1
|
Prakash RS, Shankar A, Tripathi V, Yang WFZ, Fisher M, Bauer CCC, Betzel R, Sacchet MD. Mindfulness Meditation and Network Neuroscience: Review, Synthesis, and Future Directions. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:350-358. [PMID: 39561891 DOI: 10.1016/j.bpsc.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Network neuroscience is an interdisciplinary field, which can be used to understand the brain by examining the connections between its constituent elements. In recent years, the application of network neuroscience approaches to study the intricate nature of the structural and functional relationships within the human brain has yielded unique insights into its organization. In this review, we begin by defining network neuroscience and providing an overview of the common metrics that describe the topology of human structural and functional brain networks. Then, we present a detailed overview of a limited but growing body of literature that has leveraged network neuroscience metrics to demonstrate the impact of mindfulness meditation on modulating the fundamental structural and functional network properties of segregation, integration, and influence. Although preliminary, results across studies suggest that mindfulness meditation results in a shift in connector hubs, such as the anterior cingulate cortex, the thalamus, and the mid-insula. Although there is mixed evidence regarding the impact of mindfulness training on global metrics of connectivity, the default mode network exhibits reduced intraconnectivity following mindfulness training. Our review also underscores essential directions for future research, including a more comprehensive examination of mindfulness training and its potential to influence structural and functional connections at the nodal, network, and whole-brain levels. Furthermore, we emphasize the importance of open science, adoption of rigorous study designs to improve the internal validity of studies, and the inclusion of diverse samples in neuroimaging studies to comprehensively characterize the impact of mindfulness on brain organization.
Collapse
Affiliation(s)
- Ruchika S Prakash
- Department of Psychology, The Ohio State University, Columbus, Ohio; Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, Ohio.
| | - Anita Shankar
- Department of Psychology, The Ohio State University, Columbus, Ohio; Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, Ohio
| | - Vaibhav Tripathi
- Center for Brain Science & Department of Psychology, Harvard University, Cambridge, Massachusetts; Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Winson F Z Yang
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Megan Fisher
- Department of Psychology, The Ohio State University, Columbus, Ohio; Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, Ohio
| | - Clemens C C Bauer
- Department of Psychology, Northeastern University, Boston, Massachusetts; Department of Brain and Cognitive Science, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Treves IN, Kucyi A, Park M, Kral TRA, Goldberg SB, Davidson RJ, Rosenkranz M, Whitfield‐Gabrieli S, Gabrieli JDE. Connectome-Based Predictive Modeling of Trait Mindfulness. Hum Brain Mapp 2025; 46:e70123. [PMID: 39780500 PMCID: PMC11711207 DOI: 10.1002/hbm.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Trait mindfulness refers to one's disposition or tendency to pay attention to their experiences in the present moment, in a non-judgmental and accepting way. Trait mindfulness has been robustly associated with positive mental health outcomes, but its neural underpinnings are poorly understood. Prior resting-state fMRI studies have associated trait mindfulness with within- and between-network connectivity of the default-mode (DMN), fronto-parietal (FPN), and salience networks. However, it is unclear how generalizable the findings are, how they relate to different components of trait mindfulness, and how other networks and brain areas may be involved. To address these gaps, we conducted the largest resting-state fMRI study of trait mindfulness to-date, consisting of a pre-registered connectome-based predictive modeling analysis in 367 meditation-naïve adults across three samples collected at different sites. In the model-training dataset, we did not find connections that predicted overall trait mindfulness, but we identified neural models of two mindfulness subscales, Acting with Awareness and Non-judging. Models included both positive networks (sets of pairwise connections that positively predicted mindfulness with increasing connectivity) and negative networks, which showed the inverse relationship. The Acting with Awareness and Non-judging positive network models showed distinct network representations involving FPN and DMN, respectively. The negative network models, which overlapped significantly across subscales, involved connections across the whole brain with prominent involvement of somatomotor, visual and DMN networks. Only the negative networks generalized to predict subscale scores out-of-sample, and not across both test datasets. Predictions from both models were also negatively correlated with predictions from a well-established mind-wandering connectome model. We present preliminary neural evidence for a generalizable connectivity models of trait mindfulness based on specific affective and cognitive facets. However, the incomplete generalization of the models across all sites and scanners, limited stability of the models, as well as the substantial overlap between the models, underscores the difficulty of finding robust brain markers of mindfulness facets.
Collapse
Affiliation(s)
- Isaac N. Treves
- McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Aaron Kucyi
- Department of Psychological & Brain SciencesDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Madelynn Park
- McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Tammi R. A. Kral
- Center for Healthy MindsUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Simon B. Goldberg
- Center for Healthy MindsUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of Counseling PsychologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Richard J. Davidson
- Center for Healthy MindsUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of PsychologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Melissa Rosenkranz
- Center for Healthy MindsUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Department of PsychiatryUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Susan Whitfield‐Gabrieli
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Precision Psychiatry, Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - John D. E. Gabrieli
- McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
3
|
Chuah JSM, Manahan AMA, Chan SY, Ngoh ZM, Huang P, Tan AP. Subregion-specific thalamocortical functional connectivity, executive function, and social behavior in children with autism spectrum disorders. Autism Res 2025; 18:70-82. [PMID: 39635773 DOI: 10.1002/aur.3280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
The thalamus has extensive cortical connections and is an integrative hub for cognitive functions governing social behavior. This study examined (1) associations between thalamocortical resting-state functional connectivity (RSFC) and social behavior in children and (2) how various executive function (EF) subdomains mediate the association between thalamocortical RSFC and social behavior. Children from the autism brain imaging data exchange (ABIDE) initiative with neuroimaging, behavioral, and demographic data were included in our study (age < 14, ASD; n = 207, typically developing; n = 259). Thalamocortical RSFC was examined for associations with social communication and interaction (SCI) scores (SRS; social responsiveness scale) using Spearman's rank-order correlation, first in ASD children and then in typically developing children. This was followed by a more granular analysis at the thalamic subregion level. We then examined the mediating roles of eight EF subdomains in ASD children (n = 139). Right thalamus-default mode network (DMN) RSFC was significantly associated with SCI scores in ASD children (ρ = 0.23, pFDR = 0.012), primarily driven by the medial (ρ = 0.22, pFDR = 0.013), ventral (ρ = 0.17, pFDR = 0.036), and intralaminar (ρ = 0.17, pFDR = 0.036) thalamic subregions. Cognitive flexibility (ACME = 0.13, punc = 0.016) and emotional control (ACME = 0.08, punc = 0.020) significantly mediated the association between right thalamus-DMN RSFC and SCI scores. This study provided novel insights into the association between thalamocortical RSFC and social behavior in ASD children at the thalamic subregion level, providing higher levels of precision in brain-behavior mapping. Cognitive flexibility and emotion regulation were highlighted as potential targets to ameliorate the downstream effects of altered thalamocortical connectivity to improve social outcomes in ASD children.
Collapse
Affiliation(s)
- Jasmine Si Min Chuah
- Agency for Science, Technology and Research, Institute for Human Development and Potential (IHDP), Singapore, Singapore
| | - Aisleen M A Manahan
- Agency for Science, Technology and Research, Institute for Human Development and Potential (IHDP), Singapore, Singapore
| | - Shi Yu Chan
- Agency for Science, Technology and Research, Institute for Human Development and Potential (IHDP), Singapore, Singapore
| | - Zhen Ming Ngoh
- Agency for Science, Technology and Research, Institute for Human Development and Potential (IHDP), Singapore, Singapore
| | - Pei Huang
- Agency for Science, Technology and Research, Institute for Human Development and Potential (IHDP), Singapore, Singapore
| | - Ai Peng Tan
- Agency for Science, Technology and Research, Institute for Human Development and Potential (IHDP), Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Brain-Body Initiative Program, A*STAR Research Entities (ARES), Singapore, Singapore
- Department of Diagnostic Imaging, National University Health System, Singapore, Singapore
| |
Collapse
|
4
|
Treves IN, Kucyi A, Park M, Kral TRA, Goldberg SB, Davidson RJ, Rosenkranz M, Whitfield-Gabrieli S, Gabrieli JDE. Connectome predictive modeling of trait mindfulness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602725. [PMID: 39026870 PMCID: PMC11257611 DOI: 10.1101/2024.07.09.602725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Introduction Trait mindfulness refers to one's disposition or tendency to pay attention to their experiences in the present moment, in a non-judgmental and accepting way. Trait mindfulness has been robustly associated with positive mental health outcomes, but its neural underpinnings are poorly understood. Prior resting-state fMRI studies have associated trait mindfulness with within- and between-network connectivity of the default-mode (DMN), fronto-parietal (FPN), and salience networks. However, it is unclear how generalizable the findings are, how they relate to different components of trait mindfulness, and how other networks and brain areas may be involved. Methods To address these gaps, we conducted the largest resting-state fMRI study of trait mindfulness to-date, consisting of a pre-registered connectome predictive modeling analysis in 367 adults across three samples collected at different sites. Results In the model-training dataset, we did not find connections that predicted overall trait mindfulness, but we identified neural models of two mindfulness subscales, Acting with Awareness and Non-judging. Models included both positive networks (sets of pairwise connections that positively predicted mindfulness with increasing connectivity) and negative networks, which showed the inverse relationship. The Acting with Awareness and Non-judging positive network models showed distinct network representations involving FPN and DMN, respectively. The negative network models, which overlapped significantly across subscales, involved connections across the whole brain with prominent involvement of somatomotor, visual and DMN networks. Only the negative networks generalized to predict subscale scores out-of-sample, and not across both test datasets. Predictions from both models were also negatively correlated with predictions from a well-established mind-wandering connectome model. Conclusions We present preliminary neural evidence for a generalizable connectivity models of trait mindfulness based on specific affective and cognitive facets. However, the incomplete generalization of the models across all sites and scanners, limited stability of the models, as well as the substantial overlap between the models, underscores the difficulty of finding robust brain markers of mindfulness facets.
Collapse
Affiliation(s)
- Isaac N Treves
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
| | - Aaron Kucyi
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA
| | - Madelynn Park
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
| | - Tammi R A Kral
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI
| | - Simon B Goldberg
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI
- Department of Counseling Psychology, University of Wisconsin-Madison, Madison, WI
| | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI
- Department of Psychology, University of Wisconsin-Madison, Madison, WI
| | - Melissa Rosenkranz
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - John D E Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
5
|
Sim S, Maldonado IL, Castelnau P, Barantin L, El-Hage W, Andersson F, Cottier JP. Neural correlates of mindfulness meditation and hypnosis on magnetic resonance imaging: similarities and differences. A scoping review. J Neuroradiol 2024; 51:131-144. [PMID: 37981196 DOI: 10.1016/j.neurad.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Mindfulness meditation (MM) and hypnosis practices are gaining interest in mental health, but their physiological mechanisms remain poorly understood. This study aimed to synthesize the functional, morphometric and metabolic changes associated with each practice using magnetic resonance imaging (MRI), and to identify their similarities and differences. METHODS MRI studies investigating MM and hypnosis in mental health, specifically stress, anxiety, and depression, were systematically screened following PRISMA guidelines from four research databases (PubMed, Web of Science, Embase, PsycINFO) between 2010 and 2022. RESULTS In total, 97 references met the inclusion criteria (84 for MM and 13 for hypnosis). This review showed common and divergent points regarding the regions involved and associated brain connectivity during MM practice and hypnosis. The primary commonality between mindfulness and hypnosis was decreased default mode network intrinsic activity and increased central executive network - salience network connectivity. Increased connectivity between the default mode network and the salience network was observed in meditative practice and mindfulness predisposition, but not in hypnosis. CONCLUSIONS While MRI studies provide a better understanding of the neural basis of hypnosis and meditation, this review underscores the need for more rigorous studies.
Collapse
Affiliation(s)
- Sindy Sim
- CHRU de Tours, service de radiologie, Tours, France
| | | | - Pierre Castelnau
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Service de Neuropédiatrie et Handicaps, Hôpital Clocheville, CHRU, Tours, France; CUMIC, Collège Universitaire des Médecines Intégratives et Complémentaires, Nantes, France
| | | | - Wissam El-Hage
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; CHRU de Tours, Clinique Psychiatrique Universitaire, Tours, France
| | | | - Jean-Philippe Cottier
- CHRU de Tours, service de radiologie, Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; CUMIC, Collège Universitaire des Médecines Intégratives et Complémentaires, Nantes, France.
| |
Collapse
|
6
|
Xue S, Kong F, Song Y, Liu J. Neural correlates of social interaction anxiety and their relation to emotional intelligence: A resting-state fMRI study. Neurosci Lett 2024; 818:137475. [PMID: 37717816 DOI: 10.1016/j.neulet.2023.137475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/29/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Social interaction anxiety refers to a state of anxiety resulting from the prospect or presence of interpersonal evaluation in real or imagined social settings. Previous neuroimaging studies have revealed neural basis of social anxiety disorder. However, little is known about the neural correlates of individual differences in social interaction anxiety in nonclinical population. In the present study, we used resting-state functional magnetic resonance imaging to explore the relationship between individual's spontaneous neural activity and social interaction anxiety, and the role that emotional intelligence played in the relationship. To this end, the correlation between the regional fractional amplitude of low-frequency fluctuations (fALFF) of the brain and individuals' social interaction anxiety scores was examined. We found that social interaction anxiety was correlated with the fALFF in the insula, parahippocampal gyrus, bilateral superior temporal gyrus, and superior parietal lobule. Furthermore, we also found that emotional intelligence partially mediated the association between the fALFF in these regions and social interaction anxiety. Taken together, our study provided the first evidence for the spontaneous neural basis of social interaction anxiety in normal population, and highlighted the neural substrates through which emotional intelligence might play an important role in social interaction anxiety.
Collapse
Affiliation(s)
- Song Xue
- School of Psychology, Nanjing Normal University, Nanjing, China.
| | - Feng Kong
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Yiying Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jia Liu
- School of Psychology, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
Rodolico A, Cutrufelli P, Brondino N, Caponnetto P, Catania G, Concerto C, Fusar-Poli L, Mineo L, Sturiale S, Signorelli MS, Petralia A. Mental Pain Correlates with Mind Wandering, Self-Reflection, and Insight in Individuals with Psychotic Disorders: A Cross-Sectional Study. Brain Sci 2023; 13:1557. [PMID: 38002517 PMCID: PMC10670292 DOI: 10.3390/brainsci13111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Understanding the cognitive processes that contribute to mental pain in individuals with psychotic disorders is important for refining therapeutic strategies and improving patient outcomes. This study investigated the potential relationship between mental pain, mind wandering, and self-reflection and insight in individuals diagnosed with psychotic disorders. We included individuals diagnosed with a 'schizophrenia spectrum disorder' according to DSM-5 criteria. Patients in the study were between 18 and 65 years old, clinically stable, and able to provide informed consent. A total of 34 participants, comprising 25 males and 9 females with an average age of 41.5 years (SD 11.5) were evaluated. The Psychache Scale (PAS), the Mind Wandering Deliberate and Spontaneous Scale (MWDS), and the Self-Reflection and Insight Scale (SRIS) were administered. Statistical analyses involved Spearman's rho correlations, controlled for potential confounders with partial correlations, and mediation and moderation analyses to understand the indirect effects of MWDS and SRIS on PAS and their potential interplay. Key findings revealed direct correlations between PAS and MWDS and inverse correlations between PAS and SRIS. The mediation effects on the relationship between the predictors and PAS ranged from 9.22% to 49.8%. The largest statistically significant mediation effect was observed with the SRIS-I subscale, suggesting that the self-reflection and insight component may play a role in the impact of mind wandering on mental pain. No evidence was found to suggest that any of the variables could function as relationship moderators for PAS. The results underscore the likely benefits of interventions aimed at reducing mind wandering and enhancing self-reflection in psychotic patients (e.g., metacognitive therapy, mindfulness). Further research will be essential to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Alessandro Rodolico
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.R.); (P.C.); (P.C.); (L.F.-P.); (L.M.); (M.S.S.); (A.P.)
| | - Pierfelice Cutrufelli
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.R.); (P.C.); (P.C.); (L.F.-P.); (L.M.); (M.S.S.); (A.P.)
| | - Natascia Brondino
- Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy;
| | - Pasquale Caponnetto
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.R.); (P.C.); (P.C.); (L.F.-P.); (L.M.); (M.S.S.); (A.P.)
- Department of Educational Sciences, Section of Psychology, University of Catania, Via Teatro Greco 84, 95124 Catania, Italy
| | | | - Carmen Concerto
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.R.); (P.C.); (P.C.); (L.F.-P.); (L.M.); (M.S.S.); (A.P.)
| | - Laura Fusar-Poli
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.R.); (P.C.); (P.C.); (L.F.-P.); (L.M.); (M.S.S.); (A.P.)
- Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy;
| | - Ludovico Mineo
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.R.); (P.C.); (P.C.); (L.F.-P.); (L.M.); (M.S.S.); (A.P.)
| | - Serena Sturiale
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.R.); (P.C.); (P.C.); (L.F.-P.); (L.M.); (M.S.S.); (A.P.)
| | - Maria Salvina Signorelli
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.R.); (P.C.); (P.C.); (L.F.-P.); (L.M.); (M.S.S.); (A.P.)
| | - Antonino Petralia
- Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.R.); (P.C.); (P.C.); (L.F.-P.); (L.M.); (M.S.S.); (A.P.)
| |
Collapse
|
8
|
Weder BJ. Mindfulness in the focus of the neurosciences - The contribution of neuroimaging to the understanding of mindfulness. Front Behav Neurosci 2022; 16:928522. [PMID: 36325155 PMCID: PMC9622333 DOI: 10.3389/fnbeh.2022.928522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Mindfulness affects human levels of experience by facilitating the immediate and impartial perception of phenomena, including sensory stimulation, emotions, and thoughts. Mindfulness is now a focus of neuroimaging, since technical and methodological developments in magnetic resonance imaging have made it possible to observe subjects performing mindfulness tasks. OBJECTIVE We set out to describe the association between mental processes and characteristics of mindfulness, including their specific cerebral patterns, as shown in structural and functional neuroimaging studies. METHODS We searched the MEDLINE databank of references and abstracts on life sciences and biomedical topics via PubMed using the keywords: "mindfulness," "focused attention (FA)," "open monitoring (OM)," "mind wandering," "emotional regulation," "magnetic resonance imaging (MRI)" and "default mode network (DMN)." This review extracted phenomenological experiences across populations with varying degrees of mindfulness training and correlated these experiences with structural and functional neuroimaging patterns. Our goal was to describe how mindful behavior was processed by the constituents of the default mode network during specific tasks. RESULTS AND CONCLUSIONS Depending on the research paradigm employed to explore mindfulness, investigations of function that used fMRI exhibited distinct activation patterns and functional connectivities. Basic to mindfulness is a long-term process of learning to use meditation techniques. Meditators progress from voluntary control of emotions and subjective preferences to emotional regulation and impartial awareness of phenomena. As their ability to monitor perception and behavior, a metacognitive skill, improves, mindfulness increases self-specifying thoughts governed by the experiential phenomenological self and reduces self-relational thoughts of the narrative self. The degree of mindfulness (ratio of self-specifying to self-relational thoughts) may affect other mental processes, e.g., awareness, working memory, mind wandering and belief formation. Mindfulness prevents habituation and the constant assumptions associated with mindlessness. Self-specifying thinking during mindfulness and self-relational thinking in the narrative self relies on the default mode network. The main constituents of this network are the dorsal and medial prefrontal cortex, and posterior cingulate cortex. These midline structures are antagonistic to self-specifying and self-relational processes, since the predominant process determines their differential involvement. Functional and brain volume changes indicate brain plasticity, mediated by mental training over the long-term.
Collapse
Affiliation(s)
- Bruno J. Weder
- Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Sharma B, Obeid J, DeMatteo C, Noseworthy MD, Timmons BW. Exploring the relationship between resting state intra-network connectivity and accelerometer-measured physical activity in pediatric concussion: A cohort study. Appl Physiol Nutr Metab 2022; 47:1014-1022. [PMID: 35858484 DOI: 10.1139/apnm-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to explore the association between resting state functional connectivity and accelerometer-measured physical activity in pediatric concussion. Fourteen children with concussion (aged 14.54 ± 2.39 years, 8 female) were included in this secondary data analysis of a larger study. Participants had neuroimaging at 15.3 ± 6.7 days post-injury and subsequently a mean of 11.1 ± 5.0 days of accelerometer data. Intra-network connectivity of the default mode network (DMN), sensorimotor network (SMN), salience network (SN), and fronto-parietal network (FPN) was computed using resting state functional MRI. We found that per general linear models, only intra-network connectivity of the DMN was associated with physical activity levels. More specifically, increased intra-network connectivity of the DMN was significantly associated with higher levels of subsequent accelerometer-measured light physical activity (F(2, 11) = 7.053, p = 0.011, Ra2 = 0.562; β = 0.469), moderate physical activity (F(2, 11) = 7.053, p = 0.011, Ra2 = 0.562; β = 0.725), and vigorous physical activity (F(2, 11) = 10.855, p = 0.002, Ra2 = 0.664; β = 0.79). Intra-network connectivity of the DMN did not significantly predict sedentary time. Therefore, these preliminary findings suggest that there is a positive association between the intra-network connectivity of the DMN and device-measured physical activity in children with concussion.
Collapse
Affiliation(s)
- Bhanu Sharma
- McMaster University, 3710, Department of Pediatrics, Hamilton, Canada;
| | - Joyce Obeid
- McMaster University, Kinesiology, Hamilton, Ontario, Canada;
| | | | - Michael D Noseworthy
- McMaster University, Electrical and Computer Engineering, Hamilton, Ontario, Canada;
| | | |
Collapse
|
10
|
Abdul Rahman MR, Abd Hamid AI, Noh NA, Omar H, Chai WJ, Idris Z, Ahmad AH, Fitzrol DN, Ab. Ghani ARIG, Wan Mohamad WNA, Mohamed Mustafar MF, Hanafi MH, Reza MF, Umar H, Mohd Zulkifly MF, Ang SY, Zakaria Z, Musa KI, Othman A, Embong Z, Sapiai NA, Kandasamy R, Ibrahim H, Abdullah MZ, Amaruchkul K, Valdes-Sosa P, Luisa-Bringas M, Biswal B, Songsiri J, Yaacob HS, Sumari P, Jamir Singh PS, Azman A, Abdullah JM. Alteration in the Functional Organization of the Default Mode Network Following Closed Non-severe Traumatic Brain Injury. Front Neurosci 2022; 16:833320. [PMID: 35418832 PMCID: PMC8995774 DOI: 10.3389/fnins.2022.833320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
The debilitating effect of traumatic brain injury (TBI) extends years after the initial injury and hampers the recovery process and quality of life. In this study, we explore the functional reorganization of the default mode network (DMN) of those affected with non-severe TBI. Traumatic brain injury (TBI) is a wide-spectrum disease that has heterogeneous effects on its victims and impacts everyday functioning. The functional disruption of the default mode network (DMN) after TBI has been established, but its link to causal effective connectivity remains to be explored. This study investigated the differences in the DMN between healthy participants and mild and moderate TBI, in terms of functional and effective connectivity using resting-state functional magnetic resonance imaging (fMRI). Nineteen non-severe TBI (mean age 30.84 ± 14.56) and twenty-two healthy (HC; mean age 27.23 ± 6.32) participants were recruited for this study. Resting-state fMRI data were obtained at the subacute phase (mean days 40.63 ± 10.14) and analyzed for functional activation and connectivity, independent component analysis, and effective connectivity within and between the DMN. Neuropsychological tests were also performed to assess the cognitive and memory domains. Compared to the HC, the TBI group exhibited lower activation in the thalamus, as well as significant functional hypoconnectivity between DMN and LN. Within the DMN nodes, decreased activations were detected in the left inferior parietal lobule, precuneus, and right superior frontal gyrus. Altered effective connectivities were also observed in the TBI group and were linked to the diminished activation in the left parietal region and precuneus. With regard to intra-DMN connectivity within the TBI group, positive correlations were found in verbal and visual memory with the language network, while a negative correlation was found in the cognitive domain with the visual network. Our results suggested that aberrant activities and functional connectivities within the DMN and with other RSNs were accompanied by the altered effective connectivities in the TBI group. These alterations were associated with impaired cognitive and memory domains in the TBI group, in particular within the language domain. These findings may provide insight for future TBI observational and interventional research.
Collapse
Affiliation(s)
- Muhammad Riddha Abdul Rahman
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- School of Medical Imaging, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Aini Ismafairus Abd Hamid
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nor Azila Noh
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Hazim Omar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wen Jia Chai
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Asma Hayati Ahmad
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Diana Noma Fitzrol
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Ab. Rahman Izaini Ghani Ab. Ghani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wan Nor Azlen Wan Mohamad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohamed Faiz Mohamed Mustafar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Muhammad Hafiz Hanafi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohamed Faruque Reza
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hafidah Umar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Mohd Faizal Mohd Zulkifly
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Song Yee Ang
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zaitun Zakaria
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Kamarul Imran Musa
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Azizah Othman
- Department of Paediatrics, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Zunaina Embong
- Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nur Asma Sapiai
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | | | - Haidi Ibrahim
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Mohd Zaid Abdullah
- School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Kannapha Amaruchkul
- Graduate School of Applied Statistics, National Institute of Development Administration (NIDA), Bangkok, Thailand
| | - Pedro Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- The Cuban Neurosciences Center, Havana, Cuba
| | - Maria Luisa-Bringas
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- The Cuban Neurosciences Center, Havana, Cuba
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Jitkomut Songsiri
- EE410 Control Systems Laboratory, Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Hamwira Sakti Yaacob
- Department of Computer Science, Kulliyah of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Putra Sumari
- School of Computer Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| | | | - Azlinda Azman
- School of Social Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Brain and Behavior Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
11
|
Li J, Curley WH, Guerin B, Dougherty DD, Dalca AV, Fischl B, Horn A, Edlow BL. Mapping the subcortical connectivity of the human default mode network. Neuroimage 2021; 245:118758. [PMID: 34838949 PMCID: PMC8945548 DOI: 10.1016/j.neuroimage.2021.118758] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 01/17/2023] Open
Abstract
The default mode network (DMN) mediates self-awareness and introspection, core components of human consciousness. Therapies to restore consciousness in patients with severe brain injuries have historically targeted subcortical sites in the brainstem, thalamus, hypothalamus, basal forebrain, and basal ganglia, with the goal of reactivating cortical DMN nodes. However, the subcortical connectivity of the DMN has not been fully mapped, and optimal subcortical targets for therapeutic neuromodulation of consciousness have not been identified. In this work, we created a comprehensive map of DMN subcortical connectivity by combining high-resolution functional and structural datasets with advanced signal processing methods. We analyzed 7 Tesla resting-state functional MRI (rs-fMRI) data from 168 healthy volunteers acquired in the Human Connectome Project. The rs-fMRI blood-oxygen-level-dependent (BOLD) data were temporally synchronized across subjects using the BrainSync algorithm. Cortical and subcortical DMN nodes were jointly analyzed and identified at the group level by applying a novel Nadam-Accelerated SCAlable and Robust (NASCAR) tensor decomposition method to the synchronized dataset. The subcortical connectivity map was then overlaid on a 7 Tesla 100 µm ex vivo MRI dataset for neuroanatomic analysis using automated segmentation of nuclei within the brainstem, thalamus, hypothalamus, basal forebrain, and basal ganglia. We further compared the NASCAR subcortical connectivity map with its counterpart generated from canonical seed-based correlation analyses. The NASCAR method revealed that BOLD signal in the central lateral nucleus of the thalamus and ventral tegmental area of the midbrain is strongly correlated with that of the DMN. In an exploratory analysis, additional subcortical sites in the median and dorsal raphe, lateral hypothalamus, and caudate nuclei were correlated with the cortical DMN. We also found that the putamen and globus pallidus are negatively correlated (i.e., anti-correlated) with the DMN, providing rs-fMRI evidence for the mesocircuit hypothesis of human consciousness, whereby a striatopallidal feedback system modulates anterior forebrain function via disinhibition of the central thalamus. Seed-based analyses yielded similar subcortical DMN connectivity, but the NASCAR result showed stronger contrast and better spatial alignment with dopamine immunostaining data. The DMN subcortical connectivity map identified here advances understanding of the subcortical regions that contribute to human consciousness and can be used to inform the selection of therapeutic targets in clinical trials for patients with disorders of consciousness.
Collapse
Affiliation(s)
- Jian Li
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - William H Curley
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Darin D Dougherty
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Adrian V Dalca
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andreas Horn
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Movement Disorders & Neuromodulation Section, Department of Neurology, Charité - Universitätsmedizin, Berlin, Germany
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
12
|
Won J, Callow DD, Pena GS, Gogniat MA, Kommula Y, Arnold-Nedimala NA, Jordan LS, Smith JC. Evidence for exercise-related plasticity in functional and structural neural network connectivity. Neurosci Biobehav Rev 2021; 131:923-940. [PMID: 34655658 PMCID: PMC8642315 DOI: 10.1016/j.neubiorev.2021.10.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/10/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
The number of studies investigating exercise and cardiorespiratory fitness (CRF)-related changes in the functional and structural organization of brain networks continues to rise. Functional and structural connectivity are critical biomarkers for brain health and many exercise-related benefits on the brain are better represented by network dynamics. Here, we reviewed the neuroimaging literature to better understand how exercise or CRF may facilitate and maintain the efficiency and integrity of functional and structural aspects of brain networks in both younger and older adults. Converging evidence suggests that increased exercise performance and CRF modulate functional connectivity of the brain in a way that corresponds to behavioral changes such as cognitive and motor performance improvements. Similarly, greater physical activity levels and CRF are associated with better cognitive and motor function, which may be brought about by enhanced structural network integrity. This review will provide a comprehensive understanding of trends in exercise-network studies as well as future directions based on the gaps in knowledge that are currently present in the literature.
Collapse
Affiliation(s)
- Junyeon Won
- Department of Kinesiology, University of Maryland, College Park, MD, United States
| | - Daniel D Callow
- Department of Kinesiology, University of Maryland, College Park, MD, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD, United States
| | - Marissa A Gogniat
- Department of Psychology, University of Georgia, Athens, GA, United States
| | - Yash Kommula
- Department of Kinesiology, University of Maryland, College Park, MD, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | | | - Leslie S Jordan
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, United States; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States.
| |
Collapse
|
13
|
Konjedi S, Maleeh R. The dynamic framework of mind wandering revisited: How mindful meta-awareness affects mental states' constraints. Conscious Cogn 2021; 95:103194. [PMID: 34419729 DOI: 10.1016/j.concog.2021.103194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
The dynamic framework of mind wandering (Christoff, Irving, Fox, Spreng, & Andrews-Hanna, 2016) is reviewed and modified through integrating the construct of mindful meta-awareness. The dynamic framework maintains that mind wandering belongs to a family of spontaneous thought phenomena. The key defining feature of mind wandering is 'spontaneity' which characterizes the dynamic nature of thoughts in the framework. The argument is made that incorporating the mindful meta-awareness construct modifies the dynamic framework as follows: (1) the framework's criteria for mind wandering do not hold anymore as meta-awareness changes the relationship between thoughts and constraints, and (2) lucid dreaming can be categorized as unguided thought while at the same time being dependent on deliberate constraints. Finally, the application of this modified framework will be discussed in terms of the treatment of mental disorders related to spontaneous thought alterations, in particular depression and nightmares.
Collapse
Affiliation(s)
| | - Reza Maleeh
- Institute of Cognitive Science, University of Osnabrück, 49069 Osnabrück, Germany; School of Historical and Philosophical Inquiry, The University of Queensland, Brisbane, St Lucia, QLD 4072, Australia.
| |
Collapse
|
14
|
Sweeney-Reed CM, Buentjen L, Voges J, Schmitt FC, Zaehle T, Kam JWY, Kaufmann J, Heinze HJ, Hinrichs H, Knight RT, Rugg MD. The role of the anterior nuclei of the thalamus in human memory processing. Neurosci Biobehav Rev 2021; 126:146-158. [PMID: 33737103 DOI: 10.1016/j.neubiorev.2021.02.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Extensive neuroanatomical connectivity between the anterior thalamic nuclei (ATN) and hippocampus and neocortex renders them well-placed for a role in memory processing, and animal, lesion, and neuroimaging studies support such a notion. The deep location and small size of the ATN have precluded their real-time electrophysiological investigation during human memory processing. However, ATN electrophysiological recordings from patients receiving electrodes implanted for deep brain stimulation for pharmacoresistant focal epilepsy have enabled high temporal resolution study of ATN activity. Theta frequency synchronization of ATN and neocortical oscillations during successful memory encoding, enhanced phase alignment, and coupling between ATN local gamma frequency activity and frontal neocortical and ATN theta oscillations provide evidence of an active role for the ATN in memory encoding, potentially integrating information from widespread neocortical sources. Greater coupling of a broader gamma frequency range with theta oscillations at rest than during memory encoding provides additional support for the hypothesis that the ATN play a role in selecting local, task-relevant high frequency activity associated with particular features of a memory trace.
Collapse
Affiliation(s)
- Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Dept. of Neurology, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.
| | - Lars Buentjen
- Dept. of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Jürgen Voges
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Tino Zaehle
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Julia W Y Kam
- Department of Psychology, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, CA, USA
| | - Jörn Kaufmann
- Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Hermann Hinrichs
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Neurology, Otto-von-Guericke University, Magdeburg, Germany; Dept. of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, CA, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA
| |
Collapse
|
15
|
White matter network disruption and cognitive correlates underlying impaired memory awareness in mild cognitive impairment. NEUROIMAGE-CLINICAL 2021; 30:102626. [PMID: 33780863 PMCID: PMC8039854 DOI: 10.1016/j.nicl.2021.102626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/03/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
Episodic memory deficits are insufficient for explaining memory anosognosia in MCI. Reasoning ability can be used as a basis for identifying memory anosognosia in MCI. Memory anosognosia in MCI is a white matter disconnection syndrome. Frontal-subcortical and callosal fibers are linked to memory anosognosia in MCI.
Decreased awareness of memory declines in mild cognitive impairment (MCI) has been linked to structural or functional changes in a wide gray matter network; however, the underlying white matter pathway correlations for the memory awareness deficits remain unknown. Moreover, consistent findings have not been obtained regarding the cognitive basis of disturbed awareness of memory declines in MCI. Due to the methodological drawbacks (e.g., correlational analysis without controlling confounders related to clinical status, a problem related to the representativeness of the control group) of previous studies on the aforementioned topic, further investigation is required. To addressed the research gaps, this study investigated white matter microstructural integrity and the cognitive correlates of memory awareness in 87 older adults with or without mild cognitive impairment (MCI). The patients with MCI and healthy controls (HCs) were divided into two subgroups, namely those with normal awareness (NA) and poor awareness (PA) for memory deficit, according to the discrepancy scores calculated from the differences between subjective and objective memory evaluations. Only the results for HCs with NA (HC-NA) were compared with those for the two MCI groups (i.e., MCI-NA and MCI-PA). The three groups were matched on demographic and clinical variables. An advanced diffusion imaging technique—diffusion spectrum imaging—was used to investigate the integrity of the white matter tract. The results revealed that although the HC-NA group outperformed the two MCI groups on several cognitive tests, the two MCI groups exhibited comparable performance across different neuropsychological tests, except for the test on reasoning ability. Compared with the other two groups, the MCI-PA group exhibited lower integrity in bilateral frontal-striatal fibers, left anterior thalamocortical radiations, and callosal fibers connecting bilateral inferior parietal regions. These results could not be explained by gray matter morphometric differences. Overall, the results indicated that mnemonic anosognosia was not sufficient to explain the memory awareness deficits observed in the patients with MCI. Our brain imaging findings also support the concept of anosognosia for memory deficit as a disconnection syndrome in MCI.
Collapse
|
16
|
Zhou L, Zhen Z, Liu J, Zhou K. Brain Structure and Functional Connectivity Associated with Individual Differences in the Attentional Blink. Cereb Cortex 2020; 30:6224-6237. [PMID: 32662504 DOI: 10.1093/cercor/bhaa180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 01/24/2023] Open
Abstract
The attentional blink (AB) has been central in characterizing the limit of temporal attention and consciousness. The neural mechanism of the AB is still in hot debate. With a large sample size, we combined multiple behavioral tests, multimodal MRI measures, and transcranial magnetic stimulation to investigate the neural basis underlying the individual differences in the AB. We found that AB magnitude correlated with the executive control functioning of working memory (WM) in behavior, which was fully mediated by T1 performance. Structural variations in the right temporoparietal junction (rTPJ) and its intrinsic functional connectivity with the left inferior frontal junction (lIFJ) accounted for the individual differences in the AB, which was moderated by the executive control of working memory. Disrupting the function of the lIFJ attenuated the AB deficit. Our findings clarified the neural correlates of the individual differences in the AB and elucidated its relationship with the consolidation-driven inhibitory control process.
Collapse
Affiliation(s)
- Liqin Zhou
- College of Psychology and Sociology, Shenzhen University, Shenzhen 518061, China.,Shenzhen Institute of Neuroscience, Shenzhen 518061, China.,Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing 100875, China
| | - Zonglei Zhen
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing 100875, China
| | - Jia Liu
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing 100875, China
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Wei Q, Bai T, Brown EC, Xie W, Chen Y, Ji G, Ramasubbu R, Tian Y, Wang K. Thalamocortical connectivity in electroconvulsive therapy for major depressive disorder. J Affect Disord 2020; 264:163-171. [PMID: 32056746 DOI: 10.1016/j.jad.2019.11.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/28/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) can lead to rapid and effective responses in major depressive disorder (MDD). However, the precise neural mechanisms of ECT for MDD are still unclear. Previous work has confirmed that thalamocortical circuits play an important role in emotion and cognition. However, the relationship between mechanisms of ECT for MDD and thalamocortical connectivity has not yet been investigated. METHOD Thalamocortical functional connectivity analysis was performed on resting-state functional magnetic resonance imaging (fMRI) data collected from 28 MDD patients both pre- and post-ECT treatment, as well as 20 healthy controls. The cortex was parceled into six regions of interest (ROIs), which were used as seeds to assess the functional connectivity between the cortex and each voxel in the thalamus. Then, functional connectivity between the identified thalamic subregions and the rest of the brain was quantified to better localize thalamocortical connectivity related to ECT. Structural connectivity among the functionally abnormal regions was also determined using probabilistic tractography from diffusion tensor imaging (DTI) data. RESULTS There was decreased parietal cortex-left pulvinar and left pulvinar-bilateral precuneus functional connectivity in post-ECT MDD patients, compared to pre-ECT MDD patients. Furthermore, functional connectivity strength of parietal cortex-left pulvinar and left pulvinar-bilateral precuneus was negative correlation with verbal fluency test scores in post-ECT MDD patients. No significant change was found in structural connectivity analysis. LIMITATIONS The sample size of our study was not large. CONCLUSION Our findings implicate that the specific abnormalities in thalamocortical circuit may be associated with cognitive impairment induced by ECT.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Tongjian Bai
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Elliot C Brown
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Neuroscience Research Center, Berlin Institute of Health, Berlin, Germany; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Wen Xie
- Anhui Mental Health Center, Hefei, China
| | - Yang Chen
- Anhui Mental Health Center, Hefei, China
| | - Gongjun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Rajamannar Ramasubbu
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Yanghua Tian
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
| |
Collapse
|
18
|
Li X, Zhuo C, Guo H, Du J, Wang H, Wang J, Li J, Zhao W, Li Y, Sun C, Zhang J, Yang Q, Xu Y. Mechanism differences between typical yin and typical yang personality individuals assessed by Five-Pattern Personality Inventory (FPPI): Evidence from resting-state brain functional networks. Neurosci Lett 2020; 718:134745. [PMID: 31923521 DOI: 10.1016/j.neulet.2020.134745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Most studies assessing brain-personality mechanisms have used Western personality questionnaires. However, Western personality questionnaires may not objectively reflect the personality characteristics of individuals in Eastern cultures such as China. Hence, we adopted the functional magnetic resonance imaging (fMRI) and the Chinese localized scale, FPPI, to explore the brain mechanisms differences of typical yin and typical yang personalities of individuals in China. METHODS 30 typical yin personality participants (TYI) and 34 typical yang personality participants (TYA) were enrolled according to the FPPI. The group differences of the functional brain networks among 90 specific brain regions were mapped using fMRI data and then analyzed by the conventional network metrics (CNM) and frequency subgraph mining (FSM). RESULTS The CNM and FSM differences between two typical personality groups were traced to the frontal, temporal, and parietal cortices. The yin group, reflecting the rich emotions and feelings of individuals, showed higher betweenness centrality (BCi) and nodal efficiency (Ei) values in putamen and middle frontal gyrus. The yang group, reflecting active behaviors and tendency to adapting to the changing surroundings, showed higher BCi and Ei values in precuneus, posterior cingulate gyrus, and inferior parietal lobule, brain areas in the default mode network (DMN). CONCLUSION These results supplied evidence for the neurobiological differences between typical yin and typical yang personality participants based on Chinese culture. These results also provide a new perspective to help researchers understand brain mechanism differences between yin and yang personality groups in the Chinese culture.
Collapse
Affiliation(s)
- Xiaozhen Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chuanjun Zhuo
- Department of Psychiatry and Morbidity, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China; Department of Psychiatry, Tianjin Medical University, Tianjin, China
| | - Hao Guo
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jian Du
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junjie Wang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Wentao Zhao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yao Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Chao Sun
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jingfang Zhang
- Department of Humanities and Social Science, Shanxi Medical University, Taiyuan, China
| | - Qiuli Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; Department of Humanities and Social Science, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
19
|
Xiao Q, Zhao X, Bi G, Wu L, Zhang H, Liu R, Zhong J, Wu S, Zeng Y, Cui L, Chen Y, Wu K, Chen Z. Alterations of Regional Homogeneity and Functional Connectivity Following Short-Term Mindfulness Meditation in Healthy Volunteers. Front Hum Neurosci 2019; 13:376. [PMID: 31680921 PMCID: PMC6813410 DOI: 10.3389/fnhum.2019.00376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/03/2019] [Indexed: 01/22/2023] Open
Abstract
Mindfulness is described as the non-judgmental awareness of experiences in the present moment. The sustained practice of mindfulness may also have beneficial effects on an individual's well-being. For instance, mindfulness meditation is an effective approach for improving emotion regulation. Specifically, the early stage of mindfulness meditation training enhances emotional monitoring systems related to attention regulation and executive function. Reduced activity in the default mode network (DMN) would probably be observed corresponding to the attenuated mind wandering. In the present study, we hypothesized that alterations in functional activity in the frontal-parietal cortex and DMN may be induced by short-term mindfulness meditation. In this study, before and after 8 weeks of weekly Mindfulness-Based Stress Reduction (MBSR) training, healthy participants were evaluated using a mindfulness questionnaire and an affect schedule, as well as via resting-state functional magnetic resonance imaging. Sixteen right-handed non-meditators were enrolled. Another 16 demographically matched healthy adults without any meditation experience were recruited as controls. Pre- and post-MBSR assessments were compared. Increased regional homogeneity in the right superior parietal lobule and left postcentral gyrus (PoCG), as well as altered functional connectivity in PoCG-related networks, were observed post-MBSR. The mindfulness questionnaire scores also improved and negative affect was significantly decreased after MBSR. Together with reduced involvement of the posterior brain, our results suggest a tendency toward stronger involvement of the parietal cortex in mindfulness beginners. This study provides novel evidence regarding the optimization of emotional processing with short-term mindfulness meditation.
Collapse
Affiliation(s)
- Qin Xiao
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Xingrong Zhao
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guoli Bi
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- Department of Magnetic Resonance Image, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Lisha Wu
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Hongjiang Zhang
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- Department of Magnetic Resonance Image, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Ruixiang Liu
- Department of Clinical Psychology, The Second People’s Hospital of Yunnan Province, Kunming, China
| | - Jingmei Zhong
- Department of Clinical Psychology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Shaoyuan Wu
- Department of Clinical Psychology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yong Zeng
- Department of Clinical Psychology, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Liqian Cui
- Department of Clinical Psychology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanmei Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Kunhua Wu
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- Department of Magnetic Resonance Image, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Zhuangfei Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- Department of Clinical Psychology, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
20
|
Hemmings HC, Riegelhaupt PM, Kelz MB, Solt K, Eckenhoff RG, Orser BA, Goldstein PA. Towards a Comprehensive Understanding of Anesthetic Mechanisms of Action: A Decade of Discovery. Trends Pharmacol Sci 2019; 40:464-481. [PMID: 31147199 DOI: 10.1016/j.tips.2019.05.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Significant progress has been made in the 21st century towards a comprehensive understanding of the mechanisms of action of general anesthetics, coincident with progress in structural biology and molecular, cellular, and systems neuroscience. This review summarizes important new findings that include target identification through structural determination of anesthetic binding sites, details of receptors and ion channels involved in neurotransmission, and the critical roles of neuronal networks in anesthetic effects on memory and consciousness. These recent developments provide a comprehensive basis for conceptualizing pharmacological control of amnesia, unconsciousness, and immobility.
Collapse
Affiliation(s)
- Hugh C Hemmings
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Departments of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Paul M Riegelhaupt
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 305 John Morgan, Philadelphia, PA 19104, USA
| | - Ken Solt
- Department of Anaesthesia, Harvard Medical School, GRB 444, 55 Fruit St., Boston, MA 02114, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Roderic G Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, 305 John Morgan, Philadelphia, PA 19104, USA
| | - Beverley A Orser
- Departments of Anesthesia and Physiology, Room 3318 Medical Sciences Building, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter A Goldstein
- Departments of Anesthesiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Departments of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
21
|
Iraji A, Deramus TP, Lewis N, Yaesoubi M, Stephen JM, Erhardt E, Belger A, Ford JM, McEwen S, Mathalon DH, Mueller BA, Pearlson GD, Potkin SG, Preda A, Turner JA, Vaidya JG, van Erp TGM, Calhoun VD. The spatial chronnectome reveals a dynamic interplay between functional segregation and integration. Hum Brain Mapp 2019; 40:3058-3077. [PMID: 30884018 DOI: 10.1002/hbm.24580] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
The brain is highly dynamic, reorganizing its activity at different interacting spatial and temporal scales, including variation within and between brain networks. The chronnectome is a model of the brain in which nodal activity and connectivity patterns change in fundamental and recurring ways over time. Most literature assumes fixed spatial nodes/networks, ignoring the possibility that spatial nodes/networks may vary in time. Here, we introduce an approach to calculate a spatially fluid chronnectome (called the spatial chronnectome for clarity), which focuses on the variations of networks coupling at the voxel level, and identify a novel set of spatially dynamic features. Results reveal transient spatially fluid interactions between intra- and internetwork relationships in which brain networks transiently merge and separate, emphasizing dynamic segregation and integration. Brain networks also exhibit distinct spatial patterns with unique temporal characteristics, potentially explaining a broad spectrum of inconsistencies in previous studies that assumed static networks. Moreover, we show anticorrelative connections to brain networks are transient as opposed to constant across the entire scan. Preliminary assessments using a multi-site dataset reveal the ability of the approach to obtain new information and nuanced alterations that remain undetected during static analysis. Patients with schizophrenia (SZ) display transient decreases in voxel-wise network coupling within visual and auditory networks, and higher intradomain coupling variability. In summary, the spatial chronnectome represents a new direction of research enabling the study of functional networks which are transient at the voxel level, and the identification of mechanisms for within- and between-subject spatial variability.
Collapse
Affiliation(s)
- Armin Iraji
- The Mind Research Network, Albuquerque, New Mexico
| | | | - Noah Lewis
- The Mind Research Network, Albuquerque, New Mexico
| | | | | | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico
| | - Aysneil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Judith M Ford
- Department of Psychiatry, University of California San Francisco, San Francisco, California.,Psychiatry Service, San Francisco VA Medical Center, San Francisco, California
| | - Sarah McEwen
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, California.,Psychiatry Service, San Francisco VA Medical Center, San Francisco, California
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California
| | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Jatin G Vaidya
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico.,Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
22
|
Iraji A, Fu Z, Damaraju E, DeRamus TP, Lewis N, Bustillo JR, Lenroot RK, Belger A, Ford JM, McEwen S, Mathalon DH, Mueller BA, Pearlson GD, Potkin SG, Preda A, Turner JA, Vaidya JG, van Erp TGM, Calhoun VD. Spatial dynamics within and between brain functional domains: A hierarchical approach to study time-varying brain function. Hum Brain Mapp 2018; 40:1969-1986. [PMID: 30588687 DOI: 10.1002/hbm.24505] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
The analysis of time-varying activity and connectivity patterns (i.e., the chronnectome) using resting-state magnetic resonance imaging has become an important part of ongoing neuroscience discussions. The majority of previous work has focused on variations of temporal coupling among fixed spatial nodes or transition of the dominant activity/connectivity pattern over time. Here, we introduce an approach to capture spatial dynamics within functional domains (FDs), as well as temporal dynamics within and between FDs. The approach models the brain as a hierarchical functional architecture with different levels of granularity, where lower levels have higher functional homogeneity and less dynamic behavior and higher levels have less homogeneity and more dynamic behavior. First, a high-order spatial independent component analysis is used to approximate functional units. A functional unit is a pattern of regions with very similar functional activity over time. Next, functional units are used to construct FDs. Finally, functional modules (FMs) are calculated from FDs, providing an overall view of brain dynamics. Results highlight the spatial fluidity within FDs, including a broad spectrum of changes in regional associations, from strong coupling to complete decoupling. Moreover, FMs capture the dynamic interplay between FDs. Patients with schizophrenia show transient reductions in functional activity and state connectivity across several FDs, particularly the subcortical domain. Activity and connectivity differences convey unique information in many cases (e.g., the default mode) highlighting their complementarity information. The proposed hierarchical model to capture FD spatiotemporal variations provides new insight into the macroscale chronnectome and identifies changes hidden from existing approaches.
Collapse
Affiliation(s)
- Armin Iraji
- The Mind Research Network, Albuquerque, New Mexico
| | - Zening Fu
- The Mind Research Network, Albuquerque, New Mexico
| | | | | | - Noah Lewis
- The Mind Research Network, Albuquerque, New Mexico
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Rhoshel K Lenroot
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Aysneil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Judith M Ford
- Department of Psychiatry, University of California San Francisco, San Francisco, California.,Psychiatry Service, San Francisco VA Medical Center, San Francisco, California
| | - Sarah McEwen
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, California.,Psychiatry Service, San Francisco VA Medical Center, San Francisco, California
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neurobiology, Yale University, School of Medicine, New Haven, Connecticut
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California
| | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Jatin G Vaidya
- Department of Psychiatry, University of Iowa, Iowa, Iowa
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico.,Departments of Psychiatry and Neurobiology, Yale University, School of Medicine, New Haven, Connecticut.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
23
|
Sleep and mindfulness meditation as they relate to false memory. PSYCHOLOGICAL RESEARCH 2018; 84:1084-1111. [PMID: 30244286 DOI: 10.1007/s00426-018-1098-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022]
Abstract
By a systematic analysis of the current literature, we compare two states of sleep and meditation in terms of their role in the formation or suppression of Deese-Roediger-McDermott (DRM) false memory. We aim to suggest that the occurrence of false memory under these two states is a result of reinforcing some abilities and changes in cognitive systems which can ultimately improve some aspects of cognitive functions. In our analogy, we propose that: (1) both sleep and meditation may improve source monitoring ability whose failure is one of the most important mechanisms in producing false memories, and (2) despite improvement in source monitoring ability, adaptive cognitive processes, as mechanisms which are common in sleep and meditation, can still produce false memories. In conclusion, we propose that in spite of their contribution to false memory through adaptive processes, the beneficial role of sleep and meditation in cognition may be more prominent than their harmful role.
Collapse
|
24
|
Lim J, Teng J, Patanaik A, Tandi J, Massar SAA. Dynamic functional connectivity markers of objective trait mindfulness. Neuroimage 2018; 176:193-202. [PMID: 29709625 DOI: 10.1016/j.neuroimage.2018.04.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
While mindfulness is commonly viewed as a skill to be cultivated through practice, untrained individuals can also vary widely in dispositional mindfulness. Prior research has identified static neural connectivity correlates of this trait. Here, we use dynamic functional connectivity (DFC) analysis of resting-state fMRI to study time-varying connectivity patterns associated with naturally varying and objectively measured trait mindfulness. Participants were selected from the top and bottom tertiles of performers on a breath-counting task to form high trait mindfulness (HTM; N = 21) and low trait mindfulness (LTM; N = 18) groups. DFC analysis of resting state fMRI data revealed that the HTM group spent significantly more time in a brain state associated with task-readiness - a state characterized by high within-network connectivity and greater anti-correlations between task-positive networks and the default-mode network (DMN). The HTM group transitioned between brain states more frequently, but the dwell time in each episode of the task-ready state was equivalent between groups. These results persisted even after controlling for vigilance. Across individuals, certain connectivity metrics were weakly correlated with self-reported mindfulness as measured by the Five Facet Mindfulness Questionnaire, though these did not survive multiple comparisons correction. In the static connectivity maps, HTM individuals had greater within-network connectivity in the DMN and the salience network, and greater anti-correlations between the DMN and task-positive networks. In sum, DFC features robustly distinguish HTM and LTM individuals, and may be useful biological markers for the measurement of dispositional mindfulness.
Collapse
Affiliation(s)
- Julian Lim
- Center for Cognitive Neuroscience, Neurosciences and Behavioral Disorders Department, Duke-NUS Medical School, 169857, Singapore.
| | - James Teng
- Center for Cognitive Neuroscience, Neurosciences and Behavioral Disorders Department, Duke-NUS Medical School, 169857, Singapore
| | - Amiya Patanaik
- Center for Cognitive Neuroscience, Neurosciences and Behavioral Disorders Department, Duke-NUS Medical School, 169857, Singapore
| | - Jesisca Tandi
- Center for Cognitive Neuroscience, Neurosciences and Behavioral Disorders Department, Duke-NUS Medical School, 169857, Singapore
| | - Stijn A A Massar
- Center for Cognitive Neuroscience, Neurosciences and Behavioral Disorders Department, Duke-NUS Medical School, 169857, Singapore
| |
Collapse
|
25
|
Lee TW, Xue SW. Functional connectivity maps based on hippocampal and thalamic dynamics may account for the default-mode network. Eur J Neurosci 2018; 47:388-398. [PMID: 29359833 DOI: 10.1111/ejn.13828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/10/2017] [Accepted: 01/08/2018] [Indexed: 11/27/2022]
Abstract
The default-mode network (DMN) has been reported to comprise a set of inter-connected transmodal cortical areas, including the posterior cingulate cortex (PCC), medial prefrontal cortex, posterior inferior parietal lobule, lateral temporal region and others. However, the subcortical constituents of the DMN are still not clear. This study aimed to examine whether the correlation maps derived from subcortical structures may also account for neural pattern of the DMN. Structural magnetic resonance imaging (MRI) and resting-state functional MRI scans of 36 subjects were selected from the Rockland sample (Nathan Kline Institute). The hippocampus and thalamus were chosen as subcortical regions of interest (ROIs). Each ROI was partitioned into composite modules which in turn provided simplified and representative dynamics of blood-oxygen-level-dependent (BOLD) signals. PCC-seeded and ROI-based correlation maps were compared by conjunction analyses and paired t-tests (corrected P < 0.05). Our results unveiled that the hippocampus-, thalamus- and PCC-centred correlation patterns actually overlapped to a substantial degree. Integrating the signals in the thalamus and hippocampus altogether fully explained the PCC-seeded DMN. Supplementary analyses based on the BOLD dynamics in several subcortical nuclei (caudate, putamen and globus pallidus) were dissimilar to the DMN. The DMN derived from the ROI/seed-based approach may represent combined limbic and region-specific informatics (and their closely interacting neural substrates). The possible causes for previous methods of task-induced deactivation and seed-based correlation that failed to depict the holistic limbic picture are discussed. The neocortical manifestation of DMN may reflect the limbic information in the transmodal brain regions.
Collapse
Affiliation(s)
- Tien-Wen Lee
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Room 301, No. 19, Shuyuan Building, No. 2318, Yuhangtang Rd, Hangzhou 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Department of Psychiatry, Dajia Lee's General Hospital, Lee's Medical Corporation, Taichung, Taiwan
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Room 301, No. 19, Shuyuan Building, No. 2318, Yuhangtang Rd, Hangzhou 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
26
|
Laurent HK, Wright D, Finnegan M. Mindfulness-related differences in neural response to own infant negative versus positive emotion contexts. Dev Cogn Neurosci 2018; 30:70-76. [PMID: 29331659 PMCID: PMC6969079 DOI: 10.1016/j.dcn.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/04/2017] [Accepted: 01/04/2018] [Indexed: 02/05/2023] Open
Abstract
Mindfulness is thought to promote well-being by shaping the way people respond to challenging social-emotional situations. Current understanding of how this occurs at the neural level is based on studies of response to decontextualized emotion stimuli that may not adequately represent lived experiences. In this study, we tested relations between mothers' dispositional mindfulness and neural responses to their own infant in different emotion-eliciting contexts. Mothers (n = 25) engaged with their 3-month-old infants in videorecorded tasks designed to elicit negative (arm restraint) or positive (peekaboo) emotion. During a functional MRI session, mothers were presented with 15-s clips from these recordings, and dispositional mindfulness scores were used to predict their neural responses to arm restraint > peekaboo videos. Mothers higher in nonreactivity showed relatively lower activation to their infants’ arm restraint compared to peekaboo videos in hypothesized regions—insula and dorsal prefrontal cortex—as well as non-hypothesized regions. Other mindfulness dimensions were associated with more limited areas of lower (nonjudgment) and higher (describing) activation in this contrast. Mothers who were higher in mindfulness generally activated more to the positive emotion context and less to the negative emotion context in perceptual and emotion processing areas, a pattern that may help to explain mindfulness-related differences in well-being.
Collapse
Affiliation(s)
- Heidemarie K Laurent
- University of Oregon Dept. of Psychology, USA; University of Illinois Urbana-Champaign Dept. of Psychology, USA.
| | | | - Megan Finnegan
- University of Illinois Urbana-Champaign Dept. of Psychology, USA
| |
Collapse
|
27
|
Boyd JE, Lanius RA, McKinnon MC. Mindfulness-based treatments for posttraumatic stress disorder: a review of the treatment literature and neurobiological evidence. J Psychiatry Neurosci 2018; 43. [PMID: 29252162 PMCID: PMC5747539 DOI: 10.1503/jpn.170021] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mindfulness-based treatments for posttraumatic stress disorder (PTSD) have emerged as promising adjunctive or alternative intervention approaches. A scoping review of the literature on PTSD treatment studies, including approaches such as mindfulness-based stress reduction, mindfulness-based cognitive therapy and metta mindfulness, reveals low attrition with medium to large effect sizes. We review the convergence between neurobiological models of PTSD and neuroimaging findings in the mindfulness literature, where mindfulness interventions may target emotional under- and overmodulation, both of which are critical features of PTSD symptomatology. Recent emerging work indicates that mindfulness-based treatments may also be effective in restoring connectivity between large-scale brain networks among individuals with PTSD, including connectivity between the default mode network and the central executive and salience networks. Future directions, including further identification of the neurobiological mechanisms of mindfulness interventions in patients with PTSD and direct comparison of these interventions to first-line treatments for PTSD are discussed.
Collapse
Affiliation(s)
| | | | - Margaret C. McKinnon
- Correspondence to: M.C. McKinnon, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5 Street, Hamilton, ON, Canada;
| |
Collapse
|
28
|
Bilevicius E, Smith SD, Kornelsen J. Resting-State Network Functional Connectivity Patterns Associated with the Mindful Attention Awareness Scale. Brain Connect 2017; 8:40-48. [PMID: 29130326 DOI: 10.1089/brain.2017.0520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mindfulness refers to attending to moment-to-moment experiences with acceptance and no judgment. Several scales have been developed to quantify different components of mindfulness. The Mindful Attention Awareness Scale (MAAS) is particularly sensitive to trait mindfulness and is proposed to measure the attentional component of mindfulness. The purpose of this study was to identify the neural correlates of the MAAS in four resting-state networks related to attention-the default mode network (DMN), the salience network (SN), and the left and right central executive network (CEN). Thirty-two university students naive to mindfulness completed the MAAS and later underwent a resting-state functional magnetic resonance imaging scan. Resting-state data were analyzed using an independent component analysis; the scores from the MAAS were covaried to the connectivity maps in an analysis of covariance. The results indicate that variations in MAAS scores correlated with variations in functional connectivity patterns in resting-state networks. Specifically, within the SN and CEN, the MAAS was negatively correlated with functional connectivity in the precuneus, even though the precuneus is a key component of the DMN. Negative correlations in the DMN between the MAAS and the insula and negative correlations in the SN between the MAAS and the posterior cingulate cortex were also observed. These results suggest that MAAS scores (1) are correlated with the functional connectivity of several brain structures related to attention and (2) involve cross-network functional connectivity.
Collapse
Affiliation(s)
- Elena Bilevicius
- 1 Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Canada .,2 St. Boniface Hospital Research , Winnipeg, Canada
| | - Stephen D Smith
- 3 Department of Psychology, University of Winnipeg , Winnipeg, Canada
| | - Jennifer Kornelsen
- 1 Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, Canada .,2 St. Boniface Hospital Research , Winnipeg, Canada .,3 Department of Psychology, University of Winnipeg , Winnipeg, Canada .,4 Department of Radiology, University of Manitoba , Winnipeg, Canada
| |
Collapse
|
29
|
Sweeney-Reed CM, Zaehle T, Voges J, Schmitt FC, Buentjen L, Borchardt V, Walter M, Hinrichs H, Heinze HJ, Rugg MD, Knight RT. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest. Front Hum Neurosci 2017; 11:358. [PMID: 28775684 PMCID: PMC5518534 DOI: 10.3389/fnhum.2017.00358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/22/2017] [Indexed: 12/15/2022] Open
Abstract
Cross-frequency coupling (CFC) between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC), is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN) during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz) phase and high frequency band (80–150 Hz) amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.
Collapse
Affiliation(s)
- Catherine M Sweeney-Reed
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Tino Zaehle
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Jürgen Voges
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Friedhelm C Schmitt
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Lars Buentjen
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany
| | - Viola Borchardt
- Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Martin Walter
- Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Psychiatry, Eberhard Karls UniversityTübingen, Germany
| | - Hermann Hinrichs
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Otto von Guericke UniversityMagdeburg, Germany
| | - Hans-Jochen Heinze
- Departments of Neurology and Stereotactic Neurosurgery, Otto von Guericke UniversityMagdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Otto von Guericke UniversityMagdeburg, Germany
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of TexasDallas, TX, United States
| | - Robert T Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
30
|
Hao X, Huang Y, Song Y, Kong X, Liu J. Experience with the Cardinal Coordinate System Contributes to the Precision of Cognitive Maps. Front Psychol 2017; 8:1166. [PMID: 28744248 PMCID: PMC5504278 DOI: 10.3389/fpsyg.2017.01166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/26/2017] [Indexed: 01/15/2023] Open
Abstract
The coordinate system has been proposed as a fundamental and cross-culturally used spatial representation, through which people code location and direction information in the environment. Here we provided direct evidence demonstrating that daily experience with the cardinal coordinate system (i.e., east, west, north, and south) contributed to the representation of cognitive maps. Behaviorally, we found that individuals who relied more on the cardinal coordinate system for daily navigation made smaller errors in an indoor pointing task, suggesting that the cardinal coordinate system is an important element of cognitive maps. Neurally, the extent to which individuals relied on the cardinal coordinate system was positively correlated with the gray matter volume of the entorhinal cortex, suggesting that the entorhinal cortex may serve as the neuroanatomical basis of coordinate-based navigation (the entorhinal coordinate area, ECA). Further analyses on the resting-state functional connectivity revealed that the intrinsic interaction between the ECA and two hippocampal sub-regions, the subiculum and cornu ammonis, might be linked with the representation precision of cognitive maps. In sum, our study reveals an association between daily experience with the cardinal coordinate system and cognitive maps, and suggests that the ECA works in collaboration with hippocampal sub-regions to represent cognitive maps.
Collapse
Affiliation(s)
- Xin Hao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Yi Huang
- Department of Psychology, Tsinghua UniversityBeijing, China
| | - Yiying Song
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Xiangzhen Kong
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Jia Liu
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal UniversityBeijing, China
| |
Collapse
|
31
|
Pievani M, Pini L, Ferrari C, Pizzini FB, Boscolo Galazzo I, Cobelli C, Cotelli M, Manenti R, Frisoni GB. Coordinate-Based Meta-Analysis of the Default Mode and Salience Network for Target Identification in Non-Invasive Brain Stimulation of Alzheimer’s Disease and Behavioral Variant Frontotemporal Dementia Networks. J Alzheimers Dis 2017; 57:825-843. [DOI: 10.3233/jad-161105] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michela Pievani
- Laboratory Alzheimer’s Neuroimaging and Epidemiology, IRCCS Centro San Giovanni di Dio – Fatebenefratelli, Brescia, Italy
| | - Lorenzo Pini
- Laboratory Alzheimer’s Neuroimaging and Epidemiology, IRCCS Centro San Giovanni di Dio – Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Clarissa Ferrari
- Statistics Service, IRCCS Centro San Giovanni di Dio – Fatebenefratelli, Brescia, Italy
| | - Francesca B. Pizzini
- Neuroradiology, Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy
| | | | - Chiara Cobelli
- Neuropsychology Unit, IRCCS Centro San Giovanni di Dio – Fatebenefratelli, Brescia, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Centro San Giovanni di Dio – Fatebenefratelli, Brescia, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Centro San Giovanni di Dio – Fatebenefratelli, Brescia, Italy
| | - Giovanni B. Frisoni
- Laboratory Alzheimer’s Neuroimaging and Epidemiology, IRCCS Centro San Giovanni di Dio – Fatebenefratelli, Brescia, Italy
- University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
A closer look at the relationship between the default network, mind wandering, negative mood, and depression. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 17:697-711. [DOI: 10.3758/s13415-017-0506-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Scheibner HJ, Bogler C, Gleich T, Haynes JD, Bermpohl F. Internal and external attention and the default mode network. Neuroimage 2017; 148:381-389. [DOI: 10.1016/j.neuroimage.2017.01.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/17/2016] [Accepted: 01/18/2017] [Indexed: 01/27/2023] Open
|
34
|
Gartenschläger M, Schreckenberger M, Buchholz HG, Reiner I, Beutel ME, Adler J, Michal M. Resting Brain Activity Related to Dispositional Mindfulness: a PET Study. Mindfulness (N Y) 2017; 8:1009-1017. [PMID: 28757902 PMCID: PMC5506209 DOI: 10.1007/s12671-017-0677-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mindfulness denotes a state of consciousness characterized by receptive attention to and awareness of present events and experiences. As a personality trait, it constitutes the ability to become aware of mental activities such as sensations, images, feelings, and thoughts, and to disengage from judgment, conditioned emotions, and their cognitive processing or automatic inhibition. Default brain activity reflects the stream of consciousness and sense of self at rest. Analysis of brain activity at rest in persons with mindfulness propensity may help to elucidate the neurophysiological basis of this important mental trait. The sample consisted of 32 persons-23 with mental disorders and 9 healthy controls. Dispositional mindfulness (DM) was operationalized by Mindful Attention Awareness Scale (MAAS). Brain activity at rest with eyes closed was assessed by fluorodeoxyglucose positron emission tomography (F-18-FDG PET). After adjustment for depression, anxiety, age and years of education, resting glucose metabolism in superior parietal lobule and left precuneus/Brodmann area (BA) 7 was positively associated with DM. Activity of the left inferior frontal orbital gyrus (BA 47) and bilateral anterior thalamus were inversely associated with DM. DM appears to be associated with increased metabolic activity in some core area of the default mode network (DMN) and areas connected to the DMN, such as BA 7, hosting sense of self functions. Hypometabolism on the other hand was found in some nodes connected to the DMN, such as left inferior frontal orbital gyrus and bilateral thalamus, commonly related to functions of memory retrieval, decision making, or outward attention.
Collapse
Affiliation(s)
- Martin Gartenschläger
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz, D-55131 Germany
| | - Mathias Schreckenberger
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz, D-55131 Germany
| | - Hans-Georg Buchholz
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, Mainz, D-55131 Germany
| | - Iris Reiner
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Manfred E. Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Julia Adler
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Michal
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
35
|
Coppola G, Di Renzo A, Tinelli E, Lepre C, Di Lorenzo C, Di Lorenzo G, Scapeccia M, Parisi V, Serrao M, Colonnese C, Schoenen J, Pierelli F. Thalamo-cortical network activity between migraine attacks: Insights from MRI-based microstructural and functional resting-state network correlation analysis. J Headache Pain 2016; 17:100. [PMID: 27778244 PMCID: PMC5078119 DOI: 10.1186/s10194-016-0693-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 10/18/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Resting state magnetic resonance imaging allows studying functionally interconnected brain networks. Here we were aimed to verify functional connectivity between brain networks at rest and its relationship with thalamic microstructure in migraine without aura (MO) patients between attacks. METHODS Eighteen patients with untreated MO underwent 3 T MRI scans and were compared to a group of 19 healthy volunteers (HV). We used MRI to collect resting state data among two selected resting state networks, identified using group independent component (IC) analysis. Fractional anisotropy (FA) and mean diffusivity (MD) values of bilateral thalami were retrieved from a previous diffusion tensor imaging study on the same subjects and correlated with resting state ICs Z-scores. RESULTS In comparison to HV, in MO we found significant reduced functional connectivity between the default mode network and the visuo-spatial system. Both HV and migraine patients selected ICs Z-scores correlated negatively with FA values of the thalamus bilaterally. CONCLUSIONS The present results are the first evidence supporting the hypothesis that an abnormal resting within networks connectivity associated with significant differences in baseline thalamic microstructure could contribute to interictal migraine pathophysiology.
Collapse
Affiliation(s)
- Gianluca Coppola
- Research Unit of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation-IRCCS, Via Livenza 3, 00198, Rome, Italy.
| | - Antonio Di Renzo
- Research Unit of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation-IRCCS, Via Livenza 3, 00198, Rome, Italy
| | - Emanuele Tinelli
- Department of Neurology and Psychiatry, Neuroradiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Chiara Lepre
- Department of Medico-Surgical Sciences and Biotechnologies, Neurology Section, "Sapienza" University of Rome, Rome, Italy
| | | | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology, Psychiatric Clinic, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Marco Scapeccia
- Department of Neurology and Psychiatry, Neuroradiology Section, "Sapienza" University of Rome, Rome, Italy
| | - Vincenzo Parisi
- Research Unit of Neurophysiology of Vision and Neurophthalmology, G.B. Bietti Foundation-IRCCS, Via Livenza 3, 00198, Rome, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome Polo Pontino, Latina, Italy
| | - Claudio Colonnese
- Department of Neurology and Psychiatry, Neuroradiology Section, "Sapienza" University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, (IS), Italy
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-CHR Citadelle, University of Liège, Liège, Belgium
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome Polo Pontino, Latina, Italy
- IRCCS Neuromed, Pozzilli, (IS), Italy
| |
Collapse
|
36
|
Hao X, Huang Y, Li X, Song Y, Kong X, Wang X, Yang Z, Zhen Z, Liu J. Structural and functional neural correlates of spatial navigation: a combined voxel-based morphometry and functional connectivity study. Brain Behav 2016; 6:e00572. [PMID: 28031996 PMCID: PMC5166998 DOI: 10.1002/brb3.572] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Navigation is a fundamental and multidimensional cognitive function that individuals rely on to move around the environment. In this study, we investigated the neural basis of human spatial navigation ability. METHODS A large cohort of participants (N > 200) was examined on their navigation ability behaviorally and structural and functional magnetic resonance imaging (MRI) were then used to explore the corresponding neural basis of spatial navigation. RESULTS The gray matter volume (GMV) of the bilateral parahippocampus (PHG), retrosplenial complex (RSC), entorhinal cortex (EC), hippocampus (HPC), and thalamus (THAL) was correlated with the participants' self-reported navigational ability in general, and their sense of direction in particular. Further fMRI studies showed that the PHG, RSC, and EC selectively responded to visually presented scenes, whereas the HPC and THAL showed no selectivity, suggesting a functional division of labor among these regions in spatial navigation. The resting-state functional connectivity analysis further revealed a hierarchical neural network for navigation constituted by these regions, which can be further categorized into three relatively independent components (i.e., scene recognition component, cognitive map component, and the component of heading direction for locomotion, respectively). CONCLUSIONS Our study combined multi-modality imaging data to illustrate that multiple brain regions may work collaboratively to extract, integrate, store, and orientate spatial information to guide navigation behaviors.
Collapse
Affiliation(s)
- Xin Hao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Yi Huang
- Department of Psychology Tsinghua University Beijing China
| | - Xueting Li
- Department of Psychology Renmin University of China Beijing China
| | - Yiying Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Xiangzhen Kong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Xu Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Zetian Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Zonglei Zhen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| | - Jia Liu
- Beijing Key Laboratory of Applied Experimental Psychology School of Psychology Beijing Normal University Beijing China
| |
Collapse
|
37
|
Kong F, Xue S, Wang X. Amplitude of low frequency fluctuations during resting state predicts social well-being. Biol Psychol 2016; 118:161-168. [PMID: 27263835 DOI: 10.1016/j.biopsycho.2016.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 05/10/2016] [Accepted: 05/27/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Feng Kong
- School of Psychology, Shaanxi Normal University, Xi'an, China.
| | - Song Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing, China
| | - Xu Wang
- Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
38
|
Hyper-connectivity of the thalamus during early stages following mild traumatic brain injury. Brain Imaging Behav 2016; 9:550-63. [PMID: 26153468 DOI: 10.1007/s11682-015-9424-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The thalamo-cortical resting state functional connectivity of seven sub-thalamic regions were examined in a prospectively recruited population of 77 acute mild TBI (mTBI) patients within the first 10 days (mean 6 ± 3 days) of injury and 35 neurologically intact control subjects using the Oxford thalamic connectivity atlas. Neuropsychological assessments were conducted using the Automated Neuropsychological Assessment Metrics (ANAM). A subset of participants received a magentic resonance spectroscopy (MRS) exam to determine metabolite concentrations in the thalamus and the posterior cingulate cortex. Results show that patients performed worse than the control group on various subtests of ANAM and the weighted throughput score, suggesting reduced cognitive performance at this early stage of injury. Both voxel and region of interest based analysis of the resting state fMRI data demonstrated that acute mTBI patients have increased functional connectivity between the various sub-thalamic regions and cortical regions associated with sensory processing and the default mode network (DMN). In addition, a significant reduction in NAA/Cr was observed in the thalamus in the mTBI patients. Furthermore, an increase in Cho/Cr ratio specific to mTBI patients with self-reported sensory symptoms was observed compared to those without self-reported sensory symptoms. These results provide novel insights into the neural mechanisms of the brain state related to internal rumination and arousal, which have implications for new interventions for mTBI patients with persistent symptoms. Furthermore, an understanding of heightened sensitivity to sensory related inputs during early stages of injury may facilitate enhanced prediction of safe return to work.
Collapse
|
39
|
The Hierarchical Structure of the Face Network Revealed by Its Functional Connectivity Pattern. J Neurosci 2016; 36:890-900. [PMID: 26791218 DOI: 10.1523/jneurosci.2789-15.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A major principle of human brain organization is "integrating" some regions into networks while "segregating" other sets of regions into separate networks. However, little is known about the cognitive function of the integration and segregation of brain networks. Here, we examined the well-studied brain network for face processing, and asked whether the integration and segregation of the face network (FN) are related to face recognition performance. To do so, we used a voxel-based global brain connectivity method based on resting-state fMRI to characterize the within-network connectivity (WNC) and the between-network connectivity (BNC) of the FN. We found that 95.4% of voxels in the FN had a significantly stronger WNC than BNC, suggesting that the FN is a relatively encapsulated network. Importantly, individuals with a stronger WNC (i.e., integration) in the right fusiform face area were better at recognizing faces, whereas individuals with a weaker BNC (i.e., segregation) in the right occipital face area performed better in the face recognition tasks. In short, our study not only demonstrates the behavioral relevance of integration and segregation of the FN but also provides evidence supporting functional division of labor between the occipital face area and fusiform face area in the hierarchically organized FN. Significance statement: Although the integration and segregation are major principles of human brain organization, little is known about whether they support the cognitive processes. By correlating the within-network connectivity (WNC) and between-network connectivity (BNC) of the face network with face recognition performance, we found that individuals with stronger WNC in the right fusiform face area or weaker BNC in the right occipital face area were better at recognizing faces. Our study not only demonstrates the behavioral relevance of the integration and segregation but also provides evidence supporting functional division of labor between the occipital face area and fusiform face area in the hierarchically organized face network.
Collapse
|
40
|
Wang X, Song Y, Zhen Z, Liu J. Functional integration of the posterior superior temporal sulcus correlates with facial expression recognition. Hum Brain Mapp 2016; 37:1930-40. [PMID: 26915331 PMCID: PMC6867343 DOI: 10.1002/hbm.23145] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/05/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
Face perception is essential for daily and social activities. Neuroimaging studies have revealed a distributed face network (FN) consisting of multiple regions that exhibit preferential responses to invariant or changeable facial information. However, our understanding about how these regions work collaboratively to facilitate facial information processing is limited. Here, we focused on changeable facial information processing, and investigated how the functional integration of the FN is related to the performance of facial expression recognition. To do so, we first defined the FN as voxels that responded more strongly to faces than objects, and then used a voxel-based global brain connectivity method based on resting-state fMRI to characterize the within-network connectivity (WNC) of each voxel in the FN. By relating the WNC and performance in the "Reading the Mind in the Eyes" Test across participants, we found that individuals with stronger WNC in the right posterior superior temporal sulcus (rpSTS) were better at recognizing facial expressions. Further, the resting-state functional connectivity (FC) between the rpSTS and right occipital face area (rOFA), early visual cortex (EVC), and bilateral STS were positively correlated with the ability of facial expression recognition, and the FCs of EVC-pSTS and OFA-pSTS contributed independently to facial expression recognition. In short, our study highlights the behavioral significance of intrinsic functional integration of the FN in facial expression processing, and provides evidence for the hub-like role of the rpSTS for facial expression recognition. Hum Brain Mapp 37:1930-1940, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Yiying Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Zonglei Zhen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijing100875China
| | - Jia Liu
- School of PsychologyBeijing Normal UniversityBeijing100875China
| |
Collapse
|
41
|
Huang L, Huang T, Zhen Z, Liu J. A test-retest dataset for assessing long-term reliability of brain morphology and resting-state brain activity. Sci Data 2016; 3:160016. [PMID: 26978040 PMCID: PMC4792176 DOI: 10.1038/sdata.2016.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 02/19/2016] [Indexed: 11/09/2022] Open
Abstract
We present a test-retest dataset for evaluation of long-term reliability of measures from structural and resting-state functional magnetic resonance imaging (sMRI and rfMRI) scans. The repeated scan dataset was collected from 61 healthy adults in two sessions using highly similar imaging parameters at an interval of 103-189 days. However, as the imaging parameters were not completely identical, the reliability estimated from this dataset shall reflect the lower bounds of the true reliability of sMRI/rfMRI measures. Furthermore, in conjunction with other test-retest datasets, our dataset may help explore the impact of different imaging parameters on reliability of sMRI/rfMRI measures, which is especially critical for assessing datasets collected from multiple centers. In addition, intelligence quotient (IQ) was measured for each participant using Raven's Advanced Progressive Matrices. The data can thus be used for purposes other than assessing reliability of sMRI/rfMRI alone. For example, data from each single session could be used to associate structural and functional measures of the brain with the IQ metrics to explore brain-IQ association.
Collapse
Affiliation(s)
- Lijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Taicheng Huang
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zonglei Zhen
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Jia Liu
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
42
|
Howard-Jones PA, Jay T, Mason A, Jones H. Gamification of Learning Deactivates the Default Mode Network. Front Psychol 2016; 6:1891. [PMID: 26779054 PMCID: PMC4705349 DOI: 10.3389/fpsyg.2015.01891] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022] Open
Abstract
We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.
Collapse
Affiliation(s)
| | - Tim Jay
- Sheffield Institute of Education, Sheffield Hallam UniversitySheffield, UK
| | - Alice Mason
- School of Experimental Psychology, University of BristolBristol, UK
| | - Harvey Jones
- Graduate School of Education, University of BristolBristol, UK
| |
Collapse
|
43
|
Montero-Marin J, Tops M, Manzanera R, Piva Demarzo MM, Álvarez de Mon M, García-Campayo J. Mindfulness, Resilience, and Burnout Subtypes in Primary Care Physicians: The Possible Mediating Role of Positive and Negative Affect. Front Psychol 2015; 6:1895. [PMID: 26733900 PMCID: PMC4681844 DOI: 10.3389/fpsyg.2015.01895] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022] Open
Abstract
Purpose: Primary care health professionals suffer from high levels of burnout. The aim of the present study was to evaluate the associations of mindfulness and resilience with the features of the burnout types (overload, lack of development, neglect) in primary care physicians, taking into account the potential mediating role of negative and positive affect. Methods: A cross-sectional design was used. Six hundred and twenty-two Spanish primary care physicians were recruited from an online survey. The Mindful Attention Awareness Scale (MAAS), Connor-Davidson Resilience Scale (CD-RISC), Positive and Negative Affect Schedule (PANAS), and Burnout Clinical Subtype Questionnaire (BCSQ-12) questionnaires were administered. Polychoric correlation matrices were calculated. The unweighted least squares (ULS) method was used for developing structural equation modeling. Results: Mindfulness and resilience presented moderately high associations (φ = 0.46). Links were found between mindfulness and overload (γ = −0.25); resilience and neglect (γ = −0.44); mindfulness and resilience, and negative affect (γ = −0.30 and γ = −0.35, respectively); resilience and positive affect (γ = 0.70); negative affect and overload (β = 0.36); positive affect and lack of development (β = −0.16). The links between the burnout types reached high and positive values between overload and lack of development (β = 0.64), and lack of development and neglect (β = 0.52). The model was a very good fit to the data (GFI = 0.96; AGFI = 0.96; RMSR = 0.06; NFI = 0.95; RFI = 0.95; PRATIO = 0.96). Conclusions: Interventions addressing both mindfulness and resilience can influence burnout subtypes, but their impact may occur in different ways, potentially mediated by positive and negative affect. Both sorts of trainings could constitute possible tools against burnout; however, while mindfulness seems a suitable intervention for preventing its initial stages, resilience may be more effective for treating its advanced stages.
Collapse
Affiliation(s)
- Jesús Montero-Marin
- Faculty of Health and Sport Sciences, University of ZaragozaHuesca, Spain; Miguel Servet University Hospital, University of ZaragozaZaragoza, Spain
| | - Mattie Tops
- Department of Clinical Psychology, VU University Amsterdam Amsterdam, Netherlands
| | | | - Marcelo M Piva Demarzo
- Department of Preventive Medicine, Mente Aberta - Brazilian Center for Mindfulness and Health Promotion, Universidade Federal de São Paulo Sao Paulo, Brazil
| | | | - Javier García-Campayo
- Miguel Servet University Hospital, University of ZaragozaZaragoza, Spain; Primary Care Prevention and Health Promotion Research Network (RedIAPP)Zaragoza, Spain
| |
Collapse
|
44
|
Kong F, Hu S, Xue S, Song Y, Liu J. Extraversion mediates the relationship between structural variations in the dorsolateral prefrontal cortex and social well-being. Neuroimage 2014; 105:269-75. [PMID: 25449749 DOI: 10.1016/j.neuroimage.2014.10.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/26/2014] [Accepted: 10/28/2014] [Indexed: 11/18/2022] Open
Abstract
Social well-being reflects the appraisal of one's circumstance and functioning in society, which is crucial for individuals' mental and physical health. However, little is known about the neural processes associated with social well-being. In this study, we used voxel-based morphometry (VBM) to identify the brain regions underlying individual differences in social well-being, as measured by the Social Well-being Scale (SWBS), in a large sample of young healthy adults. We found that social well-being was negatively correlated with gray matter volume in left mid-dorsolateral prefrontal cortex (mid-DLPFC) that is implicated in executive functioning, emotional regulation and social reasoning. The results remained significant even after controlling for the effect of socioeconomic status. Furthermore, although basic personality factors such as neuroticism, extraversion, and conscientiousness (as measured by the NEO Personality Inventory) all contributed to social well-being, only extraversion acted as a mediational mechanism underlying the association between the left mid-DLPFC volume and social well-being. Together, our findings provide the first evidence for the structural basis of individual differences in social well-being, and suggest that the personality trait of extraversion might play an important role in the acquisition and process of social well-being.
Collapse
Affiliation(s)
- Feng Kong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, China; Center for Collaboration and Innovation in Brain and Learning Sciences, China
| | - Siyuan Hu
- School of Psychology, Beijing Normal University, Beijing, China
| | - Song Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, China; Center for Collaboration and Innovation in Brain and Learning Sciences, China
| | - Yiying Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, China; Center for Collaboration and Innovation in Brain and Learning Sciences, China
| | - Jia Liu
- School of Psychology, Beijing Normal University, Beijing, China.
| |
Collapse
|