1
|
Whyte Ferreira C, Cabrera-Tejera B, Leyh B, Tuyaerts R, Scheen G, Coffinier Y, De Pauw E, Eppe G. A Practical Approach for Internal Energy Tuning in LDI-MS: Porous Silicon Substrates as a Case Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:1008-1016. [PMID: 40178410 DOI: 10.1021/jasms.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
This study presents a methodical procedure for optimizing laser desorption/ionization mass spectrometry (LDI-MS) supports using porous silicon (PSi) substrates. The approach involves the use of substituted benzyl-pyridinium salts (thermometer ions) to obtain one metric that assesses analyte fragmentation (the effective temperature of vibration). Porous silicon substrates were synthesized via electrochemical etching of p-type silicon wafers (10-20 mΩ·cm), with etching parameters adjusted to vary porosity while maintaining a layer thickness between 700 and 1200 nm. The results revealed that PSi substrates with 40-60% porosity achieved the lowest fragmentation levels. This finding was validated through the analysis of N-acetyl glucosamine, a carbohydrate, which confirmed the effective temperature trend. Further analysis involving peptides, specifically P14R and a peptide mix (Peptide Calibration Standard II, Bruker), demonstrated that the optimized PSi substrates enabled the desorption and ionization of peptides with a maximum mass at m/z 2465, corresponding to ACTH clip 1-17. These results highlight the critical role of substrate porosity in minimizing analyte fragmentation and enhancing LDI-MS performance.
Collapse
Affiliation(s)
- Clara Whyte Ferreira
- Incize, 1348 Ottignies-Louvain-la-Neuve, Belgium
- Mass Spectrometry Laboratory (MolSys Research Unit), University of Liège, 4000 Liège, Belgium
- Université de Lille, CNRS, UMR 8520 - IEMN, 59652 Villeneuve d'Ascq, France
| | - Bastien Cabrera-Tejera
- Mass Spectrometry Laboratory (MolSys Research Unit), University of Liège, 4000 Liège, Belgium
| | - Bernard Leyh
- Molecular Dynamics Laboratory (MolSys Research Unit), University of Liège, 4000 Liège, Belgium
| | | | | | - Yannick Coffinier
- Université de Lille, CNRS, UMR 8520 - IEMN, 59652 Villeneuve d'Ascq, France
| | - Edwin De Pauw
- Mass Spectrometry Laboratory (MolSys Research Unit), University of Liège, 4000 Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory (MolSys Research Unit), University of Liège, 4000 Liège, Belgium
| |
Collapse
|
2
|
Chen Y, Luo Y, Long J, Liu S, Zhao L, Chen B, Mu Q. TOMM40 Correlates with Cholesterol and is Predictive of a Favorable Prognosis in Endometrial Carcinoma. Comb Chem High Throughput Screen 2025; 28:592-607. [PMID: 38231050 DOI: 10.2174/0113862073270411240102060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND A link between cholesterol and endometrial cancer has been established, but current studies have been limited in their findings. We aimed to elucidate the causal relationship between cholesterol and endometrial cancer and to find prognostic genes for endometrial cancer. METHODS We first explored the causal relationship between total cholesterol and endometrial cancer using two-sample Mendelian randomization and then obtained differential genes to screen for prognosis-related genes in endometrial cancer. Then, we utilized pan-cancer analysis based on RNA sequencing data to evaluate the expression pattern and immunological role of the Translocase of Outer Mitochondrial Membrane 40 (TOMM40). Through multiple transcriptome datasets and multi-omics in-depth analysis, we comprehensively explore the relationship of TOMM40 expression with clinicopathologic characteristics, clinical outcomes and mutations in endometrial cancer. Lastly, we systematically associated the TOMM40 with different cancers from immunological properties from numerous perspectives, such as immune cell infiltration, immune checkpoint inhibitors, immunotherapy, gene mutation load and microsatellite instability. RESULTS We found a negative association between cholesterol and endometrial cancer. A total of 78 genes were enriched by relevant single nucleotide polymorphisms (SNPs), of which 12 upregulated genes and 5 downregulated genes in endometrial cancer. TOMM40 was found to be a prognostic gene associated with endometrial cancer by prognostic analysis. TOMM40 was found to be positively correlated with the infiltration of most immune cells and immunization checkpoints in a subsequent study. Meanwhile, TOMM40 also was an oncogene in many cancer types. High TOMM40 was associated with lower genome stability. CONCLUSION The findings of our study indicate that the maintenance of normal total cholesterol metabolism is associated with a decreased risk of developing endometrial cancer. Moreover, TOMM40 may have potential as a prognostic indicator for endometrial cancer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yi Luo
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinling Long
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Siyun Liu
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linbeini Zhao
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Baishu Chen
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qiuyun Mu
- Department of Preventive Treatment of Disease, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
3
|
Jha D, Blennow K, Zetterberg H, Savas JN, Hanrieder J. Spatial neurolipidomics-MALDI mass spectrometry imaging of lipids in brain pathologies. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5008. [PMID: 38445816 PMCID: PMC12013527 DOI: 10.1002/jms.5008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
Given the complexity of nervous tissues, understanding neurochemical pathophysiology puts high demands on bioanalytical techniques with respect to specificity and sensitivity. Mass spectrometry imaging (MSI) has evolved to become an important, biochemical imaging technology for spatial biology in biological and translational research. The technique facilitates comprehensive, sensitive elucidation of the spatial distribution patterns of drugs, lipids, peptides, and small proteins in situ. Matrix-assisted laser desorption ionization (MALDI)-based MSI is the dominating modality due to its broad applicability and fair compromise of selectivity, sensitivity price, throughput, and ease of use. This is particularly relevant for the analysis of spatial lipid patterns, where no other comparable spatial profiling tools are available. Understanding spatial lipid biology in nervous tissue is therefore a key and emerging application area of MSI research. The aim of this review is to give a concise guide through the MSI workflow for lipid imaging in central nervous system (CNS) tissues and essential parameters to consider while developing and optimizing MSI assays. Further, this review provides a broad overview of key developments and applications of MALDI MSI-based spatial neurolipidomics to map lipid dynamics in neuronal structures, ultimately contributing to a better understanding of neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Durga Jha
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, SE-431 80 Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, SE-431 80 Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, SE-431 80 Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey N. Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, SE-431 80 Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
4
|
Griffiths WJ, Yutuc E, Wang Y. Mass Spectrometry Imaging of Cholesterol and Oxysterols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:73-87. [PMID: 38036876 DOI: 10.1007/978-3-031-43883-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Mass spectrometry imaging (MSI) is a new technique in the toolbox of the analytical biochemist. It allows the generation of a compound-specific image from a tissue slice where a measure of compound abundance is given pixel by pixel, usually displayed on a color scale. As mass spectra are recorded at each pixel, the data can be interrogated to generate images of multiple different compounds all in the same experiment. Mass spectrometry (MS) requires the ionization of analytes, but cholesterol and other neutral sterols tend to be poorly ionized by the techniques employed in most MSI experiments, so despite their high abundance in mammalian tissues, cholesterol is poorly represented in the MSI literature. In this chapter, we discuss some of the MSI studies where cholesterol has been imaged and introduce newer methods for its analysis by MSI. Disturbed cholesterol metabolism is linked to many disorders, and the potential of MSI to study cholesterol, its precursors, and its metabolites in animal models and from human biopsies will be discussed.
Collapse
Affiliation(s)
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, Wales, UK
| | - Yuqin Wang
- Swansea University Medical School, Swansea, Wales, UK
| |
Collapse
|
5
|
Huang S, Liu X, Liu D, Zhang X, Zhang L, Le W, Zhang Y. Pyrylium-Based Derivatization for Rapid Labeling and Enhanced Detection of Cholesterol in Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2310-2318. [PMID: 36331251 DOI: 10.1021/jasms.2c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cholesterol in the central nervous system has been increasingly found to be closely related to neurodegenerative diseases. Defects in cholesterol metabolism can cause structural and functional disorders of the central nervous system. The detection of abnormal cholesterol is of great significance for the cognition of physiological and pathological states of organisms, and the spatial distribution of cholesterol can also provide more clues for our understanding of the complex mechanism of disease. Here, we developed a novel pyrylium-based derivatization reagent combined with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to visualize cholesterol in biological tissues. A new class of charged hydroxyl derivatization reagents was designed and synthesized, and finally 1-(carboxymethyl)-2,4,6-trimethylpyridinium (CTMP) was screened for tissue derivatization of cholesterol. Different from the shortcomings of traditional hydroxyl labeling methods such as harsh reaction conditions and long reaction time, in our study, we combined the advantages of CTMP itself and the EDCl/HOBt reaction system to achieve instant labeling of cholesterol on tissues through two-step activation. In addition, we also reported changes in cholesterol content in different stages and different brain regions during disease development in SOD1 mutant mouse model. The cholesterol derivatization method we developed provides an efficient way to explore the distribution and spatial metabolic network of cholesterol in biological tissues.
Collapse
Affiliation(s)
- Shuai Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- University of Chinese Academy of Science, Beijing 100039, PR China
| | - Xinxin Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Dan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116021, PR China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| |
Collapse
|
6
|
Nezhad ZS, Salazar JP, Pryce RS, Munter LM, Chaurand P. Absolute quantification of cholesterol from thin tissue sections by silver-assisted laser desorption ionization mass spectrometry imaging. Anal Bioanal Chem 2022; 414:6947-6954. [PMID: 35953724 DOI: 10.1007/s00216-022-04262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
Abstract
Cholesterol is essential to all animal life, and its dysregulation is observed in many diseases. For some of these, the precise determination of cholesterol's histological location and absolute abundance at cellular length scales within tissue samples would open the door to a more fundamental understanding of the role of cholesterol in disease onset and progression. We have developed a fast and simple method for absolute quantification of cholesterol within brain samples based on the sensitive detection and mapping of cholesterol by silver-assisted laser desorption ionization mass spectrometry imaging (AgLDI MSI) from thin tissue sections. Reproducible calibration curves were generated by depositing a range of cholesterol-D7 concentrations on brain homogenate tissue sections combined with the homogeneous spray deposition of a non-animal steroid reference standard detectable by AgLDI MSI to minimize experimental variability. Results obtained from serial brain sections gave consistent cholesterol quantitative values in very good agreement with those obtained with other mass spectrometry-based methods.
Collapse
Affiliation(s)
- Zari Saadati Nezhad
- Department of Chemistry, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Juan Pablo Salazar
- Department of Chemistry, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Rachel S Pryce
- Department of Chemistry, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Lisa M Munter
- Dept of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
7
|
Jackstadt MM, Chamberlain CA, Doonan SR, Shriver LP, Patti GJ. A multidimensional metabolomics workflow to image biodistribution and evaluate pharmacodynamics in adult zebrafish. Dis Model Mech 2022; 15:dmm049550. [PMID: 35972155 PMCID: PMC9411795 DOI: 10.1242/dmm.049550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/13/2022] [Indexed: 12/16/2022] Open
Abstract
An integrated evaluation of the tissue distribution and pharmacodynamic properties of a therapeutic is essential for successful translation to the clinic. To date, however, cost-effective methods to measure these parameters at the systems level in model organisms are lacking. Here, we introduce a multidimensional workflow to evaluate drug activity that combines mass spectrometry-based imaging, absolute drug quantitation across different biological matrices, in vivo isotope tracing and global metabolome analysis in the adult zebrafish. As a proof of concept, we quantitatively determined the whole-body distribution of the anti-rheumatic agent hydroxychloroquine sulfate (HCQ) and measured the systemic metabolic impacts of drug treatment. We found that HCQ distributed to most organs in the adult zebrafish 24 h after addition of the drug to water, with the highest accumulation of both the drug and its metabolites being in the liver, intestine and kidney. Interestingly, HCQ treatment induced organ-specific alterations in metabolism. In the brain, for example, HCQ uniquely elevated pyruvate carboxylase activity to support increased synthesis of the neuronal metabolite, N-acetylaspartate. Taken together, this work validates a multidimensional metabolomics platform for evaluating the mode of action of a drug and its potential off-target effects in the adult zebrafish. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Madelyn M. Jackstadt
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Casey A. Chamberlain
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Steven R. Doonan
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Leah P. Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Gary J. Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. MASS SPECTROMETRY REVIEWS 2022; 41:373-420. [PMID: 33174287 PMCID: PMC9292874 DOI: 10.1002/mas.21670] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
In the last decades, surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has attracted increasing interest due to its unique capabilities, achievable through the nanostructured substrates used to promote the analyte desorption/ionization. While the most widely recognized asset of SALDI-MS is the untargeted analysis of small molecules, this technique also offers the possibility of targeted approaches. In particular, the implementation of SALDI-MS imaging (SALDI-MSI), which is the focus of this review, opens up new opportunities. After a brief discussion of the nomenclature and the fundamental mechanisms associated with this technique, which are still highly controversial, the analytical strategies to perform SALDI-MSI are extensively discussed. Emphasis is placed on the sample preparation but also on the selection of the nanosubstrate (in terms of chemical composition and morphology) as well as its functionalization possibilities for the selective analysis of specific compounds in targeted approaches. Subsequently, some selected applications of SALDI-MSI in various fields (i.e., biomedical, biological, environmental, and forensic) are presented. The strengths and the remaining limitations of SALDI-MSI are finally summarized in the conclusion and some perspectives of this technique, which has a bright future, are proposed in this section.
Collapse
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| |
Collapse
|
9
|
Dufresne M, Fincher JA, Patterson NH, Schey KL, Norris JL, Caprioli RM, Spraggins JM. α-Cyano-4-hydroxycinnamic Acid and Tri-Potassium Citrate Salt Pre-Coated Silicon Nanopost Array Provides Enhanced Lipid Detection for High Spatial Resolution MALDI Imaging Mass Spectrometry. Anal Chem 2021; 93:12243-12249. [PMID: 34449196 DOI: 10.1021/acs.analchem.1c01560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have developed a pre-coated substrate for matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) that enables high spatial resolution mapping of both phospholipids and neutral lipid classes in positive ion mode as metal cation adducts. The MALDI substrates are constructed by depositing a layer of α-cyano-4-hydroxycinnamic acid (CHCA) and potassium salts onto silicon nanopost arrays (NAPA) prior to tissue mounting. The matrix/salt pre-coated NAPA substrate significantly enhances all detected lipid signals allowing lipids to be detected at lower laser energies than bare NAPA. The improved sensitivity at lower laser energy enabled ion images to be generated at 10 μm spatial resolution from rat retinal tissue. Optimization of matrix pre-coated NAPA consisted of testing lithium, sodium, and potassium salts along with various matrices to investigate the increased sensitivity toward lipids for MALDI IMS experiments. It was determined that pre-coating NAPA with CHCA and potassium salts before thaw-mounting of tissue resulted in a signal intensity increase of at least 5.8 ± 0.1-fold for phospholipids and 2.0 ± 0.1-fold for neutral lipids compared to bare NAPA. Pre-coating NAPA with matrix and salt also reduced the necessary laser power to achieve desorption/ionization by ∼35%. This reduced the effective diameter of the ablation area from 13 ± 2 μm down to 8 ± 1 μm, enabling high spatial resolution MALDI IMS. Using pre-coated NAPA with CHCA and potassium salts offers a MALDI IMS substrate with broad molecular coverage of lipids in a single polarity that eliminates the need for extensive sample preparation after sectioning.
Collapse
Affiliation(s)
- Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Jarod A Fincher
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Kevin L Schey
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeremy L Norris
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37205, United States.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Cell & Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
10
|
Mielczarek P, Slowik T, Kotlinska JH, Suder P, Bodzon-Kulakowska A. The Study of Derivatization Prior MALDI MSI Analysis-Charge Tagging Based on the Cholesterol and Betaine Aldehyde. Molecules 2021; 26:molecules26092737. [PMID: 34066579 PMCID: PMC8124285 DOI: 10.3390/molecules26092737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Mass spectrometry imaging is a powerful tool for analyzing the different kinds of molecules in tissue sections, but some substances cannot be measured easily, due to their physicochemical properties. In such cases, chemical derivatization could be applied to introduce the charge into the molecule and facilitate its detection. Here, we study cholesterol derivatization with betaine aldehyde from tissue slices and evaluate how different sample preparation methods influence the signal from the derivatization product. In this study, we have tested different solutions for betaine aldehyde, different approaches to betaine aldehyde deposition (number of layers, deposition nozzle height), and different MALDI matrices for its analysis. As a result, we proved that the proposed approach could be used for the analysis of cholesterol in different tissues.
Collapse
Affiliation(s)
- Przemyslaw Mielczarek
- Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 St., 31-343 Krakow, Poland;
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University of Lublin, Jaczewskiego 8D St., 20-090 Lublin, Poland;
| | - Jolanta Helena Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland;
| | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30 Ave., 30-059 Krakow, Poland;
| | - Anna Bodzon-Kulakowska
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30 Ave., 30-059 Krakow, Poland;
- Correspondence: ; Tel.: +48-12-617-5083
| |
Collapse
|
11
|
Angelini R, Yutuc E, Wyatt MF, Newton J, Yusuf FA, Griffiths L, Cooze BJ, El Assad D, Frache G, Rao W, Allen LB, Korade Z, Nguyen TTA, Rathnayake RAC, Cologna SM, Howell OW, Clench MR, Wang Y, Griffiths WJ. Visualizing Cholesterol in the Brain by On-Tissue Derivatization and Quantitative Mass Spectrometry Imaging. Anal Chem 2021; 93:4932-4943. [PMID: 33687199 PMCID: PMC7992047 DOI: 10.1021/acs.analchem.0c05399] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Despite being a critical
molecule in the brain, mass spectrometry
imaging (MSI) of cholesterol has been under-reported compared to
other lipids due to the difficulty in ionizing the sterol molecule.
In the present work, we have employed an on-tissue enzyme-assisted
derivatization strategy to improve detection of cholesterol in brain
tissue sections. We report distribution and levels of cholesterol
across specific structures of the mouse brain, in a model of Niemann-Pick
type C1 disease, and during brain development. MSI revealed that in
the adult mouse, cholesterol is the highest in the pons and medulla
and how its distribution changes during development. Cholesterol was
significantly reduced in the corpus callosum and other brain regions
in the Npc1 null mouse, confirming hypomyelination
at the molecular level. Our study demonstrates the potential of MSI
to the study of sterols in neuroscience.
Collapse
Affiliation(s)
- Roberto Angelini
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, U.K
| | - Eylan Yutuc
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, U.K
| | - Mark F Wyatt
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, U.K
| | - Jillian Newton
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, U.K
| | - Fowzi A Yusuf
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, U.K
| | - Lauren Griffiths
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, U.K
| | - Benjamin J Cooze
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, U.K
| | - Dana El Assad
- Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux L-4422, Luxembourg
| | - Gilles Frache
- Materials Research and Technology, Luxembourg Institute of Science and Technology, Belvaux L-4422, Luxembourg
| | - Wei Rao
- European Application Laboratory, Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, U.K
| | - Luke B Allen
- Departments of Pediatrics and Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Zeljka Korade
- Departments of Pediatrics and Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Thu T A Nguyen
- Department of Chemistry and Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Rathnayake A C Rathnayake
- Department of Chemistry and Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Stephanie M Cologna
- Department of Chemistry and Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Owain W Howell
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, U.K
| | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, U.K
| | - Yuqin Wang
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, U.K
| | - William J Griffiths
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, U.K
| |
Collapse
|
12
|
Palermo A. Charting Metabolism Heterogeneity by Nanostructure Imaging Mass Spectrometry: From Biological Systems to Subcellular Functions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2392-2400. [PMID: 33595331 DOI: 10.1021/jasms.0c00204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study of metabolism heterogeneity is essential to understand the role of metabolites in supporting and regulating biological functions. To this end, several mass spectrometry imaging (MSI) approaches have been proposed for the detection of small molecule metabolites. However, high noise from the ionization matrix and low metabolome coverage hinder their applicability for untargeted metabolomics studies across space. In this context, nanostructure imaging (/initiator) mass spectrometry (NIMS) and NIMS with fluorinated gold nanoparticles (f-AuNPs) are attractive strategies for comprehensive MSI of metabolites in biological systems, which can provide heterogeneous metabolome coverage, ultrahigh sensitivity, and high lateral resolution. In particular, NIMS with f-AuNPs permits the simultaneous detection of polar metabolites and lipids in a single and cohesive analytical session, thus allowing the systems-level interpretation of metabolic changes. In this Perspective article, we discuss the use of NIMS and f-AuNPs in the exploration of metabolism heterogeneity and provide a critical outlook on future applications of this technology for revealing the metabolic architecture that supports biological functions in health and disease, from whole organisms to tissues, single cells, and subcellular compartments.
Collapse
Affiliation(s)
- Amelia Palermo
- Department of Medicine, School of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093-0412, United States
| |
Collapse
|
13
|
Dual-polarity SALDI FT-ICR MS imaging and Kendrick mass defect data filtering for lipid analysis. Anal Bioanal Chem 2020; 413:2821-2830. [PMID: 33125540 DOI: 10.1007/s00216-020-03020-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Lipids are biomolecules of crucial importance involved in critical biological functions. Yet, lipid content determination using mass spectrometry is still challenging due to their rich structural diversity. Preferential ionisation of the different lipid species in the positive or negative polarity is common, especially when using soft ionisation mass spectrometry techniques. Here, we demonstrate the potency of a dual-polarity approach using surface-assisted laser desorption/ionisation coupled to Fourier transform-ion cyclotron resonance (SALDI FT-ICR) mass spectrometry imaging (MSI) combined with Kendrick mass defect data filtering to (i) identify the lipids detected in both polarities from the same tissue section and (ii) show the complementarity of the dual-polarity data, both regarding the lipid coverage and the spatial distributions of the various lipids. For this purpose, we imaged the same mouse brain section in the positive and negative ionisation modes, on alternate pixels, in a SALDI FT-ICR MS imaging approach using gold nanoparticles (AuNPs) as dual-polarity nanosubstrates. Our study demonstrates, for the first time, the feasibility of (i) a dual-polarity SALDI-MSI approach on the same tissue section, (ii) using AuNPs as nanosubstrates combined with a FT-ICR mass analyser and (iii) the Kendrick mass defect data filtering applied to SALDI-MSI data. In particular, we show the complementarity in the lipids detected both in a given ionisation mode and in the two different ionisation modes. Graphical abstract.
Collapse
|
14
|
Kuwata K, Itou K, Kotani M, Ohmura T, Naito Y. DIUTHAME enables matrix-free mass spectrometry imaging of frozen tissue sections. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8729. [PMID: 31951673 DOI: 10.1002/rcm.8729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE A recently developed matrix-free laser desorption/ionization method, DIUTHAME (desorption ionization using through-hole alumina membrane), was examined for the feasibility of mass spectrometry imaging (MSI) applied to frozen tissue sections. The permeation behavior of DIUTHAME is potentially useful for MSI as positional information may not be distorted during the extraction of analytes from a sample. METHODS The through-hole porous alumina membranes used in the DIUTHAME chips were fabricated by wet anodization, were 5 μm thick, and had the desired values of 200 nm through-hole diameter and 50% open aperture ratio. Mouse brain frozen tissue sections on indium tin oxide (ITO)-coated slides were covered using the DIUTHAME chips and were subjected to MSI experiments in commercial time-of-flight mass spectrometers equipped with solid-state UV lasers after thawing and drying without matrix application. RESULT Mass spectra and mass images were successfully obtained from the frozen tissue sections using DIUTHAME as the ionization method. The mass spectra contained rich peaks in the phospholipid mass range free from the chemical background owing to there being no matrix-derived peaks in that range. DIUTHAME-MSI delivered high-quality mass images that reflected the anatomy of the brain tissue. CONCLUSIONS Analytes can be extracted from frozen tissue by capillary action of the through-holes in DIUTHAME and moisture contained in the tissue without distorting positional information of the analytes. The sample preparation for frozen tissue sections in DIUTHAME-MSI is simple, requiring no specialized skills or dedicated apparatus for matrix application. DIUTHAME can facilitate MSI at a low mass, as there is no interference from matrix-derived peaks, and should provide high-quality, reproducible mass images more easily than MALDI-MSI.
Collapse
Affiliation(s)
- Keiko Kuwata
- Nagoya University Institute of Transformative Bio-Molecules (WPI-ITbM), Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Kayoko Itou
- Nagoya University Institute of Transformative Bio-Molecules (WPI-ITbM), Furo-cho, Chikusa-ku, Nagoya, Japan
| | | | | | - Yasuhide Naito
- The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu, Japan
| |
Collapse
|
15
|
Sugiyama E, Skelly AN, Suematsu M, Sugiura Y. In situ imaging of monoamine localization and dynamics. Pharmacol Ther 2020; 208:107478. [DOI: 10.1016/j.pharmthera.2020.107478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/22/2019] [Indexed: 01/06/2023]
|
16
|
Yang E, Fournelle F, Chaurand P. Silver spray deposition for AgLDI imaging MS of cholesterol and other olefins on thin tissue sections. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4428. [PMID: 31410898 DOI: 10.1002/jms.4428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Olefins such as cholesterol and unsaturated fatty acids play important biological roles. Silver-assisted laser desorption ionization (AgLDI) takes advantage of the strong affinity of silver to conjugate with double bonds to selectively ionize these molecules for imaging mass spectrometry (IMS) experiments. For IMS studies, two main approaches for silver deposition have been described in the literature: fine coating by silver sputtering and spray deposition of silver nanoparticles. While these approaches allow for extremely high resolution IMS experiments to be conducted, they are not readily available to all laboratories. Herein, we present a silver nitrate spray deposition approach as an alternative to silver sputtering and nanoparticle deposition for routine IMS analysis. The silver nitrate spray has the same level of specificity and sensitivity for olefins, particularly cholesterol, and has shown to be capable of IMS experiments down to 10-μm spatial resolution. Minimal sample preparation and the affordability of silver nitrate make this a convenient and accessible technique worth considering.
Collapse
Affiliation(s)
- Ethan Yang
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada, H3C 3J7
| | - Frédéric Fournelle
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada, H3C 3J7
| | - Pierre Chaurand
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada, H3C 3J7
| |
Collapse
|
17
|
Localization of sterols and oxysterols in mouse brain reveals distinct spatial cholesterol metabolism. Proc Natl Acad Sci U S A 2020; 117:5749-5760. [PMID: 32132201 PMCID: PMC7084107 DOI: 10.1073/pnas.1917421117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The brain is a remarkably complex organ and cholesterol homeostasis underpins brain function. It is known that cholesterol is not evenly distributed across different brain regions; however, the precise map of cholesterol metabolism in the brain remains unclear. If cholesterol metabolism is to be correlated with brain function it is essential to generate such a map. Here we describe an advanced mass spectrometry platform to reveal spatial cholesterol metabolism in situ at 400-µm spot diameter on 10-µm tissue slices from mouse brain. We mapped, not only cholesterol, but also other biologically active sterols arising from cholesterol turnover in both wild type and mice lacking cholesterol 24S-hydroxylase (CYP46A1), the major cholesterol metabolizing enzyme. Dysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatization in combination with microliquid extraction for surface analysis and liquid chromatography-mass spectrometry to locate sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400-µm spot diameter with a limit of quantification of 0.01 ng/mm2. It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low-abundance and difficult-to-ionize sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild-type and cholesterol 24S-hydroxylase knockout mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.
Collapse
|
18
|
Stopka SA, Vertes A. Toward Single Cell Molecular Imaging by Matrix-Free Nanophotonic Laser Desorption Ionization Mass Spectrometry. Methods Mol Biol 2020; 2064:135-146. [PMID: 31565772 DOI: 10.1007/978-1-4939-9831-9_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, innovations in mass spectrometry imaging (MSI) have enabled simultaneous detection and mapping of biomolecules and xenobiotics directly from biological tissues and single cells. Matrix-assisted laser desorption ionization (MALDI) has been the most widely embraced MSI technique. However, this technique can exhibit ion suppression effects hindering metabolite coverage and possesses a narrow dynamic range. Nanophotonic platforms, e.g., silicon nanopost array (NAPA) structures, can be used as an alternative for matrix-free imaging of biological tissues. Here, we present a protocol for MSI of large and small adherent cell clusters by laser desorption ionization from NAPA with minimal sample preparation.
Collapse
Affiliation(s)
- Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC, USA.
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, USA
| |
Collapse
|
19
|
Yang J, Zhang W, Zhang H, Zhong M, Cao W, Li Z, Huang X, Nie Z, Liu J, Li P, Ma X, Ouyang Z. Polydopamine-Modified Substrates for High-Sensitivity Laser Desorption Ionization Mass Spectrometry Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46140-46148. [PMID: 31729222 DOI: 10.1021/acsami.9b16260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mass spectrometry imaging (MSI) serves as a powerful tool for biological research, and laser desorption ionization (LDI) is used as a major sampling ionization method. Study of materials for LDI represents a major field in the MSI research, either for matrices in matrix-assisted LDI (MALDI) or sample substrates allowing matrix-free LDI. In this study, we developed a composite substrate using polydopamine (PDA) film to coat an antireflection (AR) surface for LDI-MSI. The AR material has been previously shown to confine UV energy within the micro-/nanostructures, leading to a highly localized temperature rise to facilitate analyte thermal desorption. PDA coating on the AR material further enhances the light-to-heat conversion and improves the contact between the substrate surface and the biological sample materials. With this substrate, desorption and ionization of lipids from raw human plasma samples and biological tissue sections have been achieved. Matrix-free LDI-MSI of around 30 lipid species in mouse brain sections was achieved with a significantly simplified MSI procedure at a spatial resolution of 50 μm. This method was applied to determine mouse fatty liver disease through monitoring the abundances and distributions of triacylglycerols and glycerophospholipids. Dramatic differences in the lipid profiles were subsequently identified between the liver tissues from the wild-type and obese mice.
Collapse
Affiliation(s)
| | - Wenpeng Zhang
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | | | | | | | | | - Xi Huang
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Zongxiu Nie
- Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | | | | | | | - Zheng Ouyang
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
20
|
Wang T, Cheng X, Xu H, Meng Y, Yin Z, Li X, Hang W. Perspective on Advances in Laser-Based High-Resolution Mass Spectrometry Imaging. Anal Chem 2019; 92:543-553. [DOI: 10.1021/acs.analchem.9b04067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tongtong Wang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoling Cheng
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hexin Xu
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Meng
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhibin Yin
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoping Li
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Hang
- Department of Chemistry, MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Mass Spectrometry for the Study of Autism and Neurodevelopmental Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31347066 DOI: 10.1007/978-3-030-15950-4_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Mass spectrometry (MS) has been increasingly used to study central nervous system (CNS) disorders, including autism spectrum disorders (ASDs). The first studies of ASD using MS focused on the identification of external toxins, but current research is more directed at understanding endogenous protein changes that occur in ASD (ASD proteomics). This chapter focuses on how MS has been used to study ASDs, with particular focus on proteomic analysis. Other neurodevelopmental disorders have been investigated using this technique, including genetic syndromes associated with autism such as fragile X syndrome (FXS) and Smith-Lemli-Opitz Syndrome (SLOS).
Collapse
|
22
|
Gustafsson OJR, Guinan TM, Rudd D, Kobus H, Benkendorff K, Voelcker NH. Metabolite mapping by consecutive nanostructure and silver-assisted mass spectrometry imaging on tissue sections. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:991-1000. [PMID: 28370605 DOI: 10.1002/rcm.7869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/11/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Nanostructure-based mass spectrometry imaging (MSI) is a promising technology for molecular imaging of small molecules, without the complex chemical background typically encountered in matrix-assisted molecular imaging approaches. Here, we have enhanced these surfaces with silver (Ag) to provide a second tier of MSI data from a single sample. METHODS MSI data was acquired through the application of laser desorption/ionization mass spectrometry to biological samples imprinted onto desorption/ionization on silicon (DIOS) substrates. Following initial analysis, ultra-thin Ag layers were overlaid onto the followed by MSI analysis (Ag-DIOS MSI). This approach was first demonstrated for fingermark small molecules including environmental contaminants and sebum components. Subsequently, this bimodal method was translated to lipids and metabolites in fore-stomach sections from a 6-bromoisatin chemopreventative murine mouse model. RESULTS DIOS MSI allowed mapping of common ions in fingermarks as well as 6-bromoisatin metabolites and lipids in murine fore-stomach. Furthermore, DIOS MSI was complemented by the Ag-DIOS MSI of Ag-adductable lipids such as wax esters in fingermarks and cholesterol in murine fore-stomach. Gastrointestinal acid condensation products of 6-bromoisatin, such as the 6,6'-dibromoindirubin mapped herein, are very challenging to isolate and characterize. By re-analyzing the same tissue imprints, this metabolite was readily detected by DIOS, placed in a tissue-specific spatial context, and subsequently overlaid with additional lipid distributions acquired using Ag-DIOS MSI. CONCLUSIONS The ability to place metabolite and lipid classes in a tissue-specific context makes this novel method suited to MSI analyses where the collection of additional information from the same sample maximises resource use, and also maximises the number of annotated small molecules, in particular for metabolites that are typically undetectable with traditional platforms. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- O J R Gustafsson
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia, 5095
| | - T M Guinan
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia, 5095
| | - D Rudd
- School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia, 2480
| | - H Kobus
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia, Australia, 5042
| | - K Benkendorff
- School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia, 2480
| | - N H Voelcker
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia, 5095
| |
Collapse
|
23
|
Gross RW. The evolution of lipidomics through space and time. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:731-739. [PMID: 28457845 DOI: 10.1016/j.bbalip.2017.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022]
Abstract
Although the foundations of mass spectrometry-based lipidomics have been practiced for over 30 years, recent technological advances in ionization modalities in conjunction with robust increases in mass accuracy and resolution have greatly accelerated the emergence, growth and importance of the field of lipidomics. Moreover, advances in the separation sciences, bioinformatic strategies and the availability of robust databases have been synergistically integrated into modern lipidomic technologies leading to unprecedented improvements in the depth, penetrance and precision of lipidomic analyses and identification of their biological and mechanistic significance. The purpose of this "opinion" article is to briefly review the evolution of lipidomics, critique the platforms that have evolved and identify areas that are likely to emerge in the years to come. Through seamlessly integrating a rich repertoire of mass spectrometric, chemical and bioinformatic strategies, the chemical identities and quantities of tens of thousands to hundreds of thousands of different lipid molecular species and their metabolic alterations during physiologic or pathophysiologic perturbations can be obtained. Thus, the field of lipidomics which already has a distinguished history of exciting new discoveries in many disease states holds unparalleled potential to identify the pleiotropic roles of lipids in health and disease at the chemical level. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
Collapse
Affiliation(s)
- Richard W Gross
- Division of Bioorganic Chemistry & Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8020, Saint Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Chemistry, Washington University, Saint Louis, MO 63130, USA.
| |
Collapse
|
24
|
Byliński H, Gębicki J, Dymerski T, Namieśnik J. Direct Analysis of Samples of Various Origin and Composition Using Specific Types of Mass Spectrometry. Crit Rev Anal Chem 2017; 47:340-358. [DOI: 10.1080/10408347.2017.1298986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hubert Byliński
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Gębicki
- Faculty of Chemistry, Department of Chemical and Process Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Tomasz Dymerski
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Jacek Namieśnik
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
25
|
Stopka SA, Rong C, Korte AR, Yadavilli S, Nazarian J, Razunguzwa TT, Morris NJ, Vertes A. Molecular Imaging of Biological Samples on Nanophotonic Laser Desorption Ionization Platforms. Angew Chem Int Ed Engl 2016; 55:4482-6. [DOI: 10.1002/anie.201511691] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Sylwia A. Stopka
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Charles Rong
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Andrew R. Korte
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC 2001 USA
| | - Javad Nazarian
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC 2001 USA
| | | | | | - Akos Vertes
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| |
Collapse
|
26
|
Stopka SA, Rong C, Korte AR, Yadavilli S, Nazarian J, Razunguzwa TT, Morris NJ, Vertes A. Molecular Imaging of Biological Samples on Nanophotonic Laser Desorption Ionization Platforms. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sylwia A. Stopka
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Charles Rong
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Andrew R. Korte
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| | - Sridevi Yadavilli
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC 2001 USA
| | - Javad Nazarian
- Research Center for Genetic Medicine; Children's National Medical Center; Washington DC 2001 USA
| | | | | | - Akos Vertes
- Department of Chemistry; The George Washington University; Washington DC 20052 USA
| |
Collapse
|
27
|
Sugiura Y, Honda K, Suematsu M. Development of an Imaging Mass Spectrometry Technique for Visualizing Localized Cellular Signaling Mediators in Tissues. ACTA ACUST UNITED AC 2015; 4:A0040. [PMID: 26819911 DOI: 10.5702/massspectrometry.a0040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 11/23/2022]
Abstract
In vivo concentrations of cellular signaling mediators such as inflammatory mediators are normally maintained at very low levels due to their strong ability to induce a biological response. The production, diffusion, and decomposition of such mediators are spatio-temporally regulated. Therefore, in order to understand biochemical basis of disease progression and develop new therapeutic strategies, it is important to understand the spatiotemporal dynamics of the signaling mediators in vivo, during the progression of disorders, e.g., chronic inflammatory diseases; however, the lack of effective imaging technology has made it difficult to determine their localizations in vivo. Such characterization requires technical breakthroughs, including molecular imaging methods that are sensitive enough to detect low levels of metabolites in the heterogeneous tissue regions in diseased organs. We and other groups have attempted to fill this technical gap by developing highly sensitive imaging mass spectrometry (IMS) technologies. To date, we have established two key techniques toward this goal, including (i) a sample preparation procedure that has eliminated the problem of the postmortem degradation of labile metabolites, and (ii) on-tissue derivatization of metabolites, which can enhance analyte ionization efficiency. Here, we review recent progress in the development of these technologies as well as how the highly sensitive IMS technique has contributed to increasing understanding of the biochemical basis of disease mechanisms, discovery of new diagnostic markers, and development of new therapies.
Collapse
Affiliation(s)
- Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine; JST Precursory Research for Embryonic Science and Technology (PRESTO) Project
| | - Kurara Honda
- Department of Biochemistry, Keio University School of Medicine
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine; Japan Science and Technology Agency, Exploratory Research for Advanced Technology (ERATO)
Suematsu Gas Biology Project
| |
Collapse
|
28
|
Bernier MC, Wysocki VH, Dagan S. Laser desorption ionization of small molecules assisted by tungsten oxide and rhenium oxide particles. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:891-8. [PMID: 26349643 PMCID: PMC4566159 DOI: 10.1002/jms.3597] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 03/04/2015] [Accepted: 03/25/2015] [Indexed: 05/11/2023]
Abstract
Inorganic metal oxides have shown potential as matrices for assisting in laser desorption ionization with advantages over the aromatic acids typically used. Rhenium and tungsten oxides are attractive options due to their high work functions and relative chemical inertness. In this work, it is shown that ReO3 and WO3 , in microparticle (μP) powder forms, can efficiently facilitate ionization of various types of small molecules and provide minimized background contamination at analyte concentrations below 1 ng/µL. This study shows that untreated inorganic WO3 and ReO3 particles are valid matrix options for detection of protonatable, radical, and precharged species under laser desorption ionization. Qualitatively, the WO3 μP showed improved detection of apigenin, sodiated glucose, and precharged analyte choline, while the ReO3 μP allowed better detection of protonated cocaine, quinuclidine, ametryn, and radical ions of polyaromatic hydrocarbons at detection levels as low as 50 pg/µL. For thermometer ion survival yield experiments, it was also shown that the ReO3 powder was significantly softer than α-cyano-4-hydroxycinnaminic acid. Furthermore, it provided higher intensities of cocaine and polyaromatic hydrocarbons, at laser flux values equal to those used with α-cyano-4-hydroxycinnaminic acid.
Collapse
Affiliation(s)
| | | | - Shai Dagan
- Permanent address: Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
29
|
Xu L, Kliman M, Forsythe JG, Korade Z, Hmelo AB, Porter NA, McLean JA. Profiling and Imaging Ion Mobility-Mass Spectrometry Analysis of Cholesterol and 7-Dehydrocholesterol in Cells Via Sputtered Silver MALDI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:924-33. [PMID: 25822928 PMCID: PMC4608680 DOI: 10.1007/s13361-015-1131-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 05/09/2023]
Abstract
Profiling and imaging of cholesterol and its precursors by mass spectrometry (MS) are important in a number of cholesterol biosynthesis disorders, such as in Smith-Lemli-Opitz syndrome (SLOS), where 7-dehydrocholesterol (7-DHC) is accumulated in affected individuals. SLOS is caused by defects in the enzyme that reduces 7-DHC to cholesterol. However, analysis of sterols is challenging because these hydrophobic olefins are difficult to ionize for MS detection. We report here sputtered silver matrix-assisted laser desorption/ionization (MALDI)-ion mobility-MS (IM-MS) analysis of cholesterol and 7-DHC. In comparison with liquid-based AgNO3 and colloidal Ag nanoparticle (AgNP), sputtered silver NP (10-25 nm) provided the lowest limits-of-detection based on the silver coordinated [cholesterol + Ag](+) and [7-DHC + Ag](+) signals while minimizing dehydrogenation products ([M + Ag-2H](+)). When analyzing human fibroblasts that were directly grown on poly-L-lysine-coated ITO glass plates with this technique, in situ, the 7-DHC/cholesterol ratios for both control and SLOS human fibroblasts are readily obtained. The m/z of 491 (specific for [7-DHC + (107)Ag](+)) and 495 (specific for [cholesterol + (109)Ag](+)) were subsequently imaged using MALDI-IM-MS. MS images were co-registered with optical images of the cells for metabolic ratio determination. From these comparisons, ratios of 7-DHC/cholesterol for SLOS human fibroblasts are distinctly higher than in control human fibroblasts. Thus, this strategy demonstrates the utility for diagnosing/assaying the severity of cholesterol biosynthesis disorders in vitro.
Collapse
Affiliation(s)
- Libin Xu
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Present Address: Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Michal Kliman
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Present Address: Allergan, Inc., Irvine, CA, USA
| | - Jay G. Forsythe
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Present Address: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zeljka Korade
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Anthony B. Hmelo
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
30
|
Brown VL, He L. Current status and future prospects of mass spectrometry imaging of small molecules. Methods Mol Biol 2015; 1203:1-7. [PMID: 25361661 DOI: 10.1007/978-1-4939-1357-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the field of small-molecule studies, vast efforts have been put forth in order to comprehensively characterize and quantify metabolites formed from complex mechanistic pathways within biochemical and biological organisms. Many technologies and methodologies have been developed to aid understanding of the inherent complexities within biological metabolomes. Specifically, mass spectroscopy imaging (MSI) has emerged as a foundational technique in gaining insight into the molecular entities within cells, tissues, and whole-body samples. In this chapter we provide a brief overview of major technical components involved in MSI, including topics such as sample preparation, analyte ionization, ion detection, and data analysis. Emerging applications are briefly summarized as well, but details will be presented in the following chapters.
Collapse
Affiliation(s)
- Victoria L Brown
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, CB 8204, Raleigh, NC, 27695, USA
| | | |
Collapse
|
31
|
Ivanisevic J, Epstein A, Kurczy ME, Benton HP, Uritboonthai W, Fox HS, Boska MD, Gendelman HE, Siuzdak G. Brain region mapping using global metabolomics. CHEMISTRY & BIOLOGY 2014; 21:1575-84. [PMID: 25457182 PMCID: PMC4304924 DOI: 10.1016/j.chembiol.2014.09.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/05/2014] [Accepted: 09/18/2014] [Indexed: 11/17/2022]
Abstract
Historically, studies of brain metabolism have been based on targeted analyses of a limited number of metabolites. Here we present an untargeted mass spectrometry-based metabolomic strategy that has successfully uncovered differences in a broad array of metabolites across anatomical regions of the mouse brain. The NSG immunodeficient mouse model was chosen because of its ability to undergo humanization leading to numerous applications in oncology and infectious disease research. Metabolic phenotyping by hydrophilic interaction liquid chromatography and nanostructure imaging mass spectrometry revealed both water-soluble and lipid metabolite patterns across brain regions. Neurochemical differences in metabolic phenotypes were mainly defined by various phospholipids and several intriguing metabolites including carnosine, cholesterol sulfate, lipoamino acids, uric acid, and sialic acid, whose physiological roles in brain metabolism are poorly understood. This study helps define regional homeostasis for the normal mouse brain to give context to the reaction to pathological events.
Collapse
Affiliation(s)
- Julijana Ivanisevic
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Adrian Epstein
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Michael E. Kurczy
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - H. Paul Benton
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Winnie Uritboonthai
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Michael D. Boska
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880
| | - Gary Siuzdak
- Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
32
|
Woods AG, Wormwood KL, Wetie AGN, Aslebagh R, Crimmins BS, Holsen TM, Darie CC. Autism spectrum disorder: an omics perspective. Proteomics Clin Appl 2014; 9:159-68. [PMID: 25311756 DOI: 10.1002/prca.201400116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/11/2014] [Accepted: 10/07/2014] [Indexed: 01/02/2023]
Abstract
Current directions in autism spectrum disorder (ASD) research may require moving beyond genetic analysis alone, based on the complexity of the disorder, heterogeneity and convergence of genetic alterations at the cellular/functional level. Mass spectrometry (MS) has been increasingly used to study CNS disorders, including ASDs. Proteomic research using MS is directed at understanding endogenous protein changes that occur in ASD. This review focuses on how MS has been used to study ASDs, with particular focus on proteomic analysis. Other neurodevelopmental disorders have been investigated using MS, including fragile X syndrome (FXS) and Smith-Lemli-Opitz Syndrome (SLOS), genetic syndromes highly associated with ASD comorbidity.
Collapse
Affiliation(s)
- Alisa G Woods
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA; SUNY Plattsburgh Neuropsychology Clinic and Psychoeducation Services, Plattsburgh, NY, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Patti GJ, Tautenhahn R, Johannsen D, Kalisiak E, Ravussin E, Brüning JC, Dillin A, Siuzdak G. Meta-analysis of global metabolomic data identifies metabolites associated with life-span extension. Metabolomics 2014; 10:737-743. [PMID: 25530742 PMCID: PMC4267291 DOI: 10.1007/s11306-013-0608-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The manipulation of distinct signaling pathways and transcription factors has been shown to influence life span in a cell-non-autonomous manner in multicellular model organisms such as Caenorhabditis elegans. These data suggest that coordination of whole-organism aging involves endocrine signaling, however, the molecular identities of such signals have not yet been determined and their potential relevance in humans is unknown. Here we describe a novel metabolomic approach to identify molecules directly associated with extended life span in C. elegans that represent candidate compounds for age-related endocrine signals. To identify metabolic perturbations directly linked to longevity, we developed metabolomic software for meta-analysis that enabled intelligent comparisons of multiple different mutants. Simple pairwise comparisons of long-lived glp-1, daf-2, and isp-1 mutants to their respective controls resulted in more than 11,000 dysregulated metabolite features of statistical significance. By using meta-analysis, we were able to reduce this number to six compounds most likely to be associated with life-span extension. Mass spectrometry-based imaging studies suggested that these metabolites might be localized to C. elegans muscle. We extended the metabolomic analysis to humans by comparing quadricep muscle tissue from young and old individuals and found that two of the same compounds associated with longevity in worms were also altered in human muscle with age. These findings provide candidate compounds that may serve as age-related endocrine signals and implicate muscle as a potential tissue regulating their levels in humans.
Collapse
Affiliation(s)
- Gary J. Patti
- Departments of Chemistry, Genetics, and Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8232, St. Louis, MO 63110, USA
| | - Ralf Tautenhahn
- Departments of Chemistry and Molecular Biology, The Center for Mass Spectrometry and Metabolomics, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Darcy Johannsen
- Human Physiology, The Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Ewa Kalisiak
- Departments of Chemistry and Molecular Biology, The Center for Mass Spectrometry and Metabolomics, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eric Ravussin
- Human Physiology, The Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Jens C. Brüning
- Department of Mouse Genetics and Metabolism, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), Institute for Genetics and Center for Molecular Medicine, University of Cologne (CMMC), Zülpicher Str. 47, 50674 Cologne, Germany
- Max-Planck-Institute for Neurological Research, Gleueler Str. 50a, 50931 Cologne, Germany
| | - Andrew Dillin
- Howard Hughes Medical Institute, Glenn Center for Aging Research, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gary Siuzdak
- Departments of Chemistry and Molecular Biology, The Center for Mass Spectrometry and Metabolomics, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Ibáñez C, García-Cañas V, Valdés A, Simó C. Direct Mass Spectrometry-Based Approaches in Metabolomics. FUNDAMENTALS OF ADVANCED OMICS TECHNOLOGIES: FROM GENES TO METABOLITES 2014. [DOI: 10.1016/b978-0-444-62651-6.00010-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
35
|
Mass spectrometry for the study of autism and neurodevelopmental disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:525-44. [PMID: 24952201 DOI: 10.1007/978-3-319-06068-2_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mass spectrometry (MS) has been increasingly used to study central nervous system disorders, including autism spectrum disorders (ASDs). The first studies of ASD using MS focused on the identification of external toxins, but current research is more directed at understanding endogenous protein changes that occur in ASD (ASD proteomics). This chapter focuses on how MS has been used to study ASDs, with particular focus on proteomic analysis. Other neurodevelopmental disorders have been investigated using this technique, including genetic syndromes associated with autism such as fragile X syndrome and Smith-Lemli-Opitz syndrome.
Collapse
|
36
|
Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res 2013; 52:329-53. [PMID: 23623802 DOI: 10.1016/j.plipres.2013.04.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/19/2013] [Accepted: 04/12/2013] [Indexed: 11/22/2022]
Abstract
Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated.
Collapse
|
37
|
Dufresne M, Thomas A, Breault-Turcot J, Masson JF, Chaurand P. Silver-assisted laser desorption ionization for high spatial resolution imaging mass spectrometry of olefins from thin tissue sections. Anal Chem 2013; 85:3318-24. [PMID: 23425078 DOI: 10.1021/ac3037415] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silver has been demonstrated to be a powerful cationization agent in mass spectrometry (MS) for various olefinic species such as cholesterol and fatty acids. This work explores the utility of metallic silver sputtering on tissue sections for high resolution imaging mass spectrometry (IMS) of olefins by laser desorption ionization (LDI). For this purpose, sputtered silver coating thickness was optimized on an assorted selection of mouse and rat tissues including brain, kidney, liver, and testis. For mouse brain tissue section, the thickness was adjusted to 23 ± 2 nm of silver to prevent ion suppression effects associated with a higher cholesterol and lipid content. On all other tissues, a thickness of at 16 ± 2 nm provided the best desorption/ionization efficiency. Characterization of the species by MS/MS showed a wide variety of olefinic compounds allowing the IMS of different lipid classes including cholesterol, arachidonic acid, docosahexaenoic acid, and triacylglyceride 52:3. A range of spatial resolutions for IMS were investigated from 150 μm down to the high resolution cellular range at 5 μm. The applicability of direct on-tissue silver sputtering to LDI-IMS of cholesterol and other olefinic compounds presents a novel approach to improve the amount of information that can be obtained from tissue sections. This IMS strategy is thus of interest for providing new biological insights on the role of cholesterol and other olefins in physiological pathways or disease.
Collapse
Affiliation(s)
- Martin Dufresne
- Department of Chemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
38
|
O'Brien PJ, Lee M, Spilker ME, Zhang CC, Yan Z, Nichols TC, Li W, Johnson CH, Patti GJ, Siuzdak G. Monitoring metabolic responses to chemotherapy in single cells and tumors using nanostructure-initiator mass spectrometry (NIMS) imaging. Cancer Metab 2013; 1:4. [PMID: 24280026 PMCID: PMC3834492 DOI: 10.1186/2049-3002-1-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/15/2012] [Indexed: 02/03/2023] Open
Abstract
Background Tissue imaging of treatment-induced metabolic changes is useful for optimizing cancer therapies, but commonly used methods require trade-offs between assay sensitivity and spatial resolution. Nanostructure-Initiator Mass Spectrometry imaging (NIMS) permits quantitative co-localization of drugs and treatment response biomarkers in cells and tissues with relatively high resolution. The present feasibility studies use NIMS to monitor phosphorylation of 3′-deoxy-3′-fluorothymidine (FLT) to FLT-MP in lymphoma cells and solid tumors as an indicator of drug exposure and pharmacodynamic responses. Methods NIMS analytical sensitivity and spatial resolution were examined in cultured Burkitt’s lymphoma cells treated briefly with Rapamycin or FLT. Sample aliquots were dispersed on NIMS surfaces for single cell imaging and metabolic profiling, or extracted in parallel for LC-MS/MS analysis. Docetaxel-induced changes in FLT metabolism were also monitored in tissues and tissue extracts from mice bearing drug-sensitive tumor xenografts. To correct for variations in FLT disposition, the ratio of FLT-MP to FLT was used as a measure of TK1 thymidine kinase activity in NIMS images. TK1 and tumor-specific luciferase were measured in adjacent tissue sections using immuno-fluorescence microscopy. Results NIMS and LC-MS/MS yielded consistent results. FLT, FLT-MP, and Rapamycin were readily detected at the single cell level using NIMS. Rapid changes in endogenous metabolism were detected in drug-treated cells, and rapid accumulation of FLT-MP was seen in most, but not all imaged cells. FLT-MP accumulation in xenograft tumors was shown to be sensitive to Docetaxel treatment, and TK1 immunoreactivity co-localized with tumor-specific antigens in xenograft tumors, supporting a role for xenograft-derived TK1 activity in tumor FLT metabolism. Conclusions NIMS is suitable for monitoring drug exposure and metabolite biotransformation with essentially single cell resolution, and provides new spatial and functional dimensions to studies of cancer metabolism without the need for radiotracers or tissue extraction. These findings should prove useful for in vitro and pre-clinical studies of cancer metabolism, and aid the optimization of metabolism-based cancer therapies and diagnostics.
Collapse
Affiliation(s)
- Peter J O'Brien
- Pfizer Worldwide Research and Development, La Jolla Laboratories, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lanekoff I, Thomas M, Carson JP, Smith JN, Timchalk C, Laskin J. Imaging nicotine in rat brain tissue by use of nanospray desorption electrospray ionization mass spectrometry. Anal Chem 2013; 85:882-9. [PMID: 23256596 DOI: 10.1021/ac302308p] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Imaging mass spectrometry offers simultaneous spatially resolved detection of drugs, drug metabolites, and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nanospray desorption electrospray ionization, nano-DESI, is a new ambient technique that enables spatially resolved analysis of a variety of samples without special sample pretreatment. This study introduces an experimental approach for accurate spatial mapping of drugs and metabolites in tissue sections by nano-DESI imaging. In this approach, an isotopically labeled standard is added to the nano-DESI solvent to compensate for matrix effects and ion suppression. The analyte image is obtained by normalizing the analyte signal to the signal of the standard in each pixel. We demonstrate that the presence of internal standard enables online quantification of analyte molecules extracted from tissue sections. Ion images are subsequently mapped to the anatomical brain regions in the analyzed section by use of an atlas mesh deformed to match the optical image of the section. Atlas-based registration accounts for the physical variability between animals, which is important for data interpretation. The new approach was used for mapping the distribution of nicotine in rat brain tissue sections following in vivo drug administration. We demonstrate the utility of nano-DESI imaging for sensitive detection of the drug in tissue sections with subfemtomole sensitivity in each pixel of a 27 μm × 150 μm area. Such sensitivity is necessary for spatially resolved detection of low-abundance molecules in complex matrices.
Collapse
Affiliation(s)
- Ingela Lanekoff
- Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Silina YE, Volmer DA. Nanostructured solid substrates for efficient laser desorption/ionization mass spectrometry (LDI-MS) of low molecular weight compounds. Analyst 2013; 138:7053-65. [DOI: 10.1039/c3an01120h] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
41
|
Montanez JE, Peters JM, Correll JB, Gonzalez FJ, Patterson AD. Metabolomics: an essential tool to understand the function of peroxisome proliferator-activated receptor alpha. Toxicol Pathol 2012. [PMID: 23197196 DOI: 10.1177/0192623312466960] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The peroxisome proliferator-activated receptor (PPAR) family of nuclear hormone transcription factors (PPARα, PPARβ/δ, and PPARγ) is regulated by a wide array of ligands including natural and synthetic chemicals. PPARs have important roles in control of energy metabolism and are known to influence inflammation, differentiation, carcinogenesis, and chemical toxicity. As such, PPARs have been targeted as therapy for common disorders such as cancer, metabolic syndrome, obesity, and diabetes. The recent application of metabolomics, or the global, unbiased measurement of small molecules found in biofluids, or extracts from cells, tissues, or organisms, has advanced our understanding of the varied and important roles that the PPARs have in normal physiology as well as in pathophysiological processes. Continued development and refinement of analytical platforms, and the application of new bioinformatics strategies, have accelerated the widespread use of metabolomics and have allowed further integration of small molecules into systems biology. Recent studies using metabolomics to understand PPARα function, as well as to identify PPARα biomarkers associated with drug efficacy/toxicity and drug-induced liver injury, will be discussed.
Collapse
Affiliation(s)
- Jessica E Montanez
- Department of Veterinary and Biomedical Sciences and The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
42
|
Prideaux B, Stoeckli M. Mass spectrometry imaging for drug distribution studies. J Proteomics 2012; 75:4999-5013. [DOI: 10.1016/j.jprot.2012.07.028] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 01/13/2023]
|
43
|
Nanostructure Initiator Mass Spectrometry for tissue imaging in metabolomics: Future prospects and perspectives. J Proteomics 2012; 75:5061-5068. [DOI: 10.1016/j.jprot.2012.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/29/2012] [Accepted: 05/02/2012] [Indexed: 01/01/2023]
|
44
|
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
|
50
|
Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 2012. [DOI: 10.1038/nrm3314 and 4394=4394-- scwx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|