s00232-012-9449-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/01/2012] [Indexed: 12/19/2022]
Abstract
Electrical synapses formed by gap junctions between neurons create networks of electrically coupled neurons in the mammalian brain, where these networks have been found to play important functional roles. In most cases, interneuronal gap junctions occur at remote dendro-dendritic contacts, making difficult accurate characterization of their physiological properties and correlation of these properties with their anatomical and morphological features of the gap junctions. In the mesencephalic trigeminal (MesV) nucleus where neurons are readily accessible for paired electrophysiological recordings in brain stem slices, our recent data indicate that electrical transmission between MesV neurons is mediated by connexin36 (Cx36)-containing gap junctions located at somato-somatic contacts. We here review evidence indicating that electrical transmission between these neurons is supported by a very small fraction of the gap junction channels present at cell-cell contacts. Acquisition of this evidence was enabled by the unprecedented experimental access of electrical synapses between MesV neurons, which allowed estimation of the average number of open channels mediating electrical coupling in relation to the average number of gap junction channels present at these contacts. Our results indicate that only a small proportion of channels (~0.1 %) appear to be conductive. On the basis of similarities with other preparations, we postulate that this phenomenon might constitute a general property of vertebrate electrical synapses, reflecting essential aspects of gap junction function and maintenance.
Collapse
Affiliation(s)
- Sebastian Curti
- Facultad de Medicina, Departamento de Fisiología, Laboratorio de Neurofisiología Celular, Universidad de la República, Montevideo 11800, Uruguay.
| | | | | | | |
Collapse
|
38
|
Lynn BD, Li X, Nagy JI. Under construction: building the macromolecular superstructure and signaling components of an electrical synapse. J Membr Biol 2012; 245:303-17. [PMID: 22722764 PMCID: PMC3506381 DOI: 10.1007/s00232-012-9451-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
A great deal is now known about the protein components of tight junctions and adherens junctions, as well as how these are assembled. Less is known about the molecular framework of gap junctions, but these also have membrane specializations and are subject to regulation of their assembly and turnover. Thus, it is reasonable to consider that these three types of junctions may share macromolecular commonalities. Indeed, the tight junction scaffolding protein zonula occluden-1 (ZO-1) is also present at adherens and gap junctions, including neuronal gap junctions. On the basis of these earlier observations, we more recently found that two additional proteins, AF6 and MUPP1, known to be associated with ZO-1 at tight and adherens junctions, are also components of neuronal gap junctions in rodent brain and directly interact with connexin36 (Cx36) that forms these junctions. Here, we show by immunofluorescence labeling that the cytoskeletal-associated protein cingulin, commonly found at tight junctions, is also localized at neuronal gap junctions throughout the central nervous system. In consideration of known functions related to ZO-1, AF6, MUPP1, and cingulin, our results provide a context in which to examine functional relationships between these proteins at Cx36-containing electrical synapses in brain--specifically, how they may contribute to regulation of transmission at these synapses, and how they may govern gap junction channel assembly and/or disassembly.
Collapse
Affiliation(s)
- B. D. Lynn
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - J. I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
39
|
Hamzei-Sichani F, Davidson KGV, Yasumura T, Janssen WGM, Wearne SL, Hof PR, Traub RD, Gutiérrez R, Ottersen OP, Rash JE. Mixed Electrical-Chemical Synapses in Adult Rat Hippocampus are Primarily Glutamatergic and Coupled by Connexin-36. Front Neuroanat 2012; 6:13. [PMID: 22615687 PMCID: PMC3351785 DOI: 10.3389/fnana.2012.00013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 04/19/2012] [Indexed: 01/08/2023] Open
Abstract
Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for “mixed” (electrical/chemical) synapses on both principal cells and interneurons in adult rat hippocampus. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF) terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr), apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into weakly fixed CA3pyr was detected in MF axons that contacted four injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold labeling revealed diverse sizes and morphologies of connexin-36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328–1140 connexons), three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin-section images of a CA3pyr, but none were found by immunogold labeling, suggesting the rarity of GABAergic mixed synapses. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal neurons.
Collapse
|
40
|
Curti S, Hoge G, Nagy JI, Pereda AE. Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus. J Neurosci 2012; 32:4341-59. [PMID: 22457486 PMCID: PMC3339267 DOI: 10.1523/jneurosci.6216-11.2012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 01/06/2023] Open
Abstract
Electrical synapses are known to form networks of extensively coupled neurons in various regions of the mammalian brain. The mesencephalic trigeminal (MesV) nucleus, formed by the somata of primary afferents originating in jaw-closing muscles, constitutes one of the first examples supporting the presence of electrical synapses in the mammalian CNS; however, the properties, functional organization, and developmental emergence of electrical coupling within this structure remain unknown. By combining electrophysiological, tracer coupling, and immunochemical analysis in brain slices of rat and mouse, we found that coupling is mostly restricted to pairs or small clusters of MesV neurons. Electrical transmission is supported by connexin36 (Cx36)-containing gap junctions at somato-somatic contacts where only a small proportion of channels appear to be open (∼0.1%). In marked contrast with most brain structures, coupling among MesV neurons increases with age, such that it is absent during early development and appears at postnatal day 8. Interestingly, the development of coupling parallels the development of intrinsic membrane properties responsible for repetitive firing in these neurons. We found that, acting together, sodium and potassium conductances enhance the transfer of signals with high-frequency content via electrical synapses, leading to strong spiking synchronization of the coupled neurons. Together, our data indicate that coupling in the MesV nucleus is restricted to mostly pairs of somata between which electrical transmission is supported by a surprisingly small fraction of the channels estimated to be present, and that coupling synergically interacts with specific membrane conductances to promote synchronization of these neurons.
Collapse
Affiliation(s)
- Sebastian Curti
- Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay.
| | | | | | | |
Collapse
|
41
|
Li X, Lynn BD, Nagy JI. The effector and scaffolding proteins AF6 and MUPP1 interact with connexin36 and localize at gap junctions that form electrical synapses in rodent brain. Eur J Neurosci 2012; 35:166-81. [PMID: 22211808 DOI: 10.1111/j.1460-9568.2011.07947.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36) occur in most major structures in the mammalian central nervous system. These synapses link ensembles of neurons and influence their network properties. Little is known about the macromolecular constituents of neuronal gap junctions or how transmission through electrical synapses is regulated at the level of channel conductance or gap junction assembly/disassembly. Such knowledge is a prerequisite to understanding the roles of gap junctions in neuronal circuitry. Gap junctions share similarities with tight and adhesion junctions in that all three reside at close plasma membrane appositions, and therefore may associate with similar structural and regulatory proteins. Previously, we reported that the tight junction-associated protein zonula occludens-1 (ZO-1) interacts with Cx36 and is localized at gap junctions. Here, we demonstrate that two proteins known to be associated with tight and adherens junctions, namely AF6 and MUPP1, are components of neuronal gap junctions in rodent brain. By immunofluorescence, AF6 and MUPP1 were co-localized with Cx36 in many brain areas. Co-immunoprecipitation and pull-down approaches revealed an association of Cx36 with AF6 and MUPP1, which required the C-terminus PDZ domain interaction motif of Cx36 for interaction with the single PDZ domain of AF6 and with the 10th PDZ domain of MUPP1. As AF6 is a target of the cAMP/Epac/Rap1 signalling pathway and MUPP1 is a scaffolding protein that interacts with CaMKII, the present results suggest that AF6 may be a target for cAMP/Epac/Rap1 signalling at electrical synapses, and that MUPP1 may contribute to anchoring CaMKII at these synapses.
Collapse
Affiliation(s)
- X Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, 745 Bannatyne Ave., Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
42
|
Johnson RG, Reynhout JK, TenBroek EM, Quade BJ, Yasumura T, Davidson KGV, Sheridan JD, Rash JE. Gap junction assembly: roles for the formation plaque and regulation by the C-terminus of connexin43. Mol Biol Cell 2011; 23:71-86. [PMID: 22049024 PMCID: PMC3248906 DOI: 10.1091/mbc.e11-02-0141] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gap junction (GJ) “formation plaques” are distinct membrane domains with GJ precursors; they assemble by means of a series of defined steps. The C-terminus of Cx43 is required for normal progression of assembly, normal aggregation of 10-nm particles into small GJs, and negative regulation of assembly involving protein kinase C. Using an established gap junction (GJ) assembly system with experimentally reaggregated cells, we analyzed “formation plaques” (FPs), apparent sites of GJ assembly. Employing freeze-fracture electron microscopy methods combined with filipin labeling of sterols and immunolabeling for connexin43 (Cx43), we demonstrated that FPs constitute distinct membrane “domains” and that their characteristic 10-nm particles contain connexin43, thus representing precursors (i.e., GJ hemichannels) engaged in assembly. Analysis of FPs in new systems—HeLa and N2A cells—resolved questions surrounding several key but poorly understood steps in assembly, including matching of FP membranes in apposed cells, reduction in the separation between FP membranes during assembly, and the process of particle aggregation. Findings also indicated that “docking” of GJ hemichannels occurs within FP domains and contributes to reduction of intermembrane separation between FPs. Other experiments demonstrated that FPs develop following a major C-terminal truncation of Cx43 (M257), although assembly was delayed. Particle aggregation also occurred at lower densities, and densities of particles within developing GJ aggregates failed to achieve full-length levels. With regard to regulation, inhibition of assembly following protein kinase C activation failed to occur in the M257 truncation mutants, as measured by intercellular dye transfer. However, several C-terminal serine mutations failed to disrupt inhibition.
Collapse
Affiliation(s)
- Ross G Johnson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bramley JR, Wiles EM, Sollars PJ, Pickard GE. Carbenoxolone blocks the light-evoked rise in intracellular calcium in isolated melanopsin ganglion cell photoreceptors. PLoS One 2011; 6:e22721. [PMID: 21829491 PMCID: PMC3146487 DOI: 10.1371/journal.pone.0022721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 07/05/2011] [Indexed: 12/03/2022] Open
Abstract
Background Retinal ganglion cells expressing the photopigment melanopsin are intrinsically photosensitive (ipRGCs). These ganglion cell photoreceptors send axons to several central targets involved in a variety of functions. Within the retina ipRGCs provide excitatory drive to dopaminergic amacrine cells via glutamatergic signals and ipRGCs are coupled to wide-field GABAergic amacrine cells via gap junctions. However, the extent to which ipRGCs are coupled to other retinal neurons in the ganglion cell layer via gap junctions is unclear. Carbenoxolone, a widely employed gap junction inhibitor, greatly reduces the number of retinal neurons exhibiting non-rod, non-cone mediated light-evoked Ca2+ signals suggesting extensive intercellular coupling between ipRGCs and non-ipRGCs in the ganglion cell layer. However, carbenoxolone may directly inhibit light-evoked Ca2+ signals in ipRGCs independent of gap junction blockade. Methodology/Principal Findings To test the possibility that carbenoxolone directly inhibits light-evoked Ca2+ responses in ipRGCs, the light-evoked rise in intracellular Ca2+ ([Ca2+]i) was examined using fura-2 imaging in isolated rat ipRGCs maintained in short-term culture in the absence and presence of carbenoxolone. Carbenoxolone at 50 and 100 µM concentrations completely abolished the light-evoked rise in [Ca2+]i in isolated ipRGCs. Recovery from carbenoxolone inhibition was variable. Conclusions/Significance We demonstrate that the light-evoked rise in [Ca2+]i in isolated mammalian ganglion cell photoreceptors is inhibited by carbenoxolone. Since the light-evoked increase in [Ca2+]i in isolated ipRGCs is almost entirely due to Ca2+ entry via L-type voltage-gated calcium channels and carbenoxolone does not inhibit light-evoked action potential firing in ipRGCs in situ, carbenoxolone may block the light-evoked increase in [Ca2+]i in ipRGCs by blocking L-type voltage-gated Ca2+ channels. The ability of carbenoxolone to block evoked Ca2+ responses must be taken into account when interpreting the effects of this pharmacological agent on retinal or other neuronal circuits, particularly if a change in [Ca2+]i is the output being measured.
Collapse
Affiliation(s)
- Jayne R. Bramley
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Erin M. Wiles
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Patricia J. Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Gary E. Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
44
|
Hilgen G, von Maltzahn J, Willecke K, Weiler R, Dedek K. Subcellular distribution of connexin45 in OFF bipolar cells of the mouse retina. J Comp Neurol 2011; 519:433-50. [PMID: 21192077 DOI: 10.1002/cne.22526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the mouse retina, connexin45 (Cx45) participates in the gap junction between ON cone bipolar cells and AII amacrine cells, which constitutes an essential element of the primary rod pathway. Although it has been shown that Cx45 is also expressed in OFF bipolar cells, its subcellular localization and functional role in these cells are unknown. Here, we analyzed the localization of Cx45 on OFF bipolar cells in the mouse retina. For this, we used wild-type mice and a transgenic mouse line that expressed, in addition to native Cx45, a fusion protein consisting of Cx45 and the enhanced green fluorescent protein (EGFP). Cx45-EGFP expression generates an EGFP signal at gap junctions containing Cx45. Combining immunohistochemistry with intracellular injections, we found that Cx45 was present on dendrites and axon terminals of all OFF bipolar cell types. Cx45 was not found at intersections of two terminal processes of the same type, suggesting that Cx45 might not form gap junctions between axon terminals of the same OFF bipolar cell type but rather might connect OFF bipolar cells to amacrine or ganglion cells. In OFF bipolar cell dendrites, Cx45 was found predominantly in the proximal outer plexiform layer (OPL), well below the cone pedicles. Cx45 did not colocalize with Cx36, which is found predominantly in the distal OPL. We conclude that Cx45 is expressed on OFF bipolar cell dendrites, presumably forming gap junctions with cells of the same type, and on OFF bipolar cell axon terminals, presumably forming heterologous gap junctions with other retinal neurons.
Collapse
Affiliation(s)
- Gerrit Hilgen
- Department of Neurobiology, University of Oldenburg, Germany
| | | | | | | | | |
Collapse
|
45
|
Rivera-Rivera NL, Martinez-Rivera N, Torres-Vazquez I, Serrano-Velez JL, Lauder GV, Rosa-Molinar E. A male poecillid's sexually dimorphic body plan, behavior, and nervous system. Integr Comp Biol 2010; 50:1081-90. [PMID: 21082070 DOI: 10.1093/icb/icq147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Here we review the literature of a male poecillid's sexually dimorphic body plan, behavior, and nervous system, including work dating from the mid 1800s to the mid 1990s as well as work in press or in preparation for publication. Rosa-Molinar described the remodeling of the sexually dimorphic anal fin appendicular support, confirmed earlier claims about the development of the male and female secondary sex characteristics in the Western Mosquitofish, Gambusia affinis and provided for the first time direct embryonic evidence suggesting that remodeling of the sexually dimorphic anal fin appendicular support is biphasic. The first process begins in embryos and proceeds similarly in immature males and females; the second process occurs only in males and results in the anterior transposition of the anal fin and its appendicular support to the level of vertebra 11 [Rosa-Molinar E, Hendricks SE, Rodriguez-Sierra JF, Fritzsch B. 1994. Development of the anal fin appendicular support in the western mosquitofish, Gambusia affinis (Baird and Girard, 1854): a reinvestigation and reinterpretation. Acta Anat 151:20-35.] and the formation of a gonopodium used for internal fertilization. Studies using high-speed video cameras confirmed and extended Peden's and others' observations of copulatory behavior. The cameras showed that circumduction is a complex movement combining in a very fast sequence abduction, extension and pronation, S-start-type fast-start (defined as torque-thrust), and adduction movements. Recent work on the nervous system demonstrated dye-coupling between motor neurons and interneurons via gap junctions, suggesting an attractive substrate for the rapid motions involved in poecillid copulatory reflexes.
Collapse
Affiliation(s)
- Nydia L Rivera-Rivera
- Biological Imaging Group, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
| | | | | | | | | | | |
Collapse
|
46
|
Falk MM, Baker SM, Gumpert AM, Segretain D, Buckheit RW. Gap junction turnover is achieved by the internalization of small endocytic double-membrane vesicles. Mol Biol Cell 2009; 20:3342-52. [PMID: 19458184 DOI: 10.1091/mbc.e09-04-0288] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Double-membrane-spanning gap junction (GJ) channels cluster into two-dimensional arrays, termed plaques, to provide direct cell-to-cell communication. GJ plaques often contain circular, channel-free domains ( approximately 0.05-0.5 mum in diameter) identified >30 y ago and termed nonjunctional membrane (NM) domains. We show, by expressing the GJ protein connexin43 (Cx43) tagged with green fluorescent protein, or the novel photoconvertible fluorescent protein Dendra2, that NM domains appear to be remnants generated by the internalization of small GJ channel clusters that bud over time from central plaque areas. Channel clusters internalized within seconds forming endocytic double-membrane GJ vesicles ( approximately 0.18-0.27 mum in diameter) that were degraded by lysosomal pathways. Surprisingly, NM domains were not repopulated by surrounding channels and instead remained mobile, fused with each other, and were expelled at plaque edges. Quantification of internalized, photoconverted Cx43-Dendra2 vesicles indicated a GJ half-life of 2.6 h that falls within the estimated half-life of 1-5 h reported for GJs. Together with previous publications that revealed continuous accrual of newly synthesized channels along plaque edges and simultaneous removal of channels from plaque centers, our data suggest how the known dynamic channel replenishment of functional GJ plaques can be achieved. Our observations may have implications for the process of endocytic vesicle budding in general.
Collapse
Affiliation(s)
- Matthias M Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA.
| | | | | | | | | |
Collapse
|
47
|
Orellana JA, Sáez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MVL, Sáez JC. Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 2009; 11:369-99. [PMID: 18816186 PMCID: PMC2713807 DOI: 10.1089/ars.2008.2130] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/07/2008] [Accepted: 07/10/2008] [Indexed: 01/07/2023]
Abstract
In normal brain, neurons, astrocytes, and oligodendrocytes, the most abundant and active cells express pannexins and connexins, protein subunits of two families forming membrane channels. Most available evidence indicates that in mammals endogenously expressed pannexins form only hemichannels and connexins form both gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activity, hemichannels communicate the intra- and extracellular compartments and serve as a diffusional pathway for ions and small molecules. A subthreshold stimulation by acute pathological threatening conditions (e.g., global ischemia subthreshold for cell death) enhances neuronal Cx36 and glial Cx43 hemichannel activity, favoring ATP release and generation of preconditioning. If the stimulus is sufficiently deleterious, microglia become overactivated and release bioactive molecules that increase the activity of hemichannels and reduce gap junctional communication in astroglial networks, depriving neurons of astrocytic protective functions, and further reducing neuronal viability. Continuous glial activation triggered by low levels of anomalous proteins expressed in several neurodegenerative diseases induce glial hemichannel and gap junction channel disorders similar to those of acute inflammatory responses triggered by ischemia or infectious diseases. These changes are likely to occur in diverse cell types of the CNS and contribute to neurodegeneration during inflammatory process.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li X, Kamasawa N, Ciolofan C, Olson CO, Lu S, Davidson KGV, Yasumura T, Shigemoto R, Rash JE, Nagy JI. Connexin45-containing neuronal gap junctions in rodent retina also contain connexin36 in both apposing hemiplaques, forming bihomotypic gap junctions, with scaffolding contributed by zonula occludens-1. J Neurosci 2008; 28:9769-89. [PMID: 18815262 PMCID: PMC2638127 DOI: 10.1523/jneurosci.2137-08.2008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/17/2008] [Accepted: 08/13/2008] [Indexed: 11/21/2022] Open
Abstract
Mammalian retinas contain abundant neuronal gap junctions, particularly in the inner plexiform layer (IPL), where the two principal neuronal connexin proteins are Cx36 and Cx45. Currently undetermined are coupling relationships between these connexins and whether both are expressed together or separately in a neuronal subtype-specific manner. Although Cx45-expressing neurons strongly couple with Cx36-expressing neurons, possibly via heterotypic gap junctions, Cx45 and Cx36 failed to form functional heterotypic channels in vitro. We now show that Cx36 and Cx45 coexpressed in HeLa cells were colocalized in immunofluorescent puncta between contacting cells, demonstrating targeting/scaffolding competence for both connexins in vitro. However, Cx36 and Cx45 expressed separately did not form immunofluorescent puncta containing both connexins, supporting lack of heterotypic coupling competence. In IPL, 87% of Cx45-immunofluorescent puncta were colocalized with Cx36, supporting either widespread heterotypic coupling or bihomotypic coupling. Ultrastructurally, Cx45 was detected in 9% of IPL gap junction hemiplaques, 90-100% of which also contained Cx36, demonstrating connexin coexpression and cotargeting in virtually all IPL neurons that express Cx45. Moreover, double replicas revealed both connexins in separate domains mirrored on both sides of matched hemiplaques. With previous evidence that Cx36 interacts with PDZ1 domain of zonula occludens-1 (ZO-1), we show that Cx45 interacts with PDZ2 domain of ZO-1, and that Cx36, Cx45, and ZO-1 coimmunoprecipitate, suggesting that ZO-1 provides for coscaffolding of Cx45 with Cx36. These data document that in Cx45-expressing neurons of IPL, Cx45 is almost always accompanied by Cx36, forming "bihomotypic" gap junctions, with Cx45 structurally coupling to Cx45 and Cx36 coupling to Cx36.
Collapse
Affiliation(s)
- Xinbo Li
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | - Naomi Kamasawa
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan, and
- Department of Biomedical Sciences and
| | - Cristina Ciolofan
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | - Carl O. Olson
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | - Shijun Lu
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| | | | | | - Ryuichi Shigemoto
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan, and
| | - John E. Rash
- Department of Biomedical Sciences and
- Program in Molecular, Cellular, and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado 80523
| | - James I. Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R3E 3J7
| |
Collapse
|
49
|
Robenek H, Severs NJ. Recent advances in freeze-fracture electron microscopy: the replica immunolabeling technique. Biol Proced Online 2008; 10:9-19. [PMID: 18385807 PMCID: PMC2275045 DOI: 10.1251/bpo138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/27/2007] [Accepted: 12/12/2007] [Indexed: 11/23/2022] Open
Abstract
Freeze-fracture electron microscopy is a technique for examining the ultrastructure of rapidly frozen biological samples by transmission electron microscopy. Of a range of approaches to freeze-fracture cytochemistry that have been developed and tried, the most successful is the technique termed freeze-fracture replica immunogold labeling (FRIL). In this technique, samples are frozen, fractured and replicated with platinum-carbon as in standard freeze fracture, and then carefully treated with sodium dodecylsulphate to remove all the biological material except a fine layer of molecules attached to the replica itself. Immunogold labeling of these molecules permits their distribution to be seen superimposed upon high resolution planar views of membrane structure. Examples of how this technique has contributed to our understanding of lipid droplet biogenesis and function are discussed.
Collapse
Affiliation(s)
- Horst Robenek
- University of Münster, Domagkstr. 3D-48149 Münster, Germany
| | | |
Collapse
|
50
|
Abstract
The term freeze-fracture cytochemistry embraces a series of techniques which share the goal of chemical identification of the structural components viewed in freeze-fracture replicas. As one of the major features of freeze fracture is its ability to provide planar views of membranes, a major emphasis in freeze-fracture cytochemistry is to identify integral membrane proteins, study their spatial organization in the membrane plane, and examine their role in dynamic cellular processes. Effective techniques in freeze-fracture cytochemistry, of wide application in cell biology, are now available. These include fracture-label, label fracture, and the freeze-fracture replica immunolabeling technique (FRIL). In fracture-label, samples are frozen and fractured, thawed for labeling, and finally processed for viewing either by critical-point drying and platinum-carbon replication or by thin-section electron microscopy. Label-fracture involves immunogold labeling a cell suspension, processing as for standard freeze-fracture replication, and then examining the replica without removal of the cellular components. Of greatest versatility, however, is the FRIL technique, in which samples are frozen, fractured, and replicated with platinum-carbon as in standard freeze fracture, and then carefully treated with sodium dodecylsulphate (SDS) to remove all the biological material except a fine layer of molecules attached to the replica itself. Immunogold labeling of these molecules permits the distribution of identified components to be viewed superimposed upon high resolution planar views of replicated membrane structure, for both the plasma membrane and intracellular membranes in cells and tissues. Examples of how these techniques have contributed to our understanding of cardiovascular cell function in health and disease are discussed.
Collapse
Affiliation(s)
- Nicholas J Severs
- Imperial College London, National Heart and Lung Division, London, United Kingdom
| | | |
Collapse
|