1
|
Xie ZF, Wang SY, Gao Y, Zhang YD, Han YN, Huang J, Gao MN, Wang CG. Vagus nerve stimulation (VNS) preventing postoperative cognitive dysfunction (POCD): two potential mechanisms in cognitive function. Mol Cell Biochem 2025; 480:1343-1357. [PMID: 39138750 DOI: 10.1007/s11010-024-05091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Postoperative cognitive dysfunction (POCD) impacts a significant number of patients annually, frequently impairing their cognitive abilities and resulting in unfavorable clinical outcomes. Aimed at addressing cognitive impairment, vagus nerve stimulation (VNS) is a therapeutic approach, which was used in many mental disordered diseases, through the modulation of vagus nerve activity. In POCD model, the enhancement of cognition function provided by VNS was shown, demonstrating VNS effect on cognition in POCD. In the present study, we primarily concentrates on elucidating the role of the VNS improving the cognitive function in POCD, via two potential mechanisms: the inflammatory microenvironment and epigenetics. This study provided a theoretical support for the feasibility that VNS can be a potential method to enhance cognition function in POCD.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Sheng-Yu Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Yi-Dan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
- The First Clinical Medical College, Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Ya-Nan Han
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jin Huang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
- Graduate College, Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Na Gao
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China
| | - Chun-Guang Wang
- Department of Anesthesiology, The First Central Hospital of Baoding, Northern Great Wall Street 320#, Baoding, 071000, Hebei, China.
| |
Collapse
|
2
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 PMCID: PMC12011104 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
3
|
Ye L, Li W, Tang X, Xu T, Wang G. Emerging Neuroprotective Strategies: Unraveling the Potential of HDAC Inhibitors in Traumatic Brain Injury Management. Curr Neuropharmacol 2024; 22:2298-2313. [PMID: 38288835 PMCID: PMC11451322 DOI: 10.2174/1570159x22666240128002056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 10/06/2024] Open
Abstract
Traumatic brain injury (TBI) is a significant global health problem, leading to high rates of mortality and disability. It occurs when an external force damages the brain, causing immediate harm and triggering further pathological processes that exacerbate the condition. Despite its widespread impact, the underlying mechanisms of TBI remain poorly understood, and there are no specific pharmacological treatments available. This creates an urgent need for new, effective neuroprotective drugs and strategies tailored to the diverse needs of TBI patients. In the realm of gene expression regulation, chromatin acetylation plays a pivotal role. This process is controlled by two classes of enzymes: histone acetyltransferase (HAT) and histone deacetylase (HDAC). These enzymes modify lysine residues on histone proteins, thereby determining the acetylation status of chromatin. HDACs, in particular, are involved in the epigenetic regulation of gene expression in TBI. Recent research has highlighted the potential of HDAC inhibitors (HDACIs) as promising neuroprotective agents. These compounds have shown encouraging results in animal models of various neurodegenerative diseases. HDACIs offer multiple avenues for TBI management: they mitigate the neuroinflammatory response, alleviate oxidative stress, inhibit neuronal apoptosis, and promote neurogenesis and axonal regeneration. Additionally, they reduce glial activation, which is associated with TBI-induced neuroinflammation. This review aims to provide a comprehensive overview of the roles and mechanisms of HDACs in TBI and to evaluate the therapeutic potential of HDACIs. By summarizing current knowledge and emphasizing the neuroregenerative capabilities of HDACIs, this review seeks to advance TBI management and contribute to the development of targeted treatments.
Collapse
Affiliation(s)
- Lisha Ye
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Wenfeng Li
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Xiaoyan Tang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Ting Xu
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| | - Guohua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China
| |
Collapse
|
4
|
Guo B, Zhang J, Zhang W, Chen F, Liu B. Gut microbiota-derived short chain fatty acids act as mediators of the gut-brain axis targeting age-related neurodegenerative disorders: a narrative review. Crit Rev Food Sci Nutr 2023; 65:265-286. [PMID: 37897083 DOI: 10.1080/10408398.2023.2272769] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Neurodegenerative diseases associated with aging are often accompanied by cognitive decline and gut microbiota disorder. But the impact of gut microbiota on these cognitive disturbances remains incompletely understood. Short chain fatty acids (SCFAs) are major metabolites produced by gut microbiota during the digestion of dietary fiber, serving as an energy source for gut epithelial cells and/or circulating to other organs, such as the liver and brain, through the bloodstream. SCFAs have been shown to cross the blood-brain barrier and played crucial roles in brain metabolism, with potential implications in mediating Alzheimer's disease (AD) and Parkinson's disease (PD). However, the underlying mechanisms that SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, the dietary sources which determine these SCFAs production was not thoroughly evaluated yet. This comprehensive review explores the production of SCFAs by gut microbiota, their transportation through the gut-brain axis, and the potential mechanisms by which they influence age-related neurodegenerative disorders. Also, the review discusses the importance of dietary fiber sources and the challenges associated with harnessing dietary-derived SCFAs as promoters of neurological health in elderly individuals. Overall, this study suggests that gut microbiota-derived SCFAs and/or dietary fibers hold promise as potential targets and strategies for addressing age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Bingbing Guo
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jingyi Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weihao Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Smolen P, Dash PK, Redell JB. Traumatic brain injury-associated epigenetic changes and the risk for neurodegenerative diseases. Front Neurosci 2023; 17:1259405. [PMID: 37795186 PMCID: PMC10546067 DOI: 10.3389/fnins.2023.1259405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Epidemiological studies have shown that traumatic brain injury (TBI) increases the risk for developing neurodegenerative diseases (NDs). However, molecular mechanisms that underlie this risk are largely unidentified. TBI triggers widespread epigenetic modifications. Similarly, NDs such as Alzheimer's or Parkinson's are associated with numerous epigenetic changes. Although epigenetic changes can persist after TBI, it is unresolved if these modifications increase the risk of later ND development and/or dementia. We briefly review TBI-related epigenetic changes, and point out putative feedback loops that might contribute to long-term persistence of some modifications. We then focus on evidence suggesting persistent TBI-associated epigenetic changes may contribute to pathological processes (e.g., neuroinflammation) which may facilitate the development of specific NDs - Alzheimer's disease, Parkinson's disease, or chronic traumatic encephalopathy. Finally, we discuss possible directions for TBI therapies that may help prevent or delay development of NDs.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | | | | |
Collapse
|
6
|
Bogie JF, Guns J, Vanherle S. Lipid metabolism in neurodegenerative diseases. CELLULAR LIPID IN HEALTH AND DISEASE 2023:389-419. [DOI: 10.1016/b978-0-323-95582-9.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Guzzetta KE, Cryan JF, O’Leary OF. Microbiota-Gut-Brain Axis Regulation of Adult Hippocampal Neurogenesis. Brain Plast 2022; 8:97-119. [PMID: 36448039 PMCID: PMC9661352 DOI: 10.3233/bpl-220141] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
The birth, maturation, and integration of new neurons in the adult hippocampus regulates specific learning and memory processes, responses to stress, and antidepressant treatment efficacy. This process of adult hippocampal neurogenesis is sensitive to environmental stimuli, including peripheral signals from certain cytokines, hormones, and metabolites, which can promote or hinder the production and survival of new hippocampal neurons. The trillions of microorganisms resident to the gastrointestinal tract, collectively known as the gut microbiota, also demonstrate the ability to modulate adult hippocampal neurogenesis. In doing so, the microbiota-gut-brain axis can influence brain functions regulated by adult hippocampal neurogenesis. Unlike the hippocampus, the gut microbiota is highly accessible to direct interventions, such as prebiotics, probiotics, and antibiotics, and can be manipulated by lifestyle choices including diet. Therefore, understanding the pathways by which the gut microbiota shapes hippocampal neurogenesis may reveal novel targets for non-invasive therapeutics to treat disorders in which alterations in hippocampal neurogenesis have been implicated. This review first outlines the factors which influence both the gut microbiome and adult hippocampal neurogenesis, with cognizance that these effects might happen either independently or due to microbiota-driven mechanisms. We then highlight approaches for investigating the regulation of adult hippocampal neurogenesis by the microbiota-gut-brain axis. Finally, we summarize the current evidence demonstrating the gut microbiota's ability to influence adult hippocampal neurogenesis, including mechanisms driven through immune pathways, microbial metabolites, endocrine signalling, and the nervous system, and postulate implications for these effects in disease onset and treatment.
Collapse
Affiliation(s)
- Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Olivia F. O’Leary
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Zhang Y, Yang X, Hou X, Zhou W, Bi C, Yang Z, Lu S, Ding Z, Ding Z, Zou Y, Guo Q, Schäfer MKE, Huang C. Extracellular signal-regulated kinase-dependent phosphorylation of histone H3 serine 10 is involved in the pathogenesis of traumatic brain injury. Front Mol Neurosci 2022; 15:828567. [PMID: 36245918 PMCID: PMC9557206 DOI: 10.3389/fnmol.2022.828567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) induces a series of epigenetic changes in brain tissue, among which histone modifications are associated with the deterioration of TBI. In this study, we explored the role of histone H3 modifications in a weight-drop model of TBI in rats. Screening for various histone modifications, immunoblot analyses revealed that the phosphorylation of histone H3 serine 10 (p-H3S10) was significantly upregulated after TBI in the brain tissue surrounding the injury site. A similar posttraumatic regulation was observed for phosphorylated extracellular signal-regulated kinase (p-ERK), which is known to phosphorylate H3S10. In support of the hypothesis that ERK-mediated phosphorylation of H3S10 contributes to TBI pathogenesis, double immunofluorescence staining of brain sections showed high levels and colocalization of p-H3S10 and p-ERK predominantly in neurons surrounding the injury site. To test the hypothesis that inhibition of ERK-H3S10 signaling ameliorates TBI pathogenesis, the mitogen-activated protein kinase–extracellular signal-regulated kinase kinase (MEK) 1/2 inhibitor U0126, which inhibits ERK phosphorylation, was administered into the right lateral ventricle of TBI male and female rats via intracerebroventricular cannulation for 7 days post trauma. U0126 administration indeed prevented H3S10 phosphorylation and improved motor function recovery and cognitive function compared to vehicle treatment. In agreement with our findings in the rat model of TBI, immunoblot and double immunofluorescence analyses of brain tissue specimens from patients with TBI demonstrated high levels and colocalization of p-H3S10 and p-ERK as compared to control specimens from non-injured individuals. In conclusion, our findings indicate that phosphorylation-dependent activation of ERK-H3S10 signaling participates in the pathogenesis of TBI and can be targeted by pharmacological approaches.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Xin Yang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Xinran Hou
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Wen Zhou
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Changlong Bi
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Sining Lu
- Medical College of Xiangya, Central South University, Changsha, China
| | - Zijin Ding
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Zhuofeng Ding
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Yu Zou
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences and Research Center of Immunotherapy of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Changsheng Huang,
| |
Collapse
|
9
|
Epigenetic Alterations in Sports-Related Injuries. Genes (Basel) 2022; 13:genes13081471. [PMID: 36011382 PMCID: PMC9408207 DOI: 10.3390/genes13081471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is a well-known fact that physical activity benefits people of all age groups. However, highly intensive training, maladaptation, improper equipment, and lack of sufficient rest lead to contusions and sports-related injuries. From the perspectives of sports professionals and those performing regular–amateur sports activities, it is important to maintain proper levels of training, without encountering frequent injuries. The bodily responses to physical stress and intensive physical activity are detected on many levels. Epigenetic modifications, including DNA methylation, histone protein methylation, acetylation, and miRNA expression occur in response to environmental changes and play fundamental roles in the regulation of cellular activities. In the current review, we summarise the available knowledge on epigenetic alterations present in tissues and organs (e.g., muscles, the brain, tendons, and bones) as a consequence of sports-related injuries. Epigenetic mechanism observations have the potential to become useful tools in sports medicine, as predictors of approaching pathophysiological alterations and injury biomarkers that have already taken place.
Collapse
|
10
|
Golub VM, Reddy DS. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev 2022; 74:387-438. [PMID: 35302046 PMCID: PMC8973512 DOI: 10.1124/pharmrev.121.000375] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most devastating long-term, network consequences of traumatic brain injury (TBI). There is currently no approved treatment that can prevent onset of spontaneous seizures associated with brain injury, and many cases of PTE are refractory to antiseizure medications. Post-traumatic epileptogenesis is an enduring process by which a normal brain exhibits hypersynchronous excitability after a head injury incident. Understanding the neural networks and molecular pathologies involved in epileptogenesis are key to preventing its development or modifying disease progression. In this article, we describe a critical appraisal of the current state of PTE research with an emphasis on experimental models, molecular mechanisms of post-traumatic epileptogenesis, potential biomarkers, and the burden of PTE-associated comorbidities. The goal of epilepsy research is to identify new therapeutic strategies that can prevent PTE development or interrupt the epileptogenic process and relieve associated neuropsychiatric comorbidities. Therefore, we also describe current preclinical and clinical data on the treatment of PTE sequelae. Differences in injury patterns, latency period, and biomarkers are outlined in the context of animal model validation, pathophysiology, seizure frequency, and behavior. Improving TBI recovery and preventing seizure onset are complex and challenging tasks; however, much progress has been made within this decade demonstrating disease modifying, anti-inflammatory, and neuroprotective strategies, suggesting this goal is pragmatic. Our understanding of PTE is continuously evolving, and improved preclinical models allow for accelerated testing of critically needed novel therapeutic interventions in military and civilian persons at high risk for PTE and its devastating comorbidities. SIGNIFICANCE STATEMENT: Post-traumatic epilepsy is a chronic seizure condition after brain injury. With few models and limited understanding of the underlying progression of epileptogenesis, progress is extremely slow to find a preventative treatment for PTE. This study reviews the current state of modeling, pathology, biomarkers, and potential interventions for PTE and comorbidities. There's new optimism in finding a drug therapy for preventing PTE in people at risk, such as after traumatic brain injury, concussion, and serious brain injuries, especially in military persons.
Collapse
Affiliation(s)
- Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
11
|
Belén Sanz-Martos A, Fernández-Felipe J, Merino B, Cano V, Ruiz-Gayo M, Del Olmo N. Butyric Acid Precursor Tributyrin Modulates Hippocampal Synaptic Plasticity and Prevents Spatial Memory Deficits: Role of PPARγ and AMPK. Int J Neuropsychopharmacol 2022; 25:498-511. [PMID: 35152284 PMCID: PMC9211015 DOI: 10.1093/ijnp/pyac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Short chain fatty acids (SCFA), such as butyric acid (BA), derived from the intestinal fermentation of dietary fiber and contained in dairy products, are gaining interest in relation to their possible beneficial effects on neuropsychological disorders. METHODS C57BL/6J male mice were used to investigate the effect of tributyrin (TB), a prodrug of BA, on hippocampus (HIP)-dependent spatial memory, HIP synaptic transmission and plasticity mechanisms, and the expression of genes and proteins relevant to HIP glutamatergic transmission. RESULTS Ex vivo studies, carried out in HIP slices, revealed that TB can transform early-LTP into late-LTP (l-LTP) and to rescue LTP-inhibition induced by scopolamine. The facilitation of l-LTP induced by TB was blocked both by GW9662 (a PPARγ antagonist) and C-Compound (an AMPK inhibitor), suggesting the involvement of both PPARγ and AMPK on TB effects. Moreover, 48-hour intake of a diet containing 1% TB prevented, in adolescent but not in adult mice, scopolamine-induced impairment of HIP-dependent spatial memory. In the adolescent HIP, TB upregulated gene expression levels of Pparg, leptin, and adiponectin receptors, and that of the glutamate receptor subunits AMPA-2, NMDA-1, NMDA-2A, and NMDA-2B. CONCLUSIONS Our study shows that TB has a positive influence on LTP and HIP-dependent spatial memory, which suggests that BA may have beneficial effects on memory.
Collapse
Affiliation(s)
- Ana Belén Sanz-Martos
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Jesús Fernández-Felipe
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Beatriz Merino
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Victoria Cano
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | | | - Nuria Del Olmo
- Correspondence: Nuria Del Olmo, PhD, Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain ()
| |
Collapse
|
12
|
Li L, Luo Q, Shang B, Yang X, Zhang Y, Pan Q, Wu N, Tang W, Du D, Sun X, Jiang L. Selective activation of cannabinoid receptor-2 reduces white matter injury via PERK signaling in a rat model of traumatic brain injury. Exp Neurol 2022; 347:113899. [PMID: 34678230 DOI: 10.1016/j.expneurol.2021.113899] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) destroys white matter, and this destruction is aggravated by secondary neuroinflammatory reactions. Although white matter injury (WMI) is strongly correlated with poor neurological function, understanding of white matter integrity maintenance is limited, and no available therapies can effectively protect white matter. One candidate approach that may fulfill this goal is cannabinoid receptor 2 (CB2) agonist treatment. Here, we confirmed that a selective CB2 agonist, JWH133, protected white matter after TBI. METHODS The motor evoked potentials (MEPs), open field test, and Morris water maze test were used to assess neurobehavioral outcomes. Brain tissue loss, WM damage, Endoplasmic reticulum stress (ER stress), microglia responses were evaluated after TBI. The functional integrity of WM was measured by diffusion tensor imaging (DTI) and transmission electron microscopy (TEM). Primary microglia and oligodendrocyte cocultures were used for additional mechanistic studies. RESULTS JWH133 increased myelin basic protein (MBP) and neurofilament heavy chain (NF200) levels and anatomic preservation of myelinated axons revealed by DTI and TEM. JWH133 also increased the numbers of oligodendrocyte precursor cells and mature oligodendrocytes. Furthermore, JWH133 drove microglial polarization toward the protective M2 phenotype and modulated the redistribution of microglia in the striatum. Further investigation of the underlying mechanism revealed that JWH133 downregulated phosphorylation of the protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK) signaling pathway and its downstream signals eukaryotic translation initiation factor 2 α (eIF2α), activating transcription factor 4 (ATF4) and Growth arrest and DNA damage-inducible protein (GADD34); this downregulation was followed by p-Protein kinase B(p-Akt) upregulation. In primary cocultures of microglia and oligodendrocytes, JWH133 decreased phosphorylated PERK expression in microglia stimulated with tunicamycin and facilitated oligodendrocyte survival. These data reveal that JWH133 ultimately alleviates WMI and improves neurological behavior following TBI. However, these effects were prevented by SR144528, a selective CB2 antagonist. CONCLUSIONS This work illustrates the PERK-mediated interaction between microglia and oligodendrocytes. In addition, the results are consistent with recent findings that microglial polarization switching accelerates WMI, highlighting a previously unexplored role for CB2 agonists. Thus, CB2 agonists are potential therapeutic agents for TBI and other neurological conditions involving white matter destruction.
Collapse
Affiliation(s)
- Lin Li
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurosurgery, Nanchong Central Hospital, Nanchong, China
| | - Qing Luo
- Department of Ultrasound, Nanchong Central Hospital, Nanchong, China
| | - Bin Shang
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong, China
| | - Xiaomin Yang
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Zhang
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuling Pan
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Na Wu
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Donglin Du
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Jiang
- Department of Neurosurgery, Neural injury and protection laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Catta-Preta R, Zdilar I, Jenner B, Doisy ET, Tercovich K, Nord AS, Gurkoff GG. Transcriptional Pathology Evolves over Time in Rat Hippocampus after Lateral Fluid Percussion Traumatic Brain Injury. Neurotrauma Rep 2021; 2:512-525. [PMID: 34909768 PMCID: PMC8667199 DOI: 10.1089/neur.2021.0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Traumatic brain injury (TBI) causes acute and lasting impacts on the brain, driving pathology along anatomical, cellular, and behavioral dimensions. Rodent models offer an opportunity to study the temporal progression of disease from injury to recovery. Transcriptomic and epigenomic analysis were applied to evaluate gene expression in ipsilateral hippocampus at 1 and 14 days after sham (n = 2 and 4, respectively per time point) and moderate lateral fluid percussion injury (n = 4 per time point). This enabled the identification of dynamic changes and differential gene expression (differentially expressed genes; DEGs) modules linked to underlying epigenetic response. We observed acute signatures associated with cell death, astrocytosis, and neurotransmission that largely recovered by 2 weeks. Inflammation and immune signatures segregated into upregulated modules with distinct expression trajectories and functions. Whereas most down-regulated genes recovered by 14 days, two modules with delayed and persistent changes were associated with cholesterol metabolism, amyloid beta clearance, and neurodegeneration. Differential expression was paralleled by changes in histone H3 lysine residue 4 trimethylation at the promoters of DEGs at 1 day post-TBI, with the strongest changes observed for inflammation and immune response genes. These results demonstrate how integrated genomics analysis in the pre-clinical setting has the potential to identify stage-specific biomarkers for injury and/or recovery. Though limited in scope here, our general strategy has the potential to capture pathological signatures over time and evaluate treatment efficacy at the systems level.
Collapse
Affiliation(s)
- Rinaldo Catta-Preta
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Iva Zdilar
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Bradley Jenner
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Emily T. Doisy
- Department of Neurological Surgery, University of California Davis, Davis, California, USA
| | - Kayleen Tercovich
- Department of Neurological Surgery, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Alex S. Nord
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| | - Gene G. Gurkoff
- Department of Neurological Surgery, University of California Davis, Davis, California, USA
- Center for Neuroscience, University of California Davis, Davis, California, USA
| |
Collapse
|
14
|
Chen H, Meng L, Shen L. Multiple roles of short-chain fatty acids in Alzheimer disease. Nutrition 2021; 93:111499. [PMID: 34735921 DOI: 10.1016/j.nut.2021.111499] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/19/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer disease (AD) is the most common form of neurodegenerative disease in older adults and has a complicated etiology. Recently, the roles of short-chain fatty acids (SCFAs), the main metabolites generated by fermentation of dietary fiber by gut microbiota, in the pathogenesis of AD have attracted considerable interest. This study analyzed the multiple roles of SCFAs in AD pathogenesis from five aspects, including: 1) epigenetic regulation; 2) modulation of neuroinflammation; 3) maintenance of the blood-brain barrier (BBB); 4) regulation of brain metabolism; and 5) interference in amyloid protein formation. According to the currently available evidence, SCFAs, particularly butyrate, cause important biological effects that interfere with the development of AD. However, the effect of other SCFAs, such as propionate, on AD might be either beneficial or harmful to different pathways, indicating that the role of SCFAs in the pathogenesis of AD is rather complicated and warrants further investigations.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Lei Meng
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China; Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| |
Collapse
|
15
|
Opeyemi OM, Rogers MB, Firek BA, Janesko-Feldman K, Vagni V, Mullett SJ, Wendell SG, Nelson BP, New LA, Mariño E, Kochanek PM, Bayır H, Clark RS, Morowitz MJ, Simon DW. Sustained Dysbiosis and Decreased Fecal Short-Chain Fatty Acids after Traumatic Brain Injury and Impact on Neurologic Outcome. J Neurotrauma 2021; 38:2610-2621. [PMID: 33957773 PMCID: PMC8403202 DOI: 10.1089/neu.2020.7506] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) alters microbial populations present in the gut, which may impact healing and tissue recovery. However, the duration and impact of these changes on outcome from TBI are unknown. Short-chain fatty acids (SCFAs), produced by bacterial fermentation of dietary fiber, are important signaling molecules in the microbiota gut-brain axis. We hypothesized that TBI would lead to a sustained reduction in SCFA producing bacteria, fecal SCFAs concentration, and administration of soluble SCFAs would improve functional outcome after TBI. Adult mice (n = 10) had the controlled cortical impact (CCI) model of TBI performed (6 m/sec, 2-mm depth, 50-msec dwell). Stool samples were collected serially until 28 days after CCI and analyzed for SCFA concentration by high-performance liquid chromatography-mass spectrometry/mass spectrometry and microbiome analyzed by 16S gene sequencing. In a separate experiment, mice (n = 10/group) were randomized 2 weeks before CCI to standard drinking water or water supplemented with the SCFAs acetate (67.5 mM), propionate (25.9 mM), and butyrate (40 mM). Morris water maze performance was assessed on post-injury Days 14-19. Alpha diversity remained stable until 72 h, at which point a decline in diversity was observed without recovery out to 28 days. The taxonomic composition of post-TBI fecal samples demonstrated depletion of bacteria from Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae families, and enrichment of bacteria from the Verrucomicrobiaceae family. Analysis from paired fecal samples revealed a reduction in total SCFAs at 24 h and 28 days after TBI. Acetate, the most abundant SCFA detected in the fecal samples, was reduced at 7 days and 28 days after TBI. SCFA administration improved spatial learning after TBI versus standard drinking water. In conclusion, TBI is associated with reduced richness and diversity of commensal microbiota in the gut and a reduction in SCFAs detected in stool. Supplementation of soluble SCFAs improves spatial learning after TBI.
Collapse
Affiliation(s)
| | - Matthew B. Rogers
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian A. Firek
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vincent Vagni
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brittany P. Nelson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lee Ann New
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eliana Mariño
- Department of Biochemistry, Monash University, Melbourne, Victoria, Australia
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Children's Hospital of Pittsburgh Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Children's Hospital of Pittsburgh Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Children's Hospital of Pittsburgh Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael J. Morowitz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Microbiome and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Children's Hospital of Pittsburgh Neuroscience Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Chaudhuri S, Fowler MJ, Baker C, Stopka SA, Regan MS, Sablatura L, Broughton CW, Knight BE, Stabenfeldt SE, Agar NYR, Sirianni RW. β-Cyclodextrin-poly (β-Amino Ester) Nanoparticles Are a Generalizable Strategy for High Loading and Sustained Release of HDAC Inhibitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20960-20973. [PMID: 33905245 PMCID: PMC8153536 DOI: 10.1021/acsami.0c22587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Therapeutic development of histone deacetylase inhibitors (HDACi) has been hampered by a number of barriers to drug delivery, including poor solubility and inadequate tissue penetration. Nanoparticle encapsulation could be one approach to improve the delivery of HDACi to target tissues; however, effective and generalizable loading of HDACi within nanoparticle systems remains a long-term challenge. We hypothesized that the common terminally ionizable moiety on many HDACi molecules could be capitalized upon for loading in polymeric nanoparticles. Here, we describe the simple, efficient formulation of a novel library of β-cyclodextrin-poly (β-amino ester) networks (CDN) to achieve this goal. We observed that network architecture was a critical determinant of CDN encapsulation of candidate molecules, with a more hydrophobic core enabling effective self-assembly and a PEGylated surface enabling high loading (up to ∼30% w/w), effective self-assembly of the nanoparticle, and slow release of drug into aqueous media (up to 24 days) for the model HDACi panobinostat. We next constructed a library of CDNs to encapsulate various small, hydrophobic, terminally ionizable molecules (panobinostat, quisinostat, dacinostat, givinostat, bortezomib, camptothecin, nile red, and cytarabine), which yielded important insights into the structural requirements for effective drug loading and CDN self-assembly. Optimized CDN nanoparticles were taken up by GL261 cells in culture and a released panobinostat was confirmed to be bioactive. Panobinostat-loaded CDNs were next administered by convection-enhanced delivery (CED) to mice bearing intracranial GL261 tumors. These studies confirm that CDN encapsulation enables a higher deliverable dose of drug to effectively slow tumor growth. Matrix-assisted laser desorption/ionization (MALDI) analysis on tissue sections confirms higher exposure of tumor to drug, which likely accounts for the therapeutic effects. Taken in sum, these studies present a novel nanocarrier platform for encapsulation of HDACi via both ionic and hydrophobic interactions, which is an important step toward better treatment of disease via HDACi therapy.
Collapse
Affiliation(s)
- Sauradip Chaudhuri
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Martha J. Fowler
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Cassandra Baker
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Sylwia A. Stopka
- Department
of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael S. Regan
- Department
of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Lindsey Sablatura
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Colton W. Broughton
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Brandon E. Knight
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Sarah E. Stabenfeldt
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Nathalie Y. R. Agar
- Department
of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Rachael W. Sirianni
- Vivian
L. Smith Department of Neurosurgery, University
of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
17
|
Balasubramanian N, Sagarkar S, Jadhav M, Shahi N, Sirmaur R, Sakharkar AJ. Role for Histone Deacetylation in Traumatic Brain Injury-Induced Deficits in Neuropeptide Y in Arcuate Nucleus: Possible Implications in Feeding Behavior. Neuroendocrinology 2021; 111:1187-1200. [PMID: 33291119 DOI: 10.1159/000513638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Repeated traumatic events result in long-lasting neuropsychiatric ailments, including neuroendocrine imbalances. Neuropeptide Y (NPY) in the arcuate nucleus (Arc) is an important orexigenic peptide. However, the molecular underpinnings of its dysregulation owing to traumatic brain injury remain unknown. METHODS Rats were subjected to repeated mild traumatic brain injury (rMTBI) using the closed head weight-drop model. Feeding behavior and the regulatory epigenetic parameters of NPY expression were measured at 48 h and 30 days post-rMTBI. Further, sodium butyrate (SB), a pan-histone deacetylase (HDAC) inhibitor, was administered to examine whether histone deacetylation is involved in NPY expression post-rMTBI. RESULTS The rMTBI attenuated food intake, which was coincident with a decrease in NPY mRNA and protein levels in the Arc post-rMTBI. Further, rMTBI also reduced the mRNA levels of the cAMP response element-binding protein (CREB) and CREB-binding protein (CBP) and altered the mRNA levels of the various isoforms of the HDACs. Concurrently, the acetylated histone 3-lysine 9 (H3-K9) levels and the binding of CBP at the NPY promoter in the Arc of the rMTBI-exposed rats were reduced. However, the treatment with SB corrected the rMTBI-induced deficits in the H3-K9 acetylation levels and CBP occupancy at the NPY promoter, restoring both NPY expression and food intake. CONCLUSIONS These findings suggest that histone deacetylation at the NPY promoter persistently controls NPY function in the Arc after rMTBI. This study also demonstrates the efficacy of HDAC inhibitors in mitigating trauma-induced neuroendocrine maladaptations in the hypothalamus.
Collapse
Affiliation(s)
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Meha Jadhav
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Navneet Shahi
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Richa Sirmaur
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India,
| |
Collapse
|
18
|
Gut microbial molecules in behavioural and neurodegenerative conditions. Nat Rev Neurosci 2020; 21:717-731. [DOI: 10.1038/s41583-020-00381-0] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
|
19
|
A New Therapeutic Strategy Targeting Protein Deacetylation for Spinal Cord Injury. Neuroscience 2020; 451:197-206. [PMID: 33039524 DOI: 10.1016/j.neuroscience.2020.09.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Lysine acetylation is a post-translational modification that regulates a diversity of biological processes. However, its implication in spinal cord injury (SCI) remains unclear. Here we investigated the acetylation events in injured spinal cords on a proteomic scale for the first time. Additionally, whether promoting acetylation could mitigate SCI was evaluated. A total of 268 differentially acetylated peptides were identified. Among them, 2 peptides were up-acetylated and 141 peptides were down-acetylated in the injured spinal cord tissues (Fold change >2 and P < 0.05). There were also 116 unique acetylated peptides in the sham group and 9 unique acetylated peptides in the SCI group. Functional enrichment analysis revealed that differently acetylated proteins were involved in multiple cellular processes and metabolic processes. Kyoto Encyclopaedia of Genes and Genomes analysis showed that several pathways, including cGMP-PKG signaling pathway and hypoxia-inducible factor-1 (HIF-1) signaling pathway, were predominantly presented. Moreover, promoting acetylation using glycerol triacetate (GTA) showed a therapeutic effect on SCI, with improved Basso-Beattie-Bresnahan scores and histologic morphology, and decreased neuronal apoptosis and inflammation. In conclusion, our data indicated that protein deacetylation might play crucial roles in the development of secondary injury of SCI, and promoting acetylation by GTA effectively mitigated SCI. Our data not only enhance our understanding on acetylproteome dataset in the spinal cord tissues, but also provide novel insights for the treatment of SCI.
Collapse
|
20
|
Assessing the Beneficial Effects of the Immunomodulatory Glycan LNFPIII on Gut Microbiota and Health in a Mouse Model of Gulf War Illness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197081. [PMID: 32992640 PMCID: PMC7579323 DOI: 10.3390/ijerph17197081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
The microbiota’s influence on host (patho) physiology has gained interest in the context of Gulf War Illness (GWI), a chronic disorder featuring dysregulation of the gut–brain–immune axis. This study examined short- and long-term effects of GWI-related chemicals on gut health and fecal microbiota and the potential benefits of Lacto-N-fucopentaose-III (LNFPIII) treatment in a GWI model. Male C57BL/6J mice were administered pyridostigmine bromide (PB; 0.7 mg/kg) and permethrin (PM; 200 mg/kg) for 10 days with concurrent LNFPIII treatment (35 μg/mouse) in a short-term study (12 days total) and delayed LNFPIII treatment (2×/week) beginning 4 months after 10 days of PB/PM exposure in a long-term study (9 months total). Fecal 16S rRNA sequencing was performed on all samples post-LNFPIII treatment to assess microbiota effects of GWI chemicals and acute/delayed LNFPIII administration. Although PB/PM did not affect species composition on a global scale, it affected specific taxa in both short- and long-term settings. PB/PM elicited more prominent long-term effects, notably, on the abundances of bacteria belonging to Lachnospiraceae and Ruminococcaceae families and the genus Allobaculum. LNFPIII improved a marker of gut health (i.e., decreased lipocalin-2) independent of GWI and, importantly, increased butyrate producers (e.g., Butyricoccus, Ruminococcous) in PB/PM-treated mice, indicating a positive selection pressure for these bacteria. Multiple operational taxonomic units correlated with aberrant behavior and lipocalin-2 in PB/PM samples; LNFPIII was modulatory. Overall, significant and lasting GWI effects occurred on specific microbiota and LNFPIII treatment was beneficial.
Collapse
|
21
|
Treble-Barna A, Patronick J, Uchani S, Marousis NC, Zigler CK, Fink EL, Kochanek PM, Conley YP, Yeates KO. Epigenetic Effects on Pediatric Traumatic Brain Injury Recovery (EETR): An Observational, Prospective, Longitudinal Concurrent Cohort Study Protocol. Front Neurol 2020; 11:460. [PMID: 32595586 PMCID: PMC7303323 DOI: 10.3389/fneur.2020.00460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction: Unexplained heterogeneity in outcomes following pediatric traumatic brain injury (TBI) is one of the most critical barriers to the development of effective prognostic tools and therapeutics. The addition of personal biological factors to our prediction models may account for a significant portion of unexplained variance and advance the field toward precision rehabilitation medicine. The overarching goal of the Epigenetic Effects on Pediatric Traumatic Brain Injury Recovery (EETR) study is to investigate an epigenetic biomarker involved in both childhood adversity and postinjury neuroplasticity to better understand heterogeneity in neurobehavioral outcomes following pediatric TBI. Our primary hypothesis is that childhood adversity will be associated with worse neurobehavioral recovery in part through an epigenetically mediated reduction in brain-derived neurotrophic factor (BDNF) expression in response to TBI. Methods and analysis: EETR is an observational, prospective, longitudinal concurrent cohort study of children aged 3-18 years with either TBI (n = 200) or orthopedic injury (n = 100), recruited from the UPMC Children's Hospital of Pittsburgh. Participants complete study visits acutely and at 6 and 12 months postinjury. Blood and saliva biosamples are collected at all time points-and cerebrospinal fluid (CSF) when available acutely-for epigenetic and proteomic analysis of BDNF. Additional measures assess injury characteristics, pre- and postinjury child neurobehavioral functioning, childhood adversity, and potential covariates/confounders. Recruitment began in July 2017 and will occur for ~6 years, with data collection complete by mid-2023. Analyses will characterize BDNF DNA methylation and protein levels over the recovery period and investigate this novel biomarker as a potential biological mechanism underlying the known association between childhood adversity and worse neurobehavioral outcomes following pediatric TBI. Ethics and dissemination: The study received ethics approval from the University of Pittsburgh Institutional Review Board. Participants and their parents provide informed consent/assent. Research findings will be disseminated via local and international conference presentations and manuscripts submitted to peer-reviewed journals. Trial Registration: The study is registered with clinicaltrials.org (ClinicalTrials.gov Identifier: NCT04186429).
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jamie Patronick
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Srivatsan Uchani
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Noelle C. Marousis
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christina K. Zigler
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Ericka L. Fink
- Safar Center for Resuscitation Research, Division of Pediatric Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Department of Critical Care and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, Division of Pediatric Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Department of Critical Care and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yvette P. Conley
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Boison D, Rho JM. Epigenetics and epilepsy prevention: The therapeutic potential of adenosine and metabolic therapies. Neuropharmacology 2020; 167:107741. [PMID: 31419398 PMCID: PMC7220211 DOI: 10.1016/j.neuropharm.2019.107741] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/08/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
Prevention of epilepsy and its progression remains the most urgent need for epilepsy research and therapy development. Novel conceptual advances are required to meaningfully address this fundamental challenge. Maladaptive epigenetic changes, which include methylation of DNA and acetylation of histones - among other mechanisms, are now well recognized to play a functional role in the development of epilepsy and its progression. The methylation hypothesis of epileptogenesis suggests that changes in DNA methylation are implicated in the progression of the disease. In this context, global DNA hypermethylation is particularly associated with chronic epilepsy. Likewise, acetylation changes of histones have been linked to epilepsy development. Clinical as well as experimental evidence demonstrate that epilepsy and its progression can be prevented by metabolic and biochemical manipulations that target previously unrecognized epigenetic functions contributing to epilepsy development and maintenance of the epileptic state. This review will discuss epigenetic mechanisms implicated in epilepsy development as well as metabolic and biochemical interactions thought to drive epileptogenesis. Therefore, metabolic and biochemical mechanisms are identified as novel targets for epilepsy prevention. We will specifically discuss adenosine biochemistry as a novel therapeutic strategy to reconstruct the DNA methylome as antiepileptogenic strategy as well as metabolic mediators, such as beta-hydroxybutyrate, which affect histone acetylation. Finally, metabolic dietary interventions (such as the ketogenic diet) which have the unique potential to prevent epileptogenesis through recently identified epigenetic mechanisms will be reviewed. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Detlev Boison
- Dept. of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Jong M Rho
- Depts. of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, CA, 92117, USA
| |
Collapse
|
23
|
Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol 2020; 11:537. [PMID: 32390854 PMCID: PMC7194116 DOI: 10.3389/fphar.2020.00537] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HADC) are the enzymes that remove acetyl group from lysine residue of histones and non-histone proteins and regulate the process of transcription by binding to transcription factors and regulating fundamental cellular process such as cellular proliferation, differentiation and development. In neurodegenerative diseases, the histone acetylation homeostasis is greatly impaired, shifting towards a state of hypoacetylation. The histone hyperacetylation produced by direct inhibition of HDACs leads to neuroprotective actions. This review attempts to elaborate on role of small molecule inhibitors of HDACs on neuronal differentiation and throws light on the potential of HDAC inhibitors as therapeutic agents for treatment of neurodegenerative diseases. The role of HDACs in neuronal cellular and disease models and their modulation with HDAC inhibitors are also discussed. Significance of these HDAC inhibitors has been reviewed on the process of neuronal differentiation, neurite outgrowth and neuroprotection regarding their potential therapeutic application for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Surabhi Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| | - Babu L Tekwani
- Division of Drug Discovery, Department of Infectious Diseases, Southern Research, Birmingham, AL, United States
| |
Collapse
|
24
|
Bertogliat MJ, Morris-Blanco KC, Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 2020; 133:104642. [PMID: 31838024 PMCID: PMC8074401 DOI: 10.1016/j.neuint.2019.104642] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications are emerging as major players in the pathogenesis of neurodegenerative disorders and susceptibility to acute brain injury. DNA and histone modifications act together with non-coding RNAs to form a complex gene expression machinery that adapts the brain to environmental stressors and injury response. These modifications influence cell-level operations like neurogenesis and DNA repair to large, intricate processes such as brain patterning, memory formation, motor function and cognition. Thus, epigenetic imbalance has been shown to influence the progression of many neurological disorders independent of aberrations in the genetic code. This review aims to highlight ways in which epigenetics applies to several commonly researched neurodegenerative diseases and forms of acute brain injury as well as shed light on the benefits of epigenetics-based treatments.
Collapse
Affiliation(s)
- Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| |
Collapse
|
25
|
Fatty acid metabolism in the progression and resolution of CNS disorders. Adv Drug Deliv Rev 2020; 159:198-213. [PMID: 31987838 DOI: 10.1016/j.addr.2020.01.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Recent advances in lipidomics and metabolomics have unveiled the complexity of fatty acid metabolism and the fatty acid lipidome in health and disease. A growing body of evidence indicates that imbalances in the metabolism and level of fatty acids drive the initiation and progression of central nervous system (CNS) disorders such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Here, we provide an in-depth overview on the impact of the β-oxidation, synthesis, desaturation, elongation, and peroxidation of fatty acids on the pathophysiology of these and other neurological disorders. Furthermore, we discuss the impact of individual fatty acids species, acquired through the diet or endogenously synthesized in mammals, on neuroinflammation, neurodegeneration, and CNS repair. The findings discussed in this review highlight the therapeutic potential of modulators of fatty acid metabolism and the fatty acid lipidome in CNS disorders, and underscore the diagnostic value of lipidome signatures in these diseases.
Collapse
|
26
|
Topuz RD, Gunduz O, Tastekin E, Karadag CH. Effects of hippocampal histone acetylation and HDAC inhibition on spatial learning and memory in the Morris water maze in rats. Fundam Clin Pharmacol 2019; 34:222-228. [PMID: 31617237 DOI: 10.1111/fcp.12512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 01/31/2023]
Abstract
In recent years, it has been pointed out that epigenetic changes affect learning and memory formation. Particularly, it has been shown that histone acetylation and DNA methylation work in concert to regulate learning and memory formation. We aimed to examine whether acetylation of H2B within the rat hippocampus alters by trainings in the Morris water maze test. Male, 2-3 months old, Sprague Dawley rats were trained in Morris water maze task. Animals were given four trials per day for five consecutive days to locate a hidden platform. On the sixth day, the platform was removed and the animals were swum for 60 s. The effects of sodium butyrate, histone deacetylase inhibitor, were tested on normal and scopolamine-induced memory-impaired rats. The histone deacetylase inhibitor, sodium butyrate, increased histone H2B acetylation in normal rats. Sodium butyrate had no effect on learning and memory performance of normal rats; however, it partially ameliorated learning and memory disruption induced by scopolamine. So, the histone deacetylase inhibitors can be new treatment agent for cognitive disorders.
Collapse
Affiliation(s)
- Ruhan Deniz Topuz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Ozgur Gunduz
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Ebru Tastekin
- Department of Pathology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | - Cetin Hakan Karadag
- Department of Medical Pharmacology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| |
Collapse
|
27
|
Arndt DL, Wukitsch TJ, Garcia EJ, Cain M. Histone deacetylase inhibition differentially attenuates cue-induced reinstatement: An interaction of environment and acH3K9 expression in the dorsal striatum. Behav Neurosci 2019; 133:478-488. [PMID: 31343201 DOI: 10.1037/bne0000333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Substance use disorder is driven by complex gene-environment interactions. Epigenetic histone regulation is a significant contributor to several behavioral phenotypes of drug abuse. The primary epigenetic mechanisms that drive drug taking and drug seeking are still being investigated, and it is unclear how environmental conditions alter epigenetic histone acetylation to change behaviors geared toward drug reward. This study examined the effects of environmental condition on amphetamine self-administration, and whether drug-taking and drug-seeking behaviors could be influenced through inhibition of an epigenetic regulator, histone deacetylase (HDAC). Male rats reared for 30 days in enriched (EC), isolated (IC), or standard conditions (SC) prior to amphetamine (0.03, 0.05, 0.1 mg/kg/infusion, IV) self-administration, extinction, and reinstatement sessions. The HDAC inhibitor, Trichostatin A (TsA; 0.3 mg/kg, IV), was injected 30 min prior to operant sessions. After amphetamine-induced reinstatement (0.25 mg/kg, subcutaneous [s.c.]), tissue was extracted for Western blot analyses of acetylated histone H3 lysine 9 (acH3K9) in the nucleus accumbens (NAc) and dorsal striatum (DSt). While TsA did not significantly affect amphetamine self-administration or extinction, TsA decreased cue-, but not drug-induced reinstatement in IC rats only. In the DSt, but not in the NAc, IC rats exhibited significantly less acH3K9 expression than EC and SC rats, irrespective of TsA treatment. HDAC inhibition decreases cue-induced reinstatement of amphetamine seeking in IC rats. While IC rats exhibit less acH3K9 expression in the DSt, future studies are needed to elucidate the critical epigenetic factors that drive substance abuse, particularly in vulnerable populations. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | | | - Mary Cain
- Department of Psychological Sciences
| |
Collapse
|
28
|
Wu ZX, Cao L, Li XW, Jiang W, Li XY, Xu J, Wang F, Chen GH. Accelerated Deficits of Spatial Learning and Memory Resulting From Prenatal Inflammatory Insult Are Correlated With Abnormal Phosphorylation and Methylation of Histone 3 in CD-1 Mice. Front Aging Neurosci 2019; 11:114. [PMID: 31156421 PMCID: PMC6531990 DOI: 10.3389/fnagi.2019.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
Gestational infection causes various neurological deficits in offspring, such as age-related spatial learning and memory (SLM) decline. How inflammation causes age-related SLM dysfunction remains unknown. Previous research has indicated that histone modifications, such as phosphorylation of H3S10 (H3S10p) and trimethylation of H3K9 (H3K9me3) may be involved. In our study, pregnant mice received an intraperitoneal injection of lipopolysaccharide (LPS, 50 or 25 μg/kg) or normal saline during gestational days 15-17. After normal parturition, the offspring were randomly separated into 1-, 6-, 12-, 18-, and 22-month-old groups. SLM performance was assessed using a radial six-arm water maze (RAWM). The hippocampal levels of H3S10p and H3K9me3 were detected using an immunohistochemical method. The results indicated that the offspring had significantly impaired SLM, with decreased H3S10p and increased H3K9me3 levels from 12 months onward. Maternal LPS exposure during late gestation significantly and dose-dependently exacerbated the age-related impairment of SLM, with the decrease in H3S10p and increase in H3K9me3 beginning at 12 months in the offspring. The histone modifications (H3S10p and H3K9me3) were significantly correlated with impairment of SLM. Our findings suggest that prenatal exposure to inflammation could exacerbate age-related impairments of SLM and changes in histone modifications in CD-1 mice from 12 months onward, and SLM impairment might be linked to decreased H3S10p and increased H3K9me3.
Collapse
Affiliation(s)
- Zi-Xing Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Neurology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Lei Cao
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Jiang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue-Yan Li
- Departments of Neurology and Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jing Xu
- Departments of Neurology and Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gui-Hai Chen
- Departments of Neurology and Sleep Disorders, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Sagarkar S, Balasubramanian N, Mishra S, Choudhary AG, Kokare DM, Sakharkar AJ. Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: Implications in learning and memory deficits in rats. Brain Res 2019; 1711:183-192. [DOI: 10.1016/j.brainres.2019.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022]
|
30
|
Yusoff SI, Roman M, Lai FY, Eagle-Hemming B, Murphy GJ, Kumar T, Wozniak M. Systematic review and meta-analysis of experimental studies evaluating the organ protective effects of histone deacetylase inhibitors. Transl Res 2019; 205:1-16. [PMID: 30528323 PMCID: PMC6386580 DOI: 10.1016/j.trsl.2018.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023]
Abstract
The clinical efficacy of organ protection interventions are limited by the redundancy of cellular activation mechanisms. Interventions that target epigenetic mechanisms overcome this by eliciting genome wide changes in transcription and signaling. We aimed to review preclinical studies evaluating the organ protection effects of histone deacetylase inhibitors (HDACi) with a view to informing the design of early phase clinical trials. A systematic literature search was performed. Methodological quality was assessed against prespecified criteria. The primary outcome was mortality, with secondary outcomes assessing mechanisms. Prespecified analyses evaluated the effects of likely moderators on heterogeneity. The analysis included 101 experimental studies in rodents (n = 92) and swine (n = 9), exposed to diverse injuries, including: ischemia (n = 72), infection (n = 7), and trauma (n = 22). There were a total of 448 comparisons due to the evaluation of multiple independent interventions within single studies. Sodium valproate (VPA) was the most commonly evaluated HDACi (50 studies, 203 comparisons). All of the studies were judged to have significant methodological limitations. HDACi reduced mortality in experimental models of organ injury (risk ratio = 0.52, 95% confidence interval 0.40-0.68, p < 0.001) without heterogeneity. HDACi administration resulted in myocardial, brain and kidney protection across diverse species and injuries that was attributable to increases in prosurvival cell signaling, and reductions in inflammation and programmed cell death. Heterogeneity in the analyses of secondary outcomes was explained by differences in species, type of injury, HDACi class (Class I better), drug (trichostatin better), and time of administration (at least 6 hours prior to injury better). These findings highlight a potential novel application for HDACi in clinical settings characterized by acute organ injury.
Collapse
Affiliation(s)
- Syabira I Yusoff
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK.
| | - Marius Roman
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Florence Y Lai
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Bryony Eagle-Hemming
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Gavin J Murphy
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Tracy Kumar
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| | - Marcin Wozniak
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Unit in Cardiovascular Medicine, University of Leicester, Clinical Sciences Wing, Glenfield Hospital, Leicester, UK
| |
Collapse
|
31
|
Matt SM, Allen JM, Lawson MA, Mailing LJ, Woods JA, Johnson RW. Butyrate and Dietary Soluble Fiber Improve Neuroinflammation Associated With Aging in Mice. Front Immunol 2018; 9:1832. [PMID: 30154787 PMCID: PMC6102557 DOI: 10.3389/fimmu.2018.01832] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Aging results in chronic systemic inflammation that can alter neuroinflammation of the brain. Specifically, microglia shift to a pro-inflammatory phenotype predisposing them to hyperactivation upon stimulation by peripheral immune signals. It is proposed that certain nutrients can delay brain aging by preventing or reversing microglial hyperactivation. Butyrate, a short-chain fatty acid (SCFA) produced primarily by bacterial fermentation of fiber in the colon, has been extensively studied pharmacologically as a histone deacetylase inhibitor and serves as an attractive therapeutic candidate, as butyrate has also been shown to be anti-inflammatory and improve memory in animal models. In this study, we demonstrate that butyrate can attenuate pro-inflammatory cytokine expression in microglia in aged mice. It is still not fully understood, however, if an increase in butyrate-producing bacteria in the gut as a consequence of a diet high in soluble fiber could affect microglial activation during aging. Adult and aged mice were fed either a 1% cellulose (low fiber) or 5% inulin (high fiber) diet for 4 weeks. Findings indicate that mice fed inulin had an altered gut microbiome and increased butyrate, acetate, and total SCFA production. In addition, histological scoring of the distal colon demonstrated that aged animals on the low fiber diet had increased inflammatory infiltrate that was significantly reduced in animals consuming the high fiber diet. Furthermore, gene expression of inflammatory markers, epigenetic regulators, and the microglial sensory apparatus (i.e., the sensome) were altered by both diet and age, with aged animals exhibiting a more anti-inflammatory microglial profile on the high fiber diet. Taken together, high fiber supplementation in aging is a non-invasive strategy to increase butyrate levels, and these data suggest that an increase in butyrate through added soluble fiber such as inulin could counterbalance the age-related microbiota dysbiosis, potentially leading to neurological benefits.
Collapse
Affiliation(s)
- Stephanie M. Matt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jacob M. Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marcus A. Lawson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Lucy J. Mailing
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jeffrey A. Woods
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W. Johnson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
32
|
Irvine KA, Sahbaie P, Liang DY, Clark JD. Traumatic Brain Injury Disrupts Pain Signaling in the Brainstem and Spinal Cord. J Neurotrauma 2018; 35:1495-1509. [PMID: 29373948 DOI: 10.1089/neu.2017.5411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is a common consequence of traumatic brain injury (TBI) that can increase the suffering of a patient and pose a significant challenge to rehabilitative efforts. Unfortunately, the mechanisms linking TBI to pain are poorly understood, and specific treatments for TBI-related pain are still lacking. Our laboratory has shown that TBI causes pain sensitization in areas distant to the site of primary injury, and that changes in spinal gene expression may underlie this sensitization. The aim of this study was to examine the roles that pain modulatory pathways descending from the brainstem play in pain after TBI. Deficiencies in one type of descending inhibition, diffuse noxious inhibitory control (DNIC), have been suggested to be responsible for the development of chronic pain by allowing excess and uncontrolled afferent nociceptive inputs. Here we expand our knowledge of pain after TBI in two ways: (1) by outlining the neuropathology in pain-related centers of the brain and spinal cord involved in DNIC using the rat lateral fluid percussion (LFP) model of TBI, and (2) by evaluating the effects of a potent histone acetyl transferase inhibitor, anacardic acid (AA), on LFP-induced pain behaviors and neuropathology when administered for several days after TBI. The results revealed that TBI induces transient mechanical allodynia and a chronic persistent loss of DNIC. Further, while short-term AA treatment can block acute nociceptive sensitization and some early neuropathological changes, this treatment neither prevented the loss of DNIC nor did it alter long-term neuropathological changes in the brain or spinal cord.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- 1 Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System , Palo Alto, California.,2 Department of Anesthesia, Perioperative Medicine and Pain, Stanford University , Stanford, California
| | - Peyman Sahbaie
- 1 Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System , Palo Alto, California.,2 Department of Anesthesia, Perioperative Medicine and Pain, Stanford University , Stanford, California
| | - De-Yong Liang
- 1 Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System , Palo Alto, California.,2 Department of Anesthesia, Perioperative Medicine and Pain, Stanford University , Stanford, California
| | - J David Clark
- 1 Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System , Palo Alto, California.,2 Department of Anesthesia, Perioperative Medicine and Pain, Stanford University , Stanford, California
| |
Collapse
|
33
|
Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation. Chin J Integr Med 2018; 24:366-371. [PMID: 29327125 DOI: 10.1007/s11655-018-2823-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To examine the effect of icariin (ICA) on the cognitive impairment induced by traumatic brain injury (TBI) in mice and the underlying mechanisms related to changes in hippocampal acetylation level. METHODS The modifified free-fall method was used to establish the TBI mouse model. Mice with post-TBI cognitive impairment were randomly divided into 3 groups using the randomised block method (n=7): TBI (vehicle-treated), low-dose (75 mg/kg) and high-dose (150 mg/kg) of ICA groups. An additional sham-operated group (vehicle-treated) was employed. The vehicle or ICA was administrated by gavage for 28 consecutive days. The Morris water maze (MWM) test was conducted. Acetylcholine (ACh) content, mRNA and protein levels of choline acetyltransferase (ChAT), and protein levels of acetylated H3 (Ac-H3) and Ac-H4 were detected in the hippocampus. RESULTS Compared with the sham-operated group, the MWM performance, hippocampal ACh content, mRNA and protein levels of ChAT, and protein levels of Ac-H3 and Ac-H4 were signifificantly decreased in the TBI group (P<0.05). High-dose of ICA signifificantly ameliorated the TBI-induced weak MWM performance, increased hippocampal ACh content, and mRNA and protein levels of ChAT, as well as Ac-H3 protein level compared with the TBI group (P<0.05). CONCLUSION ICA improved post-TBI cognitive impairment in mice by enhancing hippocampal acetylation, which improved hippocampal cholinergic function and ultimately improved cognition.
Collapse
|
34
|
Nagalakshmi B., Sagarkar S, Sakharkar AJ. Epigenetic Mechanisms of Traumatic Brain Injuries. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:263-298. [DOI: 10.1016/bs.pmbts.2017.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Huynh NCN, Everts V, Ampornaramveth RS. Histone deacetylases and their roles in mineralized tissue regeneration. Bone Rep 2017; 7:33-40. [PMID: 28856178 PMCID: PMC5565747 DOI: 10.1016/j.bonr.2017.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/19/2017] [Accepted: 08/09/2017] [Indexed: 01/18/2023] Open
Abstract
Histone acetylation is an important epigenetic mechanism that controls expression of certain genes. It includes non-sequence-based changes of chromosomal regional structure that can alter the expression of genes. Acetylation of histones is controlled by the activity of two groups of enzymes: the histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs remove acetyl groups from the histone tail, which alters its charge and thus promotes compaction of DNA in the nucleosome. HDACs render the chromatin structure into a more compact form of heterochromatin, which makes the genes inaccessible for transcription. By altering the transcriptional activity of bone-associated genes, HDACs control both osteogenesis and osteoclastogenesis. This review presents an overview of the function of HDACs in the modulation of bone formation. Special attention is paid to the use of HDAC inhibitors in mineralized tissue regeneration from cells of dental origin. HDACs regulate the transcription activity of bone related genes. Inhibition of HDAC promotes osteogenic/odontogenic differentiation. HDAC inhibitors are applicable for mineral tissue regeneration therapy.
Collapse
Key Words
- ADSCs, adipose tissue-derived stem cells
- ALP, alkaline phosphatase
- BSP, bone sialoprotein
- Bone regeneration
- COL1, type I collagen
- DMP1, dentin matrix acidic phosphoprotein 1
- DPSCs, dental-derived stem cells
- DSPP, dentin sialophosphoprotein
- Dentin formation
- Epigenetic
- GSK-3, glycogen synthase kinase
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- Histone acetyltransferase
- Histone deacetylase
- MSCs, mesenchymal stem cells
- NaB, sodium butyrate
- OCN, osteocalcin
- OPN, osteopontin
- PCL/PEG, polycaprolactone/polyethylene glycol
- RUNX2, runt-related transcription factor 2
- SOST, sclerostin
- TGF-β/BMP, transforming growth factor-β/bone morphogenetic protein
- TSA, Trichostatin A
- VPA, valproic acid
- WNT/β-catenin, Wingless-int
- hPDLCs, human periodontal ligament cells
Collapse
Affiliation(s)
- Nam Cong-Nhat Huynh
- Department of Dental Basic Sciences, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | | |
Collapse
|
36
|
Albuquerque Filho MO, de Freitas BS, Garcia RCL, Crivelaro PCDF, Schröder N, de Lima MNM. Dual influences of early-life maternal deprivation on histone deacetylase activity and recognition memory in rats. Neuroscience 2017; 344:360-370. [DOI: 10.1016/j.neuroscience.2016.12.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 01/10/2023]
|
37
|
Sorial ME, El Sayed NSED. Protective effect of valproic acid in streptozotocin-induced sporadic Alzheimer's disease mouse model: possible involvement of the cholinergic system. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:581-593. [PMID: 28188358 DOI: 10.1007/s00210-017-1357-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
Abstract
Sporadic Alzheimer's disease (SAD) is a slowly progressive neurological disorder that is the most common form of dementia. Cholinergic system dysfunction and amyloid beta formation are the two main underlying pathological mechanisms for the disease development. In recent studies, insulin receptor desensitization and disturbances in the downstream effects of insulin receptor signaling were observed in the brains of Alzheimer's patients. Currently, intracereberoventricular (ICV) injection of streptozotocin (STZ) is found to induce behavioral, neurochemical, and structural alterations in animals resembling those found in SAD patients. Valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was recently shown to regulate the transcription of several genes in both in vivo and in vitro models of Alzheimer's disease. The aim of the current study is to investigate the potential effect of different doses of valproic acid, in an ICV-STZ-induced animal model of SAD. Streptozotocin-injected mice showed cognitive and spatial memory dysfunction in the Y-maze, object recognition test, and Morris water maze (MWM) neurobehavioral tests. The mice also exhibited a decrease in acetylcholine (ACh) and neprilysin (NEP) levels accompanied by an increase in acetylcholinesterase (AChE) activity. For the first time to our knowledge, our findings have shown that VPA is capable of restoring ACh levels in ICV-STZ-injected mice, as well as normalizing both NEP levels and AChE activity. Via this mechanism, an enhancement of cognitive functions is observed. Thus, VPA is suggested to be a promising therapeutic approach against SAD.
Collapse
Affiliation(s)
- Mirna Ezzat Sorial
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo City, 11835, Egypt
| | - Nesrine Salah El Dine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo City, 11835, Egypt. .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
38
|
Huynh NCN, Everts V, Nifuji A, Pavasant P, Ampornaramveth RS. Histone deacetylase inhibition enhances in-vivo bone regeneration induced by human periodontal ligament cells. Bone 2017; 95:76-84. [PMID: 27871909 DOI: 10.1016/j.bone.2016.11.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/12/2023]
Abstract
UNLABELLED Periodontal ligament cells have the potential to differentiate into bone forming osteoblasts and thus represent a good cellular candidate for bone regeneration. This study aimed to investigate the effect of inhibition of histone deacetylases, using the inhibitor Trichostatin A (TSA), on bone regeneration by human periodontal ligament cells (hPDLCs) in a mouse calvaria bone defect. METHODS RUNX2 protein and its acetylation was analyzed by immunoprecipitation and western blotting. The effect of TSA on osteogenic differentiation of hPDLCs was investigated using in vitro 3D cultures. hPDLCs were pre-incubated with and without TSA and implanted in mouse calvaria defects with polycaprolactone/polyethylene glycol (PCL/PEG) co-polymer scaffold. Micro-CT scanning and bone histomorphometric analysis were used to quantify the amount of bone. Survival of hPDLCs as xenogenic grafts was verified by immunohistochemistry with anti-human β1-integrin. The immunological response of mice against hPDLCs xenografts was evaluated by measuring total IgG and hPDLCs-specific IgG. RESULTS Beside affecting histone protein, TSA also induced hyper-acetylation of RUNX2 which might be a crucial mechanism for enhancing osteogenesis by hPDLCs. TSA enhanced mineral deposition by hPDLCs in in vitro 3D cultures and had no effect on cell viability. In vivo bone regeneration of mouse calvaria defects was significantly enhanced by TSA pre-treated hPDLCs. By using anti-human ß1 integrin hPDLCs were shown to differentiate into osteocyte-like cells that were present in newly formed bone. hPDLCs, as a xenograft, slightly but not significantly induced an immunological response in recipient mice as demonstrated by the level of total IgG and hPDLCs-specific IgG. CONCLUSION Inhibition of histone deacetylases by TSA enhanced in vivo bone regeneration by hPDLCs. The data strongly suggest a novel approach to regenerate bone tissue.
Collapse
Affiliation(s)
- Nam Cong-Nhat Huynh
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Dental Basic Sciences, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Akira Nifuji
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
39
|
Lee PKM, Goh WWB, Sng JCG. Network-based characterization of the synaptic proteome reveals that removal of epigenetic regulator Prmt8 restricts proteins associated with synaptic maturation. J Neurochem 2017; 140:613-628. [PMID: 27935040 DOI: 10.1111/jnc.13921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/30/2016] [Accepted: 12/04/2016] [Indexed: 12/13/2022]
Abstract
The brain adapts to dynamic environmental conditions by altering its epigenetic state, thereby influencing neuronal transcriptional programs. An example of an epigenetic modification is protein methylation, catalyzed by protein arginine methyltransferases (PRMT). One member, Prmt8, is selectively expressed in the central nervous system during a crucial phase of early development, but little else is known regarding its function. We hypothesize Prmt8 plays a role in synaptic maturation during development. To evaluate this, we used a proteome-wide approach to characterize the synaptic proteome of Prmt8 knockout versus wild-type mice. Through comparative network-based analyses, proteins and functional clusters related to neurite development were identified to be differentially regulated between the two genotypes. One interesting protein that was differentially regulated was tenascin-R (TNR). Chromatin immunoprecipitation demonstrated binding of PRMT8 to the tenascin-r (Tnr) promoter. TNR, a component of perineuronal nets, preserves structural integrity of synaptic connections within neuronal networks during the development of visual-somatosensory cortices. On closer inspection, Prmt8 removal increased net formation and decreased inhibitory parvalbumin-positive (PV+) puncta on pyramidal neurons, thereby hindering the maturation of circuits. Consequently, visual acuity of the knockout mice was reduced. Our results demonstrated Prmt8's involvement in synaptic maturation and its prospect as an epigenetic modulator of developmental neuroplasticity by regulating structural elements such as the perineuronal nets.
Collapse
Affiliation(s)
- Patrick Kia Ming Lee
- Integrative Neuroscience Program, Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Wilson Wen Bin Goh
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Department of Computer Science, National University of Singapore, Singapore
| | - Judy Chia Ghee Sng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
40
|
Molecular Genetic and Epigenetic Basis of Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:65-90. [DOI: 10.1007/978-3-319-47861-6_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Ganai SA, Banday S, Farooq Z, Altaf M. Modulating epigenetic HAT activity for reinstating acetylation homeostasis: A promising therapeutic strategy for neurological disorders. Pharmacol Ther 2016; 166:106-22. [DOI: 10.1016/j.pharmthera.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/28/2016] [Indexed: 01/30/2023]
|
42
|
Wong VS, Langley B. Epigenetic changes following traumatic brain injury and their implications for outcome, recovery and therapy. Neurosci Lett 2016; 625:26-33. [PMID: 27155457 PMCID: PMC4915732 DOI: 10.1016/j.neulet.2016.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/03/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) contributes to nearly a third of all injury-related deaths in the United States. For survivors of TBI, depending on severity, patients can be left with devastating neurological disabilities that include impaired cognition or memory, movement, sensation, or emotional function. Despite the efforts to identify novel therapeutics, the only strategy to combat TBI is risk reduction (helmets, seatbelts, removal of fall hazards, etc.). Enormous heterogeneity exists within TBI, and it depends on the severity, the location, and whether the injury was focal or diffuse. Evidence from recent studies support the involvement of epigenetic mechanisms such as DNA methylation, chromatin post-translational modification, and miRNA regulation of gene expression in the post-injured brain. In this review, we discuss studies that have assessed epigenetic changes and mechanisms following TBI, how epigenetic changes might not only be limited to the nucleus but also impact the mitochondria, and the implications of these changes with regard to TBI recovery.
Collapse
Affiliation(s)
- Victor S Wong
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, United States
| | - Brett Langley
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, United States; Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 E. 68th Street, New York, NY 10065, United States.
| |
Collapse
|
43
|
Sodium butyrate exerts neuroprotective effects by restoring the blood-brain barrier in traumatic brain injury mice. Brain Res 2016; 1642:70-78. [PMID: 27017959 DOI: 10.1016/j.brainres.2016.03.031] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
Abstract
Sodium butyrate (SB) has been widely used to treat cerebral diseases. The aim of the present study is to examine the neuroprotective effects of SB on early TBI in mice and to explore the underlying mechanisms of these effects. TBI was induced using a modified weight-drop method. Neurological deficits were evaluated according to the neurological severity score (NSS), brain oedema was measured by brain water content, and blood-brain barrier (BBB) permeability was evaluated by Evans blue (EB) dye extravasation. Neuronal injury was assessed by hematoxylin and eosin (H&E) staining and Fluoro-Jade C staining. The expression of tight junction-associated proteins, such as occludin and zonula occludens-1 (ZO-1), was analysed by western blotting and immunofluorescence. Our results showed that mice subjected to TBI exhibited worsened NSS, brain oedema, neuronal damage and BBB permeability. However, these were all attenuated by SB. Moreover, SB reversed the decrease in occludin and ZO-1 expression induced by TBI. These findings suggest that SB might attenuate neurological deficits, brain oedema, neuronal change and BBB damage, as well as increase occludin and ZO-1 expression in the brain to protect against TBI. The protective effect of SB may be correlated with restoring the BBB following its impairment.
Collapse
|
44
|
Jia M, Liu WX, Yang JJ, Xu N, Xie ZM, Ju LS, Ji MH, Martynyuk AE, Yang JJ. Role of histone acetylation in long-term neurobehavioral effects of neonatal Exposure to sevoflurane in rats. Neurobiol Dis 2016; 91:209-220. [PMID: 27001149 DOI: 10.1016/j.nbd.2016.03.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 01/16/2023] Open
Abstract
Human studies, and especially laboratory studies, provide evidence that early life exposure to general anesthesia may affect neurocognitive development via largely unknown mechanisms. We explored whether hippocampal histone acetylation had a role in neurodevelopmental effects of sevoflurane administered to neonatal rats. Male Sprague-Dawley rats were exposed to 3% sevoflurane or were subjected to maternal separation only for 2h daily at postnatal days 6, 7, and 8. The histone deacetylase inhibitor, sodium butyrate (250mg/kg, intraperitoneally), or saline was administered starting 2h prior to anesthesia or maternal separation and continued daily until the end of behavioral tests, which were performed between postnatal days 33 and 50. Upon completion of the behavioral tests, the brain tissues were harvested for further analysis. Rats neonatally exposed to sevoflurane exhibited decreased freezing time in the fear conditioning contextual test and increased escape latency, decreased time in target quadrant, and number of platform crossings in the Morris water maze test. The sevoflurane-exposed rats had lower hippocampal density of dendritic spines, reduced levels of the brain-derived neurotrophic factor, c-fos protein, microtubule-associated protein 2, synapsin1, postsynaptic density protein 95, pCREB/CREB, CREB binding protein, and acetylated histones H3 and H4, and increased levels of histone deacetylases 3 and 8. These neurobehavioral abnormalities were normalized in the sevoflurane-exposed rats treated with sodium butyrate. Our findings provide evidence that neonatal exposure to sevoflurane induces neurobehavioral abnormalities and long-lasting alterations in histone acetylation; normalization of histone acetylation may alleviate the neurodevelopmental side effects of the anesthetic.
Collapse
Affiliation(s)
- Min Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wen-Xue Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jiao-Jiao Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Ning Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Ze-Min Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Ling-Sha Ju
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Anatoly E Martynyuk
- Department of Anesthesiology, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Jian-Jun Yang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
45
|
Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci Lett 2016; 625:56-63. [PMID: 26868600 DOI: 10.1016/j.neulet.2016.02.009] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
As interest in the gut microbiome has grown in recent years, attention has turned to the impact of our diet on our brain. The benefits of a high fiber diet in the colon have been well documented in epidemiological studies, but its potential impact on the brain has largely been understudied. Here, we will review evidence that butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, can improve brain health. Butyrate has been extensively studied as a histone deacetylase (HDAC) inhibitor but also functions as a ligand for a subset of G protein-coupled receptors and as an energy metabolite. These diverse modes of action make it well suited for solving the wide array of imbalances frequently encountered in neurological disorders. In this review, we will integrate evidence from the disparate fields of gastroenterology and neuroscience to hypothesize that the metabolism of a high fiber diet in the gut can alter gene expression in the brain to prevent neurodegeneration and promote regeneration.
Collapse
Affiliation(s)
- Megan W Bourassa
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Medical College of Cornell University, 1300 York Ave. Box 65, New York, NY 10065, USA
| | - Ishraq Alim
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Medical College of Cornell University, 1300 York Ave. Box 65, New York, NY 10065, USA
| | - Scott J Bultman
- Department of Genetics, University of North Carolina Genetic Medicine Building, Room 5060, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Rajiv R Ratan
- Sperling Center for Hemorrhagic Stroke Recovery, Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Medical College of Cornell University, 1300 York Ave. Box 65, New York, NY 10065, USA.
| |
Collapse
|
46
|
Stephens JA, Williamson KNC, Berryhill ME. Cognitive Rehabilitation After Traumatic Brain Injury: A Reference for Occupational Therapists. OTJR-OCCUPATION PARTICIPATION AND HEALTH 2015; 35:5-22. [PMID: 26623474 DOI: 10.1177/1539449214561765] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nearly 1.7 million Americans sustain a traumatic brain injury (TBI) each year. These injuries can result in physical, emotional, and cognitive consequences. While many individuals receive cognitive rehabilitation from occupational therapists (OTs), the interdisciplinary nature of TBI research makes it difficult to remain up-to-date on relevant findings. We conducted a literature review to identify and summarize interdisciplinary evidence-based practice targeting cognitive rehabilitation for civilian adults with TBI. Our review summarizes TBI background, and our cognitive remediation section focuses on the findings from 37 recent (since 2006) empirical articles directly related to cognitive rehabilitation for individuals (i.e., excluding special populations such as veterans or athletes). This manuscript is offered as a tool for OTs engaged in cognitive rehabilitation and as a means to highlight arenas where more empirical, interdisciplinary research is needed.
Collapse
|
47
|
Huynh NCN, Everts V, Pavasant P, Ampornaramveth RS. Inhibition of Histone Deacetylases Enhances the Osteogenic Differentiation of Human Periodontal Ligament Cells. J Cell Biochem 2015; 117:1384-95. [PMID: 27043246 DOI: 10.1002/jcb.25429] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 01/01/2023]
Abstract
One of the characteristics of periodontal ligament (PDL) cells is their plasticity. Yet, the underlying mechanisms responsible for this phenomenon are unknown. One possible mechanism might be related to epigenetics, since histone deacetylases (HDACs) have been shown to play a role in osteoblast differentiation. This study was aimed to investigate the role of HDACs in osteogenic differentiation of human PDL (hPDL) cells. HDAC inhibitor trichostatin A (TSA) had no effect on cell viability as was assessed by MTT assay. Osteogenic and adipogenic differentiation was analyzed by gene expression, ALP activity and mineral deposition. Western blotting was used to investigate the effect of TSA on histone acetylation and protein expression. In the presence of the HDAC inhibitor osteogenic differentiation was induced; osteoblast-related gene expression was increased significantly. ALP activity and mineral nodule formation were also enhanced. Inhibition of HDACs did not induce differentiation into the adipocyte lineage. hPDL highly expressed HDACs of both class I (HDAC 1, 2, 3) and class II (HDAC 4, 6). During osteogenic differentiation HDAC 3 expression gradually decreased. This was apparent in the absence and presence of the inhibitor. The level of acetylated Histone H3 was increased during osteogenic differentiation. Inhibition of HDAC activity induced hyperacetylation of Histone H3, therefore, demonstrating Histone H3 as a candidate target molecule for HDAC inhibition. In conclusion, hPDL cells express a distinguished series of HDACs and these enzymes appear to be involved in osteogenic differentiation. This finding suggests a potential application of TSA for bone regeneration therapy by hPDL cells.
Collapse
Affiliation(s)
- Nam Cong-Nhat Huynh
- Mineralized Tissue Research Unit, Faculty of Dentistry Chulalongkorn University, Bangkok, Thailand.,DRU in Oral Microbiology, Department of Microbiology, Faculty of Dentistry Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Prasit Pavasant
- Mineralized Tissue Research Unit, Faculty of Dentistry Chulalongkorn University, Bangkok, Thailand.,Department of anatomy, Faculty of Dentistry Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
48
|
Metabolism and epigenetics in the nervous system: Creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases. Brain Res 2015; 1628:273-287. [PMID: 26232572 DOI: 10.1016/j.brainres.2015.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/11/2015] [Accepted: 07/21/2015] [Indexed: 12/30/2022]
Abstract
Modern definitions of epigenetics incorporate models for transient but biologically important changes in gene expression that are unrelated to DNA code but responsive to environmental changes such as injury-induced stress. In this scheme, changes in oxygen levels (hypoxia) and/or metabolic co-factors (iron deficiency or diminished 2-oxoglutarate levels) are transduced into broad genetic programs that return the cell and the organism to a homeostatic set point. Over the past two decades, exciting studies have identified a superfamily of iron-, oxygen-, and 2-oxoglutarate-dependent dioxygenases that sit in the nucleus as modulators of transcription factor stability, co-activator function, histone demethylases, and DNA demethylases. These studies have provided a concrete molecular scheme for how changes in metabolism observed in a host of neurological conditions, including stroke, traumatic brain injury, and Alzheimer's disease, could be transduced into adaptive gene expression to protect the nervous system. We will discuss these enzymes in this short review, focusing primarily on the ten eleven translocation (TET) DNA demethylases, the jumonji (JmJc) histone demethylases, and the oxygen-sensing prolyl hydroxylase domain enzymes (HIF PHDs). This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
|
49
|
Bjornsson HT, Benjamin JS, Zhang L, Weissman J, Gerber EE, Chen YC, Vaurio RG, Potter MC, Hansen KD, Dietz HC. Histone deacetylase inhibition rescues structural and functional brain deficits in a mouse model of Kabuki syndrome. Sci Transl Med 2015; 6:256ra135. [PMID: 25273096 DOI: 10.1126/scitranslmed.3009278] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kabuki syndrome is caused by haploinsufficiency for either of two genes that promote the opening of chromatin. If an imbalance between open and closed chromatin is central to the pathogenesis of Kabuki syndrome, agents that promote chromatin opening might have therapeutic potential. We have characterized a mouse model of Kabuki syndrome with a heterozygous deletion in the gene encoding the lysine-specific methyltransferase 2D (Kmt2d), leading to impairment of methyltransferase function. In vitro reporter alleles demonstrated a reduction in histone 4 acetylation and histone 3 lysine 4 trimethylation (H3K4me3) activity in mouse embryonic fibroblasts from Kmt2d(+/βGeo) mice. These activities were normalized in response to AR-42, a histone deacetylase inhibitor. In vivo, deficiency of H3K4me3 in the dentate gyrus granule cell layer of Kmt2d(+/βGeo) mice correlated with reduced neurogenesis and hippocampal memory defects. These abnormalities improved upon postnatal treatment with AR-42. Our work suggests that a reversible deficiency in postnatal neurogenesis underlies intellectual disability in Kabuki syndrome.
Collapse
Affiliation(s)
- Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Joel S Benjamin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Li Zhang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jacqueline Weissman
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Elizabeth E Gerber
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yi-Chun Chen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Michelle C Potter
- Brain Science Institute, Neurology Department, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kasper D Hansen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Biostatistics, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| |
Collapse
|
50
|
Reis C, Wang Y, Akyol O, Ho WM, Ii RA, Stier G, Martin R, Zhang JH. What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int J Mol Sci 2015; 16:11903-65. [PMID: 26016501 PMCID: PMC4490422 DOI: 10.3390/ijms160611903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.
Collapse
Affiliation(s)
- Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Physiology, School of Medicine, University of Jinan, Guangzhou 250012, China.
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, University Hospital Innsbruck, Tyrol 6020, Austria.
| | - Richard Applegate Ii
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|