1
|
Zhang W, Jin Y, Zhou FM. Chronic Fluoxetine Treatment Desensitizes Serotoninergic Inhibition of GABAergic Inputs and Intrinsic Excitability of Dorsal Raphe Serotonin Neurons. Brain Sci 2025; 15:384. [PMID: 40309832 PMCID: PMC12025439 DOI: 10.3390/brainsci15040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Dorsal raphe serotonin (5-hydroxytryptamine, 5-HT) neurons are spontaneously active and release 5-HT that is critical for normal brain function and regulates mood and emotion. Serotonin reuptake inhibitors (SSRIs) increase the synaptic and extracellular 5-HT level and are effective in treating depression. Treatment of two weeks or longer is often required for SSRIs to produce clinical benefits. The cellular mechanism underlying this delay is not fully understood. Methods and Results: Using whole-cell patch clamp recording in brain slices, here we show that the GABAergic inputs inhibit the spike firing of raphe 5-HT neurons. This GABAergic regulation was reduced by 5-HT; additionally, this 5-HT effect was prevented by the G-protein-activated inwardly rectifying potassium (GirK) channel inhibitor tertiapin-Q, indicating a contribution of 5-HT activation of GirK channels in GABAergic presynaptic axon terminals. Equally important, after 14 days of treatment with fluoxetine, a widely used SSRI type antidepressant, the 5-HT inhibition of GABAergic inputs was downregulated. Furthermore, chronic fluoxetine treatment downregulated the 5-HT activation of the inhibitory GirK current in 5-HT neurons. Conclusions: Taken together, our results suggest that chronic fluoxetine treatment, by blocking 5-HT reuptake and hence increasing the extracellular 5-HT level, can downregulate the function of 5-HT1B receptors on the GABAergic afferent axon terminals synapsing onto 5-HT neurons, allowing extrinsic GABAergic neurons to more effectively influence 5-HT neurons; simultaneously, chronic fluoxetine treatment also downregulated somatic 5-HT autoreceptor-activated GirK channel-mediated hyperpolarization and decrease in input resistance, rendering 5-HT neurons resistant to autoinhibition and leading to increased 5-HT neuron activity. These neuroplastic changes in raphe 5-HT neurons and their GABAergic afferents may contribute to the behavioral effect of SSRIs.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA;
| | - Ying Jin
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA;
- Institute of Science and Technology, Fudan University, Shanghai 200433, China
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA;
| |
Collapse
|
2
|
Wang Y, Wang D, Zhang X, Li H, Wang S, He Y, Zhao G, Dong H, Li J. Dorsal Raphe Serotonergic Neurons-Ventral Tegmental Area Neural Pathway Promotes Wake From Sleep. CNS Neurosci Ther 2024; 30:e70141. [PMID: 39593192 PMCID: PMC11598740 DOI: 10.1111/cns.70141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/24/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Dorsal raphe nucleus (DRN) serotonergic neurons projecting to the ventral tegmental area (VTA) neural circuit participate in regulating wake-related behaviors; however, the effect and mechanism of which in regulating sleep-wake are poorly understood. METHODS Fiber photometry was used to study DRN serotonergic afferent activity changes in the VTA during sleep-wake processes. Optogenetics and chemogenetics were took advantage to study the effects of DRN serotonergic afferents modulating VTA during sleep-wake. In vivo electrophysiology was employed to investigate how VTA neuronal firings were influenced by upregulation of DRN serotonergic afferents during sleep-wake. RESULTS We found that DRN serotonergic afferent activity in the VTA was higher during wake than during NREM and REM sleep. Chemogenetic activation of VTA-projecting DRN serotonergic neurons increased wake, and optogenetic activation of DRN serotonergic terminals in the VTA induced wake during NREM and REM sleep. Furthermore, we found that optogenetic activation of DRN serotonergic terminals in the VTA increased glutamatergic neuronal firing, decreased dopaminergic neuronal firing, but not influenced GABAergic neuronal firing during NREM sleep. CONCLUSION Our findings provide evidence in understanding the role of DRN serotonergic neurons-VTA neural pathway in regulating sleep-wake, in which dynamic VTA dopaminergic, glutamatergic, and GABAergic neuronal firing changes responded to the wake promoting effect of DRN serotonergic afferents.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
- Shaanxi University of Chinese MedicineXianyangShaanxiChina
| | - Dan Wang
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Huiming Li
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Sa Wang
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yuting He
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
- Shaanxi University of Chinese MedicineXianyangShaanxiChina
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Hailong Dong
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Jiannan Li
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
3
|
Guillard R, Schecklmann M, Simoes J, Langguth B, Londero A, Congedo M, Michiels S, Vesala M, Goedhart H, Wetter T, Weber FC. Results of two cross-sectional database analyses regarding nap-induced modulations of tinnitus. Sci Rep 2024; 14:20111. [PMID: 39209931 PMCID: PMC11362562 DOI: 10.1038/s41598-024-70871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The influence of naps on tinnitus was systematically assessed by exploring the frequency, clinical and demographic characteristics of this phenomenon. 9,724 data from two different tinnitus databases (Tinnitus Hub: n = 6115; Tinnitus Research Initiative (TRI): n = 3627) were included. After separate analysis of the databases, these results were then compared with each other. In the Tinnitus Hub survey database, a total of 31.1% reported an influence on tinnitus by taking a nap (26.9% in the TRI database), with much more frequent worsening after a nap than improvement (23.0% a little or a lot worse; TRI: 17.7% worse; 8.1% a little or a lot better; TRI: 9.2% better). The influence of napping on tinnitus was associated in both databases with other clinical features, such as the dependence of tinnitus on night quality, stress and somatosensory maneuvers. The present study confirms the clinical observation that more tinnitus sufferers report worsening after a nap than tinnitus sufferers reporting an improvement. It was consistently shown that tinnitus sufferers reporting nap-induced modulation of tinnitus also report more frequently an influence of night sleep on their tinnitus. Further clinical and polysomnographic research is warranted to better understand the interaction between sleep and tinnitus.
Collapse
Affiliation(s)
- Robin Guillard
- GIPSA-Lab, Univ. Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France.
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
- Interdisciplinary Tinnitus Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Jorge Simoes
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
- Interdisciplinary Tinnitus Centre, University of Regensburg, 93053, Regensburg, Germany
- Faculty of Behavioural, Management and Social Sciences, University of Twente, Enschede, The Netherlands
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
- Interdisciplinary Tinnitus Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Alain Londero
- APHP, Hôpital Européen Georges-Pompidou, Service ORL et Chirurgie Cervico-Faciale, APHP Paris, Paris, France
| | - Marco Congedo
- GIPSA-Lab, Univ. Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France
| | - Sarah Michiels
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Otorhinolaryngology, Antwerp University Hospital, Edegem, Belgium
| | | | | | - Thomas Wetter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
- Center for Sleep Medicine, University of Regensburg, 93053, Regensburg, Germany
| | - Franziska C Weber
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany.
- Interdisciplinary Tinnitus Centre, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
4
|
Henderson F, Dumas S, Gangarossa G, Bernard V, Pujol M, Poirel O, Pietrancosta N, El Mestikawy S, Daumas S, Fabre V. Regulation of stress-induced sleep perturbations by dorsal raphe VGLUT3 neurons in male mice. Cell Rep 2024; 43:114411. [PMID: 38944834 DOI: 10.1016/j.celrep.2024.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Exposure to stressors has profound effects on sleep that have been linked to serotonin (5-HT) neurons of the dorsal raphe nucleus (DR). However, the DR also comprises glutamatergic neurons expressing vesicular glutamate transporter type 3 (DRVGLUT3), leading us to examine their role. Cell-type-specific tracing revealed that DRVGLUT3 neurons project to brain areas regulating arousal and stress. We found that chemogenetic activation of DRVGLUT3 neurons mimics stress-induced sleep perturbations. Furthermore, deleting VGLUT3 in the DR attenuated stress-induced sleep perturbations, especially after social defeat stress. In the DR, VGLUT3 is found in subsets of 5-HT and non-5-HT neurons. We observed that both populations are activated by acute stress, including those projecting to the ventral tegmental area. However, deleting VGLUT3 in 5-HT neurons minimally affected sleep regulation. These findings suggest that VGLUT3 expression in the DR drives stress-induced sleep perturbations, possibly involving non-5-HT DRVGLUT3 neurons.
Collapse
Affiliation(s)
- Fiona Henderson
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | | | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 75013 Paris, France; Institut Universitaire de France (IUF), Paris, France
| | - Véronique Bernard
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Marine Pujol
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Odile Poirel
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Sorbonne Université, CNRS UMR 7203, Laboratoire des BioMolécules, 75005 Paris, France
| | - Salah El Mestikawy
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France; Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC H4H 1R3, Canada
| | - Stéphanie Daumas
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| | - Véronique Fabre
- Sorbonne Université, CNRS UMR 8246, INSERM U1130 - Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France.
| |
Collapse
|
5
|
Zhang W, Jin Y, Zhou FM. Chronic fluoxetine treatment desensitizes serotoninergic inhibition of GABA inputs and the intrinsic excitability of dorsal raphe serotonin neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592963. [PMID: 38766100 PMCID: PMC11100661 DOI: 10.1101/2024.05.07.592963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dorsal raphe serotonin (5-hydroxytryptamine, 5-HT) neurons are spontaneously active and release 5-HT that is critical to normal brain function such mood and emotion. Serotonin reuptake inhibitors (SSRIs) increase the synaptic and extracellular 5-HT level and are effective in treating depression. Treatment of two weeks or longer is often required for SSRIs to exert clinical benefits. The cellular mechanism underlying this delay was not fully understood. Here we show that the GABAergic inputs inhibit the spike firing of raphe 5-HT neurons; this GABAergic regulation was reduced by 5-HT, which was prevented by G-protein-activated inwardly rectifying potassium (Girk) channel inhibitor tertiapin-Q, indicating a contribution of 5-HT activation of Girk channels in GABAergic presynaptic axon terminals. Equally important, after 14 days of treatment of fluoxetine, a widely used SSRI type antidepressant, this 5-HT inhibition of GABAergic inputs was substantially downregulated. Furthermore, the chronic fluoxetine treatment substantially downregulated the 5-HT activation of the inhibitory Girk current in 5-HT neurons. Taken together, our results suggest that chronic fluoxetine administration, by blocking 5-HT reuptake and hence increasing the extracellular 5-HT level, can downregulate the function of 5-HT1B receptors on the GABAergic afferent axon terminals synapsing onto 5-HT neurons, allowing extrinsic, behaviorally important GABA neurons to more effectively influence 5-HT neurons; simultaneously, chronic fluoxetine treatment also downregulate somatic 5-HT autoreceptor-activated Girk channel-mediated hyperpolarization and decrease in input resistance and intrinsic excitability, rendering 5-HT neurons resistant to autoinhibition and leading to increased 5-HT neuron activity, potentially contributing to the antidepressant effect of SSRIs.
Collapse
|
6
|
Pascovich C, Serantes D, Rodriguez A, Mateos D, González J, Gallo D, Rivas M, Devera A, Lagos P, Rubido N, Torterolo P. Dorsal and median raphe neuronal firing dynamics characterized by nonlinear measures. PLoS Comput Biol 2024; 20:e1012111. [PMID: 38805554 PMCID: PMC11161118 DOI: 10.1371/journal.pcbi.1012111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 06/07/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
The dorsal (DRN) and median (MRN) raphe are important nuclei involved in similar functions, including mood and sleep, but playing distinct roles. These nuclei have a different composition of neuronal types and set of neuronal connections, which among other factors, determine their neuronal dynamics. Most works characterize the neuronal dynamics using classic measures, such as using the average spiking frequency (FR), the coefficient of variation (CV), and action potential duration (APD). In the current study, to refine the characterization of neuronal firing profiles, we examined the neurons within the raphe nuclei. Through the utilization of nonlinear measures, our objective was to discern the redundancy and complementarity of these measures, particularly in comparison with classic methods. To do this, we analyzed the neuronal basal firing profile in both nuclei of urethane-anesthetized rats using the Shannon entropy (Bins Entropy) of the inter-spike intervals, permutation entropy of ordinal patterns (OP Entropy), and Permutation Lempel-Ziv Complexity (PLZC). Firstly, we found that classic (i.e., FR, CV, and APD) and nonlinear measures fail to distinguish between the dynamics of DRN and MRN neurons, except for the OP Entropy. We also found strong relationships between measures, including the CV with FR, CV with Bins entropy, and FR with PLZC, which imply redundant information. However, APD and OP Entropy have either a weak or no relationship with the rest of the measures tested, suggesting that they provide complementary information to the characterization of the neuronal firing profiles. Secondly, we studied how these measures are affected by the oscillatory properties of the firing patterns, including rhythmicity, bursting patterns, and clock-like behavior. We found that all measures are sensitive to rhythmicity, except for the OP Entropy. Overall, our work highlights OP Entropy as a powerful and useful quantity for the characterization of neuronal discharge patterns.
Collapse
Affiliation(s)
- Claudia Pascovich
- Laboratory of Sleep Neurobiology, Department of Physiology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Consciousness and Cognition Laboratory, Department of Psychology, King’s College, University of Cambridge, Cambridge, United Kingdom
| | - Diego Serantes
- Laboratory of Sleep Neurobiology, Department of Physiology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alejo Rodriguez
- Laboratory of Sleep Neurobiology, Department of Physiology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Mateos
- Achucarro Basque Center for Neuroscience, Leioa (Bizkaia), Spain
- Instituto de Matemática Aplicada del Litoral (IMAL-CONICET-UNL), Santa Fé, Argentina
- Universidad Autónoma de Entre Ríos (UADER), Oro Verde, Entre Ríos, Argentina
| | - Joaquín González
- Laboratory of Sleep Neurobiology, Department of Physiology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Gallo
- Laboratory of Sleep Neurobiology, Department of Physiology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mayda Rivas
- Laboratory of Sleep Neurobiology, Department of Physiology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andrea Devera
- Laboratory of Sleep Neurobiology, Department of Physiology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Patricia Lagos
- Laboratory of Neuropeptide Transmission, Department of Physiology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Rubido
- Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen, United Kingdom
| | - Pablo Torterolo
- Laboratory of Sleep Neurobiology, Department of Physiology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Basha D, Chauvette S, Sheroziya M, Timofeev I. Respiration organizes gamma synchrony in the prefronto-thalamic network. Sci Rep 2023; 13:8529. [PMID: 37237017 PMCID: PMC10219931 DOI: 10.1038/s41598-023-35516-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple cognitive operations are associated with the emergence of gamma oscillations in the medial prefrontal cortex (mPFC) although little is known about the mechanisms that control this rhythm. Using local field potential recordings from cats, we show that periodic bursts of gamma recur with 1 Hz regularity in the wake mPFC and are locked to the exhalation phase of the respiratory cycle. Respiration organizes long-range coherence in the gamma band between the mPFC and the nucleus reuniens the thalamus (Reu), linking the prefrontal cortex and the hippocampus. In vivo intracellular recordings of the mouse thalamus reveal that respiration timing is propagated by synaptic activity in Reu and likely underlies the emergence of gamma bursts in the prefrontal cortex. Our findings highlight breathing as an important substrate for long-range neuronal synchronization across the prefrontal circuit, a key network for cognitive operations.
Collapse
Affiliation(s)
- Diellor Basha
- Département de Psychiatrie Et de Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada
| | - Sylvain Chauvette
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada
| | - Maxim Sheroziya
- Département de Psychiatrie Et de Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada
| | - Igor Timofeev
- Département de Psychiatrie Et de Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada.
| |
Collapse
|
8
|
Joyal KG, Petrucci AN, Littlepage-Saunders MV, Boodhoo NA, Wendt LH, Buchanan GF. Selective Serotonin Reuptake Inhibitors and 5-HT 2 Receptor Agonists Have Distinct, Sleep-state Dependent Effects on Postictal Breathing in Amygdala Kindled Mice. Neuroscience 2023; 513:76-95. [PMID: 36702372 PMCID: PMC9974756 DOI: 10.1016/j.neuroscience.2023.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
Seizures can cause profound breathing disruptions. Seizures arising from sleep cause greater breathing impairment than those emerging from wakefulness and more often result in sudden unexpected death in epilepsy (SUDEP). The neurotransmitter serotonin (5-HT) plays a major role in respiration and sleep-wake regulation. 5-HT modulates seizure susceptibility and severity and is dysregulated by seizures. Thus, the impact of seizures on breathing dysregulation may be due to impaired 5-HT neurotransmission. We examined whether pharmacologically increasing 5-HT neurotransmission prior to seizures improves postictal breathing and how sleep-state during seizure induction contributes to these effects. We assessed breathing with whole-body plethysmography in 84 amygdala-kindled mice pre-treated with selective serotonin reuptake inhibitors (SSRI) or 5-HT2 receptor agonists. SSRIs and 5-HT2 agonists increased postictal breathing frequency (fR), tidal volume (VT), and minute ventilation (VE) at different timepoints following seizures induced during wakefulness. These effects were not observed following seizures induced during NREM sleep. SSRIs suppressed ictal and postictal apnea regardless of sleep state. The SSRI citalopram and the 5-HT2 agonists TCB-2 and MK-212 decreased breathing variability following wake-occurring seizures at different postictal timepoints. Only MK-212 decreased breathing variability when seizures were induced during NREM sleep. The 5-HT2A antagonist MDL-11939 reduced the effect of citalopram on fR, VT, and VE, and enhanced its effect on breathing variability in the initial period following a seizure. These results suggest that 5-HT mechanisms that are dependent on or independent from the 5-HT2 family of receptors impact breathing on different timescales during the recovery of eupnea, and that certain serotonergic treatments may be less effective at facilitating postictal breathing following seizures emerging from sleep.
Collapse
Affiliation(s)
- Katelyn G Joyal
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Mydirah V Littlepage-Saunders
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Nicole A Boodhoo
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Linder H Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA 52242, USA.
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Joyal KG, Kreitlow BL, Buchanan GF. The role of sleep state and time of day in modulating breathing in epilepsy: implications for sudden unexpected death in epilepsy. Front Neural Circuits 2022; 16:983211. [PMID: 36082111 PMCID: PMC9445500 DOI: 10.3389/fncir.2022.983211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with refractory epilepsy. While the exact etiology of SUDEP is unknown, mounting evidence implicates respiratory dysfunction as a precipitating factor in cases of seizure-induced death. Dysregulation of breathing can occur in epilepsy patients during and after seizures as well as interictally, with many epilepsy patients exhibiting sleep-disordered breathing (SDB), such as obstructive sleep apnea (OSA). The majority of SUDEP cases occur during the night, with the victim found prone in or near a bed. As breathing is modulated in both a time-of-day and sleep state-dependent manner, it is relevant to examine the added burden of nocturnal seizures on respiratory function. This review explores the current state of understanding of the relationship between respiratory function, sleep state and time of day, and epilepsy. We highlight sleep as a particularly vulnerable period for individuals with epilepsy and press that this topic warrants further investigation in order to develop therapeutic interventions to mitigate the risk of SUDEP.
Collapse
Affiliation(s)
- Katelyn G. Joyal
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Benjamin L. Kreitlow
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gordon F. Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Gordon F. Buchanan
| |
Collapse
|
10
|
Kubin L. Breathing during sleep. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:179-199. [PMID: 35965026 DOI: 10.1016/b978-0-323-91534-2.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The depth, rate, and regularity of breathing change following transition from wakefulness to sleep. Interactions between sleep and breathing involve direct effects of the central mechanisms that generate sleep states exerted at multiple respiratory regulatory sites, such as the central respiratory pattern generator, respiratory premotor pathways, and motoneurons that innervate the respiratory pump and upper airway muscles, as well as effects secondary to sleep-related changes in metabolism. This chapter discusses respiratory effects of sleep as they occur under physiologic conditions. Breathing and central respiratory neuronal activities during nonrapid eye movement (NREM) sleep and REM sleep are characterized in relation to activity of central wake-active and sleep-active neurons. Consideration is given to the obstructive sleep apnea syndrome because in this common disorder, state-dependent control of upper airway patency by upper airway muscles attains high significance and recurrent arousals from sleep are triggered by hypercapnic and hypoxic episodes. Selected clinical trials are discussed in which pharmacological interventions targeted transmission in noradrenergic, serotonergic, cholinergic, and other state-dependent pathways identified as mediators of ventilatory changes during sleep. Central pathways for arousals elicited by chemical stimulation of breathing are given special attention for their important role in sleep loss and fragmentation in sleep-related respiratory disorders.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
11
|
Yang HJ, Kim MJ, Kim SS, Cho YW. Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR1-NKCC1 signaling in dorsal raphe nucleus of rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:449-457. [PMID: 34448462 PMCID: PMC8405441 DOI: 10.4196/kjpp.2021.25.5.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 11/15/2022]
Abstract
The sleep-wake cycle is regulated by the alternating activity of sleep- and wake-promoting neurons. The dorsal raphe nucleus (DRN) secretes 5-hydroxytryptamine (5-HT, serotonin), promoting wakefulness. Melatonin secreted from the pineal gland also promotes wakefulness in rats. Our laboratory recently demonstrated that daily changes in nitric oxide (NO) production regulates a signaling pathway involving with-no-lysine kinase (WNK), Ste20-related proline alanine rich kinase (SPAK)/oxidative stress response kinase 1 (OSR1), and cation-chloride co-transporters (CCC) in rat DRN serotonergic neurons. This study was designed to investigate the effect of melatonin on NO-regulated WNK-SPAK/OSR1-CCC signaling in wake-inducing DRN neurons to elucidate the mechanism underlying melatonin's wake-promoting actions in rats. Ex vivo treatment of DRN slices with melatonin suppressed neuronal nitric oxide synthase (nNOS) expression and increased WNK4 expression without altering WNK1, 2, or 3. Melatonin increased phosphorylation of OSR1 and the expression of sodium-potassium-chloride co-transporter 1 (NKCC1), while potassium-chloride cotransporter 2 (KCC2) remained unchanged. Melatonin increased the expression of tryptophan hydroxylase 2 (TPH2, serotonin-synthesizing enzyme). The present study suggests that melatonin may promote its wakefulness by modulating NO-regulated WNK-SPAK/OSR1-KNCC1 signaling in rat DRN serotonergic neurons.
Collapse
Affiliation(s)
- Hye Jin Yang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Mi Jung Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea.,Biomedical Science Institute and Medical Research Center for Reactive Oxygen Species, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Sung Soo Kim
- Biomedical Science Institute and Medical Research Center for Reactive Oxygen Species, College of Medicine, Kyung Hee University, Seoul 02447, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Young-Wuk Cho
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea.,Biomedical Science Institute and Medical Research Center for Reactive Oxygen Species, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
12
|
Bahari F, Kimbugwe J, Alloway KD, Gluckman BJ. Model-based analysis and forecast of sleep-wake regulatory dynamics: Tools and applications to data. CHAOS (WOODBURY, N.Y.) 2021; 31:013139. [PMID: 33754773 PMCID: PMC7837756 DOI: 10.1063/5.0024024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Extensive clinical and experimental evidence links sleep-wake regulation and state of vigilance (SOV) to neurological disorders including schizophrenia and epilepsy. To understand the bidirectional coupling between disease severity and sleep disturbances, we need to investigate the underlying neurophysiological interactions of the sleep-wake regulatory system (SWRS) in normal and pathological brains. We utilized unscented Kalman filter based data assimilation (DA) and physiologically based mathematical models of a sleep-wake regulatory network synchronized with experimental measurements to reconstruct and predict the state of SWRS in chronically implanted animals. Critical to applying this technique to real biological systems is the need to estimate the underlying model parameters. We have developed an estimation method capable of simultaneously fitting and tracking multiple model parameters to optimize the reconstructed system state. We add to this fixed-lag smoothing to improve reconstruction of random input to the system and those that have a delayed effect on the observed dynamics. To demonstrate application of our DA framework, we have experimentally recorded brain activity from freely behaving rodents and classified discrete SOV continuously for many-day long recordings. These discretized observations were then used as the "noisy observables" in the implemented framework to estimate time-dependent model parameters and then to forecast future state and state transitions from out-of-sample recordings.
Collapse
|
13
|
Zampese E, Surmeier DJ. Calcium, Bioenergetics, and Parkinson's Disease. Cells 2020; 9:cells9092045. [PMID: 32911641 PMCID: PMC7564460 DOI: 10.3390/cells9092045] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Degeneration of substantia nigra (SN) dopaminergic (DAergic) neurons is responsible for the core motor deficits of Parkinson’s disease (PD). These neurons are autonomous pacemakers that have large cytosolic Ca2+ oscillations that have been linked to basal mitochondrial oxidant stress and turnover. This review explores the origin of Ca2+ oscillations and their role in the control of mitochondrial respiration, bioenergetics, and mitochondrial oxidant stress.
Collapse
|
14
|
Kaur S, De Luca R, Khanday MA, Bandaru SS, Thomas RC, Broadhurst RY, Venner A, Todd WD, Fuller PM, Arrigoni E, Saper CB. Role of serotonergic dorsal raphe neurons in hypercapnia-induced arousals. Nat Commun 2020; 11:2769. [PMID: 32488015 PMCID: PMC7265411 DOI: 10.1038/s41467-020-16518-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 05/05/2020] [Indexed: 01/23/2023] Open
Abstract
During obstructive sleep apnea, elevation of CO2 during apneas contributes to awakening and restoring airway patency. We previously found that glutamatergic neurons in the external lateral parabrachial nucleus (PBel) containing calcitonin gene related peptide (PBelCGRP neurons) are critical for causing arousal during hypercapnia. However, others found that genetic deletion of serotonin (5HT) neurons in the brainstem also prevented arousal from hypercapnia. To examine interactions between the two systems, we showed that dorsal raphe (DR) 5HT neurons selectively targeted the PBel. Either genetically directed deletion or acute optogenetic silencing of DRSert neurons dramatically increased the latency of mice to arouse during hypercapnia, as did silencing DRSert terminals in the PBel. This effect was mediated by 5HT2a receptors which are expressed by PBelCGRP neurons. Our results indicate that the serotonergic input from the DR to the PBel via 5HT2a receptors is critical for modulating the sensitivity of the PBelCGRP neurons that cause arousal to rising levels of blood CO2. Dorsal raphe 5HT(DRSert) neurons regulate arousal from hypercapnia by their projections to the neurons in the external lateral parabrachial nucleus (PBel) that are glutamatergic and also express calcitonin gene related peptide (PBelCGRP). The DRSert input to the PBel modulates the arousal system to rising levels of blood CO2, and may be mediated by 5HT2a receptors on the PBelCGRP neurons.
Collapse
Affiliation(s)
- Satvinder Kaur
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Roberto De Luca
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Mudasir A Khanday
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Sathyajit S Bandaru
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Renner C Thomas
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Rebecca Y Broadhurst
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Anne Venner
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - William D Todd
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Patrick M Fuller
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Elda Arrigoni
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
15
|
Snider SB, Hsu J, Darby RR, Cooke D, Fischer D, Cohen AL, Grafman JH, Fox MD. Cortical lesions causing loss of consciousness are anticorrelated with the dorsal brainstem. Hum Brain Mapp 2020. [DOI: 10.1002/hbm.24892#.xho8mgjbvfa.twitter] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Samuel B. Snider
- Departments of Neurology, Massachusetts General Hospital and Brigham and Women's HospitalHarvard Medical School Boston Massachusetts
| | - Joey Hsu
- Berenson‐Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of NeurologyBeth Israel Deaconess Medical Center Boston Massachusetts
| | - R. Ryan Darby
- Department of NeurologyVanderbilt University Medical Center Nashville Tennessee
| | - Danielle Cooke
- Berenson‐Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of NeurologyBeth Israel Deaconess Medical Center Boston Massachusetts
| | - David Fischer
- Departments of Neurology, Massachusetts General Hospital and Brigham and Women's HospitalHarvard Medical School Boston Massachusetts
| | - Alexander L. Cohen
- Berenson‐Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of NeurologyBeth Israel Deaconess Medical Center Boston Massachusetts
- Department of NeurologyBoston Children's Hospital, Harvard Medical School Boston Massachusetts
| | - Jordan H. Grafman
- Rehabilitation Institute of Chicago Chicago Illinois
- Department of Physical Medicine and Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine and Department of Psychology, Weinberg College of Arts and SciencesNorthwestern University Chicago Illinois
| | - Michael D. Fox
- Berenson‐Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of NeurologyBeth Israel Deaconess Medical Center Boston Massachusetts
- Department of Neurology, Massachusetts General HospitalHarvard Medical School Boston Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging Charlestown Massachusetts
| |
Collapse
|
16
|
Snider SB, Hsu J, Darby RR, Cooke D, Fischer D, Cohen AL, Grafman JH, Fox MD. Cortical lesions causing loss of consciousness are anticorrelated with the dorsal brainstem. Hum Brain Mapp 2020; 41:1520-1531. [PMID: 31904898 PMCID: PMC7268053 DOI: 10.1002/hbm.24892] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/11/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023] Open
Abstract
Brain lesions can provide unique insight into the neuroanatomical substrate of human consciousness. For example, brainstem lesions causing coma map to a specific region of the tegmentum. Whether specific lesion locations outside the brainstem are associated with loss of consciousness (LOC) remains unclear. Here, we investigate the topography of cortical lesions causing prolonged LOC (N = 16), transient LOC (N = 91), or no LOC (N = 64). Using standard voxel lesion symptom mapping, no focus of brain damage was associated with LOC. Next, we computed the network of brain regions functionally connected to each lesion location using a large normative connectome dataset (N = 1,000). This technique, termed lesion network mapping, can test whether lesions causing LOC map to a connected brain circuit rather than one brain region. Connectivity between cortical lesion locations and an a priori coma-specific region of brainstem tegmentum was an independent predictor of LOC (B = 1.2, p = .004). Connectivity to the dorsal brainstem was the only predictor of LOC in a whole-brain voxel-wise analysis. This relationship was driven by anticorrelation (negative correlation) between lesion locations and the dorsal brainstem. The map of regions anticorrelated to the dorsal brainstem thus defines a distributed brain circuit that, when damaged, is most likely to cause LOC. This circuit showed a slight posterior predominance and had peaks in the bilateral claustrum. Our results suggest that cortical lesions causing LOC map to a connected brain circuit, linking cortical lesions that disrupt consciousness to brainstem sites that maintain arousal.
Collapse
Affiliation(s)
- Samuel B Snider
- Departments of Neurology, Massachusetts General Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joey Hsu
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - R Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Danielle Cooke
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - David Fischer
- Departments of Neurology, Massachusetts General Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexander L Cohen
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jordan H Grafman
- Rehabilitation Institute of Chicago, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine and Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, Illinois
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| |
Collapse
|
17
|
Abstract
Over the past decade, basic sleep research investigating the circuitry controlling sleep and wakefulness has been boosted by pharmacosynthetic approaches, including chemogenetic techniques using designed receptors exclusively activated by designer drugs (DREADD). DREADD offers a series of tools that selectively control neuronal activity as a way to probe causal relationship between neuronal sub-populations and the regulation of the sleep-wake cycle. Following the path opened by optogenetics, DREADD tools applied to discrete neuronal sub-populations in numerous brain areas quickly made their contribution to the discovery and the expansion of our understanding of critical brain structures involved in a wide variety of behaviors and in the control of vigilance state architecture.
Collapse
|
18
|
Sakai K. What single‐unit recording studies tell us about the basic mechanisms of sleep and wakefulness. Eur J Neurosci 2019; 52:3507-3530. [DOI: 10.1111/ejn.14485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Kazuya Sakai
- Integrative Physiology of the Brain Arousal System Lyon Neuroscience Research Center INSERM U1028 University Lyon 1 Lyon France
| |
Collapse
|
19
|
Sengupta A, Holmes A. A Discrete Dorsal Raphe to Basal Amygdala 5-HT Circuit Calibrates Aversive Memory. Neuron 2019; 103:489-505.e7. [PMID: 31204082 DOI: 10.1016/j.neuron.2019.05.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/14/2019] [Accepted: 05/15/2019] [Indexed: 11/26/2022]
Abstract
Despite a wealth of clinical and preclinical data implicating the serotonin (5-HT) system in fear-related affective disorders, a precise definition of this neuromodulator's role in fear remains elusive. Using convergent anatomical and functional approaches, we interrogate the contribution to fear of basal amygdala (BA) 5-HT inputs from the dorsal raphe nucleus (DRN). We show the DRN→BA 5-HT pathway is engaged during fear memory formation and retrieval, and activity of these projections facilitates fear and impairs extinction. The DRN→BA 5-HT pathway amplifies fear-associated BA neuronal firing and theta power and phase-locking. Although fear recruits 5-HT and VGluT3 co-expressing DRN neurons, the fear-potentiating influence of the DRN→BA 5-HT pathway requires signaling at BA 5-HT1A/2A receptors. Input-output mapping illustrates how the DRN→BA 5-HT pathway is anatomically distinct and connected with other brain regions that mediate fear. These findings reveal how a discrete 5-HT circuit orchestrates a broader neural network to calibrate aversive memory.
Collapse
Affiliation(s)
- Ayesha Sengupta
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA.
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA.
| |
Collapse
|
20
|
Briggs C, Bowes SC, Semba K, Hirasawa M. Sleep deprivation-induced pre- and postsynaptic modulation of orexin neurons. Neuropharmacology 2018; 154:50-60. [PMID: 30586566 DOI: 10.1016/j.neuropharm.2018.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
Abstract
Sleep/wake states are controlled by sleep- and wake-promoting systems, and transitions between states are thought to be regulated by their reciprocal inhibition and homeostatic sleep need. Orexin neurons are known to promote wake maintenance and stabilize the sleep/wake switch. Thus, we asked whether orexin neurons are modulated by homeostatic sleep need. Rats were sleep deprived or left undisturbed to rest for 6 h, then acute brain slices were generated for patch clamp recordings. We found that sleep deprivation increased firing and reduced spike frequency adaptation in response to excitatory drive in orexin neurons. These changes were specific to D-type orexin neurons which, unlike H-type orexin neurons, lack A-type current. In D-type orexin neurons, sleep deprivation decreased afterhyperpolarizing potential, which was associated with increased gain, measured as the slope of the input-output relationship. These effects were mimicked by inhibition of SK channels. Furthermore, sleep deprivation resulted in presynaptic inhibition of excitatory inputs to both D-type and H-type orexin neurons, which preferentially affected sparse synaptic inputs while sparing high frequency synaptic activities. Taken together, our results indicate that sleep deprivation modulates the gain control and synaptic gating in orexin neurons. These pre-and postsynaptic changes would tune orexin neurons to strong wake-promoting excitatory signals, while dampening weak synaptic inputs to allow transition to sleep in the absence of such strong signals. These mechanisms are consistent with a role of orexin neurons not only as a key state stabilizer, but also as a homeostatic wake integrator in the sleep/wake switch. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Chantalle Briggs
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada
| | - Sherri C Bowes
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4R2, Canada; Department of Psychiatry, Faculty of Medicine, Dalhousie University, 5909 Veterans' Memorial Lane, Halifax, NS, B3H 2E2, Canada; Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
21
|
Billard MW, Bahari F, Kimbugwe J, Alloway KD, Gluckman BJ. The systemDrive: a Multisite, Multiregion Microdrive with Independent Drive Axis Angling for Chronic Multimodal Systems Neuroscience Recordings in Freely Behaving Animals. eNeuro 2018; 5:ENEURO.0261-18.2018. [PMID: 30627656 PMCID: PMC6325560 DOI: 10.1523/eneuro.0261-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
A multielectrode system that can address widely separated targets at multiple sites across multiple brain regions with independent implant angling is needed to investigate neural function and signaling in systems and circuits of small animals. Here, we present the systemDrive, a novel multisite, multiregion microdrive that is capable of moving microwire electrode bundles into targets along independent and nonparallel drive trajectories. Our design decouples the stereotaxic surgical placement of individual guide cannulas for each trajectory from the placement of a flexible drive structure. This separation enables placement of many microwire multitrodes along widely spaced and independent drive axes with user-set electrode trajectories and depths from a single microdrive body, and achieves stereotaxic precision with each. The system leverages tight tube-cannula tolerances and geometric constraints on flexible drive axes to ensure concentric alignment of electrode bundles within guide cannulas. Additionally, the headmount and microdrive both have an open-center design to allow for the placement of additional sensing modalities. This design is the first, in the context of small rodent chronic research, to provide the capability to finely position microwires through multiple widely distributed cell groups, each with stereotaxic precision, along arbitrary and nonparallel trajectories that are not restricted to emanate from a single source. We demonstrate the use of the systemDrive in male Long-Evans rats to observe simultaneous single-unit and multiunit activity from multiple widely separated sleep-wake regulatory brainstem cell groups, along with cortical and hippocampal activity, during free behavior over multiple many-day continuous recording periods.
Collapse
Affiliation(s)
- Myles W. Billard
- Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania 16802
| | - Fatemeh Bahari
- Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania 16802
| | - John Kimbugwe
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania 16802
| | - Kevin D. Alloway
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania 16802
- Department of Neural and Behavioral Sciences, Penn State University, University Park, Pennsylvania 16802
| | - Bruce J. Gluckman
- Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania 16802
- Department of Neurosurgery, Penn State University, University Park, Pennsylvania 16802
| |
Collapse
|
22
|
Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2018; 140:77-92. [PMID: 30118737 PMCID: PMC6403104 DOI: 10.1016/j.neures.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 01/31/2023]
Abstract
REM sleep was discovered in the 1950s. Many hypothalamic and brainstem areas have been found to contribute to REM sleep. An up-to-date picture of REM-sleep-regulating circuits is reviewed. A brief overview of computational models for REM sleep regulation is provided. Outstanding issues for future studies are discussed.
Rapid eye movement (REM) sleep or paradoxical sleep is an elusive behavioral state. Since its discovery in the 1950s, our knowledge of the neuroanatomy, neurotransmitters and neuropeptides underlying REM sleep regulation has continually evolved in parallel with the development of novel technologies. Although the pons was initially discovered to be responsible for REM sleep, it has since been revealed that many components in the hypothalamus, midbrain, pons, and medulla also contribute to REM sleep. In this review, we first provide an up-to-date overview of REM sleep-regulating circuits in the brainstem and hypothalamus by summarizing experimental evidence from neuroanatomical, neurophysiological and gain- and loss-of-function studies. Second, because quantitative approaches are essential for understanding the complexity of REM sleep-regulating circuits and because mathematical models have provided valuable insights into the dynamics underlying REM sleep genesis and maintenance, we summarize computational studies of the sleep-wake cycle, with an emphasis on REM sleep regulation. Finally, we discuss outstanding issues for future studies.
Collapse
Affiliation(s)
- Charlotte Héricé
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Amisha A Patel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
23
|
Peyron C, Rampon C, Petit JM, Luppi PH. Sub-regions of the dorsal raphé nucleus receive different inputs from the brainstem. Sleep Med 2018; 49:53-63. [PMID: 30078667 DOI: 10.1016/j.sleep.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The dorsal raphe nucleus (DRN) through its extensive efferent projections has been implicated in a great variety of physiological and behavioral functions including the regulation of the sleep-wake cycle. This nucleus is composed of five sub-regions defined according to the distribution of its serotonergic (5-HT) neurons. In addition to its heterogeneity in neuronal populations, the DRN contains a great diversity of 5-HT neuronal subtypes identified based on their electrophysiological characteristics, morphology and sub-regional distribution. This suggests that the DRN sub-regions may play different functional roles. Recent studies reported long-range inputs specific to the 5-HT neurons of the DRN; but they did not differentiate whether some inputs were specific to a DRN sub-region, or another region. To fulfill this gap, we have previously described the forebrain afferents to the different sub-regions of the DRN using cholera toxin b subunit and Phaseolus vulgaris-leucoagglutinin, as retrograde and anterograde tracers respectively. In the present work, we provide a detailed map of the brainstem projections to these different sub-regions. We show that if some brainstem structures project homogeneously to all sub-regions, most of the brainstem long-range inputs project in a topographically organized manner onto the DRN and, moreover, that a rich interconnected network is present within the DRN.
Collapse
Affiliation(s)
- Christelle Peyron
- INSERM U52, CNRS ERS 5645, University-Lyon1, Lyon, France; Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, University-Lyon1, Lyon, France.
| | - Claire Rampon
- INSERM U52, CNRS ERS 5645, University-Lyon1, Lyon, France; Centre de Recherches sur la Cognition animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Jean-Marie Petit
- INSERM U52, CNRS ERS 5645, University-Lyon1, Lyon, France; Centre des Neurosciences Psychiatriques, Centre Hospitalier Universitaire Vaudois (CHUV), Prilly, Switzerland
| | - Pierre-Hervé Luppi
- INSERM U52, CNRS ERS 5645, University-Lyon1, Lyon, France; Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, University-Lyon1, Lyon, France
| |
Collapse
|
24
|
Chazalon M, Dumas S, Bernard JF, Sahly I, Tronche F, de Kerchove d'Exaerde A, Hamon M, Adrien J, Fabre V, Bonnavion P. The GABAergic Gudden's dorsal tegmental nucleus: A new relay for serotonergic regulation of sleep-wake behavior in the mouse. Neuropharmacology 2018; 138:315-330. [PMID: 29908240 DOI: 10.1016/j.neuropharm.2018.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/28/2018] [Accepted: 06/10/2018] [Indexed: 11/17/2022]
Abstract
Serotonin (5-HT) neurons are involved in wake promotion and exert a strong inhibitory influence on rapid eye movement (REM) sleep. Such effects have been ascribed, at least in part to the action of 5-HT at post-synaptic 5-HT1A receptors (5-HT1AR) in the brainstem, a major wake/REM sleep regulatory center. However, the neuroanatomical substrate through which 5-HT1AR influence sleep remains elusive. We therefore investigated whether a brainstem structure containing a high density of 5-HT1AR mRNA, the GABAergic Gudden's dorsal tegmental nucleus (DTg), may contribute to 5-HT-mediated regulatory mechanisms of sleep-wake stages. We first found that bilateral lesions of the DTg promote wake at the expense of sleep. In addition, using local microinjections into the DTg in freely moving mice, we showed that local activation of 5-HT1AR by the prototypical agonist 8-OH-DPAT enhances wake and reduces deeply REM sleep duration. The specific involvement of 5-HT1AR in the latter effects was further demonstrated by ex vivo extracellular recordings showing that the selective 5-HT1AR antagonist WAY 100635 prevented DTg neuron inhibition by 8-OH-DPAT. We next found that GABAergic neurons of the ventral DTg exclusively targets glutamatergic neurons of the lateral mammillary nucleus (LM) in the posterior hypothalamus by means of anterograde and retrograde tracing techniques using cre driver mouse lines and a modified rabies virus. Altogether, our findings strongly support the idea that 5-HT-driven enhancement of wake results from 5-HT1AR-mediated inhibition of DTg GABAergic neurons that would in turn disinhibit glutamatergic neurons in the mammillary bodies. We therefore propose a Raphe→DTg→LM pathway as a novel regulatory circuit underlying 5-HT modulation of arousal.
Collapse
Affiliation(s)
- Marine Chazalon
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), ULB Neurosciences Institute, Brussels, Belgium
| | | | - Jean-François Bernard
- Sorbonne Paris Cité, Université Paris Descartes, Inserm, Centre de Psychiatrie et Neurosciences (CPN), 75014, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France
| | - Iman Sahly
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France
| | - François Tronche
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), ULB Neurosciences Institute, Brussels, Belgium
| | - Michel Hamon
- Sorbonne Paris Cité, Université Paris Descartes, Inserm, Centre de Psychiatrie et Neurosciences (CPN), 75014, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France
| | - Joëlle Adrien
- Université Paris Descartes, VIFASOM, Hôtel-Dieu de Paris, 75004, Paris, France
| | - Véronique Fabre
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, Neuroscience Paris Seine (NPS), Institut de Biologie Paris Seine (IBPS), 75005, Paris, France.
| | - Patricia Bonnavion
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), ULB Neurosciences Institute, Brussels, Belgium; Sorbonne Paris Cité, Université Paris Descartes, Inserm, Centre de Psychiatrie et Neurosciences (CPN), 75014, Paris, France.
| |
Collapse
|
25
|
Sakai K. Behavioural state-specific neurons in the mouse medulla involved in sleep-wake switching. Eur J Neurosci 2018; 47:1482-1503. [PMID: 29791042 DOI: 10.1111/ejn.13963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/12/2018] [Accepted: 04/30/2018] [Indexed: 11/28/2022]
Abstract
The medullary reticular formation (RF) is involved in the maintenance of several vital physiological functions and level of vigilance. In this study, in nonanesthetised, head-fixed mice, I examined the role of medullary RF neurons in the control of sleep-wake states, that is, wakefulness (W), slow-wave sleep (SWS) and paradoxical (or rapid eye movement) sleep (PS). I showed, for the first time, that the mouse medullary RF contains presumed SWS-promoting, SWS-on neurons that remain silent during W, display a sharp increase in discharge rate at sleep onset, and discharge tonically and selectively during SWS. In addition, I showed the presence in the medullary RF of both PS-on and PS-off neurons, which, respectively, commence discharging or cease firing selectively just prior to, and during, PS. PS-off neurons were located in the raphe nuclei and ventral medulla, while PS-on neurons were found in both the lateral part of the ventral gigantocellular reticular nucleus and the raphe nuclei, as were SWS-on neurons. PS-off and SWS-on neurons appear to play an important role in both the W-SWS and SWS-PS switches, while PS-on and PS-off neurons play an important role in the PS-W switch. The present findings on the trends in spike activity at the transitions from SWS to PS and from PS to W are in line with the reciprocal interaction hypothesis according to which PS occurs as a result of the cessation of discharge of PS-off neurons, while PS ends as a result of the start of discharge of PS-off neurons.
Collapse
Affiliation(s)
- Kazuya Sakai
- Integrative Physiology of the Brain Arousal System, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| |
Collapse
|
26
|
Sakai K. Single unit activity of periaqueductal gray and deep mesencephalic nucleus neurons involved in sleep stage switching in the mouse. Eur J Neurosci 2018; 47:1110-1126. [PMID: 29498771 DOI: 10.1111/ejn.13888] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 11/30/2022]
Abstract
A total of 668 single units were recorded in the mouse periaqueductal gray (PAG) and adjacent deep mesencephalic nucleus (DpMe) to determine their role in the switching of sleep-wake states, that is, wakefulness (W), slow-wave sleep (SWS) and paradoxical (or rapid eye movement) sleep (PS) in general, and, in particular, to determine whether PS-on and PS-off neurons involved in PS state switching are present in these structures and to identify neuronal substrates for the SWS-PS switching mediated by DpMe neurons. Both structures were found to contain similar percentages of W/PS-active neurons, which discharge at a higher rate during W and PS than during SWS, while W-active neurons, which discharge maximally during W, were found mainly in the PAG. Both also contained similar percentages of SWS/PS-active neurons, which discharge at higher rates during SWS and PS than during W, and PS-active neurons, which discharge maximally during PS, while SWS-active neurons, which discharge maximally during SWS, were found almost exclusively in the PAG. Both structures contained virtually no PS-on or PS-off neurons, which, respectively, discharge or cease firing selectively and tonically just prior to, and during, PS. Unlike the PAG, the DpMe contained many SWS/PS-on neurons, which discharge selectively at high rates during SWS and PS, but show a decrease in discharge rate at the transition from SWS to PS. Analysis of discharge profiles and trends in spike activity at the state transitions strongly suggests that PAG and DpMe neurons play an important role in the W-SWS, SWS-PS and/or PS-W switches.
Collapse
Affiliation(s)
- K Sakai
- Integrative Physiology of the Brain Arousal System, Lyon Neuroscience Research Center, INSERM U1028-CNRS, UMR5292, School of Medicine, Claude Bernard University, F-69373, Lyon, France
| |
Collapse
|
27
|
Sakai K. Are there Sleep-promoting Neurons in the Mouse Parafacial Zone? Neuroscience 2017; 367:98-109. [PMID: 29111358 DOI: 10.1016/j.neuroscience.2017.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 11/25/2022]
Abstract
Although recent studies have reported that gamma-aminobutyric acid (GABA) neurons in the parafacial zone (PZ) of the rostral medulla are needed for the induction of slow-wave sleep (SWS) and that the PZ is a medullary SWS-promoting center, it remains unknown whether the PZ contains SWS-active or sleep-promoting neurons. In the present study, a total of 125 neurons were recorded, for the first time, in non-anesthetized, head-restrained mice during the complete wake-sleep cycle throughout the PZ of the rostral medulla. The vast majority (87.2%) of the neurons displayed increased activity during both wakefulness (W) and paradoxical (or rapid eye movement) sleep (PS) compared to during SWS (W/PS-active neurons) and a few (8.0%) discharged phasically and selectively during PS (PS-active neurons), but none discharged maximally during SWS (SWS-active neurons) or displayed a higher rate of spontaneous discharge during both SWS and PS than during W (SWS/PS-active neurons). These findings do not support the view that the GABAergic PZ is a medullary SWS-promoting center.
Collapse
Affiliation(s)
- K Sakai
- Integrative Physiology of the Brain Arousal System, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, School of Medicine, Claude Bernard University, F-69373 Lyon, France.
| |
Collapse
|
28
|
Roncacè V, Polli FS, Zojicic M, Kohlmeier KA. Neuropeptide S (NPS) is a neuropeptide with cellular actions in arousal and anxiety-related nuclei: Functional implications for effects of NPS on wakefulness and mood. Neuropharmacology 2017; 126:292-317. [PMID: 28655610 DOI: 10.1016/j.neuropharm.2017.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/02/2017] [Accepted: 06/23/2017] [Indexed: 12/27/2022]
Abstract
Neuropeptide S (NPS) is a peptide recently recognized to be present in the CNS, and believed to play a role in vigilance and mood control, as behavioral studies have shown it promotes arousal and has an anxiolytic effect. Although NPS precursor is found in very few neurons, NPS positive fibers are present throughout the brain stem. Given the behavioral actions of this peptide and the wide innervation pattern, we examined the cellular effects of NPS within two brain stem nuclei known to play a critical role in anxiety and arousal: the dorsal raphe (DR) and laterodorsal tegmentum (LDT). In mouse brain slices, NPS increased cytoplasmic levels of calcium in DR and LDT cells. Calcium rises were independent of action potential generation, reduced by low extracellular levels of calcium, attenuated by IP3 - and ryanodine (RyR)-dependent intracellular calcium store depletion, and eliminated by the receptor (NPSR) selective antagonist, SHA 68. NPS also exerted an effect on the membrane of DR and LDT cells inducing inward and outward currents, which were driven by an increase in conductance, and eliminated by SHA 68. Membrane actions of NPS were found to be dependent on store-mediated calcium as depletion of IP3 and RyR stores eliminated NPS-induced currents. Finally, NPS also had actions on synaptic events, suggesting facilitation of glutamatergic and GABAergic presynaptic transmission. When taken together, actions of NPS influenced the excitability of DR and LDT neurons, which could play a role in the anxiolytic and arousal-promoting effects of this peptide.
Collapse
Affiliation(s)
- Vincenzo Roncacè
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen Ø, Denmark
| | - Filip Souza Polli
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen Ø, Denmark
| | - Minella Zojicic
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen Ø, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
29
|
Oishi Y, Lazarus M. The control of sleep and wakefulness by mesolimbic dopamine systems. Neurosci Res 2017; 118:66-73. [DOI: 10.1016/j.neures.2017.04.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
|
30
|
Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission. J Neurosci 2017; 37:1785-1796. [PMID: 28087766 PMCID: PMC5320609 DOI: 10.1523/jneurosci.2238-16.2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/07/2016] [Accepted: 11/19/2016] [Indexed: 11/21/2022] Open
Abstract
The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10–20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT2A and 5-HT1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output. SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders. Therefore, it is essential to determine the physiological mechanisms through which 5-HT neurons in the dorsal raphe nuclei modulate amygdala circuits. Here, we combined optogenetic, electrophysiological, and pharmacological approaches to study the effects of activation of 5-HT axons in the basal nucleus of the amygdala (BA). We found that 5-HT neurons co-release 5-HT and glutamate onto BA neurons in a cell-type-specific and frequency-dependent manner. Therefore, we suggest that theories on the contribution of 5-HT neurons to amygdala function should be revised to incorporate the concept of 5-HT/glutamate cotransmission.
Collapse
|
31
|
Hypocretin/Orexin Peptides Alter Spike Encoding by Serotonergic Dorsal Raphe Neurons through Two Distinct Mechanisms That Increase the Late Afterhyperpolarization. J Neurosci 2016; 36:10097-115. [PMID: 27683906 DOI: 10.1523/jneurosci.0635-16.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/11/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Orexins (hypocretins) are neuropeptides that regulate multiple homeostatic processes, including reward and arousal, in part by exciting serotonergic dorsal raphe neurons, the major source of forebrain serotonin. Here, using mouse brain slices, we found that, instead of simply depolarizing these neurons, orexin-A altered the spike encoding process by increasing the postspike afterhyperpolarization (AHP) via two distinct mechanisms. This orexin-enhanced AHP (oeAHP) was mediated by both OX1 and OX2 receptors, required Ca(2+) influx, reversed near EK, and decayed with two components, the faster of which resulted from enhanced SK channel activation, whereas the slower component decayed like a slow AHP (sAHP), but was not blocked by UCL2077, an antagonist of sAHPs in some neurons. Intracellular phospholipase C inhibition (U73122) blocked the entire oeAHP, but neither component was sensitive to PKC inhibition or altered PKA signaling, unlike classical sAHPs. The enhanced SK current did not depend on IP3-mediated Ca(2+) release but resulted from A-current inhibition and the resultant spike broadening, which increased Ca(2+) influx and Ca(2+)-induced-Ca(2+) release, whereas the slower component was insensitive to these factors. Functionally, the oeAHP slowed and stabilized orexin-induced firing compared with firing produced by a virtual orexin conductance lacking the oeAHP. The oeAHP also reduced steady-state firing rate and firing fidelity in response to stimulation, without affecting the initial rate or fidelity. Collectively, these findings reveal a new orexin action in serotonergic raphe neurons and suggest that, when orexin is released during arousal and reward, it enhances the spike encoding of phasic over tonic inputs, such as those related to sensory, motor, and reward events. SIGNIFICANCE STATEMENT Orexin peptides are known to excite neurons via slow postsynaptic depolarizations. Here we elucidate a significant new orexin action that increases and prolongs the postspike afterhyperpolarization (AHP) in 5-HT dorsal raphe neurons and other arousal-system neurons. Our mechanistic studies establish involvement of two distinct Ca(2+)-dependent AHP currents dependent on phospholipase C signaling but independent of IP3 or PKC. Our functional studies establish that this action preserves responsiveness to phasic inputs while attenuating responsiveness to tonic inputs. Thus, our findings bring new insight into the actions of an important neuropeptide and indicate that, in addition to producing excitation, orexins can tune postsynaptic excitability to better encode the phasic sensory, motor, and reward signals expected during aroused states.
Collapse
|
32
|
Bocchio M, Fisher SP, Unal G, Ellender TJ, Vyazovskiy VV, Capogna M. Sleep and Serotonin Modulate Paracapsular Nitric Oxide Synthase Expressing Neurons of the Amygdala. eNeuro 2016; 3:ENEURO.0177-16.2016. [PMID: 27822504 PMCID: PMC5088777 DOI: 10.1523/eneuro.0177-16.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022] Open
Abstract
Unraveling the roles of distinct neuron types is a fundamental challenge to understanding brain function in health and disease. In the amygdala, a brain structure regulating emotional behavior, the diversity of GABAergic neurons has been only partially explored. We report a novel population of GABAergic amygdala neurons expressing high levels of neuronal nitric oxide synthase (nNOS). These cells are predominantly localized along basolateral amygdala (BLA) boundaries. Performing ex vivo patch-clamp recordings from nNOS+ neurons in Nos1-CreER;Ai9 mice, we observed that nNOS+ neurons located along the external capsule display distinctive electrophysiological properties, axonal and dendritic arborization, and connectivity. Examining their c-Fos expression, we found that paracapsular nNOS+ neurons are activated during a period of undisturbed sleep following sleep deprivation, but not during sleep deprivation. Consistently, we found that dorsal raphe serotonin [5-hydroxytryptamine (5-HT)] neurons, which are involved in sleep-wake regulation, innervate nNOS+ neurons. Bath application of 5-HT hyperpolarizes nNOS+ neurons via 5-HT1A receptors. This hyperpolarization produces a reduction in firing rate and, occasionally, a switch from tonic to burst firing mode, thereby contrasting with the classic depolarizing effect of 5-HT on BLA GABAergic cells reported so far. Thus, nNOS+ cells are a distinct cell type of the amygdala that controls the activity of downstream neurons in both amygdaloid and extra-amygdaloid regions in a vigilance state-dependent fashion. Given the strong links among mood, sleep deprivation, and 5-HT, the recruitment of paracapsular nNOS+ neurons following high sleep pressure may represent an important mechanism in emotional regulation.
Collapse
Affiliation(s)
- Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Simon P. Fisher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Gunes Unal
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Tommas J. Ellender
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- The Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
33
|
Mlinar B, Montalbano A, Piszczek L, Gross C, Corradetti R. Firing Properties of Genetically Identified Dorsal Raphe Serotonergic Neurons in Brain Slices. Front Cell Neurosci 2016; 10:195. [PMID: 27536220 PMCID: PMC4971071 DOI: 10.3389/fncel.2016.00195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/22/2016] [Indexed: 11/13/2022] Open
Abstract
Tonic spiking of serotonergic neurons establishes serotonin levels in the brain. Since the first observations, slow regular spiking has been considered as a defining feature of serotonergic neurons. Recent studies, however, have revealed the heterogeneity of serotonergic neurons at multiple levels, comprising their electrophysiological properties, suggesting the existence of functionally distinct cellular subpopulations. In order to examine in an unbiased manner whether serotonergic neurons of the dorsal raphe nucleus (DRN) are heterogeneous, we used a non-invasive loose-seal cell-attached method to record α1 adrenergic receptor-stimulated spiking of a large sample of neurons in brain slices obtained from transgenic mice lines that express fluorescent marker proteins under the control of serotonergic system-specific Tph2 and Pet-1 promoters. We found wide homogeneous distribution of firing rates, well fitted by a single Gaussian function (r (2) = 0.93) and independent of anatomical location (P = 0.45), suggesting that in terms of intrinsic firing properties, serotonergic neurons in the DRN represent a single cellular population. Characterization of the population in terms of spiking regularity was hindered by its dependence on the firing rate. For instance, the coefficient of variation of the interspike intervals (ISI), a common measure of spiking irregularity, is of limited usefulness since it correlates negatively with the firing rate (r = -0.33, P < 0.0001). Nevertheless, the majority of neurons exhibited regular, pacemaker-like activity, with coefficient of variance of the ISI lower than 0.5 in ~97% of cases. Unexpectedly, a small percentage of neurons (~1%) exhibited a particular spiking pattern, characterized by low frequency (~0.02-0.1 Hz) oscillations in the firing rate. Transitions between regular and oscillatory firing were observed, suggesting that the oscillatory firing is an alternative firing pattern of serotonergic neurons.
Collapse
Affiliation(s)
- Boris Mlinar
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence Florence, Italy
| | - Alberto Montalbano
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence Florence, Italy
| | - Lukasz Piszczek
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | - Cornelius Gross
- Mouse Biology Unit, European Molecular Biology Laboratory Monterotondo, Italy
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Children's Health, University of Florence Florence, Italy
| |
Collapse
|
34
|
Cui SY, Li SJ, Cui XY, Zhang XQ, Yu B, Huang YL, Cao Q, Xu YP, Yang G, Ding H, Song JZ, Ye H, Sheng ZF, Wang ZJ, Zhang YH. Ca(2+) in the dorsal raphe nucleus promotes wakefulness via endogenous sleep-wake regulating pathway in the rats. Mol Brain 2016; 9:71. [PMID: 27456222 PMCID: PMC4960696 DOI: 10.1186/s13041-016-0252-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023] Open
Abstract
Serotonergic neurons in the dorsal raphe nucleus (DRN) are involved in the control of sleep-wake states. Our previous studies have indicated that calcium (Ca(2+)) modulation in the DRN plays an important role in rapid-eye-movement sleep (REMS) and non-REMS (NREMS) regulation during pentobarbital hypnosis. The present study investigated the effects of Ca(2+) in the DRN on sleep-wake regulation and the related neuronal mechanism in freely moving rats. Our results showed that microinjection of CaCl2 (25 or 50 nmol) in the DRN promoted wakefulness and suppressed NREMS including slow wave sleep and REMS in freely moving rats. Application of CaCl2 (25 or 50 nmol) in the DRN significantly increased serotonin in the DRN and hypothalamus, and noradrenaline in the locus coeruleus and hypothalamus. Immunohistochemistry study indicated that application of CaCl2 (25 or 50 nmol) in the DRN significantly increased c-Fos expression ratio in wake-promoting neurons including serotonergic neurons in the DRN, noradrenergic neurons in the locus coeruleus, and orxinergic neurons in the perifornical nucleus, but decreased c-Fos expression ratio of GABAergic sleep-promoting neurons in the ventrolateral preoptic nucleus. These results suggest that Ca(2+) in the DRN exert arousal effects via up-regulating serotonergic functions in the endogenous sleep-wake regulating pathways.
Collapse
Affiliation(s)
- Su-Ying Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Sheng-Jie Li
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Xiang-Yu Cui
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Xue-Qiong Zhang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Bin Yu
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Yuan-Li Huang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Qing Cao
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Ya-Ping Xu
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Guang Yang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Hui Ding
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Jin-Zhi Song
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Hui Ye
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Zhao-Fu Sheng
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Zi-Jun Wang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| | - Yong-He Zhang
- Department of pharmacology, Peking University, School of Basic Medical Science, 38 Xueyuan Road, Beijing, 100191 China
| |
Collapse
|
35
|
Bocchio M, McHugh SB, Bannerman DM, Sharp T, Capogna M. Serotonin, Amygdala and Fear: Assembling the Puzzle. Front Neural Circuits 2016; 10:24. [PMID: 27092057 PMCID: PMC4820447 DOI: 10.3389/fncir.2016.00024] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 11/13/2022] Open
Abstract
The fear circuitry orchestrates defense mechanisms in response to environmental threats. This circuitry is evolutionarily crucial for survival, but its dysregulation is thought to play a major role in the pathophysiology of psychiatric conditions in humans. The amygdala is a key player in the processing of fear. This brain area is prominently modulated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT input to the amygdala has drawn particular interest because genetic and pharmacological alterations of the 5-HT transporter (5-HTT) affect amygdala activation in response to emotional stimuli. Nonetheless, the impact of 5-HT on fear processing remains poorly understood.The aim of this review is to elucidate the physiological role of 5-HT in fear learning via its action on the neuronal circuits of the amygdala. Since 5-HT release increases in the basolateral amygdala (BLA) during both fear memory acquisition and expression, we examine whether and how 5-HT neurons encode aversive stimuli and aversive cues. Next, we describe pharmacological and genetic alterations of 5-HT neurotransmission that, in both rodents and humans, lead to altered fear learning. To explore the mechanisms through which 5-HT could modulate conditioned fear, we focus on the rodent BLA. We propose that a circuit-based approach taking into account the localization of specific 5-HT receptors on neurochemically-defined neurons in the BLA may be essential to decipher the role of 5-HT in emotional behavior. In keeping with a 5-HT control of fear learning, we review electrophysiological data suggesting that 5-HT regulates synaptic plasticity, spike synchrony and theta oscillations in the BLA via actions on different subcellular compartments of principal neurons and distinct GABAergic interneuron populations. Finally, we discuss how recently developed optogenetic tools combined with electrophysiological recordings and behavior could progress the knowledge of the mechanisms underlying 5-HT modulation of fear learning via action on amygdala circuits. Such advancement could pave the way for a deeper understanding of 5-HT in emotional behavior in both health and disease.
Collapse
Affiliation(s)
- Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford Oxford, UK
| | - Stephen B McHugh
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford Oxford, UK
| |
Collapse
|
36
|
Abstract
Reduction in temperature depolarizes neurons by a partial closure of potassium channels but decreases the vesicle release probability within synapses. Compared with cooling, neuromodulators produce qualitatively similar effects on intrinsic neuronal properties and synapses in the cortex. We used this similarity of neuronal action in ketamine-xylazine-anesthetized mice and non-anesthetized mice to manipulate the thalamocortical activity. We recorded cortical electroencephalogram/local field potential (LFP) activity and intracellular activities from the somatosensory thalamus in control conditions, during cortical cooling and on rewarming. In the deeply anesthetized mice, moderate cortical cooling was characterized by reversible disruption of the thalamocortical slow-wave pattern rhythmicity and the appearance of fast LFP spikes, with frequencies ranging from 6 to 9 Hz. These LFP spikes were correlated with the rhythmic IPSP activities recorded within the thalamic ventral posterior medial neurons and with depolarizing events in the posterior nucleus neurons. Similar cooling of the cortex during light anesthesia rapidly and reversibly eliminated thalamocortical silent states and evoked thalamocortical persistent activity; conversely, mild heating increased thalamocortical slow-wave rhythmicity. In the non-anesthetized head-restrained mice, cooling also prevented the generation of thalamocortical silent states. We conclude that moderate cortical cooling might be used to manipulate slow-wave network activity and induce neuromodulator-independent transition to activated states. Significance statement: In this study, we demonstrate that moderate local cortical cooling of lightly anesthetized or naturally sleeping mice disrupts thalamocortical slow oscillation and induces the activated local field potential pattern. Mild heating has the opposite effect; it increases the rhythmicity of thalamocortical slow oscillation. Our results demonstrate that slow oscillation can be influenced by manipulations to the properties of cortical neurons without changes in neuromodulation.
Collapse
|
37
|
Montalbano A, Waider J, Barbieri M, Baytas O, Lesch KP, Corradetti R, Mlinar B. Cellular resilience: 5-HT neurons in Tph2(-/-) mice retain normal firing behavior despite the lack of brain 5-HT. Eur Neuropsychopharmacol 2015; 25:2022-35. [PMID: 26409296 DOI: 10.1016/j.euroneuro.2015.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/23/2015] [Accepted: 08/27/2015] [Indexed: 11/24/2022]
Abstract
Considerable evidence links dysfunction of serotonin (5-hydroxytryptamine, 5-HT) transmission to neurodevelopmental and psychiatric disorders characterized by compromised "social" cognition and emotion regulation. It is well established that the brain 5-HT system is under autoregulatory control by its principal transmitter 5-HT via its effects on activity and expression of 5-HT system-related proteins. To examine whether 5-HT itself also has a crucial role in the acquisition and maintenance of characteristic rhythmic firing of 5-HT neurons, we compared their intrinsic electrophysiological properties in mice lacking brain 5-HT, i.e. tryptophan hydroxylase-2 null mice (Tph2(-/-)) and their littermates, Tph2(+/-) and Tph2(+/+), by using whole-cell patch-clamp recordings in a brainstem slice preparation and single unit recording in anesthetized animals. We report that the active properties of dorsal raphe nucleus (DRN) 5-HT neurons in vivo (firing rate magnitude and variability; the presence of spike doublets) and in vitro (firing in response to depolarizing current pulses; action potential shape) as well as the resting membrane potential remained essentially unchanged across Tph2 genotypes. However, there were subtle differences in subthreshold properties, most notably, an approximately 25% higher input conductance in Tph2(-/-) mice compared with Tph2(+/-) and Tph2(+/+) littermates (p<0.0001). This difference may at least in part be a consequence of slightly bigger size of the DRN 5-HT neurons in Tph2(-/-) mice (approximately 10%, p<0.0001). Taken together, these findings show that 5-HT neurons acquire and maintain their signature firing properties independently of the presence of their principal neurotransmitter 5-HT, displaying an unexpected functional resilience to complete brain 5-HT deficiency.
Collapse
Affiliation(s)
- Alberto Montalbano
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Jonas Waider
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Mario Barbieri
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Ozan Baytas
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Renato Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Boris Mlinar
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.
| |
Collapse
|
38
|
Jalewa J, Joshi A, McGinnity TM, Prasad G, Wong-Lin K, Hölscher C. Neural circuit interactions between the dorsal raphe nucleus and the lateral hypothalamus: an experimental and computational study. PLoS One 2014; 9:e88003. [PMID: 24516577 PMCID: PMC3916338 DOI: 10.1371/journal.pone.0088003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/02/2014] [Indexed: 12/22/2022] Open
Abstract
Orexinergic/hypocretinergic (Ox) neurotransmission plays an important role in regulating sleep, as well as in anxiety and depression, for which the serotonergic (5-HT) system is also involved in. However, little is known regarding the direct and indirect interactions between 5-HT in the dorsal raphe nucleus (DRN) and Ox neurons in the lateral hypothalamus (LHA). In this study, we report the additional presence of 5-HT1BR, 5-HT2AR, 5-HT2CR and fast ligand-gated 5-HT3AR subtypes on the Ox neurons of transgenic Ox-enhanced green fluorescent protein (Ox-EGFP) and wild type C57Bl/6 mice using single and double immunofluorescence (IF) staining, respectively, and quantify the colocalization for each 5-HT receptor subtype. We further reveal the presence of 5-HT3AR and 5-HT1AR on GABAergic neurons in LHA. We also identify NMDAR1, OX1R and OX2R on Ox neurons, but none on adjacent GABAergic neurons. This suggests a one-way relationship between LHA's GABAergic and Ox neurons, wherein GABAergic neurons exerts an inhibitory effect on Ox neurons under partial DRN's 5-HT control. We also show that Ox axonal projections receive glutamatergic (PSD-95 immunopositive) and GABAergic (Gephyrin immunopositive) inputs in the DRN. We consider these and other available findings into our computational model to explore possible effects of neural circuit connection types and timescales on the DRN-LHA system's dynamics. We find that if the connections from 5-HT to LHA's GABAergic neurons are weakly excitatory or inhibitory, the network exhibits slow oscillations; not observed when the connection is strongly excitatory. Furthermore, if Ox directly excites 5-HT neurons at a fast timescale, phasic Ox activation can lead to an increase in 5-HT activity; no significant effect with slower timescale. Overall, our experimental and computational approaches provide insights towards a more complete understanding of the complex relationship between 5-HT in the DRN and Ox in the LHA.
Collapse
Affiliation(s)
- Jaishree Jalewa
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Alok Joshi
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
| | - T. Martin McGinnity
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
| | - Girijesh Prasad
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Londonderry, Northern Ireland, United Kingdom
- * E-mail: (CH); (KW)
| | - Christian Hölscher
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
- * E-mail: (CH); (KW)
| |
Collapse
|
39
|
Ito H, Yanase M, Yamashita A, Kitabatake C, Hamada A, Suhara Y, Narita M, Ikegami D, Sakai H, Yamazaki M, Narita M. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain 2013; 6:59. [PMID: 24370235 PMCID: PMC3879646 DOI: 10.1186/1756-6606-6-59] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 12/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background Several etiological reports have shown that chronic pain significantly interferes with sleep. Inadequate sleep due to chronic pain may contribute to the stressful negative consequences of living with pain. However, the neurophysiological mechanism by which chronic pain affects sleep-arousal patterns is as yet unknown. Although serotonin (5-HT) was proposed to be responsible for sleep regulation, whether the activity of 5-HTergic neurons in the dorsal raphe nucleus (DRN) is affected by chronic pain has been studied only infrequently. On the other hand, the recent development of optogenetic tools has provided a valuable opportunity to regulate the activity in genetically targeted neural populations with high spatial and temporal precision. In the present study, we investigated whether chronic pain could induce sleep dysregulation while changing the activity of DRN-5-HTergic neurons. Furthermore, we sought to physiologically activate the DRN with channelrhodopsin-2 (ChR2) to identify a causal role for the DRN-5-HT system in promoting and maintaining wakefulness using optogenetics. Results We produced a sciatic nerve ligation model by tying a tight ligature around approximately one-third to one-half the diameter of the sciatic nerve. In mice with nerve ligation, we confirmed an increase in wakefulness and a decrease in non-rapid eye movement (NREM) sleep as monitored by electroencephalogram (EEG). Microinjection of the retrograde tracer fluoro-gold (FG) into the prefrontal cortex (PFC) revealed several retrogradely labeled-cells in the DRN. The key finding of the present study was that the levels of 5-HT released in the PFC by the electrical stimulation of DRN neurons were significantly increased in mice with sciatic nerve ligation. Using optogenetic tools in mice, we found a causal relationship among DRN neuron firing, cortical activity and sleep-to-wake transitions. In particular, the activation of DRN-5-HTergic neurons produced a significant increase in wakefulness and a significant decrease in NREM sleep. The duration of NREM sleep episodes was significantly decreased during photostimulation in these mice. Conclusions These results suggest that neuropathic pain accelerates the activity of DRN-5-HTergic neurons. Although further loss-of-function experiments are required, we hypothesize that this activation in DRN neurons may, at least in part, correlate with sleep dysregulation under a neuropathic pain-like state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mitsuaki Yamazaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | |
Collapse
|
40
|
Sakai K. Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice. Neuroscience 2013; 260:249-64. [PMID: 24355494 DOI: 10.1016/j.neuroscience.2013.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/18/2013] [Accepted: 12/07/2013] [Indexed: 01/22/2023]
Abstract
The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains a circadian clock for timing of diverse neuronal, endocrine, and behavioral rhythms, such as the cycle of sleep and wakefulness. Using extracellular single unit recordings, we have determined, for the first time, the discharge activity of individual SCN neurons during the complete wake-sleep cycle in non-anesthetized, head restrained mice. SCN neurons (n=79) were divided into three types according to their regular (type I; n=38) or irregular (type II; n=19) discharge activity throughout the wake-sleep cycle or their quiescent activity during waking and irregular discharge activity during sleep (type III; n=22). The type I and II neurons displayed a long-duration action potential, while the type III neurons displayed either a short-duration or long-duration action potential. The type I neurons discharged exclusively as single isolated spikes, whereas the type II and III neurons fired as single isolated spikes, clusters, or bursts. The type I and II neurons showed wake-active, wake/paradoxical (or rapid eye movement) sleep-active, or state-unrelated activity profiles and were, respectively, mainly located in the ventral or dorsal region of the SCN. In contrast, the type III neurons displayed sleep-active discharge profiles and were mainly located in the lateral region of the SCN. The majority of type I and II neurons tested showed an increase in discharge rate following application of light to the animal's eyes. Of the 289 extra-SCN neurons recorded, those displaying sleep-active discharge profiles were mainly located dorsal to the SCN, whereas those displaying wake-active discharge profiles were mainly located lateral or dorsolateral to the SCN. This study shows heterogeneity of mouse SCN and surrounding anterior hypothalamic neurons and suggests differences in their topographic organization and roles in mammalian circadian rhythms and the regulation of sleep and wakefulness.
Collapse
Affiliation(s)
- K Sakai
- Integrative Physiology of the Brain Arousal System, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, School of Medicine, Claude Bernard University Lyon 1, F-69373 Lyon, France.
| |
Collapse
|
41
|
Ratti E, Carpenter DJ, Zamuner S, Fernandes S, Squassante L, Danker-Hopfe H, Archer G, Robertson J, Alexander R, Trist DG, Merlo-Pich E. Efficacy of vestipitant, a neurokinin-1 receptor antagonist, in primary insomnia. Sleep 2013; 36:1823-30. [PMID: 24293756 PMCID: PMC3825431 DOI: 10.5665/sleep.3208] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Investigate the hypnotic effects of repeated doses of neurokinin-1 receptor antagonist, vestipitant, in primary insomnia. DESIGN Randomized, double-blind, placebo-controlled 28-day parallel-group study. SETTING Eleven sleep centers in Germany. PATIENTS One hundred sixty-one patients with primary insomnia. INTERVENTIONS Patients received vestipitant (15 mg) or placebo for 28 days; 2-night polysomnographic assessment occurred on nights 1/2 and 27/28. MEASUREMENTS AND RESULTS Wake after sleep onset (WASO) was improved on nights 1/2 and 27/28 (ratio, vestipitant versus placebo [95% confidence interval]: 0.76 [0.65, 0.90], P = 0.001 and 0.79 [0.65, 0.96], P = 0.02, respectively), demonstrating maintenance of the effect following repeated dosing. Latency to persistent sleep was shorter with vestipitant on nights 1/2 (P = 0.0006 versus placebo), but not on nights 27/28. Total sleep time (TST) improved with vestipitant (nights 1/2: P < 0.0001, nights 27/28: P = 0.02 versus placebo). Next-day cognitive function tests demonstrated no residual effects of vestipitant (P > 0.05 versus placebo). Adverse events (AEs) occurred in 25% of vestipitant patients versus 22% for placebo. Headache was the most common AE (8% of vestipitant patients versus 9% for placebo). CONCLUSIONS Vestipitant improved sleep maintenance in patients with primary insomnia, with no associated next-day cognitive impairment. The effects on wake after sleep onset and total sleep time were maintained following repeated dosing.
Collapse
Affiliation(s)
- Emiliangelo Ratti
- GlaxoSmithKline Neuroscience Centre of Excellence for Drug Discovery, Verona, Italy
| | - David J. Carpenter
- GlaxoSmithKline Discovery Medicine, Neurosciences Centre for Excellence in Drug Discovery, Philadelphia, PA
| | - Stefano Zamuner
- GlaxoSmithKline Neuroscience Centre of Excellence for Drug Discovery, Verona, Italy
| | - Sofia Fernandes
- GlaxoSmithKline Neuroscience Centre of Excellence for Drug Discovery, Verona, Italy
| | - Lisa Squassante
- GlaxoSmithKline Neuroscience Centre of Excellence for Drug Discovery, Verona, Italy
| | - Heidi Danker-Hopfe
- Competence Centre of Sleep Research and Sleep Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Graeme Archer
- GlaxoSmithKline (GSK), Neurosciences Discovery Biometrics, Harlow, UK
| | | | - Robert Alexander
- GlaxoSmithKline Discovery Medicine, Neurosciences Centre for Excellence in Drug Discovery, Philadelphia, PA
| | - David G. Trist
- GlaxoSmithKline Neuroscience Centre of Excellence for Drug Discovery, Verona, Italy
| | - Emilio Merlo-Pich
- GlaxoSmithKline Neuroscience Centre of Excellence for Drug Discovery, Verona, Italy
| |
Collapse
|
42
|
Tuckwell HC. Biophysical properties and computational modeling of calcium spikes in serotonergic neurons of the dorsal raphe nucleus. Biosystems 2013; 112:204-13. [PMID: 23391700 DOI: 10.1016/j.biosystems.2013.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/18/2013] [Accepted: 01/18/2013] [Indexed: 11/17/2022]
Abstract
Serotonergic neurons of the dorsal raphe nuclei, with their extensive innervation of nearly the whole brain have important modulatory effects on many cognitive and physiological processes. They play important roles in clinical depression and other psychiatric disorders. In order to quantify the effects of serotonergic transmission on target cells it is desirable to construct computational models and to this end these it is necessary to have details of the biophysical and spike properties of the serotonergic neurons. Here several basic properties are reviewed with data from several studies since the 1960s to the present. The quantities included are input resistance, resting membrane potential, membrane time constant, firing rate, spike duration, spike and afterhyperpolarization (AHP) amplitude, spike threshold, cell capacitance, soma and somadendritic areas. The action potentials of these cells are normally triggered by a combination of sodium and calcium currents which may result in autonomous pacemaker activity. We here analyse the mechanisms of high-threshold calcium spikes which have been demonstrated in these cells the presence of TTX (tetrodotoxin). The parameters for calcium dynamics required to give calcium spikes are quite different from those for regular spiking which suggests the involvement of restricted parts of the soma-dendritic surface as has been found, for example, in hippocampal neurons.
Collapse
Affiliation(s)
- Henry C Tuckwell
- Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany.
| |
Collapse
|
43
|
Abstract
During waking behavior, animals adapt their state of arousal in response to environmental pressures. Sensory processing is regulated in aroused states, and several lines of evidence imply that this is mediated at least partly by the serotonergic system. However, there is little information directly showing that serotonergic function is required for state-dependent modulation of sensory processing. Here we find that zebrafish larvae can maintain a short-term state of arousal during which neurons in the dorsal raphe modulate sensory responsiveness to behaviorally relevant visual cues. After a brief exposure to water flow, larvae show elevated activity and heightened sensitivity to perceived motion. Calcium imaging of neuronal activity after flow revealed increased activity in serotonergic neurons of the dorsal raphe. Genetic ablation of these neurons abolished the increase in visual sensitivity during arousal without affecting baseline visual function or locomotor activity. We traced projections from the dorsal raphe to a major visual area, the optic tectum. Laser ablation of the tectum demonstrated that this structure, like the dorsal raphe, is required for improved visual sensitivity during arousal. These findings reveal that serotonergic neurons of the dorsal raphe have a state-dependent role in matching sensory responsiveness to behavioral context.
Collapse
|
44
|
Sakai K. Discharge properties of presumed cholinergic and noncholinergic laterodorsal tegmental neurons related to cortical activation in non-anesthetized mice. Neuroscience 2012; 224:172-90. [PMID: 22917614 DOI: 10.1016/j.neuroscience.2012.08.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/08/2012] [Accepted: 08/15/2012] [Indexed: 12/29/2022]
Abstract
We have recorded, for the first time, in non-anesthetized, head-restrained mice, a total of 339 single units in and around the laterodorsal (LDT) and sublaterodorsal (SubLDT) tegmental nuclei, which are located, respectively, in, or beneath, the periaqueductal gray and contain cholinergic neurons. The recordings were made during the complete wake-sleep cycle including wakefulness (W), slow-wave sleep (SWS), and paradoxical (or rapid eye movement) sleep (PS). The tegmental neurons displayed either a biphasic narrow or triphasic broad action potential. Seventy-six LDT or SubLDT neurons characterized by their triphasic long-duration action potentials were judged to be cholinergic and this was verified in anesthetized mice using neurobiotin juxtacellular labeling combined with choline acetyltransferase immunohistochemistry of the recorded cell. The 76 presumed cholinergic neurons discharged tonically at the highest rate during W and PS (W/PS-active neurons) as either single isolated spikes or clusters of two to five spikes, and 26 of them discharged selectively during W and PS, these W/PS-selective neurons being found mainly in the SubLDT. The clustering discharge was particularly prominent during PS, when it was associated with an obvious phasic change in the cortical electroencephalogram (EEG), and during waking periods, when it was accompanied by abrupt body movements. During the transition from sleep to waking, the cholinergic W/PS-selective neurons and the LDT or SubLDT noncholinergic W-selective neurons showed firing before the onset of W, while, at the transition from waking to sleep, they ceased firing before sleep onset. At the transition from SWS to PS, all the cholinergic neurons exhibited a significant increase in discharge rate before the onset of PS. The present study in mice supports the view that cholinergic and noncholinergic LDT and SubLDT neurons play an important role in tonic and phasic processes of arousal and cortical EEG activation occurring during W or PS, as well as in the sleep/waking switch.
Collapse
Affiliation(s)
- K Sakai
- INSERM U1028, CNRS UMR5292, Neuroscience Research Center, University Lyon 1, Integrative Physiology of the Brain Arousal System, F-69373 Lyon, France.
| |
Collapse
|