1
|
Modiri A, Hosseini L, Abolhasanpour N, Azizi H, Sadeh RN. Mitotherapy in Alzheimer's and Parkinson's diseases: A systematic review of preclinical studies. BMC Neurol 2025; 25:227. [PMID: 40426090 PMCID: PMC12108016 DOI: 10.1186/s12883-025-04241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and Parkinson's disease (PD) are prevalent neurodegenerative disorders and strongly affect both the patients' lives and their caregivers. Strategy to improve and restore mitochondrial function, as well as to treat mitochondria-associated diseases, as observed in the pathophysiology of AD and PD. The current study aimed to investigate the potential of mitotherapy in AD and PD in preclinical studies. METHODS We conducted a systematic search of articles in English related to mitotherapy in AD and PD animal models published until October 2024 in the selected bibliographic databases, including PubMed, Scopus, EMBASE, and Google Scholar, and the reference lists of relevant review articles published. The quality of the final selected studies was assessed using the Collaborative Approach to Meta-Analysis and Review of Animal Studies (CAMARADES) checklists and the SYRCLE risk of bias tool. The initial search resulted in 231 studies, and after screening the titles and abstracts, 30 studies were recognized. Finally, 7 studies met the inclusion criteria. RESULTS Despite restricted knowledge of the mitotherapy mechanisms, evidence shows that exogenous mitochondria exert neuroprotective effects via improving mitochondrial function, reducing oxidative stress and inflammation in preclinical models of AD and PD. CONCLUSION This systematic review summarizes the preclinical studies on mitotherapy and provides evidence favoring mitochondria transplantation's protective effects in animal PD and AD models.
Collapse
Affiliation(s)
- Aynur Modiri
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Azizi
- Clinical Research Development Unit of Alzahra Hospital, Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Reza Naghdi Sadeh
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Mishra AK, Dixit S, Singh A, Shukla T, Rizvi SI. Molecular Determinants of A9 Dopaminergic Neurons. Neuromolecular Med 2025; 27:43. [PMID: 40397062 DOI: 10.1007/s12017-025-08861-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
In the human brain, the nigrostriatal pathway regulates motor functions, and its selective deterioration leads to the onset of Parkinson's disease (PD), a neurodegenerative disorder characterized by motor dysfunction and significant disability. The A9 neurons, a subgroup of ventral mesencephalic dopaminergic (DA) neurons, form the nigrostriatal pathway that emerges from the nigral region and innervates into the striatum. These DA neurons exhibit extensive and arborized axonal terminals projecting into the dorsal striatum. This review examines the distinct molecular determinants underlying the development, projection pattern, survival, maintenance, and vulnerability of A9 neurons, distinguishing them from other ventral midbrain DA subgroups such as A8 and A10. Key transcription factors (e.g., Lmx1a/b, FoxA2, Pitx3), signaling cascade pathways (e.g., Sonic Hedgehog, Wnt/β-catenin), and molecular markers (e.g., Aldh1a1, GIRK2, ANT2) are discussed in detail. A comparative assessment of the electrophysiology, cytoarchitecture, energy demand, and antioxidant reserves of A9 DA neurons versus the neighboring ventral mesencephalic DA subgroups elucidates the role of intrinsic determinants in susceptibility and selective degeneration in PD. The unique susceptibility of A9 cells to redox imbalance, neuronal inflammation, and mitochondrial dysfunction is also explored. Furthermore, recent advancements in stem cell-based approaches for generating A9-like neurons and their application in cell transplantation therapies for PD are discussed. Current challenges, including integration and long-term survival of transplanted neurons, are highlighted alongside prospects of cell replacement therapy. By evaluating the molecular biology of A9 neurons, this review aims to understand PD pathology and develop strategies for novel therapeutic approaches.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Department of Zoology, Government Shaheed Gendsingh College, Charama, Uttar Bastar Kanker, Chhattisgarh, 494 337, India.
| | - Shreya Dixit
- Department of Neurology, University of California, Irvine, USA
| | - Akanksha Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Toyaj Shukla
- Government Rani Durgawati College, Wadrafnagar, Balrampur, Chhattisgarh, India
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
3
|
Drumond-Bock AL, Blankenship HE, Pham KD, Carter KA, Freeman WM, Beckstead MJ. Parallel Gene Expression Changes in Ventral Midbrain Dopamine and GABA Neurons during Normal Aging. eNeuro 2025; 12:ENEURO.0107-25.2025. [PMID: 40360281 PMCID: PMC12121937 DOI: 10.1523/eneuro.0107-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/18/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
The consequences of aging can vary dramatically between different brain regions and cell types. In the ventral midbrain, dopaminergic neurons develop physiological deficits with normal aging that likely convey susceptibility to neurodegeneration. While nearby GABAergic neurons are thought to be more resilient, decreased GABA signaling in other areas nonetheless correlates with age-related cognitive decline and the development of degenerative diseases. Here, we used two novel cell type-specific translating ribosome affinity purification models to elucidate the impact of healthy brain aging on the molecular profiles of dopamine and GABA neurons in the ventral midbrain. By analyzing differential gene expression from young adult (7-10 months) and old (21-24 months) mice, we detected commonalities in the aging process in both neuronal types, including increased inflammatory responses and upregulation of pro-survival pathways. Both cell types also showed downregulation of genes involved in synaptic connectivity and plasticity. Intriguingly, genes involved in serotonergic synthesis were upregulated with age in GABA neurons and not dopamine-releasing cells. In contrast, dopaminergic neurons showed alterations in genes connected with mitochondrial function and calcium signaling, which were markedly downregulated in male mice. Sex differences were detected in both neuron types, but in general were more prominent in dopamine neurons. Multiple sex effects correlated with the differential prevalence for neurodegenerative diseases such as Parkinson's and Alzheimer's seen in humans. In summary, these results provide insight into the connection between non-pathological aging and susceptibility to neurodegenerative diseases involving the ventral midbrain, and identify molecular phenotypes that could underlie homeostatic maintenance during normal aging.
Collapse
Affiliation(s)
- Ana Luiza Drumond-Bock
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Harris E Blankenship
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Kevin D Pham
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Kelsey A Carter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Willard M Freeman
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma 73104
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
4
|
Zhou W, Xia Q, Liu D, Li JY, Gong L. Association between serum sodium and sporadic Parkinson's disease. Front Neurosci 2025; 19:1555831. [PMID: 40201189 PMCID: PMC11975937 DOI: 10.3389/fnins.2025.1555831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Background The correlation between serum sodium and sporadic Parkinson's disease remains unclear currently. This study aimed to assess the association between serum sodium and sporadic Parkinson's disease. Objective The ultimate goal is to gain a deeper understanding of the implications of this relationship between serum sodium and sporadic Parkinson's disease. Methods We conducted a retrospective cross-sectional study involving 1,189 participants in PPMI cohort. Age, sex, education years, race, body mass index, calcium, alanine aminotransferase, aspartate aminotransferase, white blood cell, lymphocytes, neutrophils, monocytes, red blood cell, hemoglobin, platelets, total protein, albumin, serum uric acid, serum sodium, serum potassium, urea nitrogen, creatinine, serum glucose were obtained from all participants. Logistic regression, and smooth curve fitting were utilized to substantiate the research objectives. Results The overall sporadic Parkinson's disease was 77.5% (921/1189); it was 71.9% (143/199), 75.4% (295/391), 76.7% (171/223), and 83% (312/376) for serum sodium quantile1 (Q1, 130-138.9 mmol/L), quantile 2 (Q2, 139-140.9 mmol/L), quantile 3 (Q3, 141-141.9 mmol/L), and quantile 4 (Q4, 142-155 mmol/L), respectively (p = 0.011). Multivariate odds ratio regression adjusted for risk factors demonstrates a 1-unit increment in the serum sodium raises the risk of sporadic Parkinson's disease by 1.11 times, respectively. Smooth splines analysis suggested a linear association between levels of serum sodium and risk of sporadic Parkinson's disease (P nonlinearity = 0.5). An interaction was observed between serum sodium and sex in their influence on sporadic Parkinson's disease (p < 0.05). Further exploratory subgroup analysis within the age and BMI groups showed that there were no significant interactions between the subgroups (all p values for interaction were > 0.05). Additional sensitivity analyses supported the primary findings and indicated the conclusions are robust. Conclusion This study highlights the influence of inappropriate serum sodium on the risk of incident sporadic Parkinson's disease, independent of confounders. The link between serum sodium and sporadic Parkinson's disease is linear.
Collapse
Affiliation(s)
| | | | | | | | - Liang Gong
- Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Gong X, Li S, Huang J, Tan S, Zhang Q, Tian Y, Li Q, Wang L, Tong HHY, Yao X, Chen C, Lee SMY, Liu H. Discovery of potent LRRK2 inhibitors by ensemble virtual screening strategy and bioactivity evaluation. Eur J Med Chem 2024; 279:116812. [PMID: 39241668 DOI: 10.1016/j.ejmech.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been reported to be associated with familial and idiopathic Parkinson's disease (PD) risk and is a promising target for drug discovery against PD. To identify novel and effective LRRK2 inhibitors, an ensemble virtual screening strategy by combining fingerprint similarity, complex-based pharmacophore and structure-based molecular docking was proposed and applied. Using this strategy, we finally selected 25 compounds from ∼1.7 million compounds for in vitro and in vivo tests. Firstly, the kinase inhibitory activity tests of compounds based on ADP-Glo assay identified three most potent compounds LY2023-19, LY2023-24 and LY2023-25 with IC50 of 556.4 nM, 218.1 nM and 22.4 nM for LRRK2 G2019S mutant, respectively. The further cellular experiments also indicated that three hit compounds significantly inhibited Ser935 phosphorylation of both wide-type and G2019S LRRK2 with IC50 ranging from 27 nM to 1674 nM in HEK293T cells. The MD simulations of three compounds and G2019S LRRK2 showed the hydrogen bond formed by Glu1948 and Ala1950 is crucial for the binding of LRRK2. Afterwards, 6-OHDA-induced PD zebrafish model was constructed to evaluate the neuroprotective effects of hit compounds. The locomotion of the 6-OHDA treated zebrafish larvae was improved after treatment with LY2023-24. The obtained results can provide valuable guidance for the development of PD drugs by targeting LRRK2.
Collapse
Affiliation(s)
- Xiaoqing Gong
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Shuli Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, China
| | - Junli Huang
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - Shuoyan Tan
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Qianqian Zhang
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Yanan Tian
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Qin Li
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Lingling Wang
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Henry H Y Tong
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China
| | - Chunxia Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, China; Research Centre for Chinese Medicine Innovation & Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, 999077, China.
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, China.
| |
Collapse
|
6
|
Viau C, Nouar A, Xia J. Use of Caenorhabditis elegans to Unravel the Tripartite Interaction of Kynurenine Pathway, UPR mt and Microbiome in Parkinson's Disease. Biomolecules 2024; 14:1370. [PMID: 39595547 PMCID: PMC11591651 DOI: 10.3390/biom14111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
The model organism Caenorhabditis elegans and its relationship with the gut microbiome are gaining traction, especially for the study of neurodegenerative diseases such as Parkinson's Disease (PD). Gut microbes are known to be able to alter kynurenine metabolites in the host, directly influencing innate immunity in C. elegans. While the mitochondrial unfolded protein response (UPRmt) was first characterized in C. elegans in 2007, its relevance in host-microbiome interactions has only become apparent in recent years. In this review, we provide novel insights into the current understanding of the microbiome-gut-brain axis with a focus on tripartite interactions between the UPRmt, kynurenine pathway, and microbiome in C. elegans, and explore their relationships for PD remediations.
Collapse
Affiliation(s)
- Charles Viau
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.V.); (A.N.)
| | - Alyssa Nouar
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.V.); (A.N.)
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.V.); (A.N.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
7
|
Bastioli G, Piccirillo S, Graciotti L, Carone M, Sprega G, Taoussi O, Preziuso A, Castaldo P. Calcium Deregulation in Neurodegeneration and Neuroinflammation in Parkinson's Disease: Role of Calcium-Storing Organelles and Sodium-Calcium Exchanger. Cells 2024; 13:1301. [PMID: 39120330 PMCID: PMC11311461 DOI: 10.3390/cells13151301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that lacks effective treatment strategies to halt or delay its progression. The homeostasis of Ca2+ ions is crucial for ensuring optimal cellular functions and survival, especially for neuronal cells. In the context of PD, the systems regulating cellular Ca2+ are compromised, leading to Ca2+-dependent synaptic dysfunction, impaired neuronal plasticity, and ultimately, neuronal loss. Recent research efforts directed toward understanding the pathology of PD have yielded significant insights, particularly highlighting the close relationship between Ca2+ dysregulation, neuroinflammation, and neurodegeneration. However, the precise mechanisms driving the selective loss of dopaminergic neurons in PD remain elusive. The disruption of Ca2+ homeostasis is a key factor, engaging various neurodegenerative and neuroinflammatory pathways and affecting intracellular organelles that store Ca2+. Specifically, impaired functioning of mitochondria, lysosomes, and the endoplasmic reticulum (ER) in Ca2+ metabolism is believed to contribute to the disease's pathophysiology. The Na+-Ca2+ exchanger (NCX) is considered an important key regulator of Ca2+ homeostasis in various cell types, including neurons, astrocytes, and microglia. Alterations in NCX activity are associated with neurodegenerative processes in different models of PD. In this review, we will explore the role of Ca2+ dysregulation and neuroinflammation as primary drivers of PD-related neurodegeneration, with an emphasis on the pivotal role of NCX in the pathology of PD. Consequently, NCXs and their interplay with intracellular organelles may emerge as potentially pivotal players in the mechanisms underlying PD neurodegeneration, providing a promising avenue for therapeutic intervention aimed at halting neurodegeneration.
Collapse
Affiliation(s)
- Guendalina Bastioli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Laura Graciotti
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Marianna Carone
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zürich, Switzerland
| | - Giorgia Sprega
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Omayema Taoussi
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| | - Pasqualina Castaldo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica Delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy; (L.G.); (M.C.); (G.S.); (O.T.); (A.P.)
| |
Collapse
|
8
|
Msackyi M, Chen Y, Tsering W, Wang N, Zhang H. Dopamine Release Neuroenergetics in Mouse Striatal Slices. Int J Mol Sci 2024; 25:4580. [PMID: 38731799 PMCID: PMC11083938 DOI: 10.3390/ijms25094580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Dopamine (DA) neurons in the substantia nigra pars compacta, which have axonal projections to the dorsal striatum (dSTR), degenerate in PD. In contrast, DA neurons in the ventral tegmental area, with axonal projections to the ventral striatum, including the nucleus accumbens (NAcc) shell, are largely spared. This study aims to uncover the relative contributions of glycolysis and oxidative phosphorylation (OxPhos) to DA release in the striatum. We measured evoked DA release in mouse striatal brain slices using fast-scan cyclic voltammetry applied every two minutes. Blocking OxPhos resulted in a greater reduction in evoked DA release in the dSTR when compared to the NAcc shell, while blocking glycolysis caused a more significant decrease in evoked DA release in the NAcc shell than in the dSTR. Furthermore, when glycolysis was bypassed in favor of direct OxPhos, evoked DA release in the NAcc shell decreased by approximately 50% over 40 min, whereas evoked DA release in the dSTR was largely unaffected. These results demonstrate that the dSTR relies primarily on OxPhos for energy production to maintain evoked DA release, whereas the NAcc shell depends more on glycolysis. Consistently, two-photon imaging revealed higher oxidation levels of DA terminals in the dSTR than in the NAcc shell. Together, these findings partly explain the selective vulnerability of DA terminals in the dSTR to degeneration in PD.
Collapse
Affiliation(s)
- Msema Msackyi
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.M.); (Y.C.); (W.T.); (N.W.)
| | - Yuanxin Chen
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.M.); (Y.C.); (W.T.); (N.W.)
- Department of Physiology & Pharmacology, Center for Neurological Disease Research, The University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Wangchen Tsering
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.M.); (Y.C.); (W.T.); (N.W.)
| | - Ninghan Wang
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.M.); (Y.C.); (W.T.); (N.W.)
| | - Hui Zhang
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.M.); (Y.C.); (W.T.); (N.W.)
- Department of Physiology & Pharmacology, Center for Neurological Disease Research, The University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
9
|
Valente HB, Gervazoni NDL, Laurino MJL, Stoco-Oliveira MC, Ribeiro F, de Carvalho AC, Vanderlei LCM, Garner DM. Monitoring autonomic responses in Parkinson's disease individuals: non-linear and chaotic global metrics of heart rate variability. Int J Neurosci 2024:1-11. [PMID: 38433652 DOI: 10.1080/00207454.2024.2325020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
AIM To examine and compare the autonomic responses, as assessed through the non-linear and chaotic global metrics of heart rate variability in two groups: the Parkinson's Disease Group (PDG) and the Control Group (CG), both at rest and during an active tilt test. METHODS The study encompassed 46 participants (PDG: n = 23; 73.73 ± 7.28 years old; CG: n = 23; 70.17 ± 8.20 years old). Initial data collection involved the acquisition of participant's characteristics. The autonomic modulation was estimated both at rest and during the active tilt test. For this assessment, we computed non-linear indices derived from five entropies (Approximate, Sample, Shannon, Renyi, Tsallis), Detrended Fluctuation Analysis and the seven chaotic global metrics (hsCFP1-hsCFP7). RESULTS At rest, the PDG exhibited lower values of hsCFP3 (0.818 ± 0.116 vs. 0.904 ± 0.065; p < 0.05) and Sample Entropy (0.720 ± 0.149 vs. 0.799 ± 0.171; p < 0.05). During the test, the PDG demonstrated lower values of ApEn, while the CG presented lower values of SampEn, hsCFP1, hsCFP3, hsCFP7, and higher values of hsCFP5. An interaction was observed, indicating that hsCFP1 and hsCFP3 exhibit differential behavior for the CG and PDG in response to the test. CONCLUSION subjects with PD exhibited reduced complexity of the RR interval series at rest, and a diminished autonomic response to the active tilt test when compared with the CG. The test, together with non-linear indices, may serve for assessing the Autonomic Nervous System in individuals with PD in a clinical setting. The interpretation of these data should be approached with caution, given the possible influences of pharmacotherapies and the inclusion of diabetic participants.
Collapse
Affiliation(s)
- Heloisa Balotari Valente
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Natacha de Lima Gervazoni
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Maria Júlia Lopez Laurino
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Mileide Cristina Stoco-Oliveira
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Felipe Ribeiro
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Augusto Cesinando de Carvalho
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - Luiz Carlos Marques Vanderlei
- Faculdade de Ciências e Tecnologia, Departamento de Fisioterapia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Presidente Prudente, Brazil
| | - David M Garner
- Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
10
|
Wang ZY, Tsai ZY, Chang HW, Tsai YC. Enhancing Electrochemical Non-Enzymatic Dopamine Sensing Based on Bimetallic Nickel/Cobalt Phosphide Nanosheets. MICROMACHINES 2024; 15:105. [PMID: 38258224 PMCID: PMC10820133 DOI: 10.3390/mi15010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
In this study, the successful synthesis of bimetallic nickel/cobalt phosphide nanosheets (Ni-Co-P NSs) via the hydrothermal method and the subsequent high-temperature phosphorization process were both confirmed. Ni-Co-P NSs exhibited excellent electrocatalytic activity for the electrochemical non-enzymatic DA sensing. The surface morphologies and physicochemical properties of Ni-Co-P NSs were characterized by atomic force microscopy (AFM), field-emission scanning (FESEM), field-emission transmission electron microscopy (FETEM), and X-ray diffraction (XRD). Further, the electrochemical performance was evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The metallic nature of phosphide and the synergistic effect of Ni/Co atoms in Ni-Co-P NSs provided abundant catalytic active sites for the electrochemical redox reaction of DA, which exhibited a remarkable consequence with a wide linear range from 0.3~50 μM, a high sensitivity of 2.033 µA µM-1 cm-2, a low limit of detection of 0.016 µM, and anti-interference ability. As a result, the proposed Ni-Co-P NSs can be considered an ideal electrode material for the electrochemical non-enzymatic DA sensing.
Collapse
Affiliation(s)
- Zhi-Yuan Wang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402202, Taiwan; (Z.-Y.W.); (Z.-Y.T.)
| | - Zong-Ying Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402202, Taiwan; (Z.-Y.W.); (Z.-Y.T.)
| | - Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Yu-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402202, Taiwan; (Z.-Y.W.); (Z.-Y.T.)
| |
Collapse
|
11
|
Chaudhary R, Singh R. Therapeutic Viewpoint on Rat Models of Locomotion Abnormalities and Neurobiological Indicators in Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:488-503. [PMID: 37202886 DOI: 10.2174/1871527322666230518111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Locomotion problems in Parkinson's syndrome are still a research and treatment difficulty. With the recent introduction of brain stimulation or neuromodulation equipment that is sufficient to monitor activity in the brain using electrodes placed on the scalp, new locomotion investigations in patients having the capacity to move freely have sprung up. OBJECTIVE This study aimed to find rat models and locomotion-connected neuronal indicators and use them all over a closed-loop system to enhance the future and present treatment options available for Parkinson's disease. METHODS Various publications on locomotor abnormalities, Parkinson's disease, animal models, and other topics have been searched using several search engines, such as Google Scholar, Web of Science, Research Gate, and PubMed. RESULTS Based on the literature, we can conclude that animal models are used for further investigating the locomotion connectivity deficiencies of many biological measuring devices and attempting to address unanswered concerns from clinical and non-clinical research. However, translational validity is required for rat models to contribute to the improvement of upcoming neurostimulation-based medicines. This review discusses the most successful methods for modelling Parkinson's locomotion in rats. CONCLUSION This review article has examined how scientific clinical experiments lead to localised central nervous system injuries in rats, as well as how the associated motor deficits and connection oscillations reflect this. This evolutionary process of therapeutic interventions may help to improve locomotion- based treatment and management of Parkinson's syndrome in the upcoming years.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
- Department of Pharmacology, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
12
|
Shukla D, Goel A, Mandal PK, Joon S, Punjabi K, Arora Y, Kumar R, Mehta VS, Singh P, Maroon JC, Bansal R, Sandal K, Roy RG, Samkaria A, Sharma S, Sandhilya S, Gaur S, Parvathi S, Joshi M. Glutathione Depletion and Concomitant Elevation of Susceptibility in Patients with Parkinson's Disease: State-of-the-Art MR Spectroscopy and Neuropsychological Study. ACS Chem Neurosci 2023; 14:4383-4394. [PMID: 38050970 PMCID: PMC10739611 DOI: 10.1021/acschemneuro.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Parkinson's disease (PD) is characterized by extrapyramidal motor disturbances and nonmotor cognitive impairments which impact activities of daily living. Although the etiology of PD is still obscure, autopsy reports suggest that oxidative stress (OS) is one of the important factors in the pathophysiology of PD. In the current study, we have investigated the impact of OS in PD by measuring the antioxidant glutathione (GSH) levels from the substantia nigra (SN), left hippocampus (LH) and neurotransmitter γ-amino butyric acid (GABA) levels from SN region. Concomitant quantitative susceptibility mapping (QSM) from SN and LH was also acquired from thirty-eight PD patients and 30 age-matched healthy controls (HC). Glutathione levels in the SN region decreased significantly and susceptibility increased significantly in PD compared to HC. Nonsignificant depletion of GABA was observed in the SN region. GSH levels in the LH region were depleted significantly, but LH susceptibility did not alter in the PD cohort compared to HC. Neuropsychological and physical assessment demonstrated significant impairment of cognitive functioning in PD patients compared to HC. GSH depletion was negatively correlated to motor function performance. Multivariate receiver operating characteristic (ROC) curve analysis on the combined effect of GSH, GABA, and susceptibility in the SN region yielded an improved diagnostic accuracy of 86.1% compared to individual diagnostic accuracy based on GSH (65.8%), GABA (57.5%), and susceptibility (69.6%). This is the first comprehensive report in PD demonstrating significant GSH depletion as well as concomitant iron enhancement in the SN region.
Collapse
Affiliation(s)
- Deepika Shukla
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Anshika Goel
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Pravat K. Mandal
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
- Florey
Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Department
of Neurosurgery, University of Pittsburgh
Medical School, Pittsburgh, Pennsylvania 15213, United States
| | - Shallu Joon
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Khushboo Punjabi
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Yashika Arora
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Rajnish Kumar
- Department
of Neurology, Paras Hospitals, Gurgaon, Haryana 122002, India
| | - Veer Singh Mehta
- Department
of Neurosurgery, Paras Hospitals, Gurgaon, Haryana 122002, India
| | - Padam Singh
- Department
of Biostatistics, Medanta Medicity, Gurgaon, Haryana 122001, India
| | - Joseph C. Maroon
- Department
of Neurosurgery, University of Pittsburgh
Medical School, Pittsburgh, Pennsylvania 15213, United States
| | - Rishu Bansal
- Department
of Neurology, Medanta Medicity, Gurgaon, Haryana 122001, India
| | - Kanika Sandal
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Rimil Guha Roy
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Avantika Samkaria
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Shallu Sharma
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Sandhya Sandhilya
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Shradha Gaur
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - S. Parvathi
- Department
of Biostatistics, Medanta Medicity, Gurgaon, Haryana 122001, India
| | - Mallika Joshi
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| |
Collapse
|
13
|
Sharma R, Neupane C, Pham TL, Lee M, Lee S, Lee SY, Nam MH, Kim CS, Park JB. Tonic Activation of NR2D-Containing NMDARs Exacerbates Dopaminergic Neuronal Loss in MPTP-Injected Parkinsonian Mice. J Neurosci 2023; 43:7730-7744. [PMID: 37726169 PMCID: PMC10648527 DOI: 10.1523/jneurosci.1955-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
NR2D subunit-containing NMDA receptors (NMDARs) gradually disappear during brain maturation but can be recruited by pathophysiological stimuli in the adult brain. Here, we report that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication recruited NR2D subunit-containing NMDARs that generated an Mg2+-resistant tonic NMDA current (INMDA) in dopaminergic (DA) neurons in the midbrain of mature male mice. MPTP selectively generated an Mg2+-resistant tonic INMDA in DA neurons in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA). Consistently, MPTP increased NR2D but not NR2B expression in the midbrain regions. Pharmacological or genetic NR2D interventions abolished the generation of Mg2+-resistant tonic INMDA in SNpc DA neurons, and thus attenuated subsequent DA neuronal loss and gait deficits in MPTP-treated mice. These results show that extrasynaptic NR2D recruitment generates Mg2+-resistant tonic INMDA and exacerbates DA neuronal loss, thus contributing to MPTP-induced Parkinsonism. The state-dependent NR2D recruitment could be a novel therapeutic target for mitigating cell type-specific neuronal death in neurodegenerative diseases.SIGNIFICANCE STATEMENT NR2D subunit-containing NMDA receptors (NMDARs) are widely expressed in the brain during late embryonic and early postnatal development, and then downregulated during brain maturation and preserved at low levels in a few regions of the adult brain. Certain stimuli can recruit NR2D subunits to generate tonic persistent NMDAR currents in nondepolarized neurons in the mature brain. Our results show that MPTP intoxication recruits NR2D subunits in midbrain dopaminergic (DA) neurons, which leads to tonic NMDAR current-promoting dopaminergic neuronal death and consequent abnormal gait behavior in the MPTP mouse model of Parkinson's disease (PD). This is the first study to indicate that extrasynaptic NR2D recruitment could be a target for preventing neuronal death in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Biomedicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| | - Chiranjivi Neupane
- Department of Biomedicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| | - Thuy Linh Pham
- Department of Biomedicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Miae Lee
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Cuk-Seong Kim
- Department of Biomedicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jin Bong Park
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| |
Collapse
|
14
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 665] [Impact Index Per Article: 332.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
15
|
Heo JY, Park AH, Lee MJ, Ryu MJ, Kim YK, Jang YS, Kim SJ, Shin SY, Son HJ, Stein TD, Huh YH, Chung SK, Choi SY, Kim JM, Hwang O, Shong M, Hyeon SJ, Lee J, Ryu H, Kim D, Kweon GR. Crif1 deficiency in dopamine neurons triggers early-onset parkinsonism. Mol Psychiatry 2023; 28:4474-4484. [PMID: 37648779 DOI: 10.1038/s41380-023-02234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Mitochondrial dysfunction has been implicated in Parkinson's Disease (PD) progression; however, the mitochondrial factors underlying the development of PD symptoms remain unclear. One candidate is CR6-interacting factor1 (CRIF1), which controls translation and membrane insertion of 13 mitochondrial proteins involved in oxidative phosphorylation. Here, we found that CRIF1 mRNA and protein expression were significantly reduced in postmortem brains of elderly PD patients compared to normal controls. To evaluate the effect of Crif1 deficiency, we produced mice lacking the Crif1 gene in dopaminergic neurons (DAT-CRIF1-KO mice). From 5 weeks of age, DAT-CRIF1-KO mice began to show decreased dopamine production with progressive neuronal degeneration in the nigral area. At ~10 weeks of age, they developed PD-like behavioral deficits, including gait abnormalities, rigidity, and resting tremor. L-DOPA, a medication used to treat PD, ameliorated these defects at an early stage, although it was ineffective in older mice. Taken together, the observation that CRIF1 expression is reduced in human PD brains and deletion of CRIF1 in dopaminergic neurons leads to early-onset PD with stepwise PD progression support the conclusion that CRIF1-mediated mitochondrial function is important for the survival of dopaminergic neurons.
Collapse
Affiliation(s)
- Jun Young Heo
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Ah Hyung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min Joung Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Yun Seon Jang
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Soo Jeong Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - So Yeon Shin
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jin Son
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Yang Hoon Huh
- Electron Microscopy Research center, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Sookja K Chung
- Faculty of Medicine & Dr Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Song Yi Choi
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Minho Shong
- Graduate School of Medical Science and Education, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
16
|
Markina AA, Kazanskaya RB, Timoshina JA, Zavialov VA, Abaimov DA, Volnova AB, Fedorova TN, Gainetdinov RR, Lopachev AV. Na +,K +-ATPase and Cardiotonic Steroids in Models of Dopaminergic System Pathologies. Biomedicines 2023; 11:1820. [PMID: 37509460 PMCID: PMC10377002 DOI: 10.3390/biomedicines11071820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, enough evidence has accumulated to assert that cardiotonic steroids, Na+,K+-ATPase ligands, play an integral role in the physiological and pathophysiological processes in the body. However, little is known about the function of these compounds in the central nervous system. Endogenous cardiotonic steroids are involved in the pathogenesis of affective disorders, including depression and bipolar disorder, which are linked to dopaminergic system dysfunction. Animal models have shown that the cardiotonic steroid ouabain induces mania-like behavior through dopamine-dependent intracellular signaling pathways. In addition, mutations in the alpha subunit of Na+,K+-ATPase lead to the development of neurological pathologies. Evidence from animal models confirms the neurological consequences of mutations in the Na+,K+-ATPase alpha subunit. This review is dedicated to discussing the role of cardiotonic steroids and Na+,K+-ATPase in dopaminergic system pathologies-both the evidence supporting their involvement and potential pathways along which they may exert their effects are evaluated. Since there is an association between affective disorders accompanied by functional alterations in the dopaminergic system and neurological disorders such as Parkinson's disease, we extend our discussion to the role of Na+,K+-ATPase and cardiotonic steroids in neurodegenerative diseases as well.
Collapse
Affiliation(s)
- Alisa A Markina
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Rogneda B Kazanskaya
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Julia A Timoshina
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
- Biological Department, Lomonosov Moscow State University, Leninskiye Gory 1, 119991 Moscow, Russia
| | - Vladislav A Zavialov
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Denis A Abaimov
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Anna B Volnova
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
| | - Tatiana N Fedorova
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Saint Petersburg University Hospital, 199034 Saint Petersburg, Russia
| | - Alexander V Lopachev
- Institute of Translational Biomedicine, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia
- Research Center of Neurology, Volokolamskoye Ahosse 80, 125367 Moscow, Russia
| |
Collapse
|
17
|
Schneider JS. GM1 Ganglioside as a Disease-Modifying Therapeutic for Parkinson's Disease: A Multi-Functional Glycosphingolipid That Targets Multiple Parkinson's Disease-Relevant Pathogenic Mechanisms. Int J Mol Sci 2023; 24:9183. [PMID: 37298133 PMCID: PMC10252733 DOI: 10.3390/ijms24119183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting millions of patients worldwide. Many therapeutics are available for treating PD symptoms but there is no disease-modifying therapeutic that has been unequivocally shown to slow or stop the progression of the disease. There are several factors contributing to the failure of many putative disease-modifying agents in clinical trials and these include the choice of patients and clinical trial designs for disease modification trials. Perhaps more important, however, is the choice of therapeutic, which for the most part, has not taken into account the multiple and complex pathogenic mechanisms and processes involved in PD. This paper discusses some of the factors contributing to the lack of success in PD disease-modification trials, which have mostly investigated therapeutics with a singular mechanism of action directed at one of the many PD pathogenic processes, and suggests that an alternative strategy for success may be to employ multi-functional therapeutics that target multiple PD-relevant pathogenic mechanisms. Evidence is presented that the multi-functional glycosphingolipid GM1 ganglioside may be just such a therapeutic.
Collapse
Affiliation(s)
- Jay S Schneider
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
18
|
Skiteva O, Yao N, Mantas I, Zhang X, Perlmann T, Svenningsson P, Chergui K. Aberrant somatic calcium channel function in cNurr1 and LRRK2-G2019S mice. NPJ Parkinsons Dis 2023; 9:56. [PMID: 37029193 PMCID: PMC10082048 DOI: 10.1038/s41531-023-00500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
In Parkinson's disease (PD), axons of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) degenerate before their cell bodies. Calcium influx during pacemaker firing might contribute to neuronal loss, but it is not known if dysfunctions of voltage-gated calcium channels (VGCCs) occur in DA neurons somata and axon terminals. We investigated T-type and L-type VGCCs in SNc-DA neurons of two mouse models of PD: mice with a deletion of the Nurr1 gene in DA neurons from an adult age (cNurr1 mice), and mice bearing the G2019S mutation in the gene coding for LRRK2 (G2019S mice). Adult cNurr1 mice displayed motor and DA deficits, while middle-aged G2019S mice did not. The number and morphology of SNc-DA neurons, most of their intrinsic membrane properties and pacemaker firing were unaltered in cNurr1 and G2019S mice compared to their control and wild-type littermates. L-type VGCCs contributed to the pacemaker firing of SNc-DA neurons in G2019S mice, but not in control, wild-type, and cNurr1 mice. In cNurr1 mice, but not G2019S mice, the contribution of T-type VGCCs to the pacemaker firing of SNc-DA neurons was reduced, and somatic dopamine-D2 autoreceptors desensitized more. Altered contribution of L-type and T-type VGCCs to the pacemaker firing was not observed in the presence of a LRRK2 kinase inhibitor in G2019S mice, and in the presence of a flavonoid with antioxidant activity in G2019S and cNurr1 mice. The role of L-type and T-type VGCCs in controlling dopamine release from axon terminals in the striatum was unaltered in cNurr1 and G2019S mice. Our findings uncover opposite changes, linked to oxidative stress, in the function of two VGCCs in DA neurons somata, but not axon terminals, in two different experimental PD models.
Collapse
Affiliation(s)
- Olga Skiteva
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ning Yao
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Chithra Y, Dey G, Ghose V, Chandramohan V, Gowthami N, Vasudev V, Srinivas Bharath MM. Mitochondrial Complex I Inhibition in Dopaminergic Neurons Causes Altered Protein Profile and Protein Oxidation: Implications for Parkinson's disease. Neurochem Res 2023:10.1007/s11064-023-03907-x. [PMID: 36964824 DOI: 10.1007/s11064-023-03907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/26/2023]
Abstract
Mitochondrial dysfunction and oxidative stress are critical to neurodegeneration in Parkinson's disease (PD). Mitochondrial dysfunction in PD entails inhibition of the mitochondrial complex I (CI) in the dopaminergic neurons of substantia nigra. The events contributing to CI inhibition and downstream pathways are not completely elucidated. We conducted proteomic analysis in a dopaminergic neuronal cell line exposed individually to neurotoxic CI inhibitors: rotenone (Rot), paraquat (Pq) and 1-methyl-4-phenylpyridinium (MPP+). Mass spectrometry (MS) revealed the involvement of biological processes including cell death pathways, structural changes and metabolic processes among others, most of which were common across all models. The proteomic changes induced by Pq were significantly higher than those induced by Rot and MPP+. Altered metabolic processes included downregulated mitochondrial proteins such as CI subunits. MS of CI isolated from the models revealed oxidative post-translational modifications with Tryptophan (Trp) oxidation as the predominant modification. Further, 62 peptides in 22 subunits of CI revealed Trp oxidation with 16 subunits common across toxins. NDUFV1 subunit had the greatest number of oxidized Trp and Rot model displayed the highest number of Trp oxidation events compared to the other models. Molecular dynamics simulation (MDS) of NDUFV1 revealed that oxidized Trp 433 altered the local conformation thereby changing the distance between the Fe-S clusters, Fe-S 301(N1a) to Fe-S 502 (N3) and Fe-S 802 (N4) to Fe-S 801 (N5), potentially affecting the efficiency of electron transfer. The events triggered by the neurotoxins represent CI damage, mitochondrial dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Yogeshachar Chithra
- Department of Bioscience, P.G. Center, Hemagangotri, University of Mysore, Hassan, Karnataka, 573220, India
| | - Gourav Dey
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India
| | - Vivek Ghose
- Manipal Academy of Higher Education, Udupi, Karnataka, 576104, India
| | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India
| | - Niya Gowthami
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Lakkasandra, Bangalore, 560029, India
| | - V Vasudev
- Department of Bioscience, P.G. Center, Hemagangotri, University of Mysore, Hassan, Karnataka, 573220, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Lakkasandra, Bangalore, 560029, India.
| |
Collapse
|
20
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
21
|
Abstract
The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviours and are linked to various brain diseases. Considerable progress has been made in identifying mDA neuron subtypes, and recent work has begun to unveil how these neuronal subtypes develop and organize into functional brain structures. This progress is important for further understanding the disparate physiological functions of mDA neurons and their selective vulnerability in disease, and will ultimately accelerate therapy development. This Review discusses recent advances in our understanding of molecularly defined mDA neuron subtypes and their circuits, ranging from early developmental events, such as neuron migration and axon guidance, to their wiring and function, and future implications for therapeutic strategies.
Collapse
|
22
|
Mamashli F, Meratan AA, Ghasemi A, Obeidi N, Salmani B, Atarod D, Pirhaghi M, Moosavi-Movahedi F, Mohammad-Zaheri M, Shahsavani MB, Habibi-Kelishomi Z, Goliaei B, Gholami M, Saboury AA. Neuroprotective Effect of Propolis Polyphenol-Based Nanosheets in Cellular and Animal Models of Rotenone-Induced Parkinson's Disease. ACS Chem Neurosci 2023; 14:851-863. [PMID: 36750431 DOI: 10.1021/acschemneuro.2c00605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Considering the central role of oxidative stress in the onset and progress of Parkinson's diseases (PD), search for compounds with antioxidant properties has attracted a growing body of attention. Here, we compare the neuroprotective effect of bulk and nano forms of the polyphenolic fraction of propolis (PFP) against rotenone-induced cellular and animal models of PD. Mass spectrometric analysis of PFP confirmed the presence of multiple polyphenols including kaempferol, naringenin, coumaric acid, vanillic acid, and ferulic acid. In vitro cellular experiments indicate the improved efficiency of the nano form, compared to the bulk form, of PFP in attenuating rotenone-induced cytotoxicity characterized by a decrease in cell viability, release of lactate dehydrogenase, increased ROS generation, depolarization of the mitochondrial membrane, decreased antioxidant enzyme activity, and apoptosis induction. In vivo experiments revealed that while no significant neuroprotection was observed relating to the bulk form, PFP nanosheets were very effective in protecting animals, as evidenced by the improved behavioral and neurochemical parameters, including decreased lipid peroxidation, increased GSH content, and antioxidant enzyme activity enhancement. We suggest that improved neuroprotective effects of PFP nanosheets may be attributed to their increased water solubility and enrichment with oxygen-containing functional groups (such as OH and COOH), leading to increased antioxidant activity of these compounds.
Collapse
Affiliation(s)
- Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 6673145137, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Nahal Obeidi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj 3149968111, Iran
| | - Bahram Salmani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 6673145137, Iran
| | - Deyhim Atarod
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | | | - Mahya Mohammad-Zaheri
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mohammad Bagher Shahsavani
- Protein Chemistry Laboratory (PCL), Department of Biology, College of Sciences, Shiraz University, Shiraz 7196484334, Iran
| | | | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mahdi Gholami
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| |
Collapse
|
23
|
de Leeuw VC, van Oostrom CTM, Zwart EP, Heusinkveld HJ, Hessel EVS. Prolonged Differentiation of Neuron-Astrocyte Co-Cultures Results in Emergence of Dopaminergic Neurons. Int J Mol Sci 2023; 24:ijms24043608. [PMID: 36835019 PMCID: PMC9959280 DOI: 10.3390/ijms24043608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Dopamine is present in a subgroup of neurons that are vital for normal brain functioning. Disruption of the dopaminergic system, e.g., by chemical compounds, contributes to the development of Parkinson's disease and potentially some neurodevelopmental disorders. Current test guidelines for chemical safety assessment do not include specific endpoints for dopamine disruption. Therefore, there is a need for the human-relevant assessment of (developmental) neurotoxicity related to dopamine disruption. The aim of this study was to determine the biological domain related to dopaminergic neurons of a human stem cell-based in vitro test, the human neural progenitor test (hNPT). Neural progenitor cells were differentiated in a neuron-astrocyte co-culture for 70 days, and dopamine-related gene and protein expression was investigated. Expression of genes specific for dopaminergic differentiation and functioning, such as LMX1B, NURR1, TH, SLC6A3, and KCNJ6, were increasing by day 14. From day 42, a network of neurons expressing the catecholamine marker TH and the dopaminergic markers VMAT2 and DAT was present. These results confirm stable gene and protein expression of dopaminergic markers in hNPT. Further characterization and chemical testing are needed to investigate if the model might be relevant in a testing strategy to test the neurotoxicity of the dopaminergic system.
Collapse
|
24
|
Park J, Jang KM, Park KK. Effects of Apamin on MPP +-Induced Calcium Overload and Neurotoxicity by Targeting CaMKII/ERK/p65/STAT3 Signaling Pathways in Dopaminergic Neuronal Cells. Int J Mol Sci 2022; 23:15255. [PMID: 36499581 PMCID: PMC9736188 DOI: 10.3390/ijms232315255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is characterized by the loss of dopaminergic (DA) neurons. The pathogenesis of PD is associated with several factors including oxidative stress, inflammation, and mitochondrial dysfunction. Ca2+ signaling plays a vital role in neuronal signaling and altered Ca2+ homeostasis has been implicated in many neuronal diseases including PD. Recently, we reported that apamin (APM), a selective antagonist of the small-conductivity Ca2+-activated K+ (SK) channel, suppresses neuroinflammatory response. However, the mechanism(s) underlying the vulnerability of DA neurons were not fully understood. In this study, we investigated whether APM affected 1-methyl-4-phenyl pyridinium (MPP+)-mediated neurotoxicity in SH-SY5Y cells and rat embryo primary mesencephalic neurons. We found that APM decreased Ca2+ overload arising from MPP+-induced neurotoxicity response through downregulating the level of CaMKII, phosphorylation of ERK, and translocation of nuclear factor NFκB/signal transducer and activator of transcription (STAT)3. Furthermore, we showed that the correlation of MPP+-mediated Ca2+ overload and ERK/NFκB/STAT3 in the neurotoxicity responses, and dopaminergic neuronal cells loss, was verified through inhibitors. Our findings showed that APM might prevent loss of DA neurons via inhibition of Ca2+-overload-mediated signaling pathway and provide insights regarding the potential use of APM in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Jihyun Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Kyung Mi Jang
- Department of Pediatrics, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| |
Collapse
|
25
|
La Barbera L, Nobili A, Cauzzi E, Paoletti I, Federici M, Saba L, Giacomet C, Marino R, Krashia P, Melone M, Keller F, Mercuri NB, Viscomi MT, Conti F, D’Amelio M. Upregulation of Ca 2+-binding proteins contributes to VTA dopamine neuron survival in the early phases of Alzheimer's disease in Tg2576 mice. Mol Neurodegener 2022; 17:76. [PMID: 36434727 PMCID: PMC9700939 DOI: 10.1186/s13024-022-00580-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Recent clinical and experimental studies have highlighted the involvement of Ventral Tegmental Area (VTA) dopamine (DA) neurons for the early pathogenesis of Alzheimer's Disease (AD). We have previously described a progressive and selective degeneration of these neurons in the Tg2576 mouse model of AD, long before amyloid-beta plaque formation. The degenerative process in DA neurons is associated with an autophagy flux impairment, whose rescue can prevent neuronal loss. Impairments in autophagy can be the basis for accumulation of damaged mitochondria, leading to disturbance in calcium (Ca2+) homeostasis, and to functional and structural deterioration of DA neurons. METHODS In Tg2576 mice, we performed amperometric recordings of DA levels and analysis of dopaminergic fibers in the Nucleus Accumbens - a major component of the ventral striatum precociously affected in AD patients - together with retrograde tracing, to identify the most vulnerable DA neuron subpopulations in the VTA. Then, we focused on these neurons to analyze mitochondrial integrity and Apoptosis-inducing factor (AIF) localization by electron and confocal microscopy, respectively. Stereological cell count was also used to evaluate degeneration of DA neuron subpopulations containing the Ca2+-binding proteins Calbindin-D28K and Calretinin. The expression levels for these proteins were analyzed by western blot and confocal microscopy. Lastly, using electrophysiology and microfluorometry we analyzed VTA DA neuron intrinsic properties and cytosolic free Ca2+ levels. RESULTS We found a progressive degeneration of mesolimbic DA neurons projecting to the ventral striatum, located in the paranigral nucleus and parabrachial pigmented subnucleus of the VTA. At the onset of degeneration (3 months of age), the vulnerable DA neurons in the Tg2576 accumulate damaged mitochondria, while AIF translocates from the mitochondria to the nucleus. Although we describe an age-dependent loss of the DA neurons expressing Calbindin-D28K or Calretinin, we observed that the remaining cells upregulate the levels of Ca2+-binding proteins, and the free cytosolic levels of Ca2+ in these neurons are significantly decreased. Coherently, TUNEL-stained Tg2576 DA neurons express lower levels of Calbindin-D28K when compared with non-apoptotic cells. CONCLUSION Overall, our results suggest that the overexpression of Ca2+-binding proteins in VTA DA neurons might be an attempt of cells to survive by increasing their ability to buffer free Ca2+. Exploring strategies to overexpress Ca2+-binding proteins could be fundamental to reduce neuronal suffering and improve cognitive and non-cognitive functions in AD.
Collapse
Affiliation(s)
- Livia La Barbera
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Annalisa Nobili
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Emma Cauzzi
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilaria Paoletti
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mauro Federici
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Luana Saba
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Cecilia Giacomet
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ramona Marino
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Paraskevi Krashia
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.9657.d0000 0004 1757 5329Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marcello Melone
- grid.7010.60000 0001 1017 3210Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020 Ancona, Italy ,Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020 Ancona, Italy
| | - Flavio Keller
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Nicola Biagio Mercuri
- grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy ,grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Teresa Viscomi
- grid.8142.f0000 0001 0941 3192Department of Life Science and Public Health; Section of Histology and Embryology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Fiorenzo Conti
- grid.7010.60000 0001 1017 3210Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche (UNIVPM), 60020 Ancona, Italy ,Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), 60020 Ancona, Italy ,grid.7010.60000 0001 1017 3210Foundation for Molecular Medicine, Università Politecnica delle Marche, 60020 Ancona, Italy
| | - Marcello D’Amelio
- grid.9657.d0000 0004 1757 5329Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy ,grid.417778.a0000 0001 0692 3437Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| |
Collapse
|
26
|
Selenium Effects on Oxidative Stress-Induced Calcium Signaling Pathways in Parkinson’s Disease. Indian J Clin Biochem 2022; 37:257-266. [DOI: 10.1007/s12291-022-01031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
27
|
Manzine PR, Vatanabe IP, Grigoli MM, Pedroso RV, de Almeida MPOMEP, de Oliveira DDSMS, Crispim Nascimento CM, Peron R, de Souza Orlandi F, Cominetti MR. Potential Protein Blood-Based Biomarkers in Different Types of Dementia: A Therapeutic Overview. Curr Pharm Des 2022; 28:1170-1186. [DOI: 10.2174/1381612828666220408124809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Biomarkers capable of identifying and distinguishing types of dementia such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) have been become increasingly relentless. Studies of possible biomarker proteins in the blood that can help formulate new diagnostic proposals and therapeutic visions of different types of dementia are needed. However, due to several limitations of these biomarkers, especially in discerning dementia, their clinical applications are still undetermined. Thus, the updating of biomarker blood proteins that can help in the diagnosis and discrimination of these main dementia conditions is essential to enable new pharmacological and clinical management strategies, with specificities for each type of dementia. To review the literature concerning protein blood-based AD and non-AD biomarkers as new pharmacological targets and/or therapeutic strategies. Recent findings for protein-based AD, PDD, LBD, and FTD biomarkers are focused on in this review. Protein biomarkers were classified according to the pathophysiology of the dementia types. The diagnosis and distinction of dementia through protein biomarkers is still a challenge. The lack of exclusive biomarkers for each type of dementia highlights the need for further studies in this field. Only after this, blood biomarkers may have a valid use in clinical practice as they are promising to help in diagnosis and in the differentiation of diseases.
Collapse
Affiliation(s)
- Patricia Regina Manzine
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Izabela Pereira Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Marina Mantellatto Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Renata Valle Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | | | | | | | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Fabiana de Souza Orlandi
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| | - Márcia Regina Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Brazil. Highway Washington Luis, Km 235. Monjolinho
| |
Collapse
|
28
|
Mohammadipour A. A focus on natural products for preventing and cure of mitochondrial dysfunction in Parkinson's disease. Metab Brain Dis 2022; 37:889-900. [PMID: 35156154 DOI: 10.1007/s11011-022-00931-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
Mitochondria are considered the only source of energy production within cells. This organelle is vital for neural function and survival by producing energy (adenosine triphosphate (ATP)) and regulating intracellular calcium. Mitochondrial dysfunction, which significantly contributes to both idiopathic and familial types of Parkinson's disease (PD), depletes cellular energy, disrupts homeostasis, and induces oxidative stress, leading to cell death. In recent years several natural products have been discovered to be protective against mitochondrial dysfunction. This review discusses the role of mitochondria in the progression of PD to define the path for using natural products to prevent and/or cure PD.
Collapse
Affiliation(s)
- Abbas Mohammadipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Azadi Sq, Vakilabad Blvd, Mashhad, Iran.
| |
Collapse
|
29
|
Therapeutic targeting of mitophagy in Parkinson's disease. Biochem Soc Trans 2022; 50:783-797. [PMID: 35311891 PMCID: PMC9162468 DOI: 10.1042/bst20211107] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder characterised by cardinal motor symptoms and a diverse range of non-motor disorders in patients. Parkinson's disease is the fastest growing neurodegenerative condition and was described for the first time over 200 years ago, yet there are still no reliable diagnostic markers and there are only treatments that temporarily alleviate symptoms in patients. Early-onset Parkinson's disease is often linked to defects in specific genes, including PINK1 and Parkin, that encode proteins involved in mitophagy, the process of selective autophagic elimination of damaged mitochondria. Impaired mitophagy has been associated with sporadic Parkinson's and agents that damage mitochondria are known to induce Parkinson's-like motor symptoms in humans and animal models. Thus, modulating mitophagy pathways may be an avenue to treat a subset of early-onset Parkinson's disease that may additionally provide therapeutic opportunities in sporadic disease. The PINK1/Parkin mitophagy pathway, as well as alternative mitophagy pathways controlled by BNIP3L/Nix and FUNDC1, are emerging targets to enhance mitophagy to treat Parkinson's disease. In this review, we report the current state of the art of mitophagy-targeted therapeutics and discuss the approaches being used to overcome existing limitations to develop innovative new therapies for Parkinson's disease. Key approaches include the use of engineered mouse models that harbour pathogenic mutations, which will aid in the preclinical development of agents that can modulate mitophagy. Furthermore, the recent development of chimeric molecules (AUTACs) that can bypass mitophagy pathways to eliminate damaged mitochondria thorough selective autophagy offer new opportunities.
Collapse
|
30
|
Cousineau J, Plateau V, Baufreton J, Le Bon-Jégo M. Dopaminergic modulation of primary motor cortex: From cellular and synaptic mechanisms underlying motor learning to cognitive symptoms in Parkinson's disease. Neurobiol Dis 2022; 167:105674. [PMID: 35245676 DOI: 10.1016/j.nbd.2022.105674] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The primary motor cortex (M1) is crucial for movement execution, especially dexterous ones, but also for cognitive functions like motor learning. The acquisition of motor skills to execute dexterous movements requires dopamine-dependent and -independent plasticity mechanisms within M1. In addition to the basal ganglia, M1 is disturbed in Parkinson's disease (PD). However, little is known about how the lack of dopamine (DA), characteristic of PD, directly or indirectly impacts M1 circuitry. Here we review data from studies of PD patients and the substantial research in non-human primate and rodent models of DA depletion. These models enable us to understand the importance of DA in M1 physiology at the behavioral, network, cellular, and synaptic levels. We first summarize M1 functions and neuronal populations in mammals. We then look at the origin of M1 DA and the cellular location of its receptors and explore the impact of DA loss on M1 physiology, motor, and executive functions. Finally, we discuss how PD treatments impact M1 functions.
Collapse
|
31
|
Yuan M, Bancroft EA, Chen J, Srinivasan R, Wang Y. Magnetic Fields and Magnetically Stimulated Gold-Coated Superparamagnetic Iron Oxide Nanoparticles Differentially Modulate L-Type Voltage-Gated Calcium Channel Activity in Midbrain Neurons. ACS APPLIED NANO MATERIALS 2022; 5:205-215. [PMID: 40342618 PMCID: PMC12061078 DOI: 10.1021/acsanm.1c02665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Nanoparticles (NPs) generate localized magnetic forces during magnetic stimulation, which can, in turn, modulate neuronal excitability and regulate downstream signaling in neurons. In agreement with this idea, under static magnetic field stimulation (SMS), gold-coated superparamagnetic iron oxide (Au-SPIO) core-shell nanoparticles (NPs) can promote and guide the direction of neurite outgrowth. Inspired by these promising results, this study investigates how SMS on Au-SPIO (SMS-Au-SPIO) affects the physiology of midbrain neurons. Transmission electron microscopy (TEM) images showed quasispherical shapes and a diameter of 20 ± 4 nm of Au-SPIO NPs synthesized by forming an Au layer on SPIO using a hydroxylamine hydrochloride-assisted seed growth method. We found that SMS enhanced intracellular uptake of Au-SPIO and that SMS-Au-SPIO resulted in a delayed blockade of an L-type voltage-gated Ca2+ channel (VGCC) in midbrain neurons. Specifically, the frequency of spontaneous L-type VGCC-induced Ca2+ fluxes was significantly reduced in midbrain neurons exposed to either SMS or Au-SPIO or SMS-Au-SPIO. A power spectrum density analysis of Ca2+ fluxes showed that SMS decreased Ca2+ fluxes amplitudes (<0.1 Hz) before and after L-type VGCC blockade. By contrast, SMS-Au-SPIO decreased Ca2+ flux amplitudes only after L-type VGCC blockade, suggesting a modulation of L-type VGCC by SMS-Au-SPIO. Finally, while SMS alone induced apoptosis of dopaminergic (DA) neurons, SMS-Au-SPIO did not. Thus, SMS and SMS-Au-SPIO differentially modulate L-type VGCC-mediated Ca2+ fluxes, and downstream apoptotic signaling in midbrain neurons, implying the possible application of SMS-Au-SPIO as a drug delivery strategy to treat Parkinson's disease.
Collapse
Affiliation(s)
- Muzhaozi Yuan
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Eric A Bancroft
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas 77807-3260, United States
| | - Jingfan Chen
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas 77807-3260, United States; Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, Texas 77843, United States
| | - Ya Wang
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77840, United States; Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States; Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
32
|
Sanchez CA, Brougher J, Krishnan DG, Thorn CA. Longitudinal Assessment of Skilled Forelimb Motor Impairments in DJ-1 Knockout Rats. Behav Brain Res 2022; 424:113774. [PMID: 35101457 PMCID: PMC8941633 DOI: 10.1016/j.bbr.2022.113774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/03/2022] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND DJ-1 knockout (DJ-1 KO) rats exhibit a moderate parkinsonian phenotype, with gross motor deficits and ca. 50% loss of midbrain dopaminergic neurons appearing around 6-8 months of age. Fine motor impairments are often observed in Parkinson's disease (PD), but skilled motor function in recently developed transgenic rat models of PD is not well characterized. OBJECTIVES To assess the longitudinal performance of DJ-1 KO rats on a skilled forelimb reaching task. METHODS DJ-1 KO and wild-type (WT) rats were trained from 2 to 10 months of age on an isometric pullbar task designed to test forelimb strength and coordination. After 36 consecutive weeks of training (ca. 10 months old), task difficulty was then increased to challenge the motor capabilities of the DJ-1 KO rats. Throughout the study, subjects also received weekly assessments of gross locomotor activity in an open field. RESULTS Pull-task performance of the DJ-1 KO rats was impaired compared to WT, with deficits reaching significance around 7-9 months of age. When challenged, DJ-1 KO rats were able to exert increased force on the pullbar but continued to exhibit deficits compared to WT rats. Throughout the study, no differences in distance traveled or rearing frequency were observed in the open field, but DJ-1 KO rats were found to spend significantly more time in the center of the open field than WT rats. CONCLUSIONS Using a sensitive, automated assay of forelimb strength and coordination, we find that skilled forelimb motor performance is impaired in DJ-1 KO rats.
Collapse
|
33
|
Resveratrol Treatment in Human Parkin-Mutant Fibroblasts Modulates cAMP and Calcium Homeostasis Regulating the Expression of Mitochondria-Associated Membranes Resident Proteins. Biomolecules 2021; 11:biom11101511. [PMID: 34680144 PMCID: PMC8534032 DOI: 10.3390/biom11101511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Parkin plays an important role in ensuring efficient mitochondrial function and calcium homeostasis. Parkin-mutant human fibroblasts, with defective oxidative phosphorylation activity, showed high basal cAMP level likely ascribed to increased activity/expression of soluble adenylyl cyclase and/or low expression/activity of the phosphodiesterase isoform 4 and to a higher Ca2+ level. Overall, these findings support the existence, in parkin-mutant fibroblasts, of an abnormal Ca2+ and cAMP homeostasis in mitochondria. In our previous studies resveratrol treatment of parkin-mutant fibroblasts induced a partial rescue of mitochondrial functions associated with stimulation of the AMPK/SIRT1/PGC-1α pathway. In this study we provide additional evidence of the potential beneficial effects of resveratrol inducing an increase in the pre-existing high Ca2+ level and remodulation of the cAMP homeostasis in parkin-mutant fibroblasts. Consistently, we report in these fibroblasts higher expression of proteins implicated in the tethering of ER and mitochondrial contact sites along with their renormalization after resveratrol treatment. On this basis we hypothesize that resveratrol-mediated enhancement of the Ca2+ level, fine-tuned by the ER-mitochondria Ca2+ crosstalk, might modulate the pAMPK/AMPK pathway in parkin-mutant fibroblasts.
Collapse
|
34
|
Dopaminergic Axons: Key Recitalists in Parkinson's Disease. Neurochem Res 2021; 47:234-248. [PMID: 34637100 DOI: 10.1007/s11064-021-03464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is associated with dopamine depletion in the striatum owing to the selective and progressive loss of the nigrostriatal dopaminergic neurons, which results in motor dysfunction and secondary clinical manifestations. The dopamine level in the striatum is preserved because of the innervation of the substantia nigra (SN) dopaminergic neurons into it. Therefore, protection of the SN neurons is crucial for maintaining the dopamine level in the striatum and for ensuring the desired motor coordination. Several strategies have been devised to protect the degenerating dopaminergic neurons or to restore the dopamine levels for treating PD. Most of the methods focus exclusively on preventing cell body death in the neurons. Although advances have been made in understanding the disease, the search for disease-modifying drugs is an ongoing process. The present review describes the evidence from studies involving patients with PD as well as PD models that axon terminals are highly vulnerable to exogenous and endogenous insults and degenerate at the early stage of the disease. Impairment of mitochondrial dynamics, Ca2+ homeostasis, axonal transport, and loss of plasticity of axon terminals appear before the neuronal degeneration in PD. Furthermore, distortion of synaptic morphology and reduction of postsynaptic dendritic spines are the neuropathological hallmarks of early-stage disease. Thus, the review proposes a shift in focus from discerning the mechanism of neuronal cell body loss and targeting it to an entirely different approach of preventing axonal degeneration. The review also suggests appropriate strategies to prevent the loss of synaptic terminals, which could induce regrowth of the axon and its auxiliary fibers and might offer relief from the symptomatic features of PD.
Collapse
|
35
|
Di Martino R, Sisalli MJ, Sirabella R, Della Notte S, Borzacchiello D, Feliciello A, Annunziato L, Scorziello A. Ncx3-Induced Mitochondrial Dysfunction in Midbrain Leads to Neuroinflammation in Striatum of A53t-α-Synuclein Transgenic Old Mice. Int J Mol Sci 2021; 22:ijms22158177. [PMID: 34360942 PMCID: PMC8347885 DOI: 10.3390/ijms22158177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
The exact mechanism underlying selective dopaminergic neurodegeneration is not completely understood. The complex interplay among toxic alpha-synuclein aggregates, oxidative stress, altered intracellular Ca2+-homeostasis, mitochondrial dysfunction and disruption of mitochondrial integrity is considered among the pathogenic mechanisms leading to dopaminergic neuronal loss. We herein investigated the molecular mechanisms leading to mitochondrial dysfunction and its relationship with activation of the neuroinflammatory process occurring in Parkinson’s disease. To address these issues, experiments were performed in vitro and in vivo in mice carrying the human mutation of α-synuclein A53T under the prion murine promoter. In these models, the expression and activity of NCX isoforms, a family of important transporters regulating ionic homeostasis in mammalian cells working in a bidirectional way, were evaluated in neurons and glial cells. Mitochondrial function was monitored with confocal microscopy and fluorescent dyes to measure mitochondrial calcium content and mitochondrial membrane potential. Parallel experiments were performed in 4 and 16-month-old A53T-α-synuclein Tg mice to correlate the functional data obtained in vitro with mitochondrial dysfunction and neuroinflammation through biochemical analysis. The results obtained demonstrated: 1. in A53T mice mitochondrial dysfunction occurs early in midbrain and later in striatum; 2. mitochondrial dysfunction occurring in the midbrain is mediated by the impairment of NCX3 protein expression in neurons and astrocytes; 3. mitochondrial dysfunction occurring early in midbrain triggers neuroinflammation later into the striatum, thus contributing to PD progression during mice aging.
Collapse
Affiliation(s)
- Rossana Di Martino
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.D.M.); (M.J.S.); (R.S.); (S.D.N.)
| | - Maria Josè Sisalli
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.D.M.); (M.J.S.); (R.S.); (S.D.N.)
| | - Rossana Sirabella
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.D.M.); (M.J.S.); (R.S.); (S.D.N.)
| | - Salvatore Della Notte
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.D.M.); (M.J.S.); (R.S.); (S.D.N.)
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (D.B.); (A.F.)
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (D.B.); (A.F.)
| | | | - Antonella Scorziello
- Department of Neuroscience, Division of Pharmacology, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; (R.D.M.); (M.J.S.); (R.S.); (S.D.N.)
- Correspondence:
| |
Collapse
|
36
|
Schneider JS. A critical role for GM1 ganglioside in the pathophysiology and potential treatment of Parkinson's disease. Glycoconj J 2021; 39:13-26. [PMID: 34037912 DOI: 10.1007/s10719-021-10002-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is slowly progressing neurodegenerative disorder that affects millions of patients worldwide. While effective symptomatic therapies for PD exist, there is no currently available disease modifying agent to slow or stop the progression of the disease. Many years of research from various laboratories around the world have provided evidence in favor of the potential ability of GM1 ganglioside to be a disease modifying agent for PD. In this paper, information supporting the use of GM1 as a disease modifying therapeutic for PD is reviewed along with information concerning the role that deficiencies in GM1 ganglioside (and potentially other important brain gangliosides) may play in the pathogenesis of PD.
Collapse
Affiliation(s)
- J S Schneider
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, JAH 521, Philadelphia, PA, 19107, USA.
| |
Collapse
|
37
|
Tseng YF, Lin HC, Chao JCJ, Hsu CY, Lin HL. Calcium Channel blockers are associated with reduced risk of Parkinson's disease in patients with hypertension: A population-based retrospective cohort study. J Neurol Sci 2021; 424:117412. [PMID: 33799214 DOI: 10.1016/j.jns.2021.117412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/03/2021] [Accepted: 03/21/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The use of dihydropyridine calcium channel blockers (DCCBs) was proposed to reduce the risk of Parkinson's disease (PD). This study aimed to evaluate the association between DCCB and its dose effect and the risk of PD in patients with newly diagnosed hypertension. METHODS This population-based retrospective cohort study enrolled 107,207 patients with newly diagnosed hypertension, between 2001 and 2013, from Taiwan's National Health Insurance Research Database. Patients who had PD before hypertension or were taking antipsychotics for more than 30 days in the 6 months prior to the end of the observation period were excluded. A Cox proportional hazard model was used to estimate the risk of PD in different groups. The dose-related effects of DCCB on the risk of PD were evaluated according to the cumulative defined daily dose (DDD). RESULTS We observed 832 (1.2%) PD cases in patients treated with DCCB as compared to 950 (2.4%) PD cases in those not treated with DCCB, during a median follow-up duration of 8.3 years and 6.2 years, respectively. The risk of PD in the DCCB-treated group (hazard ratio [HR] = 0.50) was significantly lower than that in the group without DCCB treatment. DCCB reduced the risk of PD in a dose-dependent manner, with HRs ranging from 0.61 to 0.37 for DDDs of 90-180 to >720. CONCLUSIONS DCCB treatment was associated with a significantly reduced risk of PD in patients with newly diagnosed hypertension. Further clinical trials are needed to confirm the proposed neuroprotective effects of DCCB in PD.
Collapse
Affiliation(s)
- Yuan-Fu Tseng
- Department of Neurology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Hsiu-Chen Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jane Chen-Jui Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Yeh Hsu
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Hsiu-Li Lin
- Department of Neurology, Sijhih Cathay General Hospital, New Taipei City, Taiwan.
| |
Collapse
|
38
|
Sambra V, Echeverria F, Valenzuela A, Chouinard-Watkins R, Valenzuela R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients 2021; 13:986. [PMID: 33803760 PMCID: PMC8003191 DOI: 10.3390/nu13030986] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
The role of docosahexaenoic acid (DHA) and arachidonic acid (AA) in neurogenesis and brain development throughout the life cycle is fundamental. DHA and AA are long-chain polyunsaturated fatty acids (LCPUFA) vital for many human physiological processes, such as signaling pathways, gene expression, structure and function of membranes, among others. DHA and AA are deposited into the lipids of cell membranes that form the gray matter representing approximately 25% of the total content of brain fatty acids. Both fatty acids have effects on neuronal growth and differentiation through the modulation of the physical properties of neuronal membranes, signal transduction associated with G proteins, and gene expression. DHA and AA have a relevant role in neuroprotection against neurodegenerative pathologies such as Alzheimer's disease and Parkinson's disease, which are associated with characteristic pathological expressions as mitochondrial dysfunction, neuroinflammation, and oxidative stress. The present review analyzes the neuroprotective role of DHA and AA in the extreme stages of life, emphasizing the importance of these LCPUFA during the first year of life and in the developing/prevention of neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Francisca Echeverria
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Alfonso Valenzuela
- Faculty of Medicine, School of Nutrition, Universidad de Los Andes, Santiago 8380000, Chile;
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| |
Collapse
|
39
|
Pingale T, Gupta GL. Current and emerging therapeutic targets for Parkinson's disease. Metab Brain Dis 2021; 36:13-27. [PMID: 33090348 DOI: 10.1007/s11011-020-00636-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterized by gradual neurodegeneration and forfeiture of dopamine neurons in substantia nigra pars compacta which ultimately leads to depletion of dopamine levels. PD patients not only display motor features such as rigidity, tremor, and bradykinesia but also non-motor features such as depression, anxiety, etc. Various treatments are available for PD patients such as dopamine replacement are well established but it is only partially or transiently effective. As these therapies not able to restore dopaminergic neurons and delay the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is crucial. The present review discusses a comprehensive overview of current novel targets for PD which includes molecular chaperone, neuroinflammation, mitochondrial dysfunction, neuromelanin, Ubiquitin-proteasome system, protein Abelson, Synaptic vesicle glycoprotein 2C, and Cocaine-amphetamine-regulated transcript, etc. These approaches will help to identify new targets for the treatment of disease and may provide a ray of hope for PD patient treatment. Graphical abstract.
Collapse
Affiliation(s)
- Tanvi Pingale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India.
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur, 425 405, Maharashtra, India.
| |
Collapse
|
40
|
Troisi J, Landolfi A, Cavallo P, Marciano F, Barone P, Amboni M. Metabolomics in Parkinson's disease. Adv Clin Chem 2020; 104:107-149. [PMID: 34462054 DOI: 10.1016/bs.acc.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder in which environmental (lifestyle, dietary, infectious disease) factors as well as genetic make-up play a role. Metabolomics, an evolving research field combining biomarker discovery and pathogenetics, is particularly useful in studying complex pathophysiology in general and Parkinson's disease (PD) specifically. PD, the second most frequent neurodegenerative disorder, is characterized by the loss of dopaminergic neurons in the substantia nigra and the presence of intraneural inclusions of α-synuclein aggregates. Although considered a predominantly movement disorder, PD is also associated with number of non-motor features. Metabolomics has provided useful information regarding this neurodegenerative process with the aim of identifying a disease-specific fingerprint. Unfortunately, many disease variables such as clinical presentation, motor system involvement, disease stage and duration substantially affect biomarker relevance. As such, metabolomics provides a unique approach to studying this multifactorial neurodegenerative disorder.
Collapse
Affiliation(s)
- Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy; Theoreo Srl, Montecorvino Pugliano, SA, Italy; European Biomedical Research Institute of Salerno (EBRIS), Salerno, SA, Italy.
| | - Annamaria Landolfi
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Pierpaolo Cavallo
- Department of Physics, University of Salerno, Fisciano, SA, Italy; Istituto Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), Roma, RM, Italy
| | - Francesca Marciano
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, SA, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Marianna Amboni
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| |
Collapse
|
41
|
GPR4 Knockout Improves the Neurotoxin-Induced, Caspase-Dependent Mitochondrial Apoptosis of the Dopaminergic Neuronal Cell. Int J Mol Sci 2020; 21:ijms21207517. [PMID: 33053856 PMCID: PMC7589616 DOI: 10.3390/ijms21207517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
In Parkinson’s disease, mitochondrial oxidative stress-mediated apoptosis is a major cause of dopaminergic neuronal loss in the substantia nigra (SN). G protein-coupled receptor 4 (GPR4), previously recognised as an orphan G protein coupled-receptor (GPCR), has recently been claimed as a member of the group of proton-activated GPCRs. Its activity in neuronal apoptosis, however, remains undefined. In this study, we investigated the role of GPR4 in the 1-methyl-4-phenylpyridinium ion (MPP+) and hydrogen peroxide (H2O2)-treated apoptotic cell death of stably GPR4-overexpressing and stably GPR4-knockout human neuroblastoma SH-SY5Y cells. In GPR4-OE cells, MPP+ and H2O2 were found to significantly increase the expression levels of both mRNA and proteins of the pro-apoptotic Bcl-2-associated X protein (Bax) genes, while they decreased the anti-apoptotic B-cell lymphoma 2 (Bcl-2) genes. In addition, MPP+ treatment activated Caspase-3, leading to the cleavage of poly (ADP-ribose) polymerase (PARP) and decreasing the mitochondrial membrane potential (ΔΨm) in GPR4-OE cells. In contrast, H2O2 treatment significantly increased the intracellular calcium ions (Ca2+) and reactive oxygen species (ROS) in GPR4-OE cells. Further, chemical inhibition by NE52-QQ57, a selective antagonist of GPR4, and knockout of GPR4 by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 decreased the Bax/Bcl-2 ratio and ROS generation, and stabilised the ΔΨm, thus protecting the SH-SY5Y cells from MPP+- or H2O2-induced apoptotic cell death. Moreover, the knockout of GPR4 decreased the proteolytic degradation of phosphatidylinositol biphosphate (PIP2) and subsequent release of the endoplasmic reticulum (ER)-stored Ca2+ in the cytosol. Our results suggest that the pharmacological inhibition or genetic deletion of GPR4 improves the neurotoxin-induced caspase-dependent mitochondrial apoptotic pathway, possibly through the modulation of PIP2 degradation-mediated calcium signalling. Therefore, GPR4 presents a potential therapeutic target for neurodegenerative disorders such as Parkinson’s disease.
Collapse
|
42
|
Sun Y, Nascimento Da Conceicao V, Ahamad N, Madesh M, Singh BB. Spatial localization of SOCE channels and its modulators regulate neuronal physiology and contributes to pathology. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Elyasi L, Jahanshahi M, Jameie SB, Hamid Abadi HG, Nikmahzar E, Khalili M, Jameie M, Jameie M. 6-OHDA mediated neurotoxicity in SH-SY5Y cellular model of Parkinson disease suppressed by pretreatment with hesperidin through activating L-type calcium channels. J Basic Clin Physiol Pharmacol 2020; 32:11-17. [PMID: 32918805 DOI: 10.1515/jbcpp-2019-0270] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/11/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Parkinson's disease (PD) is a neurological condition with selective progressive degeneration of dopaminergic neurons. Routine therapies are symptomatic and palliative. Although, hesperidin (Hsd) is known for its neuroprotective effects, its exact cellular mechanism is still a mystery. Considering the important role of calcium (Ca2+) in cellular mechanisms of neurodegenerative diseases, the present study aimed to investigate the possible effects of Hsd on Ca2+ channels in cellular model of PD and the possible association between the selective vulnerability of neurons in cellular models of PD and expression of the physiological phenotype that changes Ca2+ homeostasis. METHODS SH-SY5Y cell line was used in this study; cell damage was induced by 150 µM 6-OHDA and the cells' viability was examined using MTT assay. Intracellular calcium, reactive oxygen species (ROS) and mitochondrial membrane potential were determined by the fluorescence spectrophotometry method. The expressions of calcium channel receptors were determined by gel electrophoresis and immunoblotting. RESULTS Loss of cell viability and mitochondrial membrane potential were confirmed in 6-OHDA treated cells. In addition, intracellular ROS and calcium levels, calcium channel receptors significantly increased in 6-OHDA-treated cells. Incubation of SH-SY5Y cells with hesperidin showed a protective effect, reduced the biochemical markers of cell damage/death, and balanced calcium hemostasis. CONCLUSIONS Based on our findings, it seems that hesperidin could suppress the progression of the cellular model of PD via acting on intracellular calcium homeostasis. Further studies are needed to confirm the potential benefits of preventive and therapeutic effects of stabilizing cellular calcium homeostasis in neurodegenerative disease.
Collapse
Affiliation(s)
- Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - S B Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Hatef Ghasemi Hamid Abadi
- Immunogenetic Research Center, Department of Anatomy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emsehgol Nikmahzar
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Khalili
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Melika Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mana Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
González-Casacuberta I, Juárez-Flores DL, Ezquerra M, Fucho R, Catalán-García M, Guitart-Mampel M, Tobías E, García-Ruiz C, Fernández-Checa JC, Tolosa E, Martí MJ, Grau JM, Fernández-Santiago R, Cardellach F, Morén C, Garrabou G. Mitochondrial and autophagic alterations in skin fibroblasts from Parkinson disease patients with Parkin mutations. Aging (Albany NY) 2020; 11:3750-3767. [PMID: 31180333 PMCID: PMC6594812 DOI: 10.18632/aging.102014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/01/2019] [Indexed: 12/28/2022]
Abstract
PRKN encodes an E3-ubiquitin-ligase involved in multiple cell processes including mitochondrial homeostasis and autophagy. Previous studies reported alterations of mitochondrial function in fibroblasts from patients with PRKN mutation-associated Parkinson’s disease (PRKN-PD) but have been only conducted in glycolytic conditions, potentially masking mitochondrial alterations. Additionally, autophagy flux studies in this cell model are missing. We analyzed mitochondrial function and autophagy in PRKN-PD skin-fibroblasts (n=7) and controls (n=13) in standard (glucose) and mitochondrial-challenging (galactose) conditions. In glucose, PRKN-PD fibroblasts showed preserved mitochondrial bioenergetics with trends to abnormally enhanced mitochondrial respiration that, accompanied by decreased CI, may account for the increased oxidative stress. In galactose, PRKN-PD fibroblasts exhibited decreased basal/maximal respiration vs. controls and reduced mitochondrial CIV and oxidative stress compared to glucose, suggesting an inefficient mitochondrial oxidative capacity to meet an extra metabolic requirement. PRKN-PD fibroblasts presented decreased autophagic flux with reduction of autophagy substrate and autophagosome synthesis in both conditions. The alterations exhibited under neuron-like oxidative environment (galactose), may be relevant to the disease pathogenesis potentially explaining the increased susceptibility of dopaminergic neurons to undergo degeneration. Abnormal PRKN-PD phenotype supports the usefulness of fibroblasts to model disease and the view of PD as a systemic disease where molecular alterations are present in peripheral tissues.
Collapse
Affiliation(s)
- Ingrid González-Casacuberta
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Diana-Luz Juárez-Flores
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Mario Ezquerra
- Laboratory of Neurodegenerative Disorders, IDIBAPS, UB, Department of Neurology, HCB, Barcelona 08036, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain
| | - Raquel Fucho
- Cell Death and Proliferation, IDIBAPS, Consejo Superior Investigaciones Científicas (CSIC), Barcelona, Spain.,Liver Unit, HCB, IDIBAPS and CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Marc Catalán-García
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Mariona Guitart-Mampel
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Ester Tobías
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Carmen García-Ruiz
- Cell Death and Proliferation, IDIBAPS, Consejo Superior Investigaciones Científicas (CSIC), Barcelona, Spain.,Liver Unit, HCB, IDIBAPS and CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.,USC Research Center for ALPD, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - José Carlos Fernández-Checa
- Cell Death and Proliferation, IDIBAPS, Consejo Superior Investigaciones Científicas (CSIC), Barcelona, Spain.,Liver Unit, HCB, IDIBAPS and CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain.,USC Research Center for ALPD, Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Eduard Tolosa
- Laboratory of Neurodegenerative Disorders, IDIBAPS, UB, Department of Neurology, HCB, Barcelona 08036, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain
| | - María-José Martí
- Laboratory of Neurodegenerative Disorders, IDIBAPS, UB, Department of Neurology, HCB, Barcelona 08036, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain
| | - Josep Maria Grau
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Rubén Fernández-Santiago
- Laboratory of Neurodegenerative Disorders, IDIBAPS, UB, Department of Neurology, HCB, Barcelona 08036, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain
| | - Francesc Cardellach
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Constanza Morén
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Department of Internal Medicine, Hospital Clínic of Barcelona (HCB), Barcelona 08036, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| |
Collapse
|
45
|
Neganova ME, Aleksandrova YR, Nebogatikov VO, Klochkov SG, Ustyugov AA. Promising Molecular Targets for Pharmacological Therapy of Neurodegenerative Pathologies. Acta Naturae 2020; 12:60-80. [PMID: 33173597 PMCID: PMC7604899 DOI: 10.32607/actanaturae.10925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Drug development for the treatment of neurodegenerative diseases has to confront numerous problems occurring, in particular, because of attempts to address only one of the causes of the pathogenesis of neurological disorders. Recent advances in multitarget therapy research are gaining momentum by utilizing pharmacophores that simultaneously affect different pathological pathways in the neurodegeneration process. The application of such a therapeutic strategy not only involves the treatment of symptoms, but also mainly addresses prevention of the fundamental pathological processes of neurodegenerative diseases and the reduction of cognitive abilities. Neuroinflammation and oxidative stress, mitochondrial dysfunction, dysregulation of the expression of histone deacetylases, and aggregation of pathogenic forms of proteins are among the most common and significant pathological features of neurodegenerative diseases. In this review, we focus on the molecular mechanisms and highlight the main aspects, including reactive oxygen species, the cell endogenous antioxidant system, neuroinflammation triggers, metalloproteinases, α-synuclein, tau proteins, neuromelanin, histone deacetylases, presenilins, etc. The processes and molecular targets discussed in this review could serve as a starting point for screening leader compounds that could help prevent or slow down the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- M. E. Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| | - Yu. R. Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| | - V. O. Nebogatikov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| | - S. G. Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| | - A. A. Ustyugov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| |
Collapse
|
46
|
Scorziello A, Borzacchiello D, Sisalli MJ, Di Martino R, Morelli M, Feliciello A. Mitochondrial Homeostasis and Signaling in Parkinson's Disease. Front Aging Neurosci 2020; 12:100. [PMID: 32372945 PMCID: PMC7186467 DOI: 10.3389/fnagi.2020.00100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
The loss of dopaminergic (DA) neurons in the substantia nigra leads to a progressive, long-term decline of movement and other non-motor deficits. The symptoms of Parkinson's disease (PD) often appear later in the course of the disease, when most of the functional dopaminergic neurons have been lost. The late onset of the disease, the severity of the illness, and its impact on the global health system demand earlier diagnosis and better targeted therapy. PD etiology and pathogenesis are largely unknown. There are mutations in genes that have been linked to PD and, from these complex phenotypes, mitochondrial dysfunction emerged as central in the pathogenesis and evolution of PD. In fact, several PD-associated genes negatively impact on mitochondria physiology, supporting the notion that dysregulation of mitochondrial signaling and homeostasis is pathogenically relevant. Derangement of mitochondrial homeostatic controls can lead to oxidative stress and neuronal cell death. Restoring deranged signaling cascades to and from mitochondria in PD neurons may then represent a viable opportunity to reset energy metabolism and delay the death of dopaminergic neurons. Here, we will highlight the relevance of dysfunctional mitochondrial homeostasis and signaling in PD, the molecular mechanisms involved, and potential therapeutic approaches to restore mitochondrial activities in damaged neurons.
Collapse
Affiliation(s)
- Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, University of Naples Federico II, Naples, Italy
| | - Domenica Borzacchiello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Maria Jose Sisalli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, University of Naples Federico II, Naples, Italy
| | - Rossana Di Martino
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, University of Naples Federico II, Naples, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
47
|
De Miranda BR, Greenamyre JT. Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson's disease. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:543-554. [PMID: 31996877 PMCID: PMC7941732 DOI: 10.1039/c9em00578a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Organic solvents are common chemicals used in industry throughout the world, however, there is evidence for adverse health effects from exposure to these compounds. Trichloroethylene (TCE) is a halogenated solvent that has been used as a degreasing agent since the early 20th century. Due to its widespread use, TCE remains one of the most significant environmental contaminants in the US, and extensive research suggests TCE is a causative factor in a number of diseases, including cancer, fetal cardiac development, and neurotoxicity. TCE has also been implicated as a possible risk factor in the development of the most common neurodegenerative movement disorder, Parkinson's disease (PD). However, there is variable concordance across multiple occupational epidemiological studies assessing TCE (or solvent) exposure and risk for PD. In addition, there remains a degree of uncertainty about how TCE elicits toxicity to the dopaminergic system. To this end, we review the specific neurotoxic mechanisms of TCE in the context of selective vulnerability of dopaminergic neurons. In addition, we consider the complexity of combined risk factors that ultimately contribute to neurodegeneration and discuss the limitations of single-factor exposure assessments.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, 3501 Fifth Avenue, BST-7045, Pittsburgh, 15260, Pennsylvania, USA.
| | | |
Collapse
|
48
|
Polydatin protects SH-SY5Y in models of Parkinson's disease by promoting Atg5-mediated but parkin-independent autophagy. Neurochem Int 2020; 134:104671. [DOI: 10.1016/j.neuint.2020.104671] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 02/04/2023]
|
49
|
Samavarchi Tehrani S, Sarfi M, Yousefi T, Ahmadi Ahangar A, Gholinia H, Mohseni Ahangar R, Maniati M, Saadat P. Comparison of the calcium-related factors in Parkinson's disease patients with healthy individuals. CASPIAN JOURNAL OF INTERNAL MEDICINE 2020; 11:28-33. [PMID: 32042383 PMCID: PMC6992725 DOI: 10.22088/cjim.11.1.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Parkinson’s disease (PD) is one of the most common neurodegenerative diseases (ND). Studies have demonstrated that biochemical markers have an association with PD. We aimed to investigate an association of biochemical markers including calcium, vitamin D, alkaline phosphatase (ALP), parathormone (PTH), and phosphorous with PD. Methods: This study was conducted on 139 PD patients and 100 healthy individuals. Serum levels of calcium, phosphorous, ALP, PTH and vitamin D were evaluated. Furthermore, student’s t-test and logistic regression models were used by SPSS. Results: The mean levels of calcium (9.4±0.7 and 9.0±0.8 ) and vitamin D (29.7±22.1 and 25.8±23.7) were higher in PD patients as compared with healthy controls, which only status of calcium being significantly different in the two groups (P<0.001). Levels of ALP (202.4±96.7 and 242.9±142.4) and phosphorous (3.6±0.6 and 4.22±1.1) were significantly different comparing PD patients with healthy subjects (P<0.01, P<0.001, respectively). ALP and phosphorous were significantly different in the two groups (OR=0.996, [CI 95%, 0.994-0.999], P<0.001, OR=0.475, [CI 95%, 0.325-0.694], P<0.001, respectively). Furthermore, increased levels of calcium resulted in an elevated risk of PD (OR=2.175, [CI 95% 1.377-3.435], P<0.001). Conclusion: Results show that mean levels of calcium are higher in PD patients relative to healthy controls. Thereby, higher levels of calcium may be associated with PD.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sarfi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Alijan Ahmadi Ahangar
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hemmat Gholinia
- Health Research Institute, Babol University of Medical Scences, Babol, Iran
| | - Reza Mohseni Ahangar
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmoud Maniati
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
50
|
Hotka M, Cagalinec M, Hilber K, Hool L, Boehm S, Kubista H. L-type Ca 2+ channel-mediated Ca 2+ influx adjusts neuronal mitochondrial function to physiological and pathophysiological conditions. Sci Signal 2020; 13:eaaw6923. [PMID: 32047116 PMCID: PMC7116774 DOI: 10.1126/scisignal.aaw6923] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
L-type voltage-gated Ca2+ channels (LTCCs) are implicated in neurodegenerative processes and cell death. Accordingly, LTCC antagonists have been proposed to be neuroprotective, although this view is disputed, because intentional LTCC activation can also have beneficial effects. LTCC-mediated Ca2+ influx influences mitochondrial function, which plays a crucial role in the regulation of cell viability. Hence, we investigated the effect of modulating LTCC-mediated Ca2+ influx on mitochondrial function in cultured hippocampal neurons. To activate LTCCs, neuronal activity was stimulated by increasing extracellular K+ or by application of the GABAA receptor antagonist bicuculline. The activity of LTCCs was altered by application of an agonistic (Bay K8644) or an antagonistic (isradipine) dihydropyridine. Our results demonstrated that activation of LTCC-mediated Ca2+ influx affected mitochondrial function in a bimodal manner. At moderate stimulation strength, ATP synthase activity was enhanced, an effect that involved Ca2+-induced Ca2+ release from intracellular stores. In contrast, high LTCC-mediated Ca2+ loads led to a switch in ATP synthase activity to reverse-mode operation. This effect, which required nitric oxide, helped to prevent mitochondrial depolarization and sustained increases in mitochondrial Ca2+ Our findings indicate a complex role of LTCC-mediated Ca2+ influx in the tuning and maintenance of mitochondrial function. Therefore, the use of LTCC inhibitors to protect neurons from neurodegeneration should be reconsidered carefully.
Collapse
Affiliation(s)
- Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria.
| | - Michal Cagalinec
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
- Laboratory of Mitochondrial Dynamics, Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19, 50 411 Tartu, Estonia
| | - Karlheinz Hilber
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria
| | - Livia Hool
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, WA 6009, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090, Vienna, Austria.
| |
Collapse
|