1
|
Martin JR, Cleary D, Abraham ME, Mendoza M, Cabrera B, Jamieson C, Marsala M, Ciacci JD. Long-term clinical and safety outcomes from a single-site phase 1 study of neural stem cell transplantation for chronic thoracic spinal cord injury. Cell Rep Med 2024; 5:101841. [PMID: 39626671 PMCID: PMC11722094 DOI: 10.1016/j.xcrm.2024.101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/07/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
We report the long-term results for a phase 1 study of neural stem cell transplantation for chronic spinal cord injury. The trial was registered on ClinicalTrials.gov as NCT01772810. The primary outcome of the trial was to test the feasibility and safety of human spinal cord-derived neural stem cell (NSI-566) transplantation for the treatment of chronic spinal cord injury in four subjects with thoracic two to thoracic twelve spinal cord injury. Here, we report that all four subjects tolerated the stem cell implantation procedure well, and two subjects had durable electromyography-quantifiable evidence of neurological improvement as well as increased neurological motor and sensory scores at five years post-transplantation.
Collapse
Affiliation(s)
- Joel R Martin
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Daniel Cleary
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mickey E Abraham
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Michelle Mendoza
- Department of Medicine, Division of Regenerative Medicine and CIRM Alpha Stem Cell Clinic, University of California, San Diego, La Jolla, CA 92037, USA
| | - Betty Cabrera
- Department of Medicine, Division of Regenerative Medicine and CIRM Alpha Stem Cell Clinic, University of California, San Diego, La Jolla, CA 92037, USA
| | - Catriona Jamieson
- Department of Medicine, Division of Regenerative Medicine and CIRM Alpha Stem Cell Clinic, University of California, San Diego, La Jolla, CA 92037, USA
| | - Martin Marsala
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Joseph D Ciacci
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Kim WK, Son YS, Lim JH, Kim WH, Kang BJ. Neural stem/progenitor cells from adult canine cervical spinal cord have the potential to differentiate into neural lineage cells. BMC Vet Res 2023; 19:193. [PMID: 37803301 PMCID: PMC10557334 DOI: 10.1186/s12917-023-03757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND • Neural stem/progenitor cells (NSPCs) are multipotent self-renewing cells that can be isolated from the brain or spinal cord. As they need to be isolated from neural tissues, it is difficult to study human NSPCs. To facilitate NSPC research, we attempted to isolate NSPCs from dogs, as dogs share the environment and having many similar diseases with humans. We collected and established primary cultures of ependymal and subependymal cells from the central canal of the cervical spinal cord of adult dogs. To isolate pure NSPCs, we employed the monolayer culture and selective medium culture methods. We further tested the ability of the NSPCs to form neurospheres (using the suspension culture method) and evaluated their differentiation potential. RESULTS • The cells had the ability to grow as cultures for up to 10 passages; the growth curves of the cells at the 3rd, 6th, and 9th passages showed similar patterns. The NSPCs were able to grow as neurospheres as well as monolayers, and immunostaining at the 3rd, 6th, and 9th passages showed that these cells expressed NSPC markers such as nestin and SOX2 (immunofluorescent staining). Monolayer cultures of NSPCs at the 3rd, 6th, and 9th passages were cultured for approximately 14 days using a differentiation medium and were observed to successfully differentiate into neural lineage and glial cells (astrocytes, neurons, and oligodendrocytes) at all the three passages tested. CONCLUSION • It is feasible to isolate and propagate (up to at least 10 passages) canine cervical spinal cord-derived NSPCs with the capacity to differentiate into neuronal and glial cells. To the best of our knowledge this is the first study to successfully isolate, propagate, and differentiate canine NSPCs derived from cervical spinal cord in the adult canine, and we believe that these cells will contribute to the field of spinal cord regeneration in veterinary and comparative medicine.
Collapse
Affiliation(s)
- Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Korea
| | - Yeon Sung Son
- Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Ji-Hey Lim
- Department of Neurology/Neurosurgery, College of Veterinary Medicine, University of Missouri, Columbia, 65211, USA
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
3
|
Lear BP, Moore DL. Moving CNS axon growth and regeneration research into human model systems. Front Neurosci 2023; 17:1198041. [PMID: 37425013 PMCID: PMC10324669 DOI: 10.3389/fnins.2023.1198041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Axon regeneration is limited in the adult mammalian central nervous system (CNS) due to both intrinsic and extrinsic factors. Rodent studies have shown that developmental age can drive differences in intrinsic axon growth ability, such that embryonic rodent CNS neurons extend long axons while postnatal and adult CNS neurons do not. In recent decades, scientists have identified several intrinsic developmental regulators in rodents that modulate growth. However, whether this developmentally programmed decline in CNS axon growth is conserved in humans is not yet known. Until recently, there have been limited human neuronal model systems, and even fewer age-specific human models. Human in vitro models range from pluripotent stem cell-derived neurons to directly reprogrammed (transdifferentiated) neurons derived from human somatic cells. In this review, we discuss the advantages and disadvantages of each system, and how studying axon growth in human neurons can provide species-specific knowledge in the field of CNS axon regeneration with the goal of bridging basic science studies to clinical trials. Additionally, with the increased availability and quality of 'omics datasets of human cortical tissue across development and lifespan, scientists can mine these datasets for developmentally regulated pathways and genes. As there has been little research performed in human neurons to study modulators of axon growth, here we provide a summary of approaches to begin to shift the field of CNS axon growth and regeneration into human model systems to uncover novel drivers of axon growth.
Collapse
Affiliation(s)
| | - Darcie L. Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Bhagwani A, Chopra M, Kumar H. Spinal Cord Injury Provoked Neuropathic Pain and Spasticity, and Their GABAergic Connection. Neurospine 2022; 19:646-668. [PMID: 36203291 PMCID: PMC9537837 DOI: 10.14245/ns.2244368.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/10/2022] [Indexed: 12/14/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is the devastating neurological damage to the spinal cord that becomes more complicated in the secondary phase. The secondary injury comes with inevitable long-lasting complications, such as chronic neuropathic pain (CNP) and spasticity which interfere with day to day activities of SCI patients. Mechanisms underlying CNP post-SCI are complex and remain refractory to current medical treatment. Due to the damage, extensive inhibitory, excitatory tone dysregulation causes maladaptive synaptic transmissions, further altering the nociceptive and nonnociceptive pathways. Excitotoxicity mediated GABAergic cell loss, downregulation of glutamate acid decarboxylase enzyme, upregulation of gamma-aminobutyric acid (GABA) transporters, overactivation of glutamate receptors are some of the key evidence for hypoactive inhibitory tone contributing to CNP and spasticity post-SCI. Restoring the inhibitory GABAergic tone and preventing damage-induced excitotoxicity by employing various strategies provide neuroprotective and analgesic effects. The present article will discuss CNP and spasticity post-SCI, understanding their pathophysiological mechanisms, especially GABA-glutamate-related mechanisms, therapeutic interventions targeting them, and progress regarding how regulating the excitatory-inhibitory tone may lead to more targeted treatments for these distressing complications. Taking background knowledge of GABAergic analgesia and recent advancements, we aim to highlight how far we have reached in promoting inhibitory GABAergic tone for SCI-CNP and spasticity.
Collapse
Affiliation(s)
- Ankita Bhagwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Manjeet Chopra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India,Corresponding Author Hemant Kumar Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Opposite Air force Station, Palaj, Gandhinagar-382355, Gujarat, India ,
| |
Collapse
|
5
|
Sucha R, Kubickova M, Cervenka J, Hruska-Plochan M, Bohaciakova D, Vodickova Kepkova K, Novakova T, Budkova K, Susor A, Marsala M, Motlik J, Kovarova H, Vodicka P. Targeted mass spectrometry for monitoring of neural differentiation. Biol Open 2021; 10:271174. [PMID: 34357391 PMCID: PMC8353267 DOI: 10.1242/bio.058727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Human multipotent neural stem cells could effectively be used for the treatment of a variety of neurological disorders. However, a defining signature of neural stem cell lines that would be expandable, non-tumorigenic, and differentiate into desirable neuronal/glial phenotype after in vivo grafting is not yet defined. Employing a mass spectrometry approach, based on selected reaction monitoring, we tested a panel of well-described culture conditions, and measured levels of protein markers routinely used to probe neural differentiation, i.e. POU5F1 (OCT4), SOX2, NES, DCX, TUBB3, MAP2, S100B, GFAP, GALC, and OLIG1. Our multiplexed assay enabled us to simultaneously identify the presence of pluripotent, multipotent, and lineage-committed neural cells, thus representing a powerful tool to optimize novel and highly specific propagation and differentiation protocols. The multiplexing capacity of this method permits the addition of other newly identified cell type-specific markers to further increase the specificity and quantitative accuracy in detecting targeted cell populations. Such an expandable assay may gain the advantage over traditional antibody-based assays, and represents a method of choice for quality control of neural stem cell lines intended for clinical use.
Collapse
Affiliation(s)
- Rita Sucha
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Martina Kubickova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Jakub Cervenka
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Marian Hruska-Plochan
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno CZ-62500, Czech Republic
| | - Katerina Vodickova Kepkova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Tereza Novakova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Katerina Budkova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, Prague CZ-12843, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Martin Marsala
- Neuroregeneration Laboratory, Sanford Consortium for Regenerative Medicine, Department of Anesthesiology, University of California, San Diego, 2880 Torrey Pines Scenic Dr., La Jolla, CA 92037, USA
| | - Jan Motlik
- Laboratory of Cell Regeneration and Plasticity and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Hana Kovarova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| | - Petr Vodicka
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics of The Czech Academy of Sciences, Rumburska 89, Libechov CZ-27721, Czech Republic
| |
Collapse
|
6
|
Zhang G, Cunningham M, Zhang H, Dai Y, Zhang P, Ge G, Wang B, Bai M, Hazel T, Johe K, Xu R. First Human Trial of Stem Cell Transplantation in Complex Arrays for Stroke Patients Using the Intracerebral Microinjection Instrument. Oper Neurosurg (Hagerstown) 2021; 18:503-510. [PMID: 31414136 DOI: 10.1093/ons/opz204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In preclinical studies, the Intracerebral Microinjection Instrument (IMI) has demonstrated the ability to deliver therapeutics within the brain in 3-dimensional arrays from a single overlying penetration while incurring minimal localized trauma. OBJECTIVE To evaluate the safety and performance of the IMI in its first use in humans to deliver stem cells in complex configurations within brain regions affected by ischemic injury. METHODS As part of a phase 1 study, 3 chronically hemiparetic motor stroke patients received intracerebral grafts of the therapeutic stem cell line, NSI-566, using the IMI and its supporting surgical planning software. The patients were 37 to 54 yr old, had ischemic strokes more than 1 yr prior to transplantation, and received Fugl-Meyer motor scale scores of 17-48 at screening. During a single surgical procedure, patients received several neural grafts (42 ± 3) within the peri-infarct region targeted strategically to facilitate neural repair. RESULTS The IMI enabled multiple cellular deposits to be safely placed peripheral to stroke lesions. The procedure was well tolerated, recovery was uneventful, and there occurred no subsequent complications. The IMI performed reliably throughout the procedures without evident targeting errors. One year after transplantation, all 3 subjects displayed significant clinical improvement, and imaging analysis demonstrated occupation of infarct cavities with new tissue without tumor formation. CONCLUSION IMI technology permits unprecedented numbers of injections to be tactically placed in 3-dimensional arrays safely and reliably in human subjects.This advanced methodology can optimize the benefits of novel therapeutics by enabling versatile 3-dimensional intracerebral targeting.
Collapse
Affiliation(s)
- GuangZhu Zhang
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | - Miles Cunningham
- Laboratory for Neural Reconstruction, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - HongTian Zhang
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | - YiWu Dai
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | - Ping Zhang
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | - GuangZhi Ge
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | - BeiBei Wang
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | - MiaoChun Bai
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, China
| | | | - Karl Johe
- Neuralstem Inc., Germantown, Maryland
| | - RuXiang Xu
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, China
| |
Collapse
|
7
|
Gong C, Zheng X, Guo F, Wang Y, Zhang S, Chen J, Sun X, Shah SZA, Zheng Y, Li X, Yin Y, Li Q, Huang X, Guo T, Han X, Zhang SC, Wang W, Chen H. Human spinal GABA neurons alleviate spasticity and improve locomotion in rats with spinal cord injury. Cell Rep 2021; 34:108889. [PMID: 33761348 DOI: 10.1016/j.celrep.2021.108889] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 01/10/2023] Open
Abstract
Spinal cord injury (SCI) often results in spasticity. There is currently no effective therapy for spasticity. Here, we describe a method to efficiently differentiate human pluripotent stem cells from spinal GABA neurons. After transplantation into the injured rat spinal cord, the DREADD (designer receptors exclusively activated by designer drug)-expressing spinal progenitors differentiate into GABA neurons, mitigating spasticity-like response of the rat hindlimbs and locomotion deficits in 3 months. Administering clozapine-N-oxide, which activates the grafted GABA neurons, further alleviates spasticity-like response, suggesting an integration of grafted GABA neurons into the local neural circuit. These results highlight the therapeutic potential of the spinal GABA neurons for SCI.
Collapse
Affiliation(s)
- ChenZi Gong
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaolong Zheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - FangLiang Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - YaNan Wang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Song Zhang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - XueJiao Sun
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sayed Zulfiqar Ali Shah
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - YiFeng Zheng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Li
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yatao Yin
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - XiaoLin Huang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tiecheng Guo
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaohua Han
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Su-Chun Zhang
- Waisman Center, Department of Neuroscience and Department of Neurology, University of Wisconsin, Madison, WI, USA; Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
8
|
Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci 2020; 21:366-383. [PMID: 32518349 PMCID: PMC8384139 DOI: 10.1038/s41583-020-0314-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Spinal cord injury remains a scientific and therapeutic challenge with great cost to individuals and society. The goal of research in this field is to find a means of restoring lost function. Recently we have seen considerable progress in understanding the injury process and the capacity of CNS neurons to regenerate, as well as innovations in stem cell biology. This presents an opportunity to develop effective transplantation strategies to provide new neural cells to promote the formation of new neuronal networks and functional connectivity. Past and ongoing clinical studies have demonstrated the safety of cell therapy, and preclinical research has used models of spinal cord injury to better elucidate the underlying mechanisms through which donor cells interact with the host and thus increase long-term efficacy. While a variety of cell therapies have been explored, we focus here on the use of neural progenitor cells obtained or derived from different sources to promote connectivity in sensory, motor and autonomic systems.
Collapse
Affiliation(s)
- Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
9
|
A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury. Cell Stem Cell 2019; 22:941-950.e6. [PMID: 29859175 DOI: 10.1016/j.stem.2018.05.014] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022]
Abstract
We tested the feasibility and safety of human-spinal-cord-derived neural stem cell (NSI-566) transplantation for the treatment of chronic spinal cord injury (SCI). In this clinical trial, four subjects with T2-T12 SCI received treatment consisting of removal of spinal instrumentation, laminectomy, and durotomy, followed by six midline bilateral stereotactic injections of NSI-566 cells. All subjects tolerated the procedure well and there have been no serious adverse events to date (18-27 months post-grafting). In two subjects, one to two levels of neurological improvement were detected using ISNCSCI motor and sensory scores. Our results support the safety of NSI-566 transplantation into the SCI site and early signs of potential efficacy in three of the subjects warrant further exploration of NSI-566 cells in dose escalation studies. Despite these encouraging secondary data, we emphasize that this safety trial lacks statistical power or a control group needed to evaluate functional changes resulting from cell grafting.
Collapse
|
10
|
Atkinson SP. Previews. Stem Cells Transl Med 2019. [PMCID: PMC6766597 DOI: 10.1002/sctm.19-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
11
|
Zhang G, Li Y, Reuss JL, Liu N, Wu C, Li J, Xu S, Wang F, Hazel TG, Cunningham M, Zhang H, Dai Y, Hong P, Zhang P, He J, Feng H, Lu X, Ulmer JL, Johe KK, Xu R. Stable Intracerebral Transplantation of Neural Stem Cells for the Treatment of Paralysis Due to Ischemic Stroke. Stem Cells Transl Med 2019; 8:999-1007. [PMID: 31241246 PMCID: PMC6766600 DOI: 10.1002/sctm.18-0220] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
NSI‐566 is a stable, primary adherent neural stem cell line derived from a single human fetal spinal cord and expanded epigenetically with no genetic modification. This cell line is being tested in clinical trials in the U.S. for treatment of amyotrophic lateral sclerosis and spinal cord injury. In a single‐site, phase I study, we evaluated the feasibility and safety of NSI‐566 transplantation for the treatment of hemiparesis due to chronic motor stroke and determined the maximum tolerated dose for future trials. Three cohorts (n = 3 per cohort) were transplanted with one‐time intracerebral injections of 1.2 × 107, 2.4 × 107, or 7.2 × 107 cells. Immunosuppression therapy with tacrolimus was maintained for 28 days. All subjects had sustained chronic motor strokes, verified by magnetic resonance imaging (MRI), initiated between 5 and 24 months prior to surgery with modified Rankin Scores [MRSs] of 2, 3, or 4 and Fugl‐Meyer Motor Scores of 55 or less. At the 12‐month visit, the mean Fugl‐Meyer Motor Score (FMMS, total score of 100) for the nine participants showed 16 points of improvement (p = .0078), the mean MRS showed 0.8 points of improvement (p = .031), and the mean National Institutes of Health Stroke Scale showed 3.1 points of improvement (p = .020). For six participants who were followed up for 24 months, these mean changes remained stable. The treatment was well tolerated at all doses. Longitudinal MRI studies showed evidence indicating cavity‐filling by new neural tissue formation in all nine patients. Although this was a small, one‐arm study of feasibility, the results are encouraging to warrant further studies. stem cells translational medicine2019;8:999–1007
Collapse
Affiliation(s)
- Guangzhu Zhang
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Ying Li
- Neurology Department, Army General Hospital of PLA, Beijing, People's Republic of China
| | - James L Reuss
- Prism Clinical Imaging, Inc., Milwaukee, Wisconsin, USA
| | - Nan Liu
- Neurology Department, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Cuiying Wu
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Jingpo Li
- Suzhou Neuralstem Biopharmaceutical Co., Ltd., Suzhou, People's Republic of China
| | - Shuangshuang Xu
- Suzhou Neuralstem Biopharmaceutical Co., Ltd., Suzhou, People's Republic of China
| | - Feng Wang
- Suzhou Neuralstem Biopharmaceutical Co., Ltd., Suzhou, People's Republic of China
| | | | - Miles Cunningham
- Laboratory for Neural Reconstruction, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Hongtian Zhang
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Yiwu Dai
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Peng Hong
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Ping Zhang
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Jianghong He
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Huiru Feng
- Department of Nuclear Medicine, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Xiangdong Lu
- Department of Nuclear Medicine, Army General Hospital of PLA, Beijing, People's Republic of China
| | - John L Ulmer
- Department of Neuroradiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Ruxiang Xu
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| |
Collapse
|
12
|
Gonzalez M, Guo X, Lin M, Stancescu M, Molnar P, Spradling S, Hickman JJ. Polarity Induced in Human Stem Cell Derived Motoneurons on Patterned Self-Assembled Monolayers. ACS Chem Neurosci 2019; 10:2756-2764. [PMID: 31063682 DOI: 10.1021/acschemneuro.8b00682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The control of polarized human neurite/axon development at the single neuron level is critical in geographically directing signal propagation in engineered neural networks, for both in vitro and in vivo applications. While there is an increasing need to exert control over axonal growth for the successful development and establishment of integrative and functional in vitro systems, controlled, polarized distribution of either human-derived neurons or motoneurons in vitro has yet to be reported. In this study, we established the polarized distribution of stem cell derived human motoneurons, using a patterned surface, and maintained the cells in a serum-free system. A surface pattern with defined polarity was developed using self-assembled monolayers (SAMs). A cell permissive SAM, DETA (trimethoxysilyl propyldiethylenetri-amine), combined with photolithography and a nonpermissive fluorinated silane, 13F (tridecafluoro-1,1,2,2-tetrahydroctyl-1-dimethylchloro-silane), generated a surface where neurons only adhered to the designed attachment sites and did so with preferred orientation. In addition, 75% of the cells attached to the patterns were motoneurons compared to their percentage in the standard unpatterned surface which was used as a control condition (20%), demonstrating the preference of these human motoneurons in adhering to the patterns. The ability to dictate the distribution and polarity of human motoneurons will be essential to the engineering of human-based functional in vitro systems in which the control of signal propagation is necessary but more importantly for cell implantation studies. Such systems will greatly benefit the study of motor function as well as aid the development of high-throughput systems for drug screening and test beds for use in preclinical studies related to conditions such as spinal cord injury, ALS, and muscular dystrophy.
Collapse
Affiliation(s)
- Mercedes Gonzalez
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Xiufang Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Min Lin
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Maria Stancescu
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
- Department of Chemistry, University of Central Florida, Physical Sciences Building (PS) Room 255, 4000 Central Florida Blvd., Orlando, Florida 32816-2366, United States
| | - Peter Molnar
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Severo Spradling
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - James J. Hickman
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
- Department of Chemistry, University of Central Florida, Physical Sciences Building (PS) Room 255, 4000 Central Florida Blvd., Orlando, Florida 32816-2366, United States
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| |
Collapse
|
13
|
Bohaciakova D, Hruska-Plochan M, Tsunemoto R, Gifford WD, Driscoll SP, Glenn TD, Wu S, Marsala S, Navarro M, Tadokoro T, Juhas S, Juhasova J, Platoshyn O, Piper D, Sheckler V, Ditsworth D, Pfaff SL, Marsala M. A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors. Stem Cell Res Ther 2019; 10:83. [PMID: 30867054 PMCID: PMC6417180 DOI: 10.1186/s13287-019-1163-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/13/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. Methods Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. Results In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2–6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. Conclusions These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury. Electronic supplementary material The online version of this article (10.1186/s13287-019-1163-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dasa Bohaciakova
- Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Kamenice 3, 62500, Brno, Czech Republic
| | - Marian Hruska-Plochan
- Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Rachel Tsunemoto
- Gene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA.,Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wesley D Gifford
- Gene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Shawn P Driscoll
- Gene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Thomas D Glenn
- Gene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Stephanie Wu
- Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Silvia Marsala
- Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Michael Navarro
- Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Takahiro Tadokoro
- Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, v.v.i., AS CR, Liběchov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, v.v.i., AS CR, Liběchov, Czech Republic
| | - Oleksandr Platoshyn
- Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - David Piper
- Primary and Stem Cell Systems, Life Technologies (Thermo Fisher Scientific), 501 Charmany Drive, Madison, WI, 53719, USA
| | - Vickie Sheckler
- Sanford Stem Cell Clinical Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dara Ditsworth
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Samuel L Pfaff
- Gene Expression Laboratory, Howard Hughes Medical Institute and Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| | - Martin Marsala
- Department of Anesthesiology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA. .,Sanford Consortium for Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
14
|
Chen KS, McGinley LM, Kashlan ON, Hayes JM, Bruno ES, Chang JS, Mendelson FE, Tabbey MA, Johe K, Sakowski SA, Feldman EL. Targeted intraspinal injections to assess therapies in rodent models of neurological disorders. Nat Protoc 2019; 14:331-349. [PMID: 30610242 DOI: 10.1038/s41596-018-0095-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite decades of research, pharmacological therapies for spinal cord motor pathologies are limited. Alternatives using macromolecular, viral, or cell-based therapies show early promise. However, introducing these substances into the spinal cord, past the blood-brain barrier, without causing injury is challenging. We describe a technique for intraspinal injection targeting the lumbar ventral horn in rodents. This technique preserves motor performance and has a proven track record of translation into phase 1 and 2 clinical trials in amyotrophic lateral sclerosis (ALS) patients. The procedure, in brief, involves exposure of the thoracolumbar spine and dissection of paraspinous muscles over the target vertebrae. Following laminectomy, the spine is affixed to a stereotactic frame, permitting precise and reproducible injection throughout the lumbar spine. We have used this protocol to inject various stem cell types, primarily human spinal stem cells (HSSCs); however, the injection is adaptable to any candidate therapeutic cell, virus, or macromolecule product. In addition to a detailed procedure, we provide stereotactic coordinates that assist in targeting of the lumbar spine and instructional videos. The protocol takes ~2 h per animal.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Lisa M McGinley
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Osama N Kashlan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Josh S Chang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Maegan A Tabbey
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Brock JH, Graham L, Staufenberg E, Im S, Tuszynski MH. Rodent Neural Progenitor Cells Support Functional Recovery after Cervical Spinal Cord Contusion. J Neurotrauma 2018; 35:1069-1078. [PMID: 29279015 DOI: 10.1089/neu.2017.5244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previously, we and others have shown that rodent neural progenitor cells (NPCs) can support functional recovery after cervical and thoracic transection injuries. To extend these observations to a more clinically relevant model of spinal cord injury, we performed unilateral midcervical contusion injuries in Fischer 344 rats. Two-weeks later, E14-derived syngeneic spinal cord-derived multi-potent NPCs were implanted into the lesion cavity. Control animals received either no grafts or fibroblast grafts. The NPCs differentiated into all three neural lineages (neurons, astrocytes, oligodendrocytes) and robustly extended axons into the host spinal cord caudal and rostral to the lesion. Graft-derived axons grew into host gray matter and expressed synaptic proteins in juxtaposition with host neurons. Animals that received NPC grafts exhibited significant recovery of forelimb motor function compared with the two control groups (analysis of variance p < 0.05). Thus, NPC grafts improve forelimb motor outcomes after clinically relevant cervical contusion injury. These benefits are observed when grafts are placed two weeks after injury, a time point that is more clinically practical than acute interventions, allowing time for patients to stabilize medically, simplifying enrollment in clinical trials, and enhancing predictability of spontaneous improvement in control groups.
Collapse
Affiliation(s)
- John Hoffman Brock
- 1 VA San Diego Healthcare System , San Diego, California.,2 University of California , San Diego, La Jolla, California
| | - Lori Graham
- 2 University of California , San Diego, La Jolla, California
| | | | - Sarah Im
- 2 University of California , San Diego, La Jolla, California
| | - Mark Henry Tuszynski
- 1 VA San Diego Healthcare System , San Diego, California.,2 University of California , San Diego, La Jolla, California
| |
Collapse
|
16
|
Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya K, Weber JL, Liang JJ, Moseanko R, Hawbecker S, Huie JR, Havton LA, Nout-Lomas YS, Ferguson AR, Beattie MS, Bresnahan JC, Tuszynski MH. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med 2018; 24:484-490. [PMID: 29480894 DOI: 10.1038/nm.4502] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 01/26/2018] [Indexed: 12/14/2022]
Abstract
We grafted human spinal cord-derived neural progenitor cells (NPCs) into sites of cervical spinal cord injury in rhesus monkeys (Macaca mulatta). Under three-drug immunosuppression, grafts survived at least 9 months postinjury and expressed both neuronal and glial markers. Monkey axons regenerated into grafts and formed synapses. Hundreds of thousands of human axons extended out from grafts through monkey white matter and synapsed in distal gray matter. Grafts gradually matured over 9 months and improved forelimb function beginning several months after grafting. These findings in a 'preclinical trial' support translation of NPC graft therapy to humans with the objective of reconstituting both a neuronal and glial milieu in the site of spinal cord injury.
Collapse
Affiliation(s)
- Ephron S Rosenzweig
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - John H Brock
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Veterans Administration Medical Center, La Jolla, California, USA
| | - Paul Lu
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Veterans Administration Medical Center, La Jolla, California, USA
| | - Hiromi Kumamaru
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Ernesto A Salegio
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Ken Kadoya
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Department of Orthopaedic Surgery, Hokkaido University, Sapporo, Japan
| | - Janet L Weber
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Justine J Liang
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Rod Moseanko
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Stephanie Hawbecker
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - J Russell Huie
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
| | - Leif A Havton
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Yvette S Nout-Lomas
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Adam R Ferguson
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA.,Veterans Administration Medical Center, San Francisco, California, USA
| | - Michael S Beattie
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
| | - Jacqueline C Bresnahan
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.,Veterans Administration Medical Center, La Jolla, California, USA
| |
Collapse
|
17
|
Abstract
The spinal cord consists of multiple neuronal cell types that are critical to motor control and arise from distinct progenitor domains in the developing neural tube. Excitatory V2a interneurons in particular are an integral component of central pattern generators that control respiration and locomotion; however, the lack of a robust source of human V2a interneurons limits the ability to molecularly profile these cells and examine their therapeutic potential to treat spinal cord injury (SCI). Here, we report the directed differentiation of CHX10+ V2a interneurons from human pluripotent stem cells (hPSCs). Signaling pathways (retinoic acid, sonic hedgehog, and Notch) that pattern the neural tube were sequentially perturbed to identify an optimized combination of small molecules that yielded ∼25% CHX10+ cells in four hPSC lines. Differentiated cultures expressed much higher levels of V2a phenotypic markers (CHX10 and SOX14) than other neural lineage markers. Over time, CHX10+ cells expressed neuronal markers [neurofilament, NeuN, and vesicular glutamate transporter 2 (VGlut2)], and cultures exhibited increased action potential frequency. Single-cell RNAseq analysis confirmed CHX10+ cells within the differentiated population, which consisted primarily of neurons with some glial and neural progenitor cells. At 2 wk after transplantation into the spinal cord of mice, hPSC-derived V2a cultures survived at the site of injection, coexpressed NeuN and VGlut2, extended neurites >5 mm, and formed putative synapses with host neurons. These results provide a description of V2a interneurons differentiated from hPSCs that may be used to model central nervous system development and serve as a potential cell therapy for SCI.
Collapse
|
18
|
Perussi Biscola N, Politti Cartarozzi L, Ferreira Junior RS, Barraviera B, Leite Rodrigues de Oliveira A. Long-Standing Motor and Sensory Recovery following Acute Fibrin Sealant Based Neonatal Sciatic Nerve Repair. Neural Plast 2016; 2016:9028126. [PMID: 27446617 PMCID: PMC4942656 DOI: 10.1155/2016/9028126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 11/17/2022] Open
Abstract
Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA) without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS) at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons.
Collapse
Affiliation(s)
- Natalia Perussi Biscola
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), 18610-307 Botucatu, SP, Brazil
| | - Luciana Politti Cartarozzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Rui Seabra Ferreira Junior
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), 18610-307 Botucatu, SP, Brazil
| | - Benedito Barraviera
- Department of Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP), 18618-000 Botucatu, SP, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), 18610-307 Botucatu, SP, Brazil
| | | |
Collapse
|
19
|
Devaux S, Cizkova D, Quanico J, Franck J, Nataf S, Pays L, Hauberg-Lotte L, Maass P, Kobarg JH, Kobeissy F, Mériaux C, Wisztorski M, Slovinska L, Blasko J, Cigankova V, Fournier I, Salzet M. Proteomic Analysis of the Spatio-temporal Based Molecular Kinetics of Acute Spinal Cord Injury Identifies a Time- and Segment-specific Window for Effective Tissue Repair. Mol Cell Proteomics 2016; 15:2641-70. [PMID: 27250205 DOI: 10.1074/mcp.m115.057794] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) represents a major debilitating health issue with a direct socioeconomic burden on the public and private sectors worldwide. Although several studies have been conducted to identify the molecular progression of injury sequel due from the lesion site, still the exact underlying mechanisms and pathways of injury development have not been fully elucidated. In this work, based on OMICs, 3D matrix-assisted laser desorption ionization (MALDI) imaging, cytokines arrays, confocal imaging we established for the first time that molecular and cellular processes occurring after SCI are altered between the lesion proximity, i.e. rostral and caudal segments nearby the lesion (R1-C1) whereas segments distant from R1-C1, i.e. R2-C2 and R3-C3 levels coexpressed factors implicated in neurogenesis. Delay in T regulators recruitment between R1 and C1 favor discrepancies between the two segments. This is also reinforced by presence of neurites outgrowth inhibitors in C1, absent in R1. Moreover, the presence of immunoglobulins (IgGs) in neurons at the lesion site at 3 days, validated by mass spectrometry, may present additional factor that contributes to limited regeneration. Treatment in vivo with anti-CD20 one hour after SCI did not improve locomotor function and decrease IgG expression. These results open the door of a novel view of the SCI treatment by considering the C1 as the therapeutic target.
Collapse
Affiliation(s)
- Stephanie Devaux
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France; §Institute of Neurobiology, Slovak Academy of Sciences, Center of Excellence for Brain Research, Soltesovej 4-6 Kosice, Slovakia; §§Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France; §Institute of Neurobiology, Slovak Academy of Sciences, Center of Excellence for Brain Research, Soltesovej 4-6 Kosice, Slovakia; §§Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Jusal Quanico
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Julien Franck
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Serge Nataf
- ¶Inserm U-1060, CarMeN Laboratory, Banque de Tissus et de Cellules des Hospices Civils de Lyon, Université Lyon-1, France
| | - Laurent Pays
- ¶Inserm U-1060, CarMeN Laboratory, Banque de Tissus et de Cellules des Hospices Civils de Lyon, Université Lyon-1, France
| | - Lena Hauberg-Lotte
- ‖Center for industrial mathematics, University of Bremen, Bibliothek straβe 1, MZH, Room 2060, 28359 Bremen, Germany
| | - Peter Maass
- ‖Center for industrial mathematics, University of Bremen, Bibliothek straβe 1, MZH, Room 2060, 28359 Bremen, Germany
| | - Jan H Kobarg
- **Steinbeis Innovation Center SCiLS Research, Fahrenheitstr. 1, 28359 Bremen, Germany
| | - Firas Kobeissy
- ‡‡Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut
| | - Céline Mériaux
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Maxence Wisztorski
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Lucia Slovinska
- §Institute of Neurobiology, Slovak Academy of Sciences, Center of Excellence for Brain Research, Soltesovej 4-6 Kosice, Slovakia
| | - Juraj Blasko
- §Institute of Neurobiology, Slovak Academy of Sciences, Center of Excellence for Brain Research, Soltesovej 4-6 Kosice, Slovakia
| | - Viera Cigankova
- §§Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Isabelle Fournier
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France
| | - Michel Salzet
- From the ‡Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000 Lille, France; **Steinbeis Innovation Center SCiLS Research, Fahrenheitstr. 1, 28359 Bremen, Germany
| |
Collapse
|
20
|
Myers SA, Bankston AN, Burke DA, Ohri SS, Whittemore SR. Does the preclinical evidence for functional remyelination following myelinating cell engraftment into the injured spinal cord support progression to clinical trials? Exp Neurol 2016; 283:560-72. [PMID: 27085393 DOI: 10.1016/j.expneurol.2016.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 02/08/2023]
Abstract
This article reviews all historical literature in which rodent-derived myelinating cells have been engrafted into the contused adult rodent spinal cord. From 2500 initial PubMed citations identified, human cells grafts, bone mesenchymal stem cells, olfactory ensheathing cells, non-myelinating cell grafts, and rodent grafts into hemisection or transection models were excluded, resulting in the 67 studies encompassed in this review. Forty five of those involved central nervous system (CNS)-derived cells, including neural stem progenitor cells (NSPCs), neural restricted precursor cells (NRPs) or oligodendrocyte precursor cells (OPCs), and 22 studies involved Schwann cells (SC). Of the NSPC/NPC/OPC grafts, there was no consistency with respect to the types of cells grafted and/or the additional growth factors or cells co-grafted. Enhanced functional recovery was reported in 31/45 studies, but only 20 of those had appropriate controls making conclusive interpretation of the remaining studies impossible. Of those 20, 19 were properly powered and utilized appropriate statistical analyses. Ten of those 19 studies reported the presence of graft-derived myelin, 3 reported evidence of endogenous remyelination or myelin sparing, and 2 reported both. For the SC grafts, 16/21 reported functional improvement, with 11 having appropriate cellular controls and 9/11 using proper statistical analyses. Of those 9, increased myelin was reported in 6 studies. The lack of consistency and replication among these preclinical studies are discussed with respect to the progression of myelinating cell transplantation therapies into the clinic.
Collapse
Affiliation(s)
- Scott A Myers
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Andrew N Bankston
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Darlene A Burke
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Sujata Saraswat Ohri
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Scott R Whittemore
- 511 S. Floyd St., MDR 623, Kentucky Spinal Cord Injury Research Center and Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
21
|
Lunn JS, Sakowski SA, McGinley LM, Pacut C, Hazel TG, Johe K, Feldman EL. Autocrine production of IGF-I increases stem cell-mediated neuroprotection. Stem Cells 2016; 33:1480-9. [PMID: 25532472 DOI: 10.1002/stem.1933] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder resulting in motor neuron (MN) loss. There are currently no effective therapies; however, cellular therapies using neural progenitor cells protect MNs and attenuate disease progression in G93A-SOD1 ALS rats. Recently, we completed a phase I clinical trial examining intraspinal human spinal stem cell (HSSC) transplantation in ALS patients which demonstrated our approach was safe and feasible, supporting the phase II trial currently in progress. In parallel, efforts focused on understanding the mechanisms underlying the preclinical benefit of HSSCs in vitro and in animal models of ALS led us to investigate how insulin-like growth factor-I (IGF-I) production contributes to cellular therapy neuroprotection. IGF-I is a potent growth factor with proven efficacy in preclinical ALS studies, and we contend that autocrine IGF-I production may enhance the salutary effects of HSSCs. By comparing the biological properties of HSSCs to HSSCs expressing sixfold higher levels of IGF-I, we demonstrate that IGF-I production augments the production of glial-derived neurotrophic factor and accelerates neurite outgrowth without adversely affecting HSSC proliferation or terminal differentiation. Furthermore, we demonstrate that increased IGF-I induces more potent MN protection from excitotoxicity via both indirect and direct mechanisms, as demonstrated using hanging inserts with primary MNs or by culturing with organotypic spinal cord slices, respectively. These findings support our theory that combining autocrine growth factor production with HSSC transplantation may offer a novel means to achieve additive neuroprotection in ALS.
Collapse
|
22
|
Antiapoptotic Effect of Highly Secreted GMCSF From Neuronal Cell-specific GMCSF Overexpressing Neural Stem Cells in Spinal Cord Injury Model. Spine (Phila Pa 1976) 2015; 40:E1284-91. [PMID: 26230539 DOI: 10.1097/brs.0000000000001080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Neuronal cell-specific gene expression system and neural stem cells (NSCs) were combined for treatment of spinal cord injury (SCI). OBJECTIVE To verify the reproducibility of the neuronal cell-specific therapeutic gene overexpression system, we develop a neuronal cell-specific granulocyte-macrophage colony-stimulating factor expression system (NSE-GMCSF), and then examine the characteristics of GMCSF overexpression and protective effect on neural cells in vitro and vivo. SUMMARY OF BACKGROUND DATA The stem cell transplantation is considered a promising therapy for SCI. However, stem cell monotherapy strategy is insufficient for complete recovery after SCI. Therefore, combined treatment method based on stem cells with other therapeutic system may be effective for improving the therapeutic efficacy. In this study, we established the gene and stem cell therapy platform based on NSCs and neuronal cell-specific gene expression system. METHODS To examine the GMCSF expression pattern, we compared the amount of secreted GMCSF from the neuronal cell-specific GMCSF expressing NSCs with control GMCSF-expressing NSCs (respectively, NSE-GMCSF-NSCs vs. SV-GMCSF-NSCs) by ELISA in vitro and in vivo, and then verified the neuronal protective effect of these cells in vitro and vivo. RESULTS The results showed that NSE-GMCSF-NSCs secreted more GMCSF compared with SV-GMCSF-NSCs in normoxia, hypoxia and cytotoxic conditions. The cell viability of NSE-GMCSF-NSCs was increased depending on the amount of secreted GMCSF in cytotoxic condition. In addition, the amount of secreted GMCSF by NSE-GMCSF-NSCs transplanted into injured spinal cord was significantly higher than SV-GMCSF-NSCs. Higher amount of secreted GMCSF decreased the expression of proapoptotic protein, Bax. CONCLUSION In this study, we demonstrated that the neuronal cell-specific gene expression system induced overexpression of GMCSF in NSCs. These combined NSCs & gene therapy treatment protocol would be an effective therapeutic system for SCI. LEVEL OF EVIDENCE N/A.
Collapse
|
23
|
Ribeiro TB, Duarte ASS, Longhini ALF, Pradella F, Farias AS, Luzo ACM, Oliveira ALR, Olalla Saad ST. Neuroprotection and immunomodulation by xenografted human mesenchymal stem cells following spinal cord ventral root avulsion. Sci Rep 2015; 5:16167. [PMID: 26548646 PMCID: PMC4637826 DOI: 10.1038/srep16167] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
The present study investigates the effects of xenotransplantation of Adipose Tissue Mesenchymal Stem Cells (AT-MSCs) in animals after ventral root avulsion. AT-MSC has similar characteristics to bone marrow mesenchymal stem cells (BM-MSCs), such as immunomodulatory properties and expression of neurotrophic factors. In this study, Lewis rats were submitted to surgery for unilateral avulsion of the lumbar ventral roots and received 5 × 10(5) AT-MSCs via the lateral funiculus. Two weeks after cell administration, the animals were sacrificed and the moto neurons, T lymphocytes and cell defense nervous system were analyzed. An increased neuronal survival and partial preservation of synaptophysin-positive nerve terminals, related to GDNF and BDNF expression of AT-MSCs, and reduction of pro-inflammatory reaction were observed. In conclusion, AT-MSCs prevent second phase neuronal injury, since they suppressed lymphocyte, astroglia and microglia effects, which finally contributed to rat motor-neuron survival and synaptic stability of the lesioned motor-neuron. Moreover, the survival of the injected AT- MSCs lasted for at least 14 days. These results indicate that neuronal survival after lesion, followed by mesenchymal stem cell (MSC) administration, might occur through cytokine release and immunomodulation, thus suggesting that AT-MSCs are promising cells for the therapy of neuronal lesions.
Collapse
Affiliation(s)
- Thiago B. Ribeiro
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Adriana S. S. Duarte
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Ana Leda F. Longhini
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
- Neuroimmunomodulation Group, Dept. Genetics, Evolution and Bioagents, University of Campinas, Campinas, Brazil
| | - Fernando Pradella
- Neuroimmunomodulation Group, Dept. Genetics, Evolution and Bioagents, University of Campinas, Campinas, Brazil
| | - Alessandro S. Farias
- Neuroimmunomodulation Group, Dept. Genetics, Evolution and Bioagents, University of Campinas, Campinas, Brazil
| | - Angela C. M. Luzo
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Alexandre L. R. Oliveira
- Dept. of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| |
Collapse
|
24
|
Grulova I, Slovinska L, Blaško J, Devaux S, Wisztorski M, Salzet M, Fournier I, Kryukov O, Cohen S, Cizkova D. Delivery of Alginate Scaffold Releasing Two Trophic Factors for Spinal Cord Injury Repair. Sci Rep 2015; 5:13702. [PMID: 26348665 PMCID: PMC4562265 DOI: 10.1038/srep13702] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) has been implicated in neural cell loss and consequently functional motor and sensory impairment. In this study, we propose an alginate -based neurobridge enriched with/without trophic growth factors (GFs) that can be utilized as a therapeutic approach for spinal cord repair. The bioavailability of key GFs, such as Epidermal Growth factor (EGF) and basic Fibroblast Growth Factor (bFGF) released from injected alginate biomaterial to the central lesion site significantly enhanced the sparing of spinal cord tissue and increased the number of surviving neurons (choline acetyltransferase positive motoneurons) and sensory fibres. In addition, we document enhanced outgrowth of corticospinal tract axons and presence of blood vessels at the central lesion. Tissue proteomics was performed at 3, 7 and 10 days after SCI in rats indicated the presence of anti-inflammatory factors in segments above the central lesion site, whereas in segments below, neurite outgrowth factors, inflammatory cytokines and chondroitin sulfate proteoglycan of the lectican protein family were overexpressed. Collectively, based on our data, we confirm that functional recovery was significantly improved in SCI groups receiving alginate scaffold with affinity-bound growth factors (ALG +GFs), compared to SCI animals without biomaterial treatment.
Collapse
Affiliation(s)
- I Grulova
- Institute of Neurobiology, Center of Excellence for Brain Research, Department of Regenerative Medicine and Stem Cell Therapy, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - L Slovinska
- Institute of Neurobiology, Center of Excellence for Brain Research, Department of Regenerative Medicine and Stem Cell Therapy, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - J Blaško
- Institute of Neurobiology, Center of Excellence for Brain Research, Department of Regenerative Medicine and Stem Cell Therapy, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - S Devaux
- Institute of Neurobiology, Center of Excellence for Brain Research, Department of Regenerative Medicine and Stem Cell Therapy, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia.,Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, INSERM U1192, Bât SN3, 1er étage, Université de Lille 1, F-59655 Villeneuve d'Ascq, France
| | - M Wisztorski
- Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, INSERM U1192, Bât SN3, 1er étage, Université de Lille 1, F-59655 Villeneuve d'Ascq, France
| | - M Salzet
- Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, INSERM U1192, Bât SN3, 1er étage, Université de Lille 1, F-59655 Villeneuve d'Ascq, France
| | - I Fournier
- Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, INSERM U1192, Bât SN3, 1er étage, Université de Lille 1, F-59655 Villeneuve d'Ascq, France
| | - O Kryukov
- The Center of Regenerative Medicine and Stem Cell Research and The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - S Cohen
- The Center of Regenerative Medicine and Stem Cell Research and The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - D Cizkova
- Institute of Neurobiology, Center of Excellence for Brain Research, Department of Regenerative Medicine and Stem Cell Therapy, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia.,Laboratoire PRISM: Protéomique, Réponse Inflammatoire, Spectrométrie de Masse, INSERM U1192, Bât SN3, 1er étage, Université de Lille 1, F-59655 Villeneuve d'Ascq, France
| |
Collapse
|
25
|
Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. N Biotechnol 2015; 32:212-28. [DOI: 10.1016/j.nbt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 05/01/2014] [Accepted: 05/01/2014] [Indexed: 02/06/2023]
|
26
|
Juhasova J, Juhas S, Hruska-Plochan M, Dolezalova D, Holubova M, Strnadel J, Marsala S, Motlik J, Marsala M. Time course of spinal doublecortin expression in developing rat and porcine spinal cord: implication in in vivo neural precursor grafting studies. Cell Mol Neurobiol 2015; 35:57-70. [PMID: 25487013 PMCID: PMC11486198 DOI: 10.1007/s10571-014-0145-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022]
Abstract
Expression of doublecortin (DCX), a 43-53 kDa microtubule binding protein, is frequently used as (i) an early neuronal marker to identify the stage of neuronal maturation of in vivo grafted neuronal precursors (NSCs), and (ii) a neuronal fate marker transiently expressed by immature neurons during development. Reliable identification of the origin of DCX-immunoreactive cells (i.e., host vs. graft) requires detailed spatial and temporal mapping of endogenous DCX expression at graft-targeted brain or spinal cord regions. Accordingly, in the present study, we analyzed (i) the time course of DCX expression in pre- and postnatal rat and porcine spinal cord, and (ii) the DCX expression in spinally grafted porcine-induced pluripotent stem cells (iPS)-derived NSCs and human embryonic stem cell (ES)-derived NSCs. In addition, complementary temporospatial GFAP expression study in porcine spinal cord was also performed. In 21-day-old rat fetuses, an intense DCX immunoreactivity distributed between the dorsal horn (DH) and ventral horn was seen and was still present in the DH neurons on postnatal day 20. In animals older than 8 weeks, no DCX immunoreactivity was seen at any spinal cord laminae. In contrast to rat, in porcine spinal cord (gestational period 113-114 days), DCX was only expressed during the pre-natal period (up to 100 days) but was no longer present in newborn piglets or in adult animals. Immunohistochemical analysis was confirmed with a comparable expression profile by western blot analysis. Contrary, the expression of porcine GFAP started within 70-80 days of the pre-natal period. Spinally grafted porcine iPS-NSCs and human ES-NSCs showed clear DCX expression at 3-4 weeks postgrafting. These data indicate that in spinal grafting studies which employ postnatal or adult porcine models, the expression of DCX can be used as a reliable marker of grafted neurons. In contrast, if grafted neurons are to be analyzed during the first 4 postnatal weeks in the rat spinal cord, additional markers or grafted cell-specific labeling techniques need to be employed to reliably identify grafted early postmitotic neurons and to differentiate the DCX expression from the neurons of the host.
Collapse
Affiliation(s)
- J. Juhasova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Rumburska 89, 27721 Libechov, Czech Republic
| | - S. Juhas
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Rumburska 89, 27721 Libechov, Czech Republic
| | - M. Hruska-Plochan
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA USA
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - D. Dolezalova
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA USA
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - M. Holubova
- Laboratory od Tumor Biology, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Rumburska 89, 27721 Libechov, Czech Republic
| | - J. Strnadel
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA USA
- Laboratory od Tumor Biology, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Rumburska 89, 27721 Libechov, Czech Republic
| | - S. Marsala
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA USA
| | - J. Motlik
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, AS CR, v.v.i., Rumburska 89, 27721 Libechov, Czech Republic
| | - M. Marsala
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
27
|
Pomeshchik Y, Puttonen KA, Kidin I, Ruponen M, Lehtonen S, Malm T, Åkesson E, Hovatta O, Koistinaho J. Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Do Not Promote Functional Recovery of Pharmacologically Immunosuppressed Mice With Contusion Spinal Cord Injury. Cell Transplant 2014; 24:1799-812. [PMID: 25203632 DOI: 10.3727/096368914x684079] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Improved functional recovery after spinal cord injury by transplantation of induced pluripotent stem cell-derived neural stem/progenitor cells (iPSC-NPCs) has been reported. However, beneficial effects of iPSC-based therapy have so far been produced mostly using genetically immunodeficient rodents. Because of the long time required for generation and characterization of iPSCs, the use of autologous iPSCs for treating patients with acute spinal cord injury (SCI) is not feasible. Therefore, it is of utmost importance to investigate the effect of iPSC-based therapy on functional recovery after SCI using pharmacologically immunosuppressed, immunocompetent animal models. Here we studied the functional outcome following subacute transplantation of human iPSC-derived NPCs into contused mouse spinal cord when tacrolimus was used as an immunosuppressive agent. We show that human iPSC-derived NPCs transplanted into pharmacologically immunosuppressed C57BL/6J mice exhibited poor long-term survival and failed to improve functional recovery after SCI as measured by Basso Mouse Scale (BMS) for locomotion and CatWalk gait analysis when compared to vehicle-treated animals. The scarce effect of iPSC-based therapy observed in the current study may be attributable to insufficient immunosuppressive effect, provided by monotherapy with tacrolimus in combination with immunogenicity of transplanted cells and complex microenvironment of the injured spinal cord. Our results highlight the importance of extensive preclinical studies of transplanted cells before the clinical application of iPSC-based cell therapy is achieved.
Collapse
Affiliation(s)
- Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tajiri N, Quach DM, Kaneko Y, Wu S, Lee D, Lam T, Hayama KL, Hazel TG, Johe K, Wu MC, Borlongan CV. Behavioral and histopathological assessment of adult ischemic rat brains after intracerebral transplantation of NSI-566RSC cell lines. PLoS One 2014; 9:e91408. [PMID: 24614895 PMCID: PMC3948841 DOI: 10.1371/journal.pone.0091408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/10/2014] [Indexed: 02/06/2023] Open
Abstract
Stroke is a major cause of death and disability, with very limited treatment option. Cell-based therapies have emerged as potential treatments for stroke. Indeed, studies have shown that transplantation of neural stem cells (NSCs) exerts functional benefits in stroke models. However, graft survival and integration with the host remain pressing concerns with cell-based treatments. The current study set out to investigate those very issues using a human NSC line, NSI-566RSC, in a rat model of ischemic stroke induced by transient occlusion of the middle cerebral artery. Seven days after stroke surgery, those animals that showed significant motor and neurological impairments were randomly assigned to receive NSI-566RSC intracerebral transplants at two sites within the striatum at three different doses: group A (0 cells/µl), group B (5,000 cells/µl), group C (10,000 cells/µl), and group D (20,000 cells/µl). Weekly behavioral tests, starting at seven days and continued up to 8 weeks after transplantation, revealed dose-dependent recovery from both motor and neurological deficits in transplanted stroke animals. Eight weeks after cell transplantation, immunohistochemical investigations via hematoxylin and eosin staining revealed infarct size was similar across all groups. To identify the cell graft, and estimate volume, immunohistochemistry was performed using two human-specific antibodies: one to detect all human nuclei (HuNu), and another to detect human neuron-specific enolase (hNSE). Surviving cell grafts were confirmed in 10/10 animals of group B, 9/10 group C, and 9/10 in group D. hNSE and HuNu staining revealed similar graft volume estimates in transplanted stroke animals. hNSE-immunoreactive fibers were also present within the corpus callosum, coursing in parallel with host tracts, suggesting a propensity to follow established neuroanatomical features. Despite absence of reduction in infarct volume, NSI-566RSC transplantation produced behavioral improvements possibly via robust engraftment and neuronal differentiation, supporting the use of this NSC line for stroke therapy.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - David M. Quach
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - Yuji Kaneko
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Stephanie Wu
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - David Lee
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - Tina Lam
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - Ken L. Hayama
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - Thomas G. Hazel
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - Karl Johe
- Neuralstem, Inc., Rockville, Maryland, United States of America
| | - Michael C. Wu
- Neurodigitech, LLC., San Diego, California, United States of America
| | - Cesar V. Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
29
|
Judas GI, Ferreira SG, Simas R, Sannomiya P, Benício A, da Silva LFF, Moreira LFP. Intrathecal injection of human umbilical cord blood stem cells attenuates spinal cord ischaemic compromise in rats. Interact Cardiovasc Thorac Surg 2014; 18:757-62. [PMID: 24595249 DOI: 10.1093/icvts/ivu021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBECTIVES Spinal cord ischaemia with resulting paraplegia remains a devastating and unpredictable complication after thoraco-abdominal aortic surgery. With the advent of stem cell therapy and its potential to induce nervous tissue regeneration processes, the interest in the use of these cells as a treatment for neurological disorders has increased. Human stem cells, derived from the umbilical cord, are one of the strong candidates used in cell therapy for spinal cord injury because of weak immunogenicity and ready availability. We sought to evaluate the use of human umbilical cord blood stem cells (HUCBSCs) to attenuate the neurological effects of spinal cord ischaemia induced by high thoracic aorta occlusion. METHODS Forty Wistar rats were randomized to receive intrathecal injection of 10 µl phosphate buffered saline (PBS) solution containing 1 × 10(4) HUCBSCs, 30 min before (Tpre group: n = 10) and 30 min after (Tpos group: n = 10) descending thoracic aorta occlusion by intraluminal balloon during 12 min. Control groups received only PBS solution (Cpre group: n = 10; and Cpos group: n = 10). During a 28-day observational period, motor function was assessed by a functional grading scale (Basso, Beattie and Bresnahan). Segments of thoracolumbar spinal cord specimens were analysed for histological and immunohistochemical assessment for detection and quantification of human haematopoietic cells (CD45(+)) and apoptosis (transferase-mediated deoxyuridine triphosphate-biotin nick-end labelling). RESULTS Overall mortality was 12 animals (30%). Therefore, the observational sample was composed of 28 animals. All groups showed similar incidence of paraplegia and mortality. The mean motor function scores showed no difference during time between the animals of each group, excepting for the Tpos group, which improved from 8.14 (±8.6) to 14.28 (±9.8) (P < 0.01). A treatment-by-time interaction was detected among animals that received HUCBSCs 30 min after ischaemia, with BBB scores higher from Days 14 to 28 compared with the first observational day with statistical difference (P = 0.01). Number of viable neurons was higher in the Tpos group (P = 0.14) and the incidence of apoptosis was lower in the same animals (P = 0.048), but showed no difference with its respective control. We confirmed the presence of CD45(+) cells 4 weeks after intrathecal injection in both therapeutic groups but mainly in the Tpos group. CONCLUSIONS Intrathecal transplantation of HUCBSCs is feasible, and it improved spinal cord function, when they were delivered 30 min after spinal cord ischaemia, in a model of endovascular descending thoracic aorta occlusion in rats. Human umbilical cord blood is one of the potentially useful sources of stem cells for therapy of spinal cord ischaemia.
Collapse
Affiliation(s)
- Gustavo Ieno Judas
- Laboratory of Cardiovascular Surgery and Circulation Pathophysiology (LIM 11), Heart Institute (InCor) of São Paulo University Medical School, São Paulo, Brazil
| | - Sueli Gomes Ferreira
- Laboratory of Cardiovascular Surgery and Circulation Pathophysiology (LIM 11), Heart Institute (InCor) of São Paulo University Medical School, São Paulo, Brazil
| | - Rafael Simas
- Laboratory of Cardiovascular Surgery and Circulation Pathophysiology (LIM 11), Heart Institute (InCor) of São Paulo University Medical School, São Paulo, Brazil
| | - Paulina Sannomiya
- Laboratory of Cardiovascular Surgery and Circulation Pathophysiology (LIM 11), Heart Institute (InCor) of São Paulo University Medical School, São Paulo, Brazil
| | - Anderson Benício
- Laboratory of Cardiovascular Surgery and Circulation Pathophysiology (LIM 11), Heart Institute (InCor) of São Paulo University Medical School, São Paulo, Brazil
| | - Luiz Fernando Ferraz da Silva
- Laboratory of Cardiovascular Surgery and Circulation Pathophysiology (LIM 11), Heart Institute (InCor) of São Paulo University Medical School, São Paulo, Brazil
| | - Luiz Felipe Pinho Moreira
- Laboratory of Cardiovascular Surgery and Circulation Pathophysiology (LIM 11), Heart Institute (InCor) of São Paulo University Medical School, São Paulo, Brazil
| |
Collapse
|
30
|
Meamar R, Nasr-Esfahani MH, Mousavi SA, Basiri K. Stem cell therapy in amyotrophic lateral sclerosis. J Clin Neurosci 2013; 20:1659-63. [PMID: 24148693 DOI: 10.1016/j.jocn.2013.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 01/08/2013] [Accepted: 04/14/2013] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of upper and lower motor neurons, characterized by progressive muscular atrophy and weakness which culminates in death within 2-5 years. Despite various hypotheses about the responsible mechanisms, the etiology of ALS remains incompletely understood. However, it has been recently postulated that stem cell therapy could potentially target several mechanisms responsible for the etiology of ALS and other nervous system disorders, and could be regarded as one of the most promising therapeutic strategies for ALS treatment. We present a brief review of different methods of stem cell therapy in ALS patients and discuss the results with different cell types and routes of administration.
Collapse
Affiliation(s)
- Rokhsareh Meamar
- Department of Medical Science, Najafabad Branch, Islamic Azad University, Isfahan, Iran
| | | | | | | |
Collapse
|
31
|
Spejo AB, Carvalho JL, Goes AM, Oliveira ALR. Neuroprotective effects of mesenchymal stem cells on spinal motoneurons following ventral root axotomy: synapse stability and axonal regeneration. Neuroscience 2013; 250:715-32. [PMID: 23896572 DOI: 10.1016/j.neuroscience.2013.07.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 12/30/2022]
Abstract
Compression of spinal roots is an important medical problem, which may arise from intervertebral disc herniation, tumor growth or as a result of high energy accidents. Differently from avulsion, root crushing maintains the central/peripheral nervous system (CNS/PNS) connection, although the axons are axotomized and motoneurons degenerate. Such neuronal death may decrease and delay motor function recovery. In the present study we have investigated the neuroprotective effects of mesenchymal stem cell (MSC) therapy following such proximal lesions. Motor recovery and synaptic stabilization were analyzed by the use of morphological and functional approaches. For that, crushing the ventral roots at L4, L5 and L6 was unilaterally performed in Lewis rats. Four weeks after injury, an increased motoneuron survival was observed in the MSC-treated group, coupled with a smaller decrease of inputs at the motoneuron surface and nearby neuropil, seen by synaptophysin and synapsin immunolabeling and decreased astrogliosis, seen by GFAP immunolabeling. In this sense, MSC-treated group displayed a significant preservation of GABAergic terminals, indicating a possible neuroprotection to glutamate excitotoxicity. Motor function recovery was acutely improved in MSC-treated group as compared to Dulbeco's modified eagle medium (DMEM)-treated. Overall, we provide evidence that ventral root crushing (VRC), although milder than avulsion, results in significant loss of motoneurons (~51%) that can be reduced by MSC administration within the spinal cord. Such treatment also improves the number of synapses immunoreactive against molecules present in inhibitory inputs. Also, an increased number of regenerated axons was obtained in the MSC-treated group, in comparison to the DMEM-treated control. Overall, MSC therapy acutely improved limb strength and gait coordination, indicating a possible clinical application of such treatment following proximal lesions at the CNS/PNS interface.
Collapse
Affiliation(s)
- A B Spejo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), CP 6109, CEP 13083-970 Campinas, SP, Brazil
| | | | | | | |
Collapse
|
32
|
Acharya MM, Christie LA, Hazel TG, Johe KK, Limoli CL. Transplantation of human fetal-derived neural stem cells improves cognitive function following cranial irradiation. Cell Transplant 2013; 23:1255-66. [PMID: 23866792 DOI: 10.3727/096368913x670200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment of central nervous system (CNS) malignancies typically involves radiotherapy to forestall tumor growth and recurrence following surgical resection. Despite the many benefits of cranial radiotherapy, survivors often suffer from a wide range of debilitating and progressive cognitive deficits. Thus, while patients afflicted with primary and secondary malignancies of the CNS now experience longer local regional control and progression-free survival, there remains no clinical recourse for the unintended neurocognitive sequelae associated with their cancer treatments. Multiple mechanisms contribute to disrupted cognition following irradiation, including the depletion of radiosensitive populations of stem and progenitor cells in the hippocampus. We have explored the potential of using intrahippocampal transplantation of human stem cells to ameliorate radiation-induced cognitive dysfunction. Past studies demonstrated the capability of cranially transplanted human embryonic (hESCs) and neural (hNSCs) stem cells to functionally restore cognition in rats 1 and 4 months after cranial irradiation. The present study employed an FDA-approved fetal-derived hNSC line capable of large scale-up under good manufacturing practice (GMP). Animals receiving cranial transplantation of these cells 1 month following irradiation showed improved hippocampal spatial memory and contextual fear conditioning performance compared to irradiated, sham surgery controls. Significant newly born (doublecortin positive) neurons and a smaller fraction of glial subtypes were observed within and nearby the transplantation core. Engrafted cells migrated and differentiated into neuronal and glial subtypes throughout the CA1 and CA3 subfields of the host hippocampus. These studies expand our prior findings to demonstrate that transplantation of fetal-derived hNSCs improves cognitive deficits in irradiated animals, as assessed by two separate cognitive tasks.
Collapse
Affiliation(s)
- Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | | | | | | | | |
Collapse
|
33
|
Mohammad-Gharibani P, Tiraihi T, Delshad A, Arabkheradmand J, Taheri T. Improvement of contusive spinal cord injury in rats by co-transplantation of gamma-aminobutyric acid-ergic cells and bone marrow stromal cells. Cytotherapy 2013; 15:1073-85. [PMID: 23806239 DOI: 10.1016/j.jcyt.2013.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Cell therapy is considered a promising option for treatment of spinal cord injury (SCI). The purpose of this study is to use combined therapy of bone marrow stromal cells (BMSCs) and BMSC-derived gamma-aminobutyric acid (GABA)ergic inhibitory neurotransmitter cells (BDGCs) for the contusion model of SCI in rats. METHODS BDGCs were prepared from BMSCs by pre-inducing them with β-mercaptoethanol followed by retinoic acid and then inducing them by creatine. They were immunostained with BMSC, proneuronal, neural and GABA markers. The BDGCs were intraspinally transplanted into the contused rats, whereas the BMSCs were delivered intravenously. The animals were sacrificed after 12 weeks. RESULTS The Basso, Beattie and Bresnahan test showed improvement in the animals with the combined therapy compared with the untreated animals, the animals treated with GABAergic cells only and the animals that received BMSCs. The immunohistochemistry analysis of the tissue sections prepared from the animals receiving the combined therapy showed that the transplanted cells were engrafted and integrated into the injured spinal cord; in addition, a significant reduction was seen in the cavitation. CONCLUSIONS The study shows that the combination of GABAergic cells with BMSCs can improve SCI.
Collapse
Affiliation(s)
- Payam Mohammad-Gharibani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
34
|
van Gorp S, Leerink M, Kakinohana O, Platoshyn O, Santucci C, Galik J, Joosten EA, Hruska-Plochan M, Goldberg D, Marsala S, Johe K, Ciacci JD, Marsala M. Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Res Ther 2013; 4:57. [PMID: 23710605 PMCID: PMC3706882 DOI: 10.1186/scrt209] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/25/2013] [Indexed: 12/15/2022] Open
Abstract
Introduction Intraspinal grafting of human neural stem cells represents a promising approach to promote recovery of function after spinal trauma. Such a treatment may serve to: I) provide trophic support to improve survival of host neurons; II) improve the structural integrity of the spinal parenchyma by reducing syringomyelia and scarring in trauma-injured regions; and III) provide neuronal populations to potentially form relays with host axons, segmental interneurons, and/or α-motoneurons. Here we characterized the effect of intraspinal grafting of clinical grade human fetal spinal cord-derived neural stem cells (HSSC) on the recovery of neurological function in a rat model of acute lumbar (L3) compression injury. Methods Three-month-old female Sprague–Dawley rats received L3 spinal compression injury. Three days post-injury, animals were randomized and received intraspinal injections of either HSSC, media-only, or no injections. All animals were immunosuppressed with tacrolimus, mycophenolate mofetil, and methylprednisolone acetate from the day of cell grafting and survived for eight weeks. Motor and sensory dysfunction were periodically assessed using open field locomotion scoring, thermal/tactile pain/escape thresholds and myogenic motor evoked potentials. The presence of spasticity was measured by gastrocnemius muscle resistance and electromyography response during computer-controlled ankle rotation. At the end-point, gait (CatWalk), ladder climbing, and single frame analyses were also assessed. Syrinx size, spinal cord dimensions, and extent of scarring were measured by magnetic resonance imaging. Differentiation and integration of grafted cells in the host tissue were validated with immunofluorescence staining using human-specific antibodies. Results Intraspinal grafting of HSSC led to a progressive and significant improvement in lower extremity paw placement, amelioration of spasticity, and normalization in thermal and tactile pain/escape thresholds at eight weeks post-grafting. No significant differences were detected in other CatWalk parameters, motor evoked potentials, open field locomotor (Basso, Beattie, and Bresnahan locomotion score (BBB)) score or ladder climbing test. Magnetic resonance imaging volume reconstruction and immunofluorescence analysis of grafted cell survival showed near complete injury-cavity-filling by grafted cells and development of putative GABA-ergic synapses between grafted and host neurons. Conclusions Peri-acute intraspinal grafting of HSSC can represent an effective therapy which ameliorates motor and sensory deficits after traumatic spinal cord injury.
Collapse
|
35
|
Kakinohana O, Juhasova J, Juhas S, Motlik J, Platoshyn O, Galik J, Hefferan M, Yuan SH, Vidal JG, Carson CT, Van Gorp S, Goldberg D, Leerink M, Lazar P, Marsala S, Miyanohara A, Keshavarzi S, Ciacci JD, Marsala M. Survival and Differentiation of Human Embryonic Stem Cell-Derived Neural Precursors Grafted Spinally in Spinal Ischemia-Injured Rats or in Naive Immunosuppressed Minipigs: A Qualitative and Quantitative Study. Cell Transplant 2012; 21:2603-19. [DOI: 10.3727/096368912x653200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In previous studies, we have demonstrated that spinal grafting of human or rat fetal spinal neural precursors leads to amelioration of spasticity and improvement in ambulatory function in rats with spinal ischemic injury. In the current study, we characterize the survival and maturation of three different human embryonic stem (ES) cell line-derived neural precursors (hNPCs) once grafted into ischemia-injured lumbar spinal cord in rats or in naive immunosuppressed minipigs. Proliferating HUES-2, HUES-7, or HUES-9 colonies were induced to form embryoid bodies. During the nestin-positive stage, the rosettes were removed and CD184+/CD271-/CD44-/CD24+ population of ES-hNPCs FAC-sorted and expanded. Male Sprague–Dawley rats with spinal ischemic injury or naive immunosuppressed Gottingen–Minnesota minipigs received 10 bilateral injections of ES-NPCs into the L2–L5 gray matter. After cell grafting, animals survived for 2 weeks to 4.5 months, and the presence of grafted cells was confirmed after staining spinal cord sections with a combination of human-specific (hNUMA, HO14, hNSE, hSYN) or nonspecific (DCX, MAP2, CHAT, GFAP, APC) antibodies. In the majority of grafted animals, hNUMA-positive grafted cells were identified. At 2–4 weeks after grafting, double-labeled hNUMA/ DCX-immunoreactive neurons were seen with extensive DCX+ processes. At survival intervals of 4–8 weeks, hNSE+ neurons and expression of hSYN was identified. Some hSYN-positive terminals formed putative synapses with the host neurons. Quantitative analysis of hNUMA+ cells at 2 months after grafting showed comparable cell survival for all three cell lines. In the presence of low-level immunosuppression, no grafted cell survival was seen at 4.5 months after grafting. Spinal grafting of proliferating pluripotent HUES-7 cells led to consistent teratoma formation at 2–6 weeks after cell transplantation. These data show that ES-derived, FAC-sorted NPCs can represent an effective source of human NPCs to be used in CNS cell replacement therapies.
Collapse
Affiliation(s)
- O. Kakinohana
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - J. Juhasova
- Institute of Animal Physiology and Genetics, AS CR, Liběchov, Czech Republic
| | - S. Juhas
- Institute of Animal Physiology and Genetics, AS CR, Liběchov, Czech Republic
| | - J. Motlik
- Institute of Animal Physiology and Genetics, AS CR, Liběchov, Czech Republic
| | - O. Platoshyn
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - J. Galik
- Institute of Neurobiology, Slovak Academy of Sciences, Košice, Slovakia
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University, Košice, Slovakia
| | - M. Hefferan
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - S. H. Yuan
- Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | - S. Van Gorp
- Department of Anesthesiology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - D. Goldberg
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - M. Leerink
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - P. Lazar
- University of Veterinary Medicine and Pharmacy, Department of Breeding and Diseases of Game and Fish, Košice, Slovakia
| | - S. Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - A. Miyanohara
- Vector Core Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - S. Keshavarzi
- Division of Neurosurgery, University of California, San Diego, La Jolla, CA, USA
| | - J. D. Ciacci
- Division of Neurosurgery, University of California, San Diego, La Jolla, CA, USA
| | - M. Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- Institute of Neurobiology, Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
36
|
Glass JD, Boulis NM, Johe K, Rutkove SB, Federici T, Polak M, Kelly C, Feldman EL. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells 2012; 30:1144-51. [PMID: 22415942 DOI: 10.1002/stem.1079] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advances in stem cell biology have generated intense interest in the prospect of transplanting stem cells into the nervous system for the treatment of neurodegenerative diseases. Here, we report the results of an ongoing phase I trial of intraspinal injections of fetal-derived neural stems cells in patients with amyotrophic lateral sclerosis (ALS). This is a first-in-human clinical trial with the goal of assessing the safety and tolerability of the surgical procedure, the introduction of stem cells into the spinal cord, and the use of immunosuppressant drugs in this patient population. Twelve patients received either five unilateral or five bilateral (10 total) injections into the lumbar spinal cord at a dose of 100,000 cells per injection. All patients tolerated the treatment without any long-term complications related to either the surgical procedure or the implantation of stem cells. Clinical assessments ranging from 6 to 18 months after transplantation demonstrated no evidence of acceleration of disease progression due to the intervention. One patient has shown improvement in his clinical status, although these data must be interpreted with caution since this trial was neither designed nor powered to measure treatment efficacy. These results allow us to report success in achieving the phase I goal of demonstrating safety of this therapeutic approach. Based on these positive results, we can now advance this trial by testing intraspinal injections into the cervical spinal cord, with the goal of protecting motor neuron pools affecting respiratory function, which may prolong life for patients with ALS.
Collapse
Affiliation(s)
- Jonathan D Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Pêgo AP, Kubinova S, Cizkova D, Vanicky I, Mar FM, Sousa MM, Sykova E. Regenerative medicine for the treatment of spinal cord injury: more than just promises? J Cell Mol Med 2012; 16:2564-82. [PMID: 22805417 PMCID: PMC4118226 DOI: 10.1111/j.1582-4934.2012.01603.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 07/09/2012] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury triggers a complex set of events that lead to tissue healing without the restoration of normal function due to the poor regenerative capacity of the spinal cord. Nevertheless, current knowledge about the intrinsic regenerative ability of central nervous system axons, when in a supportive environment, has made the prospect of treating spinal cord injury a reality. Among the range of strategies under investigation, cell-based therapies offer the most promising results, due to the multifactorial roles that these cells can fulfil. However, the best cell source is still a matter of debate, as are clinical issues that include the optimal cell dose as well as the timing and route of administration. In this context, the role of biomaterials is gaining importance. These can not only act as vehicles for the administered cells but also, in the case of chronic lesions, can be used to fill the permanent cyst, thus creating a more favourable and conducive environment for axonal regeneration in addition to serving as local delivery systems of therapeutic agents to improve the regenerative milieu. Some of the candidate molecules for the future are discussed in view of the knowledge derived from studying the mechanisms that facilitate the intrinsic regenerative capacity of central nervous system neurons. The future challenge for the multidisciplinary teams working in the field is to translate the knowledge acquired in basic research into effective combinatorial therapies to be applied in the clinic.
Collapse
Affiliation(s)
- Ana Paula Pêgo
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
38
|
Immunosuppressant FK506: Focusing on neuroprotective effects following brain and spinal cord injury. Life Sci 2012; 91:77-82. [DOI: 10.1016/j.lfs.2012.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/09/2012] [Accepted: 06/23/2012] [Indexed: 01/19/2023]
|
39
|
Lee JW, Jergova S, Furmanski O, Gajavelli S, Sagen J. Predifferentiated GABAergic neural precursor transplants for alleviation of dysesthetic central pain following excitotoxic spinal cord injury. Front Physiol 2012; 3:167. [PMID: 22754531 PMCID: PMC3385582 DOI: 10.3389/fphys.2012.00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/08/2012] [Indexed: 12/26/2022] Open
Abstract
Intraspinal quisqualic acid (QUIS) injury induce (i) mechanical and thermal hyperalgesia, (ii) progressive self-injurious overgrooming of the affected dermatome. The latter is thought to resemble painful dysesthesia observed in spinal cord injury (SCI) patients. We have reported previously loss of endogenous GABA immunoreactive (IR) cells in the superficial dorsal horn of QUIS rats 2 weeks post injury. Further histological evaluation showed that GABA-, glycine-, and synaptic vesicular transporter VIAAT-IR persisted but were substantially decreased in the injured spinal cord. In this study, partially differentiated GABA-IR embryonic neural precursor cells (NPCs) were transplanted into the spinal cord of QUIS rats to reverse overgrooming by replenishing lost inhibitory circuitry. Rat E14 NPCs were predifferentiated in 0.1 ng/ml FGF-2 for 4 h prior to transplantation. In vitro immunocytochemistry of transplant cohort showed large population of GABA-IR NPCs that double labeled with nestin but few colocalized with NeuN, indicating partial maturation. Two weeks following QUIS lesion at T12-L1, and following the onset of overgrooming, NPCs were transplanted into the QUIS lesion sites; bovine adrenal fibroblast cells were used as control. Overgrooming was reduced in >55.5% of NPC grafted animals, with inverse relationship between the number of surviving GABA-IR cells and the size of overgrooming. Fibroblast-control animals showed a progressive worsening of overgrooming. At 3 weeks post-transplantation, numerous GABA-, nestin-, and GFAP-IR cells were present in the lesion site. Surviving grafted GABA-IR NPCs were NeuN+ and GFAP−. These results indicate that partially differentiated NPCs survive and differentiate in vivo into neuronal cells following transplantation into an injured spinal cord. GABA-IR NPC transplants can restore lost dorsal horn inhibitory signaling and are useful in alleviating central pain following SCI.
Collapse
Affiliation(s)
- Jeung Woon Lee
- Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami Miami, FL, USA
| | | | | | | | | |
Collapse
|
40
|
Slovinska L, Novotna I, Kubes M, Radonak J, Jergova S, Cigankova V, Rosocha J, Cizkova D. Umbilical Cord Blood Cells CD133+/CD133− Cultivation in Neural Proliferation Media Differentiates Towards Neural Cell Lineages. Arch Med Res 2011; 42:555-62. [DOI: 10.1016/j.arcmed.2011.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/26/2011] [Indexed: 01/10/2023]
|
41
|
Guo X, Gonzalez M, Stancescu M, Vandenburgh HH, Hickman JJ. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system. Biomaterials 2011; 32:9602-11. [PMID: 21944471 DOI: 10.1016/j.biomaterials.2011.09.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/06/2011] [Indexed: 12/28/2022]
Abstract
Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair.
Collapse
Affiliation(s)
- Xiufang Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | |
Collapse
|
42
|
Cizkova D, Novotna I, Slovinska L, Vanicky I, Jergova S, Rosocha J, Radonak J. Repetitive Intrathecal Catheter Delivery of Bone Marrow Mesenchymal Stromal Cells Improves Functional Recovery in a Rat Model of Contusive Spinal Cord Injury. J Neurotrauma 2011; 28:1951-61. [DOI: 10.1089/neu.2010.1413] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Dasa Cizkova
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Ivana Novotna
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Lucia Slovinska
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Ivo Vanicky
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Stanislava Jergova
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jan Rosocha
- Tissue Bank, Faculty of Medicine, P.J. Safarik University, and L. Pasteur Faculty Hospital, Kosice, Slovakia
| | - Jozef Radonak
- I Surgical Clinic, P.J. Safarik University, and L. Pasteur Faculty Hospital, Kosice, Slovakia
| |
Collapse
|
43
|
Hefferan MP, Johe K, Hazel T, Feldman EL, Lunn JS, Marsala M. Optimization of immunosuppressive therapy for spinal grafting of human spinal stem cells in a rat model of ALS. Cell Transplant 2011; 20:1153-61. [PMID: 21669047 DOI: 10.3727/096368910x564553] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous rodent studies employing monotherapy or combined immunosuppressive regimens have demonstrated a variable degree of spinal xenograft survival in several spinal neurodegenerative models including spinal ischemia, trauma, or amyotrophic lateral sclerosis (ALS). Accordingly, the characterization of optimal immunosuppressive protocols for the specific neurodegenerative model is critical to ensure reliable assessment of potential long-term therapeutic effects associated with cell replacement. In the present study we characterized the survival of human spinal stem cells when grafted into the lumbar spinal cords of a rodent model of ALS, SOD1 (G93A) male and female rats (60-67 days old). Four different immunosuppressive protocols were studied: i) FK506 (q12h); ii) FK506 (qd) + mycophenolate (PO; q12h, up to 7 days postop); iii) FK506 (qd) + mycophenolate (IP; q12h, up to 7 days postop); and iv) FK506 (qd) + mycophenolate (IP; qd, up to 7 days postop). Three weeks after cell grafting the number of surviving human cells was then systematically assessed. The highest density of grafted cells was seen in animals treated with FK506 (qd) and mycophenolate (IP; qd; an average 915 ± 95 grafted cells per spinal cord section). The majority of hNUMA-positive cells colocalized with doublecortin (DCX) immunoreactivity. DCX-positive neurons showed extensive axodendritic sprouting toward surrounding host neurons. In addition, migrating grafted cells were identified up to 500 μm from the graft. In animals treated with FK506 (q12h), FK506 (qd) + mycophenolate (PO; q12h) or FK506 (qd) + mycophenolate (IP; q12h), 11.8 ± 3.4%, 61.2 ± 7.8%, and 99.4 ± 8.9% [expressed as percent of the FK506 (qd) and mycophenolate (IP; qd)] cell survival was seen, respectively. In contrast to animals treated with a combination of FK506 + mycophenolate, robust CD4/8 immunoreactivity was identified in the vicinity of the injection tract in animals treated with FK506 only. These data suggest that a combined, systemically delivered immunosuppression regimen including FK506 and mycophenolate can significantly improve survival of human spinal stem cells after intraspinal transplantation in SOD1 (G93A) rats.
Collapse
Affiliation(s)
- Michael P Hefferan
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California-San Diego, La Jolla, CA 92093-0695, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Kucharova K, Hefferan MP, Patel P, Marsala S, Nejime T, Miyanohara A, Marsala M, Drummond JC. Transplantation of rat synapsin-EGFP-labeled embryonic neurons into the intact and ischemic CA1 hippocampal region: distribution, phenotype, and axodendritic sprouting. Cell Transplant 2011; 20:1163-78. [PMID: 21669049 DOI: 10.3727/096368910x564544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A major limitation of neural transplantation studies is assessing the degree of host-graft interaction. In the present study, rat hippocampal/cortical embryonic neurons (E18) were infected with a lentivirus encoding enhanced green fluorescent protein (GFP) under control of the neuron-specific synapsin promoter, thus permitting robust identification of labeled neurons after in vivo grafting. Two weeks after transient forebrain ischemia or sham-surgery, GFP-expressing neurons were transplanted into CA1 hippocampal regions in immunosuppressed adult Wistar rats. The survival, distribution, phenotype, and axonal projections of GFP-immunoreactive (IR) positive transplanted neurons were evaluated in the sham-operated and ischemia- damaged CA1 hippocampal regions 4, 8, and 12 weeks after transplantation. In both experimental groups, we observed that the main phenotype of host-derived afferents projecting towards grafted GFP-IR neurons as well as transplant-derived GFP-IR efferents were glutamatergic in both animal groups. GFP axonal projections were seen in the nucleus accumbens, septal nuclei, and subiculum-known target areas of CA1 pyramidal neurons. Compared to sham-operated animals, GFP-IR neurons grafted into the ischemia-damaged CA1 migrated more extensively throughout a larger volume of host tissue, particularly in the stratum radiatum. Moreover, enhanced axonal sprouting and neuronal plasticity of grafted cells were evident in the hippocampus, subiculum, septal nuclei, and nucleus accumbens of the ischemia-damaged rats. Our study suggests that the adult rat brain retains some capacity to direct newly sprouting axons of transplanted embryonic neurons to the correct targets and that this capacity is enhanced in previously ischemia-injured forebrain.
Collapse
Affiliation(s)
- K Kucharova
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yuan SH, Martin J, Elia J, Flippin J, Paramban RI, Hefferan MP, Vidal JG, Mu Y, Killian RL, Israel MA, Emre N, Marsala S, Marsala M, Gage FH, Goldstein LSB, Carson CT. Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS One 2011; 6:e17540. [PMID: 21407814 PMCID: PMC3047583 DOI: 10.1371/journal.pone.0017540] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/08/2011] [Indexed: 12/22/2022] Open
Abstract
Background Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC), glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS). Methodology/Principal Findings We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naïve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC, glia and neurons. We isolated a population of NSC that was CD184+/CD271−/CD44−/CD24+ from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184−/CD44−/CD15LOW/CD24+ and a population of glia that was CD184+/CD44+ were subsequently purified from cultures of differentiating NSC. Purified neurons were viable, expressed mature and subtype-specific neuronal markers, and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo. Conclusions/Significance These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC, glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations.
Collapse
Affiliation(s)
- Shauna H. Yuan
- Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jody Martin
- BD Biosciences, La Jolla, California, United States of America
| | - Jeanne Elia
- BD Biosciences, La Jolla, California, United States of America
| | - Jessica Flippin
- Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | | | - Mike P. Hefferan
- Anesthesiology Research Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Jason G. Vidal
- BD Biosciences, La Jolla, California, United States of America
| | - Yangling Mu
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Rhiannon L. Killian
- Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Mason A. Israel
- Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Nil Emre
- BD Biosciences, La Jolla, California, United States of America
| | - Silvia Marsala
- Anesthesiology Research Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
| | - Martin Marsala
- Anesthesiology Research Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- Institute of Neurobiology, Slovak Academy of Sciences, Košice, Slovakia
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Lawrence S. B. Goldstein
- Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | | |
Collapse
|
46
|
Lunn JS, Sakowski SA, Federici T, Glass JD, Boulis NM, Feldman EL. Stem cell technology for the study and treatment of motor neuron diseases. Regen Med 2011; 6:201-13. [PMID: 21391854 PMCID: PMC3154698 DOI: 10.2217/rme.11.6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis and spinal muscular atrophy are devastating neurodegenerative diseases that lead to the specific loss of motor neurons. Recently, stem cell technologies have been developed for the investigation and treatment of both diseases. Here we discuss the different stem cells currently being studied for mechanistic discovery and therapeutic development, including embryonic, adult and induced pluripotent stem cells. We also present supporting evidence for the utilization of stem cell technology in the treatment of amyotrophic lateral sclerosis and spinal muscular atrophy, and describe key issues that must be considered for the transition of stem cell therapies for motor neuron diseases from bench to bedside. Finally, we discuss the first-in-human Phase I trial currently underway examining the safety and feasibility of intraspinal stem cell injections in amyotrophic lateral sclerosis patients as a foundation for translating stem cell therapies for various neurological diseases.
Collapse
Affiliation(s)
- J Simon Lunn
- University of Michigan Department of Neurology, 109 Zina Pitcher Place, 5017 BSRB, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- University of Michigan Department of Neurology, 109 Zina Pitcher Place, 5017 BSRB, Ann Arbor, MI 48109, USA
| | - Thais Federici
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | | | | | - Eva L Feldman
- University of Michigan Department of Neurology, 109 Zina Pitcher Place, 5017 BSRB, Ann Arbor, MI 48109, USA
| |
Collapse
|
47
|
Guest J, Benavides F, Padgett K, Mendez E, Tovar D. Technical aspects of spinal cord injections for cell transplantation. Clinical and translational considerations. Brain Res Bull 2011; 84:267-79. [DOI: 10.1016/j.brainresbull.2010.11.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/20/2010] [Accepted: 11/08/2010] [Indexed: 12/13/2022]
|
48
|
Raore B, Federici T, Taub J, Wu MC, Riley J, Franz CK, Kliem MA, Snyder B, Feldman EL, Johe K, Boulis NM. Cervical multilevel intraspinal stem cell therapy: assessment of surgical risks in Gottingen minipigs. Spine (Phila Pa 1976) 2011; 36:E164-71. [PMID: 21099736 DOI: 10.1097/brs.0b013e3181d77a47] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Assessment of long-term surgical risks from multiple intraspinal cell injections. OBJECTIVE To prove that multilevel-targeted cell injection to the spinal cord can be a feasible and safe procedure. SUMMARY OF BACKGROUND DATA Neural cell transplantation has been proposed as a treatment for a variety of neurologic disorders, including degenerative, ischemic, autoimmune, and traumatic etiologies. Among these diseases, the lack of effective treatment for amyotrophic lateral sclerosis has prompted the search for cell-based neuroprotection or motor neuron-replacement therapies. METHODS Fifteen female minipigs, divided into 3 experimental groups, underwent either 5 or 10 unilateral injections of neural stem cells or 10 vehicle injections into the C3-C5 segments of the spinal cord, using a device and technique developed for safe and accurate injection into the human spinal cord. All animals received intravenous Tacrolimus (0.025 mg/kg) BID during the course of the study. Sensory and motor functions as well as general morbidity were assessed for 28 days. Full necropsy was performed and spinal cords were analyzed for graft survival. This study was performed under Good Laboratory Practice conditions. RESULTS Neither mortality nor permanent surgical complications were observed within the 28-day study period. All animals returned to preoperative baseline showing full motor function recovery. Graft survival was demonstrated by immunohistochemistry. CONCLUSION Clinically acceptable neural progenitor survival, distribution, and density were achieved using the number of injections and surgical techniques specifically developed for this purpose.
Collapse
Affiliation(s)
- Bethwel Raore
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Guo X, Das M, Rumsey J, Gonzalez M, Stancescu M, Hickman J. Neuromuscular junction formation between human stem-cell-derived motoneurons and rat skeletal muscle in a defined system. Tissue Eng Part C Methods 2010; 16:1347-55. [PMID: 20337513 PMCID: PMC2988647 DOI: 10.1089/ten.tec.2010.0040] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To date, the coculture of motoneurons (MNs) and skeletal muscle in a defined in vitro system has only been described in one study and that was between rat MNs and rat skeletal muscle. No in vitro studies have demonstrated human MN to rat muscle synapse formation, although numerous studies have attempted to implant human stem cells into rat models to determine if they could be of therapeutic use in disease or spinal injury models, although with little evidence of neuromuscular junction (NMJ) formation. In this report, MNs differentiated from human spinal cord stem cells, together with rat skeletal myotubes, were used to build a coculture system to demonstrate that NMJ formation between human MNs and rat skeletal muscles is possible. The culture was characterized by morphology, immunocytochemistry, and electrophysiology, while NMJ formation was demonstrated by immunocytochemistry and videography. This defined system provides a highly controlled reproducible model for studying the formation, regulation, maintenance, and repair of NMJs. The in vitro coculture system developed here will be an important model system to study NMJ development, the physiological and functional mechanism of synaptic transmission, and NMJ- or synapse-related disorders such as amyotrophic lateral sclerosis, as well as for drug screening and therapy design.
Collapse
Affiliation(s)
- Xiufang Guo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Mainak Das
- NanoScience Technology Center, University of Central Florida, Orlando, Florida.,Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - John Rumsey
- NanoScience Technology Center, University of Central Florida, Orlando, Florida.,Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Mercedes Gonzalez
- NanoScience Technology Center, University of Central Florida, Orlando, Florida.,Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Maria Stancescu
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida.,Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| |
Collapse
|
50
|
Cova L, Silani V. Amyotrophic lateral sclerosis: applications of stem cells - an update. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2010; 3:145-56. [PMID: 24198520 PMCID: PMC3781739 DOI: 10.2147/sccaa.s8662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are a growing public health challenge, and amyotrophic lateral sclerosis (ALS) remains a fatal incurable disease. The advent of stem cell therapy has opened new horizons for both researchers and ALS patients, desperately looking for a treatment. ALS must be considered a systemic disease affecting many cell phenotypes besides motor neurons, even outside the central nervous system. Cell replacement therapy needs to address the specific neurobiological issues of ALS to safely and efficiently reach clinical settings. Moreover, the enormous potential of induced pluripotent cells directly derived from patients for modeling and understanding the pathological mechanisms, in correlation with the discoveries of new genes and animal models, provides new opportunities that need to be integrated with previously described transplantation strategies. Finally, a careful evaluation of preclinical data in conjunction with wary patient choice in clinical trials needs to be established in order to generate meaningful results.
Collapse
Affiliation(s)
- Lidia Cova
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | | |
Collapse
|