1
|
Vashisht A, Adamson G, Gacso Z, Slama J, Freund M, Vinod S, Sandoval N, Nachshon Z, Gubin S, Corso E, You ZB, Ranaldi R, Galaj E. Environmental enrichment attenuates reinstatement of heroin seeking and reverses heroin-induced upregulation of mesolimbic ghrelin receptors. Drug Alcohol Depend 2025; 270:112635. [PMID: 40022817 PMCID: PMC11908936 DOI: 10.1016/j.drugalcdep.2025.112635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
We have shown that environmental enrichment (EE) can effectively reduce reinstatement and facilitate true abstinence in animal models of drug use. Here, we investigated whether EE is effective against reinstatement of heroin seeking in long access (LA) model, which has been argued to capture the compulsive features of human drug addiction. We also explored the neurobiology by which EE produces its anti-drug addiction effects. In particular, we focused here on the ghrelin system, which is known for its involvement in reward-motivated behaviors and upregulation following intravenous drug self-administration. Following LA to heroin, rats were housed in either non-EE or EE conditions. During extinction and cue-induced reinstatement test, EE rats showed a significant reduction in active lever responding compared to non-EE rats, suggesting that EE facilitates extinction of drug seeking and reduces the capacity of drug-associated stimuli to elicit and maintain drug seeking. Using Western Blotting, we found that rats with LA to heroin IVSA showed a significant increase in ghrelin receptor (GHS-R1a) expression in the ventral tegmental area and nucleus accumbens, the brain regions implicated in resumption of drug use . Exposure to EE attenuated heroin-induced upregulation of GHS-R1a receptor in these regions but produced no significant changes other brain regions. Our findings suggest that EE can be an effective behavioral approach to diminish drug seeking even following LA to heroin. Compulsive drug taking and seeking seem to be correlated with an upregulation of GHS-R1a expression in the limbic regions, and EE can reverse these neuroadaptations, potentially contributing to a reduction in drug seeking.
Collapse
Affiliation(s)
- Apoorva Vashisht
- Department of Biology, Graduate Center, City University of New York, NY, USA; Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - George Adamson
- Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Zuzu Gacso
- Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Joseph Slama
- Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Matthew Freund
- Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Sneha Vinod
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Natalie Sandoval
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Ziv Nachshon
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Sami Gubin
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Elizabeth Corso
- Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Robert Ranaldi
- Department of Biology, Graduate Center, City University of New York, NY, USA; Department of Psychology, Queens College, City University of New York, Flushing, NY, USA
| | - Ewa Galaj
- Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA.
| |
Collapse
|
2
|
Edwards A, DeSante S, Spencer CD, Hyland L, Smith A, Sankhe AS, Szilvásy-Szabó A, Fekete C, Hill MN, Chee MJ, Abizaid A. Ghrelin Recruits the Endocannabinoid System to Modulate Food Reward. J Neurosci 2025; 45:e1620242024. [PMID: 39779372 PMCID: PMC11867019 DOI: 10.1523/jneurosci.1620-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/05/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Ghrelin enhances feeding by activating the growth hormone secretagogue receptor (GHSR). In the brain, GHSRs are expressed in regions responsible for regulating food motivation including the ventral tegmental area (VTA). Endogenous cannabinoids also promote food-seeking behaviors through the cannabinoid receptor-1 (CB-1Rs) in brain regions including the VTA. It is not known, however, if ghrelin and endocannabinoids interact in the VTA to produce these effects. We therefore examined if GHSR and CB-1R interact within the VTA to enhance food motivation. Results show that GHSR and CB-1R mRNA are expressed in the VTA cells in male and female rats and mice, with the GHSR being expressed in dopamine cells and the CB-1R being expressed primarily in nondopaminergic cells with no obvious sex differences. Ghrelin directly activated and increased excitatory tone onto dopamine cells of male and female mice. Male rats lacking fully functional GHSR signaling showed disrupted gene expression of transcripts important for regulating the synthesis, release, and degradation of endocannabinoids and lowered the levels of 2-arachidonoylglycerol (2-AG) within the VTA. Moreover, pharmacological antagonism of VTA CB-1Rs attenuates the orexigenic and appetitive effects of intra-VTA ghrelin in rats and blocks the ability of ghrelin to promote excitatory drive to VTA dopamine neurons. Finally, blocking the breakdown of cannabinoids in the VTA enhances the effects of ghrelin on food motivation. Together, our data show that ghrelin stimulates VTA dopamine cells and ultimately food motivation in part through a mechanism that involves endocannabinoid signaling at the CB-1R.
Collapse
Affiliation(s)
- Alexander Edwards
- Neuroscience Department, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Stephanie DeSante
- Neuroscience Department, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Carl Duncan Spencer
- Neuroscience Department, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Lindsay Hyland
- Neuroscience Department, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Andrea Smith
- Neuroscience Department, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Aditi S Sankhe
- Neuroscience Department, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Anett Szilvásy-Szabó
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Budapest H-1083, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Budapest H-1083, Hungary
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N4T1, Canada
| | - Melissa J Chee
- Neuroscience Department, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Alfonso Abizaid
- Neuroscience Department, Carleton University, Ottawa, Ontario K1S5B6, Canada
| |
Collapse
|
3
|
Poelman R, Le May MV, Schéle E, Stoltenborg I, Dickson SL. Intranasal Delivery of a Ghrelin Mimetic Engages the Brain Ghrelin Signaling System in Mice. Endocrinology 2025; 166:bqae166. [PMID: 39813130 PMCID: PMC11795113 DOI: 10.1210/endocr/bqae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/27/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake and other feeding behaviors, and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic neuropeptide Y neurons that coexpress agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats. Thus, GHS and ghrelin have therapeutic relevance in patients who could benefit from its orexigenic and/or GH-releasing effects. This study examined whether intranasal delivery of ghrelin, GHRP-6, or MK-0677 engages the brain ghrelin signaling system. Effective compounds and doses were selected based on increased food intake after intranasal application in mice. Only GHRP-6 (5 mg/kg) increased food intake without adverse effects, prompting detailed analysis of meal patterns, neuronal activation in the arcuate nucleus (via Fos mapping) and neurochemical identification of c-fos messenger RNA (mRNA)-expressing neurons using RNAscope. We also assessed the effect of intranasal GHRP-6 on serum GH levels. Intranasal GHRP-6 increased food intake by increasing meal frequency and size. Fos expression in the arcuate nucleus was higher in GHRP-6-treated mice than in saline controls. When examining the neurochemical identity of c-fos-mRNA-expressing neurons, we found coexpression with 63.5 ± 1.9% Ghsr mRNA, 79 ± 6.8% Agrp mRNA, and 11.4 ± 2.5% Ghrh mRNA, demonstrating GHRP-6's ability to engage arcuate nucleus neurons involved in food intake and GH release. Additionally, intranasal GHRP-6 elevated GH serum levels. These findings suggest that intranasal GHRP-6, but not ghrelin or MK-0677, can engage the brain ghrelin signaling system.
Collapse
Affiliation(s)
- Renée Poelman
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-413 90 Gothenburg, Sweden
| |
Collapse
|
4
|
Mahdavi K, Zendehdel M, Zarei H. Decoding the role of ghrelin and its interactions with central signaling pathways in avian appetite regulation. Vet Res Commun 2025; 49:73. [PMID: 39804527 DOI: 10.1007/s11259-025-10644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/05/2025] [Indexed: 03/14/2025]
Abstract
Ghrelin, a peptide hormone primarily produced in the enteroendocrine cells of the gastrointestinal tract, plays a vital role in regulating food intake, and energy balance in avian species. This review examines the complex interactions between ghrelin and the central signaling pathways associated with hunger regulation in birds. In contrast to mammals, where ghrelin typically promotes feeding behavior, its effects in birds appear more nuanced, exhibiting anorexigenic properties under certain conditions. The interactions of ghrelin with central signaling pathways, particularly within the hypothalamus, are explored, highlighting its influence on various neuropeptide systems, including GABAergic, corticotropinergic, opioidergic, dopaminergic, serotonergic, cannabinoidergic, and adrenergic pathways. This article synthesizes current knowledge regarding ghrelin's structure and physiological functions, as well as its interactions with other neuropeptides and hormones that collectively govern avian feeding behaviors. Furthermore, this review proposes future research directions aimed at elucidating the intricate mechanisms underlying appetite control in birds. Insights gained from this analysis may not only enhance our understanding of avian biology and the optimal regulation of their food intake but also inform wildlife management and conservation strategies in response to environmental changes.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Yakabi K, Yamaguchi N, Takayama K, Hosomi E, Hori Y, Ro S, Ochiai M, Maezawa K, Yakabi S, Harada Y, Fujitsuka N, Nagoshi S. Rikkunshito improves anorexia through ghrelin- and orexin-dependent activation of the brain hypothalamus and mesolimbic dopaminergic pathway in rats. Neurogastroenterol Motil 2024; 36:e14900. [PMID: 39164871 DOI: 10.1111/nmo.14900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Rikkunshito (RKT), a traditional Japanese medicine, can relieve epigastric discomfort and anorexia in patients with functional dyspepsia. RKT enhances the orexigenic hormone, ghrelin. Ghrelin regulates food motivation by stimulating the appetite control center in the hypothalamus and the brain mesolimbic dopaminergic pathway (MDPW). However, the effect of RKT on MDPW remains unclear. Here, we aimed to investigate the central neural mechanisms underlying the orexigenic effects of RKT, focusing on the MDPW. METHODS We examined the effects of RKT on food intake and neuronal c-Fos expression in restraint stress- and cholecystokinin octapeptide-induced anorexia in male rats. KEY RESULTS RKT treatment significantly restored stress- and cholecystokinin octapeptide-induced decreased food intake. RKT increased c-Fos expression in the ventral tegmental area (VTA), especially in tyrosine hydroxylase-immunoreactive neurons, and nucleus accumbens (NAc). The effects of RKT were suppressed by the ghrelin receptor antagonist [D-Lys3]-GHRP-6. RKT increased the number of c-Fos/orexin-double-positive neurons in the lateral hypothalamus (LH), which project to the VTA. The orexin receptor antagonist, SB334867, suppressed RKT-induced increase in food intake and c-Fos expression in the LH, VTA, and NAc. RKT increased c-Fos expression in the arcuate nucleus and nucleus of the solitary tract of the medulla, which was inhibited by [D-Lys3]-GHRP-6. CONCLUSIONS & INFERENCES RKT may restore appetite in subjects with anorexia through ghrelin- and orexin-dependent activation of neurons regulating the brain appetite control network, including the hypothalamus and MDPW.
Collapse
Affiliation(s)
- Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Naomi Yamaguchi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Kiyoshige Takayama
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Eriko Hosomi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Yutaro Hori
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Shoki Ro
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Mitsuko Ochiai
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Kosuke Maezawa
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| | - Seiichi Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
- Department of Gastroenterology, University of Tokyo Hospital, Tokyo, Japan
| | - Yumi Harada
- TSUMURA Kampo Research Laboratories, TSUMURA & CO., Ibaraki, Japan
| | - Naoki Fujitsuka
- TSUMURA Kampo Research Laboratories, TSUMURA & CO., Ibaraki, Japan
| | - Sumiko Nagoshi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Kawagoe City, Saitama, Japan
| |
Collapse
|
6
|
Ma Y, Yan Q, Wang P, Guo W, Yu L. Therapeutic potential of ghrelin/GOAT/GHSR system in gastrointestinal disorders. Front Nutr 2024; 11:1422431. [PMID: 39246401 PMCID: PMC11380557 DOI: 10.3389/fnut.2024.1422431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Ghrelin, a peptide primarily secreted in the stomach, acts via the growth hormone secretagogue receptor (GHSR). It regulates several physiological processes, such as feeding behavior, energy homeostasis, glucose and lipid metabolism, cardiovascular function, bone formation, stress response, and learning. GHSR exhibits significant expression within the central nervous system. However, numerous murine studies indicate that ghrelin is limited in its ability to enter the brain from the bloodstream and is primarily confined to specific regions, such as arcuate nucleus (ARC) and median eminence (ME). Nevertheless, the central ghrelin system plays an essential role in regulating feeding behavior. Furthermore, the role of vagal afferent fibers in regulating the functions of ghrelin remains a major topic of discussion among researchers. In recent times, numerous studies have elucidated the substantial therapeutic potential of ghrelin in most gastrointestinal (GI) diseases. This has led to the development of numerous pharmaceutical agents that target the ghrelin system, some of which are currently under examination in clinical trials. Furthermore, ghrelin is speculated to serve as a promising biomarker for GI tumors, which indicates its potential use in tumor grade and stage evaluation. This review presents a summary of recent findings in research conducted on both animals and humans, highlighting the therapeutic properties of ghrelin system in GI disorders.
Collapse
Affiliation(s)
- Yunxiao Ma
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qihui Yan
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery of First Hospital of Jilin University, Jilin University, Changchun, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lu Yu
- Department of Endocrinology and Metabolism of First Hospital of Jilin University, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
7
|
Marinescu AM, Labouesse MA. The nucleus accumbens shell: a neural hub at the interface of homeostatic and hedonic feeding. Front Neurosci 2024; 18:1437210. [PMID: 39139500 PMCID: PMC11319282 DOI: 10.3389/fnins.2024.1437210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Feeding behavior is a complex physiological process regulated by the interplay between homeostatic and hedonic feeding circuits. Among the neural structures involved, the nucleus accumbens (NAc) has emerged as a pivotal region at the interface of these two circuits. The NAc comprises distinct subregions and in this review, we focus mainly on the NAc shell (NAcSh). Homeostatic feeding circuits, primarily found in the hypothalamus, ensure the organism's balance in energy and nutrient requirements. These circuits monitor peripheral signals, such as insulin, leptin, and ghrelin, and modulate satiety and hunger states. The NAcSh receives input from these homeostatic circuits, integrating information regarding the organism's metabolic needs. Conversely, so-called hedonic feeding circuits involve all other non-hunger and -satiety processes, i.e., the sensory information, associative learning, reward, motivation and pleasure associated with food consumption. The NAcSh is interconnected with hedonics-related structures like the ventral tegmental area and prefrontal cortex and plays a key role in encoding hedonic information related to palatable food seeking or consumption. In sum, the NAcSh acts as a crucial hub in feeding behavior, integrating signals from both homeostatic and hedonic circuits, to facilitate behavioral output via its downstream projections. Moreover, the NAcSh's involvement extends beyond simple integration, as it directly impacts actions related to food consumption. In this review, we first focus on delineating the inputs targeting the NAcSh; we then present NAcSh output projections to downstream structures. Finally we discuss how the NAcSh regulates feeding behavior and can be seen as a neural hub integrating homeostatic and hedonic feeding signals, via a functionally diverse set of projection neuron subpopulations.
Collapse
Affiliation(s)
- Alina-Măriuca Marinescu
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marie A. Labouesse
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Smith A, MacAulay B, Scheufen J, Hudak A, Abizaid A. Chronic Social Defeat Stress Increases Brain Permeability to Ghrelin in Male Mice. eNeuro 2024; 11:ENEURO.0093-24.2024. [PMID: 38937108 PMCID: PMC11253241 DOI: 10.1523/eneuro.0093-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024] Open
Abstract
Ghrelin is a stomach-derived hormone that increases feeding and is elevated in response to chronic psychosocial stressors. The effects of ghrelin on feeding are mediated by the binding of ghrelin to the growth hormone secretagogue receptor (GHSR), a receptor located in hypothalamic and extrahypothalamic regions important for regulating food intake and metabolic rate. The ability of ghrelin to enter the brain, however, seems to be restricted to circumventricular organs like the median eminence and the brainstem area postrema, whereas ghrelin does not readily enter other GHSR-expressing regions like the ventral tegmental area (VTA). Interestingly, social stressors result in increased blood-brain barrier permeability, and this could therefore facilitate the entry of ghrelin into the brain. To investigate this, we exposed mice to social defeat stress for 21 d and then peripherally injected a Cy5-labelled biologically active ghrelin analog. The results demonstrate that chronically stressed mice exhibit higher Cy5-ghrelin fluorescence in several hypothalamic regions in addition to the ARC, including the hippocampus and midbrain. Furthermore, Cy5-ghrelin injections resulted in increased FOS expression in regions associated with the reward system in chronically stressed mice. Further histologic analyses identified a reduction in the branching of hypothalamic astrocytes in the ARC-median eminence junction, suggesting increased blood-brain barrier permeability. These data support the hypothesis that during metabolically challenging conditions like chronic stress, ghrelin may be more able to cross the blood-brain barrier and diffuse throughout the brain to target GHSR-expressing brain regions away from circumventricular organs.
Collapse
Affiliation(s)
- Andrea Smith
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Brenna MacAulay
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Jessica Scheufen
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Abagael Hudak
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario K1S5B6, Canada
| |
Collapse
|
9
|
Pfabigan DM, Frogner ER, Schéle E, Thorsby PM, Skålhegg BS, Dickson SL, Sailer U. Ghrelin is related to lower brain reward activation during touch. Psychophysiology 2024; 61:e14443. [PMID: 37737514 DOI: 10.1111/psyp.14443] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/19/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
The gut hormone ghrelin drives food motivation and increases food intake, but it is also involved in the anticipation of and response to rewards other than food. This pre-registered study investigated how naturally varying ghrelin concentrations affect the processing of touch as a social reward in humans. Sixty-seven volunteers received slow caressing touch (so-called CT-targeted touch) as a social reward and control touch on their shins during 3T functional imaging on two test days. On one occasion, participants were fasted, and on another, they received a meal. On each occasion, plasma ghrelin was measured at three time points. All touch was rated as more pleasant after the meal, but there was no association between ghrelin concentrations and pleasantness. CT-targeted touch was rated as the most pleasant and activated somatosensory and reward networks (whole brain). A region-of-interest in the right medial orbitofrontal cortex (mOFC) showed lower activation during all touches, the higher the ghrelin concentrations were. During CT-targeted touch, a larger satiety response (ghrelin decrease after the meal) was associated with higher mOFC activation, and this mOFC activation was associated with higher experienced pleasantness. Overall, higher ghrelin concentrations appear to be related to a lower reward value for touch. Ghrelin may reduce the value of social stimuli, such as touch, to promote food search and intake in a state of low energy. This suggests that the role of ghrelin goes beyond assigning value to food reward.
Collapse
Affiliation(s)
- D M Pfabigan
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - E R Frogner
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - E Schéle
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - P M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Oslo, Norway
| | - B S Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - S L Dickson
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - U Sailer
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Pierce-Messick ZJ, Brink AK, Anna Vo T, Corbit LH. Ghrelin receptor antagonism and satiety attenuate Pavlovian-instrumental transfer. Neurobiol Learn Mem 2024; 207:107864. [PMID: 38000462 DOI: 10.1016/j.nlm.2023.107864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Animals rely on learned cues to guide their behaviour for rewards such as food. The Pavlovian-instrumental transfer (PIT) task can be used to investigate the influence of Pavlovian stimuli on instrumental responding. Ghrelin, an orexigenic peptide, and its receptor, growth hormone secretagogue receptor 1A (GHS-R1A), has received growing interest for its role in reward-motivated learning and behaviours. A significant population of GHS-R1A have been identified within the ventral tegmental area (VTA), a critical node in the mesolimbic reward circuit that is necessary for the expression of PIT. As ghrelin has been found to increase dopaminergic activity in the VTA, we predicted that GHS-R1A antagonism with JMV-2959 would attenuate PIT. Further, given the relationship between hunger levels and changes in ghrelin signalling, we sought to compare the effects GHS-R1A antagonism with those of satiety, hypothesizing parallel effects, with each attenuating PIT. Rats received daily sessions of Pavlovian and then instrumental training over 3 weeks. Across three experiments, we examined the effects of a shift to satiety, or treatment with the GHS-R1A antagonist JMV-2959, either peripherally or directly into the VTA. We found that presentations of a stimulus paired with food reward enhanced responding for food across all conditions, thus demonstrating the expected PIT effect. Further, GHS-R1A antagonism, both peripherally and within the VTA, as well as satiety significantly reduced the magnitude of the PIT effect compared to control conditions. These results clarify our understanding of ghrelin signalling in PIT and begin to elucidate the role of feeding-related peptides in the modulation of reward-related responding.
Collapse
|
11
|
So WL, Hu J, Jeffs L, Dempsey H, Lockie SH, Zigman JM, Stark R, Reichenbach A, Andrews ZB. Ghrelin signalling in AgRP neurons links metabolic state to the sensory regulation of AgRP neural activity. Mol Metab 2023; 78:101826. [PMID: 37898450 PMCID: PMC10643323 DOI: 10.1016/j.molmet.2023.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
OBJECTIVE The sensory detection of food and food cues suppresses Agouti related peptide (AgRP) neuronal activity prior to consumption with greatest suppression occurring in response to highly caloric food or interoceptive energy need. However, the interoceptive mechanisms priming an appropriate AgRP neural response to external sensory information of food availability remain unexplored. Since hunger increases plasma ghrelin, we hypothesized that ghrelin receptor (GHSR) signalling on AgRP neurons is a key interoceptive mechanism integrating energy need with external sensory cues predicting caloric availability. METHODS We used in vivo photometry to measure the effects of ghrelin administration or fasting on AgRP neural activity with GCaMP6s and dopamine release in the nucleus accumbens with GRAB-DA in mice lacking ghrelin receptors in AgRP neurons. RESULTS The deletion of GHSR on AgRP neurons prevented ghrelin-induced food intake, motivation and AgRP activity. The presentation of food (peanut butter pellet) or a wooden dowel suppressed AgRP activity in fasted WT but not mice lacking GHSRs in AgRP neurons. Similarly, peanut butter and a wooden dowel increased dopamine release in the nucleus accumbens after ip ghrelin injection in WT but not mice lacking GHSRs in AgRP neurons. No difference in dopamine release was observed in fasted mice. Finally, ip ghrelin administration did not directly increase dopamine neural activity in the ventral tegmental area. CONCLUSIONS Our results suggest that AgRP GHSRs integrate an interoceptive state of energy need with external sensory information to produce an optimal change in AgRP neural activity. Thus, ghrelin signalling on AgRP neurons is more than just a feedback signal to increase AgRP activity during hunger.
Collapse
Affiliation(s)
- Wang Lok So
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Jiachen Hu
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Lotus Jeffs
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Harry Dempsey
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton 3800, Victoria, Australia.
| |
Collapse
|
12
|
Tezenas du Montcel C, Duriez P, Cao J, Lebrun N, Ramoz N, Viltart O, Gorwood P, Tolle V. The role of dysregulated ghrelin/LEAP-2 balance in anorexia nervosa. iScience 2023; 26:107996. [PMID: 37867951 PMCID: PMC10587521 DOI: 10.1016/j.isci.2023.107996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
LEAP-2 is a ghrelin antagonist with an anorexigenic drive. This study investigates the evolution of plasma ghrelin and LEAP-2 concentrations in 29 patients with anorexia nervosa (AN) before and after refeeding and compares it to physiological adaptations during fasting in healthy controls or to mouse model of chronic food restriction and refeeding. Acute and chronic food restriction decrease LEAP-2 and increase ghrelin concentrations in both humans and mice, while patients with AN displayed higher ghrelin and LEAP-2 concentrations before than after refeeding (p = 0.043). After 6 months follow-up, patients with unstable weight gain (n = 17) had significantly decreased LEAP-2 concentrations after refeeding (p = 0.044), in contrast to patients with stable weight gain (n = 12). We provide evidence that the ghrelin/LEAP-2 system is not regulated according to the nutritional status in AN, in contrast to what is physiologically expected when coping with food restriction.
Collapse
Affiliation(s)
- Chloé Tezenas du Montcel
- Université Paris Cité, UMR-S 1266 INSERM, Institut de Psychiatrie et Neuroscience de Paris (IPNP), 75014 Paris, France
- Clinique des Maladies Mentales et de l’Encéphale, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, 75014 Paris, France
| | - Philibert Duriez
- Université Paris Cité, UMR-S 1266 INSERM, Institut de Psychiatrie et Neuroscience de Paris (IPNP), 75014 Paris, France
- Clinique des Maladies Mentales et de l’Encéphale, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, 75014 Paris, France
| | - Jingxian Cao
- Université Paris Cité, UMR-S 1266 INSERM, Institut de Psychiatrie et Neuroscience de Paris (IPNP), 75014 Paris, France
| | - Nicolas Lebrun
- Université Paris Cité, UMR-S 1266 INSERM, Institut de Psychiatrie et Neuroscience de Paris (IPNP), 75014 Paris, France
| | - Nicolas Ramoz
- Université Paris Cité, UMR-S 1266 INSERM, Institut de Psychiatrie et Neuroscience de Paris (IPNP), 75014 Paris, France
| | - Odile Viltart
- Université Paris Cité, UMR-S 1266 INSERM, Institut de Psychiatrie et Neuroscience de Paris (IPNP), 75014 Paris, France
- Université de Lille, SCALab - Sciences Cognitives et Sciences Affectives, UMR CNRS 9193, PsySEF département, 59653 Lille, France
| | - Philip Gorwood
- Université Paris Cité, UMR-S 1266 INSERM, Institut de Psychiatrie et Neuroscience de Paris (IPNP), 75014 Paris, France
- Clinique des Maladies Mentales et de l’Encéphale, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, 75014 Paris, France
| | - Virginie Tolle
- Université Paris Cité, UMR-S 1266 INSERM, Institut de Psychiatrie et Neuroscience de Paris (IPNP), 75014 Paris, France
| |
Collapse
|
13
|
Maric I, López-Ferreras L, Bhat Y, Asker M, Börchers S, Bellfy L, Byun S, Kwapis JL, Skibicka KP. From the stomach to locus coeruleus: new neural substrate for ghrelin's effects on ingestive, motivated and anxiety-like behaviors. Front Pharmacol 2023; 14:1286805. [PMID: 38026980 PMCID: PMC10679437 DOI: 10.3389/fphar.2023.1286805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Ghrelin, a stomach-derived orexigenic hormone, has a well-established role in energy homeostasis, food reward, and emotionality. Noradrenergic neurons of the locus coeruleus (LC) are known to play an important role in arousal, emotion, cognition, but recently have also been implicated in control of feeding behavior. Ghrelin receptors (the growth hormone secretagogue receptor, GHSR) may be found in the LC, but the behavioral effects of ghrelin signaling in this area are still unexplored. Here, we first determined whether GHSR are present in the rat LC, and demonstrate that GHSR are expressed on noradrenergic neurons in both sexes. We next investigated whether ghrelin controls ingestive and motivated behaviors as well as anxiety-like behavior by acting in the LC. To pursue this idea, we examined the effects of LC GHSR stimulation and blockade on food intake, operant responding for a palatable food reward and, anxiety-like behavior in the open field (OF) and acoustic startle response (ASR) tests in male and female rats. Our results demonstrate that intra-LC ghrelin administration increases chow intake and motivated behavior for sucrose in both sexes. Additionally, females, but not males, exhibited a potent anxiolytic response in the ASR. In order to determine whether activation of GHSR in the LC was necessary for feeding and anxiety behavior control, we utilized liver-expressed antimicrobial peptide 2 (LEAP2), a newly identified endogenous GHSR antagonist. LEAP2 delivered specifically into the LC was sufficient to reduce fasting-induced chow hyperphagia in both sexes, but food reward only in females. Moreover, blockade of GHSR in the LC increased anxiety-like behavior measured in the ASR test in both sexes. Taken together, these results indicate that ghrelin acts in the LC to alter ingestive, motivated and anxiety-like behaviors, with a degree of sex divergence.
Collapse
Affiliation(s)
- Ivana Maric
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
| | - Lorena López-Ferreras
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Yashaswini Bhat
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
| | - Mohammed Asker
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Stina Börchers
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
| | - Lauren Bellfy
- Department of Biology, Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| | - Suyeun Byun
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
| | - Janine L. Kwapis
- Department of Biology, Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| | - Karolina P. Skibicka
- Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| |
Collapse
|
14
|
Passeri A, Municchi D, Cavalieri G, Babicola L, Ventura R, Di Segni M. Linking drug and food addiction: an overview of the shared neural circuits and behavioral phenotype. Front Behav Neurosci 2023; 17:1240748. [PMID: 37767338 PMCID: PMC10520727 DOI: 10.3389/fnbeh.2023.1240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Despite a lack of agreement on its definition and inclusion as a specific diagnosable disturbance, the food addiction construct is supported by several neurobiological and behavioral clinical and preclinical findings. Recognizing food addiction is critical to understanding how and why it manifests. In this overview, we focused on those as follows: 1. the hyperpalatable food effects in food addiction development; 2. specific brain regions involved in both food and drug addiction; and 3. animal models highlighting commonalities between substance use disorders and food addiction. Although results collected through animal studies emerged from protocols differing in several ways, they clearly highlight commonalities in behavioral manifestations and neurobiological alterations between substance use disorders and food addiction characteristics. To develop improved food addiction models, this heterogeneity should be acknowledged and embraced so that research can systematically investigate the role of specific variables in the development of the different behavioral features of addiction-like behavior in preclinical models.
Collapse
Affiliation(s)
- Alice Passeri
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | - Giulia Cavalieri
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| | | | - Rossella Ventura
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University, Rome, Italy
| |
Collapse
|
15
|
Geisler CE, Hayes MR. Metabolic hormone action in the VTA: Reward-directed behavior and mechanistic insights. Physiol Behav 2023; 268:114236. [PMID: 37178855 PMCID: PMC10330780 DOI: 10.1016/j.physbeh.2023.114236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Dysfunctional signaling in midbrain reward circuits perpetuates diseases characterized by compulsive overconsumption of rewarding substances such as substance abuse, binge eating disorder, and obesity. Ventral tegmental area (VTA) dopaminergic activity serves as an index for how rewarding stimuli are perceived and triggers behaviors necessary to obtain future rewards. The evolutionary linking of reward with seeking and consuming palatable foods ensured an organism's survival, and hormone systems that regulate appetite concomitantly developed to regulate motivated behaviors. Today, these same mechanisms serve to regulate reward-directed behavior around food, drugs, alcohol, and social interactions. Understanding how hormonal regulation of VTA dopaminergic output alters motivated behaviors is essential to leveraging therapeutics that target these hormone systems to treat addiction and disordered eating. This review will outline our current understanding of the mechanisms underlying VTA action of the metabolic hormones ghrelin, glucagon-like peptide-1, amylin, leptin, and insulin to regulate behavior around food and drugs of abuse, highlighting commonalities and differences in how these five hormones ultimately modulate VTA dopamine signaling.
Collapse
Affiliation(s)
- Caroline E Geisler
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Tezenas du Montcel C, Cao J, Mattioni J, Hamelin H, Lebrun N, Ramoz N, Gorwood P, Tolle V, Viltart O. Chronic food restriction in mice and increased systemic ghrelin induce preference for running wheel activity. Psychoneuroendocrinology 2023; 155:106311. [PMID: 37295225 DOI: 10.1016/j.psyneuen.2023.106311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES In eating disorders, particularly anorexia nervosa (AN), patients exhibit intense physical activity which is inappropriate regarding food restriction and chronic undernutrition, and exacerbates weight loss and energy deprivation. Rodent models of food restriction exhibit increased running wheel activity in the food anticipation period, also known as Food Anticipatory Activity (FAA). FAA probably has various physiological and/or neurobiological origins. Plasma concentrations of the orexigenic hormone ghrelin are, for example, increased during FAA. We hypothesize that the drive for physical activity in chronic food restriction is triggered by metabolic factors but also relies on motivational aspects that we aim to decipher in this study. METHODS Young female C57Bl6/J mice were exposed to a paradigm based on a progressive 50% quantitative food restriction alone (FR) or associated with running wheel activity (Food Restriction Wheel: FRW) in their home-cage during 15 days. We measured preference for running wheel in a three-chamber apparatus in which animals could choose to explore either a known running wheel or a novel object. Testing took place either during resting or during FAA. We calculated the time spent in each compartment and the activity in running wheels. After progressive refeeding over 10 days, mice were tested again when refed. Plasma levels of both ghrelin isoforms were measured with selective immunoassays. RESULTS When tested during FAA period, food restricted mice displayed increased preference for the running wheel compared to ad libitum fed controls. Both FR and FRW mice exhibited increased running time and distance in the wheel and running distance was correlated with ghrelin levels. Similar preference and behavior were found when testing took place during the resting period. Animals housed without an active wheel also exhibited active running. Progressive refeeding resulted in body weight restoration, a decrease in FAA and completely abolished preference for the running wheel. Refed animals displayed similar behavior as ad libitum fed controls. CONCLUSIONS These data provide evidence that food restriction-induced physical activity is closely correlated with metabolic adaptations to nutritional status implicating ghrelin in the quantity of physical activity.
Collapse
Affiliation(s)
- Chloé Tezenas du Montcel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France; GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Jingxian Cao
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France
| | - Julia Mattioni
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France
| | - Héloïse Hamelin
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France
| | - Nicolas Lebrun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France
| | - Nicolas Ramoz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France; GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Philip Gorwood
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France; GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Virginie Tolle
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France
| | - Odile Viltart
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR-S 1266, F-75014 Paris, France; Université de Lille, SCALab laboratory, UMR CNRS 9193, PsySEF Faculty, F-59650 Villeneuve d'Ascq, France.
| |
Collapse
|
17
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
18
|
Wald HS, Ghidewon MY, Hayes MR, Grill HJ. Hindbrain ghrelin and liver-expressed antimicrobial peptide 2, ligands for growth hormone secretagogue receptor, bidirectionally control food intake. Am J Physiol Regul Integr Comp Physiol 2023; 324:R547-R555. [PMID: 36847494 PMCID: PMC10069974 DOI: 10.1152/ajpregu.00232.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Hindbrain growth hormone secretagogue receptor (GHSR) agonism increases food intake, yet the underlying neural mechanisms remain unclear. The functional effects of hindbrain GHSR antagonism by its endogenous antagonist liver-expressed antimicrobial peptide 2 (LEAP2) are also yet unexplored. To test the hypothesis that hindbrain GHSR agonism attenuates the food intake inhibitory effect of gastrointestinal (GI) satiation signals, ghrelin (at a feeding subthreshold dose) was administered to the fourth ventricle (4V) or directly to the nucleus tractus solitarius (NTS) before systemic delivery of the GI satiation signal cholecystokinin (CCK). Also examined, was whether hindbrain GHSR agonism attenuated CCK-induced NTS neural activation (c-Fos immunofluorescence). To investigate an alternate hypothesis that hindbrain GHSR agonism enhances feeding motivation and food seeking, intake stimulatory ghrelin doses were administered to the 4V and fixed ratio 5 (FR-5), progressive ratio (PR), and operant reinstatement paradigms for palatable food responding were evaluated. Also assessed were 4V LEAP2 delivery on food intake and body weight (BW) and on ghrelin-stimulated feeding. Both 4V and NTS ghrelin blocked the intake inhibitory effect of CCK and 4V ghrelin blocked CCK-induced NTS neural activation. Although 4V ghrelin increased low-demand FR-5 responding, it did not increase high-demand PR or reinstatement of operant responding. Fourth ventricle LEAP2 reduced chow intake and BW and blocked hindbrain ghrelin-stimulated feeding. Data support a role for hindbrain GHSR in bidirectional control of food intake through mechanisms that include interacting with the NTS neural processing of GI satiation signals but not food motivation and food seeking.
Collapse
Affiliation(s)
- Hallie S Wald
- Department of Psychology, Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Misgana Y Ghidewon
- Department of Psychology, Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Matthew R Hayes
- Department of Psychiatry, Institute of Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Harvey J Grill
- Department of Psychology, Institute of Diabetes Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
19
|
Chamorro R, Jouffe C, Oster H, Uhlenhaut NH, Meyhöfer SM. When should I eat: A circadian view on food intake and metabolic regulation. Acta Physiol (Oxf) 2023; 237:e13936. [PMID: 36645134 DOI: 10.1111/apha.13936] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023]
Abstract
The circadian clock is a hierarchical timing system regulating most physiological and behavioral functions with a period of approximately 24 h in humans and other mammalian species. The circadian clock drives daily eating rhythms that, in turn, reinforce the circadian clock network itself to anticipate and orchestrate metabolic responses to food intake. Eating is tightly interconnected with the circadian clock and recent evidence shows that the timing of meals is crucial for the control of appetite and metabolic regulation. Obesity results from combined long-term dysregulation in food intake (homeostatic and hedonic circuits), energy expenditure, and energy storage. Increasing evidence supports that the loss of synchrony of daily rhythms significantly impairs metabolic homeostasis and is associated with obesity. This review presents an overview of mechanisms regulating food intake (homeostatic/hedonic) and focuses on the crucial role of the circadian clock on the metabolic response to eating, thus providing a fundamental research axis to maintain a healthy eating behavior.
Collapse
Affiliation(s)
- Rodrigo Chamorro
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany.,Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Céline Jouffe
- Institute for Diabetes and Endocrinology, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.,Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - N Henriette Uhlenhaut
- Institute for Diabetes and Endocrinology, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.,Chair for Metabolic Programming, TUM School of Life Sciences Weihenstephan, & ZIEL-Institute for Food & Health, Freising, Germany
| | - Sebastian M Meyhöfer
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
20
|
Roh E, Choi KM. Hormonal Gut-Brain Signaling for the Treatment of Obesity. Int J Mol Sci 2023; 24:ijms24043384. [PMID: 36834794 PMCID: PMC9959457 DOI: 10.3390/ijms24043384] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The brain, particularly the hypothalamus and brainstem, monitors and integrates circulating metabolic signals, including gut hormones. Gut-brain communication is also mediated by the vagus nerve, which transmits various gut-derived signals. Recent advances in our understanding of molecular gut-brain communication promote the development of next-generation anti-obesity medications that can safely achieve substantial and lasting weight loss comparable to metabolic surgery. Herein, we comprehensively review the current knowledge about the central regulation of energy homeostasis, gut hormones involved in the regulation of food intake, and clinical data on how these hormones have been applied to the development of anti-obesity drugs. Insight into and understanding of the gut-brain axis may provide new therapeutic perspectives for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Correspondence: or
| |
Collapse
|
21
|
Engel JA, Pålsson E, Vallöf D, Jerlhag E. Ghrelin activates the mesolimbic dopamine system via nitric oxide associated mechanisms in the ventral tegmental area. Nitric Oxide 2023; 131:1-7. [PMID: 36513266 DOI: 10.1016/j.niox.2022.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Besides enhanced feeding, the orexigenic peptide ghrelin activates the mesolimbic dopamine system to cause reward as measured by locomotor stimulation, dopamine release in nucleus accumbens shell (NAcS), and conditioned place preference. Although the ventral tegmental area (VTA) appears to be a central brain region for this ghrelin-reward, the underlying mechanisms within this area are unknown. The findings that the gaseous neurotransmitter nitric oxide (NO) modulate the ghrelin enhanced feeding, led us to hypothesize that ghrelin increases NO levels in the VTA, and thereby stimulates reward-related behaviors. We initially demonstrated that inhibition of NO synthesis blocked the ghrelin-induced activation of the mesolimbic dopamine system. We then established that antagonism of downstream signaling of NO in the VTA, namely sGC, prevents the ability of ghrelin to stimulate the mesolimbic dopamine system. The association of ghrelin to NO was further strengthened by in vivo electrochemical recordings showing that ghrelin enhances the NO release in the VTA. Besides a GABAB -receptor agonist, known to reduce NO and cGMP, blocks the stimulatory properties of ghrelin. The present series of experiments reveal that ablated NO signaling, through pharmacologically inhibiting the production of NO and/or cGMP, prevents the ability of ghrelin to induced reward-related behaviors.
Collapse
Affiliation(s)
- Jörgen A Engel
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Pålsson
- Institute of Neuroscience and Physiology, Department of Neurochemistry and Psychiatry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Vallöf
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
22
|
Sailer U, Riva F, Lieberz J, Campbell-Meiklejohn D, Scheele D, Pfabigan DM. Hungry for compliments? Ghrelin is not associated with neural responses to social rewards or their pleasantness. Front Psychiatry 2023; 14:1104305. [PMID: 37077276 PMCID: PMC10106620 DOI: 10.3389/fpsyt.2023.1104305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/08/2023] [Indexed: 04/21/2023] Open
Abstract
The stomach-derived hormone ghrelin motivates food search and stimulates food consumption, with highest plasma concentrations before a meal and lowest shortly after. However, ghrelin also appears to affect the value of non-food rewards such as interaction with rat conspecifics, and monetary rewards in humans. The present pre-registered study investigated how nutritional state and ghrelin concentrations are related to the subjective and neural responses to social and non-social rewards. In a cross-over feed-and-fast design, 67 healthy volunteers (20 women) underwent functional magnetic resonance imaging (fMRI) in a hungry state and after a meal with repeated plasma ghrelin measurements. In task 1, participants received social rewards in the form of approving expert feedback, or non-social computer reward. In task 2, participants rated the pleasantness of compliments and neutral statements. Nutritional state and ghrelin concentrations did not affect the response to social reward in task 1. In contrast, ventromedial prefrontal cortical activation to non-social rewards was reduced when the meal strongly suppressed ghrelin. In task 2, fasting increased activation in the right ventral striatum during all statements, but ghrelin concentrations were neither associated with brain activation nor with experienced pleasantness. Complementary Bayesian analyses provided moderate evidence for a lack of correlation between ghrelin concentrations and behavioral and neural responses to social rewards, but moderate evidence for an association between ghrelin and non-social rewards. This suggests that ghrelin's influence may be restricted to non-social rewards. Social rewards implemented via social recognition and affirmation may be too abstract and complex to be susceptible to ghrelin's influence. In contrast, the non-social reward was associated with the expectation of a material object that was handed out after the experiment. This may indicate that ghrelin might be involved in anticipatory rather than consummatory phases of reward.
Collapse
Affiliation(s)
- Uta Sailer
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Uta Sailer,
| | - Federica Riva
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jana Lieberz
- Research Section Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | | | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Daniela M. Pfabigan
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Hanis F, Chung ELT, Kamalludin MH, Idrus Z. Effect of feed modification on the behavior, blood profile, and telomere in horses exhibiting abnormal oral behaviors. J Vet Behav 2022. [DOI: 10.1016/j.jveb.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Reich N, Hölscher C. Beyond Appetite: Acylated Ghrelin As A Learning, Memory and Fear Behavior-modulating Hormone. Neurosci Biobehav Rev 2022; 143:104952. [DOI: 10.1016/j.neubiorev.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 04/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
25
|
The role of appetite-controlling hormones in the development of eating disorders in diabetic 2 patients. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Binge eating disorder (BED) and night eating syndrome (NES) are common eating disorders (EDs) in individuals with diabetes type 2 (DT2). They worsen metabolic control, have a negative impact on physical and mental health and reduce quality of life. The roles of appetite-controlling hormones – leptin and ghrelin – is not clear enough in EDs and need to be investigated in order to establish new approaches and markers of EDs. Aim: To assess the difference in leptin and ghrelin levels in DT2 patients with and without EDs. 57 patients with DT2 were involved in the study. After physical examination and screening for EDs, blood samples for leptin and ghrelin measuring were obtained.
Results: 19 participants (33.3%) were screened positively for ED (BE or NES). Leptin levels were higher in participants with ED (p<0.05). Conversely, ghrelin levels were lower in those with BE or NES (p<0.05).
Leptin level is increased in DT2 individuals with BED and NES, whereas ghrelin is decreased. Leptin and ghrelin alterations maintain emotional eating, increase the frequency of binge and night eating episodes. In screening for EDs, assessing leptin and ghrelin levels will facilitate obesity reduction and improve metabolic control in diabetic patients.
Collapse
|
26
|
Morales I. Brain regulation of hunger and motivation: The case for integrating homeostatic and hedonic concepts and its implications for obesity and addiction. Appetite 2022; 177:106146. [PMID: 35753443 DOI: 10.1016/j.appet.2022.106146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Obesity and other eating disorders are marked by dysregulations to brain metabolic, hedonic, motivational, and sensory systems that control food intake. Classic approaches in hunger research have distinguished between hedonic and homeostatic processes, and have mostly treated these systems as independent. Hindbrain structures and a complex network of interconnected hypothalamic nuclei control metabolic processes, energy expenditure, and food intake while mesocorticolimbic structures are though to control hedonic and motivational processes associated with food reward. However, it is becoming increasingly clear that hedonic and homeostatic brain systems do not function in isolation, but rather interact as part of a larger network that regulates food intake. Incentive theories of motivation provide a useful route to explore these interactions. Adapting incentive theories of motivation can enable researchers to better how motivational systems dysfunction during disease. Obesity and addiction are associated with profound alterations to both hedonic and homeostatic brain systems that result in maladaptive patterns of consumption. A subset of individuals with obesity may experience pathological cravings for food due to incentive sensitization of brain systems that generate excessive 'wanting' to eat. Further progress in understanding how the brain regulates hunger and appetite may depend on merging traditional hedonic and homeostatic concepts of food reward and motivation.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.
| |
Collapse
|
27
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
28
|
Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov 2022; 21:201-223. [PMID: 34815532 PMCID: PMC8609996 DOI: 10.1038/s41573-021-00337-8] [Citation(s) in RCA: 520] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
Enormous progress has been made in the last half-century in the management of diseases closely integrated with excess body weight, such as hypertension, adult-onset diabetes and elevated cholesterol. However, the treatment of obesity itself has proven largely resistant to therapy, with anti-obesity medications (AOMs) often delivering insufficient efficacy and dubious safety. Here, we provide an overview of the history of AOM development, focusing on lessons learned and ongoing obstacles. Recent advances, including increased understanding of the molecular gut-brain communication, are inspiring the pursuit of next-generation AOMs that appear capable of safely achieving sizeable and sustained body weight loss.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | | |
Collapse
|
29
|
Perelló M, Cornejo MP, De Francesco PN, Fernandez G, Gautron L, Valdivia LS. The controversial role of the vagus nerve in mediating ghrelin´s actions: gut feelings and beyond. IBRO Neurosci Rep 2022; 12:228-239. [PMID: 35746965 PMCID: PMC9210457 DOI: 10.1016/j.ibneur.2022.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022] Open
Abstract
Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla. Many anatomical studies have mapped GHSR expression in vagal sensory or motor neurons. Also, numerous functional studies investigated the role of the vagus nerve mediating specific actions of ghrelin. Here, we critically review the topic and discuss the available evidence supporting, or not, a role for the vagus nerve mediating some specific actions of ghrelin. We conclude that studies using rats have provided the most congruent evidence indicating that the vagus nerve mediates some actions of ghrelin on the digestive and cardiovascular systems, whereas studies in mice resulted in conflicting observations. Even considering exclusively studies performed in rats, the putative role of the vagus nerve in mediating the orexigenic and growth hormone (GH) secretagogue properties of ghrelin remains debated. In humans, studies are still insufficient to draw definitive conclusions regarding the role of the vagus nerve mediating most of the actions of ghrelin. Thus, the extent to which the vagus nerve mediates ghrelin actions, particularly in humans, is still uncertain and likely one of the most intriguing unsolved aspects of the field.
Collapse
|
30
|
Hanssen R, Thanarajah SE, Tittgemeyer M, Brüning JC. Obesity - A Matter of Motivation? Exp Clin Endocrinol Diabetes 2022; 130:290-295. [PMID: 35181879 PMCID: PMC9286865 DOI: 10.1055/a-1749-4852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excessive food intake and reduced physical activity have long been established as
primary causes of obesity. However, the underlying mechanisms causing this
unhealthy behavior characterized by heightened motivation for food but not for
physical effort are unclear. Despite the common unjustified stigmatization that
obesity is a result of laziness and lack of discipline, it is becoming
increasingly clear that high-fat diet feeding and obesity cause alterations in
brain circuits that are critical for the control of motivational behavior. In this mini-review, we provide a comprehensive overview of incentive motivation,
its neural encoding in the dopaminergic mesolimbic system as well as its
metabolic modulation with a focus on derangements of incentive motivation in
obesity. We further discuss the emerging field of metabolic interventions to
counteract motivational deficits and their potential clinical implications.
Collapse
Affiliation(s)
- Ruth Hanssen
- Max Planck Institute for Metabolism Research, Cologne, Germany.,Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sharmili E Thanarajah
- Max Planck Institute for Metabolism Research, Cologne, Germany.,Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany.,Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany.,Policlinic for Endocrinology, Diabetology and Preventive Medicine (PEPD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
31
|
Tacad DKM, Tovar AP, Richardson CE, Horn WF, Keim NL, Krishnan GP, Krishnan S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Central Neuroendocrine Integration. Adv Nutr 2022; 13:758-791. [PMID: 35134815 PMCID: PMC9156369 DOI: 10.1093/advances/nmac011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
This review focuses on summarizing current knowledge on how time-restricted feeding (TRF) and continuous caloric restriction (CR) affect central neuroendocrine systems involved in regulating satiety. Several interconnected regions of the hypothalamus, brainstem, and cortical areas of the brain are involved in the regulation of satiety. Following CR and TRF, the increase in hunger and reduction in satiety signals of the melanocortin system [neuropeptide Y (NPY), proopiomelanocortin (POMC), and agouti-related peptide (AgRP)] appear similar between CR and TRF protocols, as do the dopaminergic responses in the mesocorticolimbic circuit. However, ghrelin and leptin signaling via the melanocortin system appears to improve energy balance signals and reduce hyperphagia following TRF, which has not been reported in CR. In addition to satiety systems, CR and TRF also influence circadian rhythms. CR influences the suprachiasmatic nucleus (SCN) or the primary circadian clock as seen by increased clock gene expression. In contrast, TRF appears to affect both the SCN and the peripheral clocks, as seen by phasic changes in the non-SCN (potentially the elusive food entrainable oscillator) and metabolic clocks. The peripheral clocks are influenced by the primary circadian clock but are also entrained by food timing, sleep timing, and other lifestyle parameters, which can supersede the metabolic processes that are regulated by the primary circadian clock. Taken together, TRF influences hunger/satiety, energy balance systems, and circadian rhythms, suggesting a role for adherence to CR in the long run if implemented using the TRF approach. However, these suggestions are based on only a few studies, and future investigations that use standardized protocols for the evaluation of the effect of these diet patterns (time, duration, meal composition, sufficiently powered) are necessary to verify these preliminary observations.
Collapse
Affiliation(s)
- Debra K M Tacad
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Ashley P Tovar
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | | | - William F Horn
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA
| | - Nancy L Keim
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Giri P Krishnan
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
32
|
Sustkova-Fiserova M, Charalambous C, Khryakova A, Certilina A, Lapka M, Šlamberová R. The Role of Ghrelin/GHS-R1A Signaling in Nonalcohol Drug Addictions. Int J Mol Sci 2022; 23:761. [PMID: 35054944 PMCID: PMC8776007 DOI: 10.3390/ijms23020761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Drug addiction causes constant serious health, social, and economic burden within the human society. The current drug dependence pharmacotherapies, particularly relapse prevention, remain limited, unsatisfactory, unreliable for opioids and tobacco, and even symptomatic for stimulants and cannabinoids, thus, new more effective treatment strategies are researched. The antagonism of the growth hormone secretagogue receptor type A (GHS-R1A) has been recently proposed as a novel alcohol addiction treatment strategy, and it has been intensively studied in experimental models of other addictive drugs, such as nicotine, stimulants, opioids and cannabinoids. The role of ghrelin signaling in these drugs effects has also been investigated. The present review aims to provide a comprehensive overview of preclinical and clinical studies focused on ghrelin's/GHS-R1A possible involvement in these nonalcohol addictive drugs reinforcing effects and addiction. Although the investigation is still in its early stage, majority of the existing reviewed experimental results from rodents with the addition of few human studies, that searched correlations between the genetic variations of the ghrelin signaling or the ghrelin blood content with the addictive drugs effects, have indicated the importance of the ghrelin's/GHS-R1As involvement in the nonalcohol abused drugs pro-addictive effects. Further research is necessary to elucidate the exact involved mechanisms and to verify the future potential utilization and safety of the GHS-R1A antagonism use for these drug addiction therapies, particularly for reducing the risk of relapse.
Collapse
Affiliation(s)
- Magdalena Sustkova-Fiserova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Chrysostomos Charalambous
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Anna Khryakova
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Alina Certilina
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Marek Lapka
- Department of Pharmacology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic; (C.C.); (A.K.); (A.C.); (M.L.)
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic;
| |
Collapse
|
33
|
TRAPing Ghrelin-Activated Circuits: A Novel Tool to Identify, Target and Control Hormone-Responsive Populations in TRAP2 Mice. Int J Mol Sci 2022; 23:ijms23010559. [PMID: 35008985 PMCID: PMC8745172 DOI: 10.3390/ijms23010559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023] Open
Abstract
The availability of Cre-based mouse lines for visualizing and targeting populations of hormone-sensitive cells has helped identify the neural circuitry driving hormone effects. However, these mice have limitations and may not even be available. For instance, the development of the first ghrelin receptor (Ghsr)-IRES-Cre model paved the way for using the Cre-lox system to identify and selectively manipulate ghrelin-responsive populations. The insertion of the IRES-Cre cassette, however, interfered with Ghsr expression, resulting in defective GHSR signaling and a pronounced phenotype in the homozygotes. As an alternative strategy to target ghrelin-responsive cells, we hereby utilize TRAP2 (targeted recombination in active populations) mice in which it is possible to gain genetic access to ghrelin-activated populations. In TRAP2 mice crossed with a reporter strain, we visualized ghrelin-activated cells and found, as expected, much activation in the arcuate nucleus (Arc). We then stimulated this population using a chemogenetic approach and found that this was sufficient to induce an orexigenic response of similar magnitude to that induced by peripheral ghrelin injection. The stimulation of this population also impacted food choice. Thus, the TRAPing of hormone-activated neurons (here exemplified by ghrelin-activated pathways) provides a complimentary/alternative technique to visualize, access and control discrete pathways, linking hormone action to circuit function.
Collapse
|
34
|
Deschaine SL, Leggio L. From "Hunger Hormone" to "It's Complicated": Ghrelin Beyond Feeding Control. Physiology (Bethesda) 2022; 37:5-15. [PMID: 34964687 PMCID: PMC8742734 DOI: 10.1152/physiol.00024.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Discovered as a peptide involved in releasing growth hormone, ghrelin was initially characterized as the "hunger hormone." However, emerging research indicates that ghrelin appears to play an important part in relaying information regarding nutrient availability and value and adjusting physiological and motivational processes accordingly. These functions make ghrelin an interesting therapeutic candidate for metabolic and neuropsychiatric diseases involving disrupted nutrition that can further potentiate the rewarding effect of maladaptive behaviors.
Collapse
Affiliation(s)
- Sara L. Deschaine
- 1Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore and Bethesda, Maryland
| | - Lorenzo Leggio
- 1Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore and Bethesda, Maryland,2Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland,3Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island,4Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland,5Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
35
|
Plassmann H, Schelski DS, Simon M, Koban L. How we decide what to eat: Toward an interdisciplinary model of gut-brain interactions. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1562. [PMID: 33977675 PMCID: PMC9286667 DOI: 10.1002/wcs.1562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022]
Abstract
Everyday dietary decisions have important short-term and long-term consequences for health and well-being. How do we decide what to eat, and what physiological and neurobiological systems are involved in those decisions? Here, we integrate findings from thus-far separate literatures: (a) the cognitive neuroscience of dietary decision-making, and (b) growing evidence of gut-brain interactions and especially influences of the gut microbiome on diet and health outcomes. We review findings that suggest that dietary decisions and food consumption influence nutrient sensing, homeostatic signaling in the gut, and the composition of the gut microbiome. In turn, the microbiome can influence host health and behavior. Through reward signaling pathways, the microbiome could potentially affect food and drink decisions. Such bidirectional links between gut microbiome and the brain systems underlying dietary decision-making may lead to self-reinforcing feedback loops that determine long-term dietary patterns, body mass, and health outcomes. This article is categorized under: Economics > Individual Decision-Making Psychology > Brain Function and Dysfunction Psychology > Reasoning and Decision Making.
Collapse
Affiliation(s)
- Hilke Plassmann
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Daniela Stephanie Schelski
- Center for Economics and NeuroscienceUniversity of BonnBonnGermany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical CenterBonnGermany
| | - Marie‐Christine Simon
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of BonnBonnGermany
| | - Leonie Koban
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| |
Collapse
|
36
|
Börchers S, Krieger JP, Maric I, Carl J, Abraham M, Longo F, Asker M, Richard JE, Skibicka KP. From an Empty Stomach to Anxiolysis: Molecular and Behavioral Assessment of Sex Differences in the Ghrelin Axis of Rats. Front Endocrinol (Lausanne) 2022; 13:901669. [PMID: 35784535 PMCID: PMC9243305 DOI: 10.3389/fendo.2022.901669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Ghrelin, a stomach-produced hormone, is well-recognized for its role in promoting feeding, controlling energy homeostasis, and glucoregulation. Ghrelin's function to ensure survival extends beyond that: its release parallels that of corticosterone, and ghrelin administration and fasting have an anxiolytic and antidepressant effect. This clearly suggests a role in stress and anxiety. However, most studies of ghrelin's effects on anxiety have been conducted exclusively on male rodents. Here, we hypothesize that female rats are wired for higher ghrelin sensitivity compared to males. To test this, we systematically compared components of the ghrelin axis between male and female Sprague Dawley rats. Next, we evaluated whether anxiety-like behavior and feeding response to endogenous or exogenous ghrelin are sex divergent. In line with our hypothesis, we show that female rats have higher serum levels of ghrelin and lower levels of the endogenous antagonist LEAP-2, compared to males. Furthermore, circulating ghrelin levels were partly dependent on estradiol; ovariectomy drastically reduced circulating ghrelin levels, which were partly restored by estradiol replacement. In contrast, orchiectomy did not affect circulating plasma ghrelin. Additionally, females expressed higher levels of the endogenous ghrelin receptor GHSR1A in brain areas involved in feeding and anxiety: the lateral hypothalamus, hippocampus, and amygdala. Moreover, overnight fasting increased GHSR1A expression in the amygdala of females, but not males. To evaluate the behavioral consequences of these molecular differences, male and female rats were tested in the elevated plus maze (EPM), open field (OF), and acoustic startle response (ASR) after three complementary ghrelin manipulations: increased endogenous ghrelin levels through overnight fasting, systemic administration of ghrelin, or blockade of fasting-induced ghrelin signaling with a GHSR1A antagonist. Here, females exhibited a stronger anxiolytic response to fasting and ghrelin in the ASR, in line with our findings of sex differences in the ghrelin axis. Most importantly, after GHSR1A antagonist treatment, females but not males displayed an anxiogenic response in the ASR, and a more pronounced anxiogenesis in the EPM and OF compared to males. Collectively, female rats are wired for higher sensitivity to fasting-induced anxiolytic ghrelin signaling. Further, the sex differences in the ghrelin axis are modulated, at least partly, by gonadal steroids, specifically estradiol. Overall, ghrelin plays a more prominent role in the regulation of anxiety-like behavior of female rats.
Collapse
Affiliation(s)
- Stina Börchers
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jean-Philippe Krieger
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ivana Maric
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jil Carl
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Maral Abraham
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Francesco Longo
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mohammed Asker
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer E. Richard
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Karolina P. Skibicka
- Department of Physiology, Institute for Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Karolina P. Skibicka,
| |
Collapse
|
37
|
Colvin KJ, Killen HS, Kanter MJ, Halperin MC, Engel L, Dickinson MB, Fimmel AI, Holland JG, Currie PJ. Differential effects of intra-ventral tegmental area ghrelin and glucagon-like peptide-1 on the stimulatory action of D-amphetamine and cocaine-induced ethanol intake in male Sprague Dawley rats. Behav Brain Res 2021; 421:113726. [PMID: 34954300 DOI: 10.1016/j.bbr.2021.113726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022]
Abstract
In order to further elucidate the role of mesolimbic peptides in the expression of ethanol reward, the present study investigated the effects of ghrelin and glucagon-like peptide-1 (GLP-1) on ethanol intake, in addition to ethanol intake stimulated by systemic d-amphetamine or cocaine treatment. While a number of studies suggest that ghrelin plays an important role in mesolimbic reward, emerging data now indicate that GLP-1 receptor mechanisms inhibit reward signaling, possibly by directly or indirectly inhibiting ghrelinergic activity within the mesolimbic system. In the present study all rats were initially habituated to a 6% ethanol solution. We then demonstrated that intraperitoneal injections of d-amphetamine and cocaine increased ethanol intake compared to the vehicle condition. In subsequent testing we examined the effects of ventral tegmental area (VTA) ghrelin or vehicle paired with a fixed dose of d-amphetamine or vehicle. In separate rats we then investigated the impact of the GLP-1 agonist exendin-4 (Ex-4), injected into the VTA, on ethanol intake alone, or when Ex-4 was co-administered with d-amphetamine or cocaine. Our results indicated that VTA ghrelin significantly increased ethanol intake, and most importantly, potentiated the effect of d-amphetamine and cocaine on ethanol consumption. Conversely, VTA Ex-4 inhibited ethanol intake and antagonized the stimulatory effect of d-amphetamine and cocaine on ethanol consumption. In a final study we further demonstrated that VTA Ex-4 treatment significantly inhibited the combined stimulatory effects of ghrelin paired with d-amphetamine or ghrelin paired with cocaine. Overall our findings are consistent with a critical role for both ghrelin and GLP-1 receptor mechanisms in mesolimbic ethanol reward circuitry. Moreover, our results further suggest that ghrelin and GLP-1 modulate the stimulatory effect of psychostimulants on ethanol intake.
Collapse
Affiliation(s)
- Kayla J Colvin
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Henry S Killen
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Maxwell J Kanter
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Maximilian C Halperin
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Liv Engel
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Matthew B Dickinson
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Anna I Fimmel
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - James G Holland
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA
| | - Paul J Currie
- Department of Psychology, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97202, USA.
| |
Collapse
|
38
|
Zhao J, Du X, Chen M, Zhu S. Growth Hormone Secretagogue Receptor 1A Antagonist JMV2959 Effectively Prevents Morphine Memory Reconsolidation and Relapse. Front Pharmacol 2021; 12:718615. [PMID: 34912212 PMCID: PMC8666548 DOI: 10.3389/fphar.2021.718615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Relapse to drug seeking after prolonged abstinence is a major problem in the clinical treatment of drug addiction. The use of pharmacological interventions to disrupt established drug reward memories is a promising strategy for the treatment of drug addiction. A growth hormone secretagogue receptor 1 A antagonist, JMV2959, has been shown to reduce morphine-induced conditioned place preference (CPP) in rats within hours of intervention; thus, JMV2959 is a potential candidate for drug addiction treatment. However, the effect of JMV2959 on reconsolidation to disrupt drug seeking remains unknown. In this study, we assessed the effect of JMV2959 on morphine induced memory reconsolidation to inhibit drug seeking after drug withdrawal. Our results showed that the administration of JMV2959 (6 mg/kg) significantly reduced environmental cue induced CPP, which suggested a preventive effect of JMV2959 on morphine induced memory reconsolidation. Additionally, JMV2959 administration significantly altered the locomotor activity and food and water intake but did not significantly alter the natural reward preference. We concluded that JMV2959 may be an effective candidate to treat drug addiction.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xinyu Du
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| | - Mingzhu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| | - Shimin Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| |
Collapse
|
39
|
Valentina S, Blasio A, Ferragud A, Quadir SG, Iyer MR, Rice KC, Cottone P. Characterization of a differential reinforcement of low rates of responding task in non-deprived male and female rats: Role of Sigma-1 receptors. Neuropharmacology 2021; 200:108786. [PMID: 34516984 PMCID: PMC9869339 DOI: 10.1016/j.neuropharm.2021.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 01/26/2023]
Abstract
Impulsive action can be defined as the inability to withhold a response and represents one of the dimensions of the broad construct impulsivity. Here, we characterized a modified differential reinforcement of low rates of responding (DRL) task developed in our laboratory, in which impulsive action is measured in ad libitum fed/watered subjects. Specifically, we first determined the effects of both sex and estrous cycle on impulsive action by systematically comparing male and estrous-synchronized female subjects. In addition, we evaluated the convergent validity of this modified DRL task by testing the effects of the D2R/5HT2AR antagonist, aripiprazole, and the noncompetitive NMDAR antagonist, MK-801. Finally, we tested the effects of the selective antagonist BD-1063 and agonist PRE-084 of Sigma-1 receptor (Sig-1R) on impulsive action using this modified DRL task. We found that female rats showed and increased inability to withhold a response when compared to males, and this effect was driven by the metestrus/diestrus phase of the estrous cycle. In addition, aripiprazole and MK-801 fully retained their capability to reduce and increase impulsive action, respectively. Finally, the selective Sig-1R antagonist, BD-1063 dose-dependently reduced the inability to withhold a response in both sexes, though more potently in female rats. In summary, we show that impulsive action, as measured in a modified DRL task which minimizes energy-homeostatic influences, is a function of both sex and estrous cycle. Furthermore, we validate the convergent validity of the task and provide evidence that Sig-1R antagonism may represent a novel pharmacological strategy to reduce impulsive action.
Collapse
Affiliation(s)
- Sabino Valentina
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| | - Angelo Blasio
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Antonio Ferragud
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Sema G Quadir
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
40
|
Peris-Sampedro F, Le May MV, Stoltenborg I, Schéle E, Dickson SL. A skeleton in the cupboard in ghrelin research: Where are the skinny dwarfs? J Neuroendocrinol 2021; 33:e13025. [PMID: 34427011 DOI: 10.1111/jne.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Based on studies delivering ghrelin or ghrelin receptor agonists, we have learned a great deal about the importance of the brain ghrelin signalling system for a wide range of physiological processes that include feeding behaviours, growth hormone secretion and glucose homeostasis. Because these processes can be considered as essential to life, the question arises as to why mouse models of depleted ghrelin signalling are not all skinny dwarfs with a host of behavioural and metabolic problems. Here, we provide a systematic detailed review of the phenotype of mice with deficient ghrelin signalling to help better understand the relevance and importance of the brain ghrelin signalling system, with a particular emphasis on those questions that remain unanswered.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
41
|
Brown RM, Guerrero-Hreins E, Brown WA, le Roux CW, Sumithran P. Potential gut-brain mechanisms behind adverse mental health outcomes of bariatric surgery. Nat Rev Endocrinol 2021; 17:549-559. [PMID: 34262156 DOI: 10.1038/s41574-021-00520-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 02/06/2023]
Abstract
Bariatric surgery induces sustained weight loss and metabolic benefits via notable effects on the gut-brain axis that lead to alterations in the neuroendocrine regulation of appetite and glycaemia. However, in a subset of patients, bariatric surgery is associated with adverse effects on mental health, including increased risk of suicide or self-harm as well as the emergence of depression and substance use disorders. The contributing factors behind these adverse effects are not well understood. Accumulating evidence indicates that there are important links between gut-derived hormones, microbial and bile acid profiles, and disorders of mood and substance use, which warrant further exploration in the context of changes in gut-brain signalling after bariatric surgery. Understanding the basis of these adverse effects is essential in order to optimize the health and well-being of people undergoing treatment for obesity.
Collapse
Affiliation(s)
- Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Eva Guerrero-Hreins
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Wendy A Brown
- Department of Surgery, Central Clinical School, Monash University, Alfred Hospital, Melbourne, Victoria, Australia
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College, Dublin, Ireland
| | - Priya Sumithran
- Department of Medicine (St Vincent's), University of Melbourne, Melbourne, Victoria, Australia.
- Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia.
| |
Collapse
|
42
|
Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Cifani C, Micioni Di Bonaventura MV. Assessing the role of ghrelin and the enzyme ghrelin O-acyltransferase (GOAT) system in food reward, food motivation, and binge eating behavior. Pharmacol Res 2021; 172:105847. [PMID: 34438062 DOI: 10.1016/j.phrs.2021.105847] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
The peripheral peptide hormone ghrelin is a powerful stimulator of food intake, which leads to body weight gain and adiposity in both rodents and humans. The hormone, thus, increases the vulnerability to obesity and binge eating behavior. Several studies have revealed that ghrelin's functions are due to its interaction with the growth hormone secretagogue receptor type 1a (GHSR1a) in the hypothalamic area; besides, ghrelin also promotes the reinforcing properties of hedonic food, acting at extra-hypothalamic sites and interacting with dopaminergic, cannabinoid, opioid, and orexin signaling. The hormone is primarily present in two forms in the plasma and the enzyme ghrelin O-acyltransferase (GOAT) allows the acylation reaction which causes the transformation of des-acyl-ghrelin (DAG) to the active form acyl-ghrelin (AG). DAG has been demonstrated to show antagonist properties; it is metabolically active, and counteracts the effects of AG on glucose metabolism and lipolysis, and reduces food consumption, body weight, and hedonic feeding response. Both peptides seem to influence the hypothalamic-pituitary-adrenal (HPA) axis and the corticosterone/cortisol level that drive the urge to eat under stressful conditions. These findings suggest that DAG and inhibition of GOAT may be targets for obesity and bingeing-related eating disorders and that AG/DAG ratio may be an important potential biomarker to assess the risk of developing maladaptive eating behaviors.
Collapse
Affiliation(s)
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino, 1, 62032 Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, via Madonna delle Carceri, 9, 62032 Camerino, Italy.
| | | |
Collapse
|
43
|
Bake T, Peris-Sampedro F, Wáczek Z, Ohlsson C, Pálsdóttir V, Jansson JO, Dickson SL. The gravitostat protects diet-induced obese rats against fat accumulation and weight gain. J Neuroendocrinol 2021; 33:e12997. [PMID: 34240761 DOI: 10.1111/jne.12997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/23/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
Abstract
The gravitostat is a novel homeostatic body weight-regulating mechanism, mostly studied in mice, and recently confirmed in obese humans. In the present study, we explored the effect of weight loading on metabolic outcomes, meal patterns and parameters linked to energy expenditure in both obese and lean rats. Diet-induced obese (DIO) and lean rats were implanted with capsules weighing either 15% of biological body weight (load) or empty capsules (1.3% of body weight; controls). Loading protected against fat accumulation more markedly in the DIO group. In line with this, the obesity-related impairment in insulin sensitivity was notably ameliorated in DIO rats upon loading, as revealed by the reduction in serum insulin levels and homeostatic model assessment for insulin resistance index scores. Although 24-hour caloric intake was reduced in both groups, this effect was greater in loaded DIO rats than in loaded lean peers. During days 10-16, after recovery from surgery, loading: (i) decreased meal size in both groups (only during the light phase in DIO rats) but this was compensated in lean rats by an increase in meal frequency; (ii) reduced dark phase locomotor activity only in lean rats; and (iii) reduced mean caloric efficiency in DIO rats. Muscle weight was unaffected by loading in either group. Dietary-obese rats are therefore more responsive than lean rats to loading.
Collapse
Affiliation(s)
- Tina Bake
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Zita Wáczek
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre of Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Vilborg Pálsdóttir
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - John-Olov Jansson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
44
|
Mietlicki-Baase EG, Santollo J, Daniels D. Fluid intake, what's dopamine got to do with it? Physiol Behav 2021; 236:113418. [PMID: 33838203 DOI: 10.1016/j.physbeh.2021.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Maintaining fluid balance is critical for life. The central components that control fluid intake are only partly understood. This contribution to the collection of papers highlighting work by members of the Society for the Study of Ingestive Behavior focuses on the role that dopamine has on fluid intake and describes the roles that various bioregulators can have on thirst and sodium appetite by influencing dopamine systems in the brain. The goal of the review is to highlight areas in need of more research and to propose a framework to guide that research. We hope that this framework will inspire researchers in the field to investigate these interesting questions in order to form a more complete understanding of how fluid intake is controlled.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, United States; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| | - Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Derek Daniels
- Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States; Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| |
Collapse
|
45
|
Edvardsson CE, Vestlund J, Jerlhag E. A ghrelin receptor antagonist reduces the ability of ghrelin, alcohol or amphetamine to induce a dopamine release in the ventral tegmental area and in nucleus accumbens shell in rats. Eur J Pharmacol 2021; 899:174039. [PMID: 33737011 DOI: 10.1016/j.ejphar.2021.174039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
The orexigenic peptide ghrelin increases the release of dopamine in the nucleus accumbens (NAc) shell via central ghrelin receptors, especially those located in the ventral tegmental area (VTA). The activity of the VTA dopamine neurons projecting to NAc shell, involves somatodendritic dopamine release within the VTA. However, the effects of ghrelin on the concomitant dopamine release in the VTA and NAc shell is unknown. It is further unknown whether addictive drugs, such as alcohol and amphetamine, enhance the dopamine levels in both these areas via ghrelin receptor dependent mechanisms. Thus, the effects of a ghrelin receptor antagonist, JMV2959, on the ability of i) central ghrelin ii) systemic alcohol or iii) systemic amphetamine to increase the dopamine release in the VTA and in the NAc shell in rats by using in vivo microdialysis was explored. We showed that systemic administration of JMV2959 blocks the ability of central ghrelin to increases dopamine release in the VTA and the NAc shell, and reduces the alcohol- and amphetamine-induced dopamine release in both these areas. Locomotor activity studies was then conducted in an attempt to correlate the ghrelin-induced dopamine release in the VTA to a behavioural outcome. These revealed that local infusion of a dopamine D1 receptor antagonist into the VTA blocks the ability of central ghrelin to cause a locomotor stimulation in mice. Collectively, this study adds to the growing body of evidence indicating that ghrelin signalling modulates the ability of ghrelin, and addictive drugs, to activate the mesoaccumbal dopamine pathway.
Collapse
Affiliation(s)
- Christian E Edvardsson
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
46
|
Rewarding behavior with a sweet food strengthens its valuation. PLoS One 2021; 16:e0242461. [PMID: 33852568 PMCID: PMC8046216 DOI: 10.1371/journal.pone.0242461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/14/2021] [Indexed: 12/03/2022] Open
Abstract
Sweet foods are commonly used as rewards for desirable behavior, specifically among children. This study examines whether such practice may contribute to reinforce the valuation of these foods. Two experiments were conducted, one with children, the other with rats. The first study, conducted with first graders (n = 214), shows that children who receive a food reward for performing a cognitive task subsequently value the food more compared to a control group who received the same food without performing any task. The second study, conducted on rats (n = 64), shows that rewarding with food also translates into higher calorie intake over a 24-hour period. These results suggest that the common practice of rewarding children with calorie-dense sweet foods is a plausible contributing factor to obesity and might therefore be ill advised.
Collapse
|
47
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
48
|
Decarie-Spain L, Kanoski SE. Ghrelin and Glucagon-Like Peptide-1: A Gut-Brain Axis Battle for Food Reward. Nutrients 2021; 13:977. [PMID: 33803053 PMCID: PMC8002922 DOI: 10.3390/nu13030977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022] Open
Abstract
Eating behaviors are influenced by the reinforcing properties of foods that can favor decisions driven by reward incentives over metabolic needs. These food reward-motivated behaviors are modulated by gut-derived peptides such as ghrelin and glucagon-like peptide-1 (GLP-1) that are well-established to promote or reduce energy intake, respectively. In this review we highlight the antagonizing actions of ghrelin and GLP-1 on various behavioral constructs related to food reward/reinforcement, including reactivity to food cues, conditioned meal anticipation, effort-based food-motivated behaviors, and flavor-nutrient preference and aversion learning. We integrate physiological and behavioral neuroscience studies conducted in both rodents and human to illustrate translational findings of interest for the treatment of obesity or metabolic impairments. Collectively, the literature discussed herein highlights a model where ghrelin and GLP-1 regulate food reward-motivated behaviors via both competing and independent neurobiological and behavioral mechanisms.
Collapse
Affiliation(s)
- Lea Decarie-Spain
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Scott E. Kanoski
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
49
|
van Son J, Koekkoek LL, La Fleur SE, Serlie MJ, Nieuwdorp M. The Role of the Gut Microbiota in the Gut-Brain Axis in Obesity: Mechanisms and Future Implications. Int J Mol Sci 2021; 22:ijms22062993. [PMID: 33804250 PMCID: PMC7999163 DOI: 10.3390/ijms22062993] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
Interaction between the gut and the brain is essential for energy homeostasis. In obesity, this homeostasis is disrupted, leading to a positive energy balance and weight gain. Obesity is a global epidemic that affects individual health and strains the socioeconomic system. Microbial dysbiosis has long been reported in obesity and obesity-related disorders. More recent literature has focused on the interaction of the gut microbiota and its metabolites on human brain and behavior. Developing strategies that target the gut microbiota could be a future approach for the treatment of obesity. Here, we review the microbiota–gut–brain axis and possible therapeutic options.
Collapse
Affiliation(s)
- Jamie van Son
- Department of Endocrinology and Metabolism, Amsterdam UMC, location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.v.S.); (L.L.K.); (S.E.L.F.); (M.J.S.)
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Laura L. Koekkoek
- Department of Endocrinology and Metabolism, Amsterdam UMC, location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.v.S.); (L.L.K.); (S.E.L.F.); (M.J.S.)
| | - Susanne E. La Fleur
- Department of Endocrinology and Metabolism, Amsterdam UMC, location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.v.S.); (L.L.K.); (S.E.L.F.); (M.J.S.)
| | - Mireille J. Serlie
- Department of Endocrinology and Metabolism, Amsterdam UMC, location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.v.S.); (L.L.K.); (S.E.L.F.); (M.J.S.)
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
50
|
Nunez‐Salces M, Li H, Feinle‐Bisset C, Young RL, Page AJ. The regulation of gastric ghrelin secretion. Acta Physiol (Oxf) 2021; 231:e13588. [PMID: 33249751 DOI: 10.1111/apha.13588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Ghrelin is a gastric hormone with multiple physiological functions, including the stimulation of food intake and adiposity. It is well established that circulating ghrelin levels are closely associated with feeding patterns, rising strongly before a meal and lowering upon food intake. However, the mechanisms underlying the modulation of ghrelin secretion are not fully understood. The purpose of this review is to discuss current knowledge on the circadian oscillation of circulating ghrelin levels, the neural mechanisms stimulating fasting ghrelin levels and peripheral mechanisms modulating postprandial ghrelin levels. Furthermore, the therapeutic potential of targeting the ghrelin pathway is discussed in the context of the treatment of various metabolic disorders, including obesity, type 2 diabetes, diabetic gastroparesis and Prader-Willi syndrome. Moreover, eating disorders including anorexia nervosa, bulimia nervosa and binge-eating disorder are also discussed.
Collapse
Affiliation(s)
- Maria Nunez‐Salces
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Hui Li
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Christine Feinle‐Bisset
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Richard L. Young
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
- Intestinal Nutrient Sensing Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Amanda J. Page
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| |
Collapse
|