1
|
Ju T, Bourrie BCT, Forgie AJ, Pepin DM, Tollenaar S, Sergi CM, Willing BP. The Gut Commensal Escherichia coli Aggravates High-Fat-Diet-Induced Obesity and Insulin Resistance in Mice. Appl Environ Microbiol 2023; 89:e0162822. [PMID: 36809030 PMCID: PMC10057047 DOI: 10.1128/aem.01628-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Changes in the gut microbiota have been linked to metabolic endotoxemia as a contributing mechanism in the development of obesity and type 2 diabetes. Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. The enrichment of the family Enterobacteriaceae, largely represented by Escherichia coli, induced by a high-fat diet (HFD) has been correlated with impaired glucose homeostasis; however, whether the enrichment of Enterobacteriaceae in a complex gut microbial community in response to an HFD contributes to metabolic disease has not been established. To investigate whether the expansion of Enterobacteriaceae amplifies HFD-induced metabolic disease, a tractable mouse model with the presence or absence of a commensal E. coli strain was established. With an HFD treatment, but not a standard-chow diet, the presence of E. coli significantly increased body weight and adiposity and induced impaired glucose tolerance. In addition, E. coli colonization led to increased inflammation in liver and adipose and intestinal tissue under an HFD regimen. With a modest effect on gut microbial composition, E. coli colonization resulted in significant changes in the predicted functional potential of microbial communities. The results demonstrated the role of commensal E. coli in glucose homeostasis and energy metabolism in response to an HFD, indicating contributions of commensal bacteria to the pathogenesis of obesity and type 2 diabetes. The findings of this research identified a targetable subset of the microbiota in the treatment of people with metabolic inflammation. IMPORTANCE Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. Here, we used a mouse model distinguishable by the presence or absence of a commensal Escherichia coli strain in combination with a high-fat diet challenge to investigate the impact of E. coli on host metabolic outcomes. This is the first study to show that the addition of a single bacterial species to an animal already colonized with a complex microbial community can increase severity of metabolic outcomes. This study is of interest to a wide group of researchers because it provides compelling evidence to target the gut microbiota for therapeutic purposes by which personalized medicines can be made for treating metabolic inflammation. The study also provides an explanation for variability in studies investigating host metabolic outcomes and immune response to diet interventions.
Collapse
Affiliation(s)
- Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Benjamin C. T. Bourrie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Andrew J. Forgie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Deanna M. Pepin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Consolato M. Sergi
- Department of Laboratory Medicine and Pathology, Stollery Children’s Hospital, University of Alberta, Edmonton, Alberta, Canada
- Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Pal N, Joy PS, Sergi CM. Biliary Atresia Animal Models: Is the Needle in a Haystack? Int J Mol Sci 2022; 23:7838. [PMID: 35887185 PMCID: PMC9324346 DOI: 10.3390/ijms23147838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023] Open
Abstract
Biliary atresia (BA) is a progressive fibro-obliterative process with a variable degree of inflammation involving the hepatobiliary system. Its consequences are incalculable for the patients, the affected families, relatives, and the healthcare system. Scientific communities have identified a rate of about 1 case per 10,000-20,000 live births, but the percentage may be higher, considering the late diagnoses. The etiology is heterogeneous. BA, which is considered in half of the causes leading to orthotopic liver transplantation, occurs in primates and non-primates. To consolidate any model, (1) more transport and cell membrane studies are needed to identify the exact mechanism of noxa-related hepatotoxicity; (2) an online platform may be key to share data from pilot projects and new techniques; and (3) the introduction of differentially expressed genes may be useful in investigating the liver metabolism to target the most intricate bilio-toxic effects of pharmaceutical drugs and toxins. As a challenge, such methodologies are still limited to very few centers, making the identification of highly functional animal models like finding a "needle in a haystack". This review compiles models from the haystack and hopes that a combinatorial search will eventually be the root for a successful pathway.
Collapse
Affiliation(s)
- Nutan Pal
- Jefferson Graduate School of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Parijat S. Joy
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Consolato M. Sergi
- Anatomic Pathology Division, Department of Laboratory Medicine and Pathology, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Lab. Medicine and Pathology, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
3
|
Sergi CM, Gilmour S. Biliary Atresia: A Complex Hepatobiliary Disease with Variable Gene Involvement, Diagnostic Procedures, and Prognosis. Diagnostics (Basel) 2022; 12:330. [PMID: 35204421 PMCID: PMC8870870 DOI: 10.3390/diagnostics12020330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The diagnosis of biliary atresia is still terrifying at the 3rd decade of the 21st century. In a department of neonatal intensive care unit, parents and physicians face a challenge with a jaundiced baby, who may or may not have a surgically correctable hepatopathy. The approach has been systematically evaluated, but the etiology remains ambiguous. The study of families with recurrent biliary atresia has been undertaken at a molecular level. The primary interest with this disease is to identify the etiology and change the treatment from symptomatic to curative. The occurrence of this obstructive cholangio-hepatopathy in well-known genetic syndromes has suggested just coincidental finding, but the reality can be more intriguing because some of these diseases may have some interaction with the development of the intrahepatic biliary system. Several genes have been investigated thoroughly, including ADD3 and GPC1 shifting the interest from viruses to genetics. In this review, the intriguing complexities of this hepatobiliary disease are highlighted.
Collapse
Affiliation(s)
- Consolato M. Sergi
- Stollery Children’s Hospital, Laboratory Medicine and Pathology, University Alberta Hospital, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Division of Anatomic Pathology, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Susan Gilmour
- Department of Pediatric Gastroenterology and Nutrition, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| |
Collapse
|
4
|
Mehta V, Hopson PE, Smadi Y, Patel SB, Horvath K, Mehta DI. Development of the human pancreas and its exocrine function. Front Pediatr 2022; 10:909648. [PMID: 36245741 PMCID: PMC9557127 DOI: 10.3389/fped.2022.909648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
The pancreas has both endocrine and exocrine function and plays an important role in digestion and glucose control. Understanding the development of the pancreas, grossly and microscopically, and the genetic factors regulating it provides further insight into clinical problems that arise when these processes fail. Animal models of development are known to have inherent issues when understanding human development. Therefore, in this review, we focus on human studies that have reported gross and microscopic development including acinar-, ductal-, and endocrine cells and the neural network. We review the genes and transcription factors involved in organ formation using data from animal models to bridge current understanding where necessary. We describe the development of exocrine function in the fetus and postnatally. A deeper review of the genes involved in pancreatic formation allows us to describe the development of the different groups (proteases, lipids, and amylase) of enzymes during fetal life and postnatally and describe the genetic defects. We discuss the constellation of gross anatomical, as well as microscopic defects that with genetic mutations lead to pancreatic insufficiency and disease states.
Collapse
Affiliation(s)
- Vijay Mehta
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Puanani E Hopson
- Department of Children Center, Pediatric and Adolescent Medicine, Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Yamen Smadi
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Samit B Patel
- Pediatric Gastroenterology and Nutrition of Tampa Bay, Tampa Bay, FL, United States
| | - Karoly Horvath
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| | - Devendra I Mehta
- Center for Digestive Health and Nutrition, Arnold Palmer Hospital for Children, Orlando, FL, United States
| |
Collapse
|
5
|
Krivova YS, Proshchina AE, Otlyga DA, Leonova OG, Saveliev SV. Prenatal development of sympathetic innervation of the human pancreas. Ann Anat 2021; 240:151880. [PMID: 34896557 DOI: 10.1016/j.aanat.2021.151880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The sympathetic nervous system plays an important role in the regulation of pancreatic exocrine and endocrine secretion. The results of experimental studies also demonstrate the involvement of the sympathetic nervous system in the regulation of endocrine cell differentiation and islet formation during the development of the pancreas. However, the prenatal development of sympathetic innervation of the human pancreas has not yet been studied. MATERIAL AND METHODS Pancreatic autopsy samples from 24 human fetuses were examined using immunohistochemistry with antibodies to tyrosine hydroxylase (TH). The density, concentration, and size (width, length, perimeter and area) of the TH-positive sympathetic nerves were compared in four developmental periods: pre-fetal (8-11 weeks post conception (w.p.c.), n = 6), early fetal (13-20 gestational weeks (g.w.), n = 7), middle fetal (21-28 g.w., n = 6) and late fetal (29-40 g.w., n = 5) using morphometric methods and statistical analysis (Multiple Comparisons p values). Double immunofluorescence with antibodies to TH and either insulin or glucagon and confocal microscopy were applied to analyze the interaction between the sympathetic nerves and endocrine cells, and the co-localization of TH with hormones. RESULTS TH-positive sympathetic nerves were detected in the fetal pancreas starting from the early stages (8 w.p.c.). The developmental dynamics of sympathetic nerves was follows: from the pre-fetal period, the amount of TH-positive nerves gradually increased and their branching occurred reaching the highest density and concentration in the middle fetal period, followed by a decrease in these parameters in the late fetal period. From the 14th g.w. onwards, thin TH-positive nerve fibers were mainly distributed in the vicinity of blood vessels and around the neurons of intrapancreatic ganglia, which is similar in adults. There were only rare TH-positive nerve fibers adjacent to acini or located at the periphery of some islets. The close interactions between the TH-positive nerve fibers and endocrine cells were observed in the neuro-insular complexes. Additionally, non-neuronal TH-containing cells were found in the pancreas of fetuses from the pre-fetal and early fetal periods. Some of these cells simultaneously contained glucagon. CONCLUSIONS The results demonstrate that sympathetic innervation of the human pancreas, including the formation of perivascular and intraganglionic nerve plexuses, extensively develops during prenatal period, while some processes, such as the formation of sympathetic innervation of islet capillaries, may occur postnatally. Non-neuronal TH-containing cells, as well as the interactions between the sympathetic terminals and endocrine cells observed in the fetal pancreas may be necessary for endocrine pancreas development in humans.
Collapse
Affiliation(s)
- Yuliya S Krivova
- Research Institute of Human Morphology, Tsurupy st., 3, 117418 Moscow, Russia.
| | | | - Dmitry A Otlyga
- Research Institute of Human Morphology, Tsurupy st., 3, 117418 Moscow, Russia.
| | - Ol'ga G Leonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova St. 32, 119991 Moscow, Russia.
| | - Sergey V Saveliev
- Research Institute of Human Morphology, Tsurupy st., 3, 117418 Moscow, Russia.
| |
Collapse
|
6
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Analgesia for fetal pain during prenatal surgery: 10 years of progress. Pediatr Res 2021; 89:1612-1618. [PMID: 32971529 DOI: 10.1038/s41390-020-01170-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022]
Abstract
Some doubts on the necessity and safety of providing analgesia to the fetus during prenatal surgery were raised 10 years ago. They were related to four matters: fetal sleep due to neuroinhibitors in fetal blood, the immaturity of the cerebral cortex, safety, and the need for fetal direct analgesia. These objections now seem obsolete. This review shows that neuroinhibitors give fetuses at most some transient sedation, but not a complete analgesia, that the cerebral cortex is not indispensable to feel pain, when subcortical structures for pain perception are present, and that maternal anesthesia seems not sufficient to anesthetize the fetus. Current drugs used for maternal analgesia pass through the placenta only partially so that they cannot guarantee a sufficient analgesia to the fetus. Extraction indices, that is, how much each analgesic drug crosses the placenta, are provided here. We here report safety guidelines for fetal direct analgesia. In conclusion, the human fetus can feel pain when it undergoes surgical interventions and direct analgesia must be provided to it. IMPACT: Fetal pain is evident in the second half of pregnancy. Progress in the physiology of fetal pain, which is reviewed in this report, supports the notion that the fetus reacts to painful interventions during fetal surgery. Evidence here reported shows that it is an error to believe that the fetus is in a continuous and unchanging state of sedation and analgesia. Data are given that disclose that drugs used for maternal analgesia cross the placenta only partially, so that they cannot guarantee a sufficient analgesia to the fetus. Safety guidelines are given for fetal direct analgesia.
Collapse
|
8
|
Campbell-Thompson M, Butterworth EA, Boatwright JL, Nair MA, Nasif LH, Nasif K, Revell AY, Riva A, Mathews CE, Gerling IC, Schatz DA, Atkinson MA. Islet sympathetic innervation and islet neuropathology in patients with type 1 diabetes. Sci Rep 2021; 11:6562. [PMID: 33753784 PMCID: PMC7985489 DOI: 10.1038/s41598-021-85659-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of glucagon secretion in type 1 diabetes (T1D) involves hypersecretion during postprandial states, but insufficient secretion during hypoglycemia. The sympathetic nervous system regulates glucagon secretion. To investigate islet sympathetic innervation in T1D, sympathetic tyrosine hydroxylase (TH) axons were analyzed in control non-diabetic organ donors, non-diabetic islet autoantibody-positive individuals (AAb), and age-matched persons with T1D. Islet TH axon numbers and density were significantly decreased in AAb compared to T1D with no significant differences observed in exocrine TH axon volume or lengths between groups. TH axons were in close approximation to islet α-cells in T1D individuals with long-standing diabetes. Islet RNA-sequencing and qRT-PCR analyses identified significant alterations in noradrenalin degradation, α-adrenergic signaling, cardiac β-adrenergic signaling, catecholamine biosynthesis, and additional neuropathology pathways. The close approximation of TH axons at islet α-cells supports a model for sympathetic efferent neurons directly regulating glucagon secretion. Sympathetic islet innervation and intrinsic adrenergic signaling pathways could be novel targets for improving glucagon secretion in T1D.
Collapse
Affiliation(s)
- Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA. .,Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, 32610, USA.
| | - Elizabeth A Butterworth
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - J Lucas Boatwright
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Malavika A Nair
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lith H Nasif
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kamal Nasif
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Andy Y Revell
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Ivan C Gerling
- Department of Medicine-Endocrinology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
9
|
Bourrie BCT, Ju T, Fouhse JM, Forgie AJ, Sergi C, Cotter PD, Willing BP. Kefir microbial composition is a deciding factor in the physiological impact of kefir in a mouse model of obesity. Br J Nutr 2021; 125:129-138. [PMID: 32684173 DOI: 10.1017/s0007114520002743] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Kefir consumption has been demonstrated to improve lipid and cholesterol metabolism; however, our previous study identified that benefits vary between different commercial and traditional kefir. Here, we investigate the ability of pitched culture kefir, that is, kefir produced by a small number of specific strains, to recapitulate health benefits of a traditional kefir, in a diet-induced obesity mouse model, and examine how microbial composition of kefir impacts these benefits. Eight-week-old female C57BL/6 mice were fed a high-fat diet (40 % energy from fat) supplemented with one of five kefir varieties (traditional, pitched, pitched with no Lactobacillus, pitched with no yeast and commercial control) at 2 ml in 20 g of food for 8 weeks prior to analysis of plasma and liver lipid profiles, and liver gene expression profiles related to lipid metabolism. Both traditional and pitched kefir lowered plasma cholesterol by about 35 % (P = 0·0005) and liver TAG by about 55 % (P = 0·0001) when compared with commercial kefir despite no difference in body weight. Furthermore, pitched kefir produced without either yeast or Lactobacillus did not lower cholesterol. The traditional and pitched kefir with the full complement of microbes were able to impart corresponding decreases in the expression of the cholesterol and lipid metabolism genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase, PPARγ and CD36 in the liver. These results demonstrate that traditional kefir organisms can successfully be utilised in a commercial process, while highlighting the importance of microbial interactions during fermentation in the ability of fermented foods to benefit host health.
Collapse
Affiliation(s)
- Benjamin C T Bourrie
- Department of Agricultural Food and Nutritional Science, Agriculture/Forestry Center, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61C996, Republic of Ireland
| | - Tingting Ju
- Department of Agricultural Food and Nutritional Science, Agriculture/Forestry Center, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Janelle M Fouhse
- Department of Agricultural Food and Nutritional Science, Agriculture/Forestry Center, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Andrew J Forgie
- Department of Agricultural Food and Nutritional Science, Agriculture/Forestry Center, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine & Pathology Division of Anatomical Pathology, Walter C. MacKenzie Health Sciences Centre, University of Alberta, Edmonton, Alberta, T6G 2R7, Canada
| | - Paul D Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61C996, Republic of Ireland
- APC Microbiome Ireland, Cork, Republic of Ireland
| | - Benjamin P Willing
- Department of Agricultural Food and Nutritional Science, Agriculture/Forestry Center, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
10
|
Kumar P, Morton JS, Shah A, Do V, Sergi C, Serrano‐Lomelin J, Davidge ST, Beker D, Levasseur J, Hornberger LK. Intrauterine exposure to chronic hypoxia in the rat leads to progressive diastolic function and increased aortic stiffness from early postnatal developmental stages. Physiol Rep 2020; 8:e14327. [PMID: 31960611 PMCID: PMC6971413 DOI: 10.14814/phy2.14327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM We sought to explore whether fetal hypoxia exposure, an insult of placental insufficiency, is associated with left ventricular dysfunction and increased aortic stiffness at early postnatal ages. METHODS Pregnant Sprague Dawley rats were exposed to hypoxic conditions (11.5% FiO2 ) from embryonic day E15-21 or normoxic conditions (controls). After delivery, left ventricular function and aortic pulse wave velocity (measure of aortic stiffness) were assessed longitudinally by echocardiography from day 1 through week 8. A mixed ANOVA with repeated measures was performed to compare findings between groups across time. Myocardial hematoxylin and eosin and picro-sirius staining were performed to evaluate myocyte nuclear shape and collagen fiber characteristics, respectively. RESULTS Systolic function parameters transiently increased following hypoxia exposure primarily at week 2 (p < .008). In contrast, diastolic dysfunction progressed following fetal hypoxia exposure beginning weeks 1-2 with lower early inflow Doppler velocities, and less of an increase in early to late inflow velocity ratios and annular and septal E'/A' tissue velocities compared to controls (p < .008). As further evidence of altered diastolic function, isovolumetric relaxation time was significantly shorter relative to the cardiac cycle following hypoxia exposure from week 1 onward (p < .008). Aortic stiffness was greater following hypoxia from day 1 through week 8 (p < .008, except week 4). Hypoxia exposure was also associated with altered nuclear shape at week 2 and increased collagen fiber thickness at week 4. CONCLUSION Chronic fetal hypoxia is associated with progressive LV diastolic dysfunction, which corresponds with changes in nuclear shape and collagen fiber thickness, and increased aortic stiffness from early postnatal stages.
Collapse
Affiliation(s)
- Praveen Kumar
- Division of CardiologyDepartment of PediatricsUniversity of AlbertaEdmontonABCanada
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
| | - Jude S. Morton
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Amin Shah
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Victor Do
- Division of CardiologyDepartment of PediatricsUniversity of AlbertaEdmontonABCanada
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
| | - Consolato Sergi
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
- Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonABCanada
| | - Jesus Serrano‐Lomelin
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
| | - Sandra T. Davidge
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Donna Beker
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Jody Levasseur
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| | - Lisa K. Hornberger
- Division of CardiologyDepartment of PediatricsUniversity of AlbertaEdmontonABCanada
- Women and Children’s Health Research InstituteUniversity of AlbertaEdmontonABCanada
- Department of Obstetrics/GynecologyUniversity of AlbertaEdmontonABCanada
- Cardiovascular Research Institute and Mazankowski Alberta Heart InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
11
|
Hsueh B, Burns VM, Pauerstein P, Holzem K, Ye L, Engberg K, Wang AC, Gu X, Chakravarthy H, Arda HE, Charville G, Vogel H, Efimov IR, Kim S, Deisseroth K. Pathways to clinical CLARITY: volumetric analysis of irregular, soft, and heterogeneous tissues in development and disease. Sci Rep 2017; 7:5899. [PMID: 28724969 PMCID: PMC5517617 DOI: 10.1038/s41598-017-05614-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional tissue-structural relationships are not well captured by typical thin-section histology, posing challenges for the study of tissue physiology and pathology. Moreover, while recent progress has been made with intact methods for clearing, labeling, and imaging whole organs such as the mature brain, these approaches are generally unsuitable for soft, irregular, and heterogeneous tissues that account for the vast majority of clinical samples and biopsies. Here we develop a biphasic hydrogel methodology, which along with automated analysis, provides for high-throughput quantitative volumetric interrogation of spatially-irregular and friable tissue structures. We validate and apply this approach in the examination of a variety of developing and diseased tissues, with specific focus on the dynamics of normal and pathological pancreatic innervation and development, including in clinical samples. Quantitative advantages of the intact-tissue approach were demonstrated compared to conventional thin-section histology, pointing to broad applications in both research and clinical settings.
Collapse
Affiliation(s)
- Brian Hsueh
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Vanessa M Burns
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Philip Pauerstein
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA
| | - Katherine Holzem
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Li Ye
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford, CA, 94305, USA
| | - Kristin Engberg
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Ai-Chi Wang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA
| | - Harini Chakravarthy
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA
| | - H Efsun Arda
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA
| | - Gregory Charville
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Seung Kim
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford, CA, 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
- Howard Hughes Medical Institute, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Rodriguez-Calvo T, Zapardiel-Gonzalo J, Amirian N, Castillo E, Lajevardi Y, Krogvold L, Dahl-Jørgensen K, von Herrath MG. Increase in Pancreatic Proinsulin and Preservation of β-Cell Mass in Autoantibody-Positive Donors Prior to Type 1 Diabetes Onset. Diabetes 2017; 66:1334-1345. [PMID: 28137793 PMCID: PMC5399615 DOI: 10.2337/db16-1343] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes is characterized by the loss of insulin production caused by β-cell dysfunction and/or destruction. The hypothesis that β-cell loss occurs early during the prediabetic phase has recently been challenged. Here we show, for the first time in situ, that in pancreas sections from autoantibody-positive (Ab+) donors, insulin area and β-cell mass are maintained before disease onset and that production of proinsulin increases. This suggests that β-cell destruction occurs more precipitously than previously assumed. Indeed, the pancreatic proinsulin-to-insulin area ratio was also increased in these donors with prediabetes. Using high-resolution confocal microscopy, we found a high accumulation of vesicles containing proinsulin in β-cells from Ab+ donors, suggesting a defect in proinsulin conversion or an accumulation of immature vesicles caused by an increase in insulin demand and/or a dysfunction in vesicular trafficking. In addition, islets from Ab+ donors were larger and contained a higher number of β-cells per islet. Our data indicate that β-cell mass (and function) is maintained until shortly before diagnosis and declines rapidly at the time of clinical onset of disease. This suggests that secondary prevention before onset, when β-cell mass is still intact, could be a successful therapeutic strategy.
Collapse
Affiliation(s)
| | | | - Natalie Amirian
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Ericka Castillo
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Yasaman Lajevardi
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
- Novo Nordisk Diabetes Research & Development Center, Seattle, WA
| |
Collapse
|
13
|
Krivova Y, Proshchina A, Barabanov V, Leonova O, Saveliev S. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas. Tissue Cell 2016; 48:567-576. [PMID: 27823763 DOI: 10.1016/j.tice.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/15/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
Abstract
In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation.
Collapse
Affiliation(s)
- Yuliya Krivova
- Laboratory of Nervous System Development, Research Institute of Human Morphology, 117418, Tsurupy St. 3, Moscow, Russia.
| | - Alexandra Proshchina
- Laboratory of Nervous System Development, Research Institute of Human Morphology, 117418, Tsurupy St. 3, Moscow, Russia.
| | - Valeriy Barabanov
- Laboratory of Nervous System Development, Research Institute of Human Morphology, 117418, Tsurupy St. 3, Moscow, Russia.
| | - Olga Leonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Vavilova St. 32, Moscow, Russia.
| | - Sergey Saveliev
- Laboratory of Nervous System Development, Research Institute of Human Morphology, 117418, Tsurupy St. 3, Moscow, Russia.
| |
Collapse
|
14
|
Immunohistochemical Analysis and Electron Microscopy of Glial Cells in the Pancreas of Fetuses and Children. Bull Exp Biol Med 2015; 159:666-9. [PMID: 26459477 DOI: 10.1007/s10517-015-3043-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Indexed: 10/23/2022]
Abstract
Schwann cells forming peri-insular glial sheath of the pancreatic islets in some mammals can be involved in the pathogenesis of diabetes mellitus. Human pancreatic cells contain small elongated or oval cells of unknown origin with S100-immunopositive processes. We found that cells with processes located in pancreatic islets of human fetuses and children are similar to Schwann cells by their morphological and ultrastructural characteristics, immunopositive reaction for S100, and integration with nerve endings. In the pancreas of fetuses and children, Schwann cells are often seen in forming pancreatic islets and around the pancreatic ducts. The data suggests that Schwann cells can participate in the morphogenesis of human pancreatic islets.
Collapse
|
15
|
Proshchina AE, Krivova YS, Barabanov VM, Saveliev SV. Ontogeny of neuro-insular complexes and islets innervation in the human pancreas. Front Endocrinol (Lausanne) 2014; 5:57. [PMID: 24795697 PMCID: PMC4001005 DOI: 10.3389/fendo.2014.00057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 04/08/2014] [Indexed: 11/13/2022] Open
Abstract
The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.
Collapse
Affiliation(s)
- Alexandra E. Proshchina
- Laboratory of Nervous System Development, Scientific Research Institute of Human Morphology, Department of Medical Biological Sciences, Russian Academy of Medical Science, Moscow, Russia
- *Correspondence: Alexandra E. Proshchina, Laboratory of Nervous System Development, Scientific Research Institute of Human Morphology, Department of Medical Biological Sciences, Russian Academy of Medical Science, Tsurupi Street 3, Moscow 117418, Russia e-mail:
| | - Yulia S. Krivova
- Laboratory of Nervous System Development, Scientific Research Institute of Human Morphology, Department of Medical Biological Sciences, Russian Academy of Medical Science, Moscow, Russia
| | - Valeriy M. Barabanov
- Laboratory of Nervous System Development, Scientific Research Institute of Human Morphology, Department of Medical Biological Sciences, Russian Academy of Medical Science, Moscow, Russia
| | - Sergey V. Saveliev
- Laboratory of Nervous System Development, Scientific Research Institute of Human Morphology, Department of Medical Biological Sciences, Russian Academy of Medical Science, Moscow, Russia
| |
Collapse
|
16
|
Early manifestations of pancreatic cancer: The effect of cancer–nerve interaction. Med Hypotheses 2013; 81:180-2. [DOI: 10.1016/j.mehy.2013.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/09/2013] [Accepted: 05/15/2013] [Indexed: 12/25/2022]
|
17
|
Geiger R, Treml B, Pinna A, Barnickel L, Prossliner H, Reinstadler H, Pilch M, Hauer M, Walther C, Steiner HJ, Giese T, Wemhöner A, Scholl-Bürgi S, Gottardi W, Arnitz R, Sergi C, Nagl M, Löckinger A. Tolerability of inhaled N-chlorotaurine in the pig model. BMC Pulm Med 2009; 9:33. [PMID: 19602222 PMCID: PMC2722574 DOI: 10.1186/1471-2466-9-33] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 07/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-chlorotaurine, a long-lived oxidant produced by human leukocytes, can be applied in human medicine as an endogenous antiseptic. Its antimicrobial activity can be enhanced by ammonium chloride. This study was designed to evaluate the tolerability of inhaled N-chlorotaurine (NCT) in the pig model. METHODS Anesthetized pigs inhaled test solutions of 1% (55 mM) NCT (n = 7), 5% NCT (n = 6), or 1% NCT plus 1% ammonium chloride (NH4Cl) (n = 6), and 0.9% saline solution as a control (n = 7), respectively. Applications with 5 ml each were performed hourly within four hours. Lung function, haemodynamics, and pharmacokinetics were monitored. Bronchial lavage samples for captive bubble surfactometry and lung samples for histology and electron microscopy were removed. RESULTS Arterial pressure of oxygen (PaO2) decreased significantly over the observation period of 4 hours in all animals. Compared to saline, 1% NCT + 1% NH4Cl led to significantly lower PaO2 values at the endpoint after 4 hours (62 +/- 9.6 mmHg vs. 76 +/- 9.2 mmHg, p = 0.014) with a corresponding increase in alveolo-arterial difference of oxygen partial pressure (AaDO2) (p = 0.004). Interestingly, AaDO2 was lowest with 1% NCT, even lower than with saline (p = 0.016). The increase of pulmonary artery pressure (PAP) over the observation period was smallest with 1% NCT without difference to controls (p = 0.91), and higher with 5% NCT (p = 0.02), and NCT + NH4Cl (p = 0.05).Histological and ultrastructural investigations revealed no differences between the test and control groups. The surfactant function remained intact. There was no systemic resorption of NCT detectable, and its local inactivation took place within 30 min. The concentration of NCT tolerated by A549 lung epithelial cells in vitro was similar to that known from other body cells (0.25-0.5 mM). CONCLUSION The endogenous antiseptic NCT was well tolerated at a concentration of 1% upon inhalation in the pig model. Addition of ammonium chloride in high concentration provokes a statistically significant impact on blood oxygenation.
Collapse
Affiliation(s)
- Ralf Geiger
- Department of Pediatrics, Division of Cardiology, Pulmology, Allergology and Cystic Fibrosis, Innsbruck Medical University, Innsbruck, Austria
- Division of Neonatology, Neuropediatrics and Inborn errors of metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - Benedikt Treml
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Anna Pinna
- Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Linn Barnickel
- Institute of Pathology, Innsbruck Medical University, Innsbruck, Austria
| | - Harald Prossliner
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Hannes Reinstadler
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Michael Pilch
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Maria Hauer
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Christoph Walther
- Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Hans-Jörg Steiner
- Institute of Pathology, Innsbruck Medical University, Innsbruck, Austria
| | - Thomas Giese
- Department of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Wemhöner
- Technical University Dresden, University Hospital Dresden, Department for Pediatric Intensive Care and Neonatology, Dresden, Germany
| | - Sabine Scholl-Bürgi
- Department of Pediatrics, Division of Cardiology, Pulmology, Allergology and Cystic Fibrosis, Innsbruck Medical University, Innsbruck, Austria
- Division of Neonatology, Neuropediatrics and Inborn errors of metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - Waldemar Gottardi
- Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Roland Arnitz
- Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Consolato Sergi
- Institute of Pathology, Innsbruck Medical University, Innsbruck, Austria
| | - Markus Nagl
- Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Alexander Löckinger
- Department of Anaesthesiology and Critical Care Medicine, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|