1
|
Guo L, Li X, Zhang R, Hou Y, Ma B, Li Z, Lv J, Wang B, Ma S, Li L, Yan L, Zhang B, Liu W, Lim K, Diao H, Wang S, Zhang C. In situ dual-activated NIRF/PA carrier-free nanoprobe for diagnosis and treatment of Parkinson's disease. Biosens Bioelectron 2025; 282:117473. [PMID: 40267542 DOI: 10.1016/j.bios.2025.117473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease threatening the life of millions people worldwide. Oxidative stress, mitochondrial dysfunction, and neuroinflammation are the pivotal causative elements of PD. Precise diagnosis enables timely monitoring initiation and progression of PD, thereby facilitating the formulation of customized and targeted treatment strategies. Optical imaging offers one alternative way for PD diagnosis. However, available diagnostic probes suffer from the inability to bypass the blood brain barrier (BBB). To accurately diagnose and effectively combat PD, there is an urgent need to develop an integrated diagnostic and therapeutic nanoprobe that can bypass the BBB and target the factors underlying degeneration of dopaminergic (DA) neurons. In present study, one integrated carrier-free nanoprobe HVCur-NPs towards those factors was designed and constructed. By modifying probe side chain with polypeptide, RVG29, we obtained brain-targeting HV-PEG-RVG29. It not only enables BBB penetration, but also produces near-infrared fluorescence (NIRF) and photoacoustic (PA) signals in cascade response to H2O2 and viscosity. The release of loaded curcumin (CUR) prevents oxidative stress, neuroinflammation and restore mitochondrial function so as to rescue PD phenotypes. In cellular PD model, HVCur-NPs generated NIRF/PA signals in response to elevated ROS and viscosity, and ameliorated cell apoptosis by eliminating ROS and restoring mitochondria function. Moreover, in mice PD model, HVCur-NPs realized in situ NIRF/PA imaging brain, and rescued DA neuron loss and restored the behavioral deficit of PD mice, without detectable biotoxicity. This carrier-free nanoprobe opens venues for integrated diagnosis and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lixia Guo
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China; School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Xiaowan Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Run Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yixuan Hou
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Bolong Ma
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Zheng Li
- Yong Loo Lin School of Medicine, National University of Singapore, 117054, Singapore
| | - Jiye Lv
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Bin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Sufang Ma
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Lihong Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Lili Yan
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Boye Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Wen Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Kahleong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Haipeng Diao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China.
| | - Shaowei Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China; The Second Clinical Medical College, Shanxi Medical University, Taiyuan, 030000, PR China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, PR China.
| |
Collapse
|
2
|
Liao J, Zhang Y, Yang J, Chen L, Zhang J, Chen X. Peroxiredoxin 6 in Stress Orchestration and Disease Interplay. Antioxidants (Basel) 2025; 14:379. [PMID: 40298631 PMCID: PMC12024067 DOI: 10.3390/antiox14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
As a moonlighting protein with multiple enzymatic activities, peroxiredoxin 6 (PRDX6) maintains redox homeostasis, regulates phospholipid metabolism, and mediates intra- and inter-cellular signaling transduction. Its expression and activity can be regulated by diverse stressors. However, the roles and relevant mechanisms of these regulators in various conditions have yet to be comprehensively reviewed. In this study, these stressors were systematically reviewed both in vivo and in vitro and classified into chemical, physical, and biological categories. We found that the regulatory effects of these stressors on PRDX6 expression were primarily mediated via key transcriptional factors (e.g., NRF2, HIF-1α, SP1, and NF-κB), micro-RNAs, and receptor- or kinase-dependent signaling pathways. Additionally, certain stressors, including reactive oxygen species, pH fluctuations, and post-translational modifications, induced the structure-based functional switches in the PRDX6 enzyme. We further reviewed the altered expression of PRDX6 under various disease conditions, with a particular focus on neuropsychiatric disorders and cancers, and proposed the concept of PRDX6-related disorders (PRD), which refers to a spectrum of diseases mediated by or associated with dysregulated PRDX6 expression. Finally, we found that an exogenous supplementation of PRDX6 protein provided preventive and therapeutic potentials for oxidative stress-related injuries in both in vivo and in vitro models. Taken together, this review underscores the critical role of PRDX6 as a cellular orchestrator in response to various stressors, highlighting its clinical potential for disease monitoring and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jiangfeng Liao
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (J.L.); (J.Y.); (L.C.)
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| | - Yusi Zhang
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| | - Jianwei Yang
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (J.L.); (J.Y.); (L.C.)
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Longfei Chen
- Department of Neurology, Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (J.L.); (J.Y.); (L.C.)
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Jing Zhang
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| | - Xiaochun Chen
- Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350004, China;
| |
Collapse
|
3
|
Wang J, Liu M, Zhao J, Hu P, Gao L, Tian S, Zhang J, Liu H, Xu X, He Z. Oxidative stress and dysregulated long noncoding RNAs in the pathogenesis of Parkinson's disease. Biol Res 2025; 58:7. [PMID: 39871377 PMCID: PMC11770960 DOI: 10.1186/s40659-025-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
Parkinson's disease (PD) is a progressive age-related neurodegenerative disease whose annual incidence is increasing as populations continue to age. Although its pathogenesis has not been fully elucidated, oxidative stress has been shown to play an important role in promoting the occurrence and development of the disease. Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length, are also involved in the pathogenesis of PD at the transcriptional level via epigenetic regulation, or at the post-transcriptional level by participating in physiological processes, including aggregation of the α-synuclein, mitochondrial dysfunction, oxidative stress, calcium stabilization, and neuroinflammation. LncRNAs and oxidative stress are correlated during neurodegenerative processes: oxidative stress affects the expression of multiple lncRNAs, while lncRNAs regulate many genes involved in oxidative stress responses. Oxidative stress and lncRNAs also affect other processes associated with neurodegeneration, including mitochondrial dysfunction and increased neuroinflammation that lead to neuronal death. Therefore, modulating the levels of specific lncRNAs may alleviate pathological oxidative damage and have neuroprotective effects. This review discusses the general mechanisms of oxidative stress, pathological mechanism underlying the role of oxidative stress in the pathogenesis of PD, and teases out the mechanisms through which lncRNAs regulate oxidative stress during PD pathogenesis, as well as identifies the possible neuroprotective mechanisms of lncRNAs. Reviewing published studies will help us further understand the mechanisms underlying the role of lncRNAs in the oxidative stress process in PD and to identify potential therapeutic strategies for PD.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Meitong Liu
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jiuhan Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Pan Hu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Lianbo Gao
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Shen Tian
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Jin Zhang
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Huayan Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiaoxue Xu
- Department of Neurology, First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Neurological Disease Big Data of Liaoning Province, No.155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Zhenwei He
- Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
4
|
Stadler J, Garmo LG, Doyle D, Cheng CI, Richardson G, Waheed Z, Tofan T, Srinageshwar B, Sharma A, Petersen RB, Dunbar GL, Rossignol J. Curcumin encapsulated in PAMAM dendrimers for the therapeutic treatment of ischemic stroke in rats. Front Cell Dev Biol 2025; 12:1467417. [PMID: 39834388 PMCID: PMC11743639 DOI: 10.3389/fcell.2024.1467417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Ischemic stroke is a devastating neurovascular condition that occurs when cerebral tissue fails to receive an adequate supply of oxygen. Despite being a leading cause of death and disability worldwide, therapeutic interventions are currently limited. Polyamidoamine (PAMAM) dendrimers are nanomolecules commonly used in biomedical applications due to their ability to encapsulate small-molecules and improve their pharmacokinetic properties. Curcumin is known to have anti-inflammatory and antioxidant effects yet suffers from poor solubility and bioavailability. The purpose of this study is to investigate the efficacy of curcumin encapsulated in PAMAM dendrimers as a potential therapeutic treatment for ischemic stroke by studying post-stroke lesion size, astrocyte reactivity, and functional recovery in a rat model of cerebral ischemia. Methods Forty-eight male and female Sprague-Dawley rats (280-380 g) underwent either a 90-min middle cerebral artery occlusion (MCAo) or sham surgery before receiving one of four treatments: (1) Hanks' balanced salt solution (HBSS) control, (2) empty dendrimer control, (3) curcumin control, or (4) curcumin encapsulated in PAMAM dendrimer. Neurobehavioral outcomes were evaluated at 1-, 3-, 5-, and 7-day post-surgery, after which animals were euthanized on day 8 to assess infarct volume and GFAP immunoreactivity. Results Animals that received formulations containing dendrimers (curcumin encapsulated in dendrimers or empty dendrimers) demonstrated significantly lower levels of GFAP immunoreactivity and improved functional recovery, including weight and neurobehavioral scores, compared to the formulations that did not contain dendrimers (curcumin and HBSS control). Additionally, the dendrimer-curcumin treatment group exhibited a significantly improved paw laterality index over the course of the study compared with the other three treatment groups. Conclusion Although the post-stroke administration of curcumin encapsulated in PAMAM dendrimers modulates the astrocytic response and promotes functional recovery following ischemic stroke in rats, its therapeutic benefits may be driven by PAMAM dendrimers as the empty dendrimer treatment group also showed significant improvements post-stroke. Further investigation regarding PAMAM dendrimers in treating neuroinflammatory conditions remains warranted.
Collapse
Affiliation(s)
- Justin Stadler
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Lucas G. Garmo
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - David Doyle
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Chin-I. Cheng
- Department of Statistics, Actuarial and Data Science, Central Michigan University, Mt. Pleasant, MI, United States
| | - Garrett Richardson
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Zain Waheed
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Tim Tofan
- School of Business, Wayne State University, Detroit, MI, United States
| | - Bhairavi Srinageshwar
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Ajit Sharma
- Department of Chemistry & Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
| | - Robert B. Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Gary L. Dunbar
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
| | - Julien Rossignol
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
5
|
Lana D, Ugolini F, Iovino L, Attorre S, Giovannini MG. Astrocytes phenomics as new druggable targets in healthy aging and Alzheimer's disease progression. Front Cell Neurosci 2025; 18:1512985. [PMID: 39835288 PMCID: PMC11743640 DOI: 10.3389/fncel.2024.1512985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
For over a century after their discovery astrocytes were regarded merely as cells located among other brain cells to hold and give support to neurons. Astrocytes activation, "astrocytosis" or A1 functional state, was considered a detrimental mechanism against neuronal survival. Recently, the scientific view on astrocytes has changed. Accumulating evidence indicate that astrocytes are not homogeneous, but rather encompass heterogeneous subpopulations of cells that differ from each other in terms of transcriptomics, molecular signature, function and response in physiological and pathological conditions. In this review, we report and discuss the recent literature on the phenomic differences of astrocytes in health and their modifications in disease conditions, focusing mainly on the hippocampus, a region involved in learning and memory encoding, in the age-related memory impairments, and in Alzheimer's disease (AD) dementia. The morphological and functional heterogeneity of astrocytes in different brain regions may be related to their different housekeeping functions. Astrocytes that express diverse transcriptomics and phenomics are present in strictly correlated brain regions and they are likely responsible for interactions essential for the formation of the specialized neural circuits that drive complex behaviors. In the contiguous and interconnected hippocampal areas CA1 and CA3, astrocytes show different, finely regulated, and region-specific heterogeneity. Heterogeneous astrocytes have specific activities in the healthy brain, and respond differently to physiological or pathological stimuli, such as inflammaging present in normal brain aging or beta-amyloid-dependent neuroinflammation typical of AD. To become reactive, astrocytes undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. Alterations of astrocytes affect the neurovascular unit, the blood-brain barrier and reverberate to other brain cell populations, favoring or dysregulating their activities. It will be of great interest to understand whether the differential phenomics of astrocytes in health and disease can explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, in order to find new astrocyte-targeted therapies that might prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Ludovica Iovino
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Selene Attorre
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Rawani NS, Chan AW, Todd KG, Baker GB, Dursun SM. The Role of Neuroglia in the Development and Progression of Schizophrenia. Biomolecules 2024; 15:10. [PMID: 39858403 PMCID: PMC11761573 DOI: 10.3390/biom15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Schizophrenia is a complex heterogenous disorder thought to be caused by interactions between genetic and environmental factors. The theories developed to explain the etiology of schizophrenia have focused largely on the dysfunction of neurotransmitters such as dopamine, serotonin and glutamate with their receptors, although research in the past several decades has indicated strongly that other factors are also involved and that the role of neuroglial cells in psychotic disorders including schizophrenia should be given more attention. Although glia were originally thought to be present in the brain only to support neurons in a physical, metabolic and nutritional capacity, it has become apparent that these cells have a variety of important physiological roles and that abnormalities in their function may make significant contributions to the symptoms of schizophrenia. In the present paper, we review the interactions of brain microglia, astrocytes and oligodendroglia with aspects such as transmitter dysregulation, neuro-inflammation, oxidative stress, synaptic function, the gut microbiome, myelination and the blood-brain barrier that appear to affect the cause, development and treatment of schizophrenia. We also review crosstalk between microglia, astrocytes and oligodendrocytes and the effects of antipsychotics on neuroglia. Problems associated with studies on specific biomarkers for glia in schizophrenia are discussed.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (K.G.T.); (S.M.D.)
| | | |
Collapse
|
7
|
Safreena N, Nair IC, Chandra G. Therapeutic potential of Parkin and its regulation in Parkinson's disease. Biochem Pharmacol 2024; 230:116600. [PMID: 39500382 DOI: 10.1016/j.bcp.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain substantia nigra, resulting in motor and non-motor symptoms. While the exact etiology of PD remains elusive, a growing body of evidence suggests that dysfunction in the parkin protein plays a pivotal role in the pathogenesis of the disease. Parkin is an E3 ubiquitin ligase that ubiquitinates substrate proteins to control a number of crucial cellular processes including protein catabolism, immune response, and cellular apoptosis.While autosomal recessive mutations in the PARK2 gene, which codes for parkin, are linked to an inherited form of early-onset PD, heterozygous mutations in PARK2 have also been reported in the more commonly occurring sporadic PD cases. Impairment of parkin's E3 ligase activity is believed to play a pathogenic role in both familial and sporadic forms of PD.This article provides an overview of the current understanding of the mechanistic basis of parkin's E3 ligase activity, its major physiological role in controlling cellular functions, and how these are disrupted in familial and sporadic PD. The second half of the manuscript explores the currently available and potential therapeutic strategies targeting parkin structure and/or function in order to slow down or mitigate the progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Narukkottil Safreena
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India
| | - Indu C Nair
- SAS SNDP Yogam College, Konni, Pathanamthitta 689691, Kerala, India
| | - Goutam Chandra
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India.
| |
Collapse
|
8
|
Wei Y, Li H, Li Y, Zeng Y, Quan T, Leng Y, Chang E, Bai Y, Bian Y, Hou Y. Advances of curcumin in nervous system diseases: the effect of regulating oxidative stress and clinical studies. Front Pharmacol 2024; 15:1496661. [PMID: 39555102 PMCID: PMC11563972 DOI: 10.3389/fphar.2024.1496661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
In recent years, researchers have highly observed that neurological disorders (NSDs) with the aging of the population are a global health burden whose prevalence is increasing every year. Previous evidence suggested that the occurrence of neurological disorders is correlated with predisposing factors such as inflammation, aging, and injury. Particularly, the neuronal cells are susceptible to oxidative stress, leading to lesions caused by high oxygen-consuming properties. Oxidative stress (OS) is a state of peroxidation, which occurs as a result of the disruption of the balance between oxidizing and antioxidizing substances. The oxidative intermediates such as free radicals, hydrogen peroxide (H2O2), and superoxide anion (O2-) produced by OS promote disease progression. Curcumin, a natural diketone derived from turmeric, is a natural antioxidant with a wide range of neuroprotective, anti-inflammatory, anti-tumor, anti-aging, and antioxidant effects. Fortunately, curcumin is recognized for its potent antioxidant properties and is considered a promising candidate for the prevention and treatment of neurological diseases. Consequently, this review elucidates the mechanisms by which curcumin mitigates oxidative stress and emphasizes the potential in treating nervous system disorders, including depression, Alzheimer's disease, Parkinson's disease, epilepsy, subarachnoid hemorrhage, and glioblastoma. We aim to provide a new therapeutic option for the management of neurological diseases.
Collapse
Affiliation(s)
- Yuxun Wei
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Hong Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yue Li
- Molecular Urooncology, Department of Urology, Klinikum Rechts der Isar, Technical University of Munich, München, Germany
| | - Yue Zeng
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Tian Quan
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Yanen Leng
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - En Chang
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Yingtao Bai
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| | - Yuan Bian
- Department of Oncology, 363 Hospital, Chengdu, China
| | - Yi Hou
- Pharmacy Department, Clinical Trial Institution, The People’s Hospital of Zhongjiang, Deyang, China
| |
Collapse
|
9
|
Zhang J, Zhao J, Wu M, Liu J, Qian C, Liu G, Wen C, Liang L, Liu X, Li Y, Xu X. Release kinetics and protective effect of novel curcumin-based nanoliposome modified with pectin, whey protein isolates and hyaluronic acid against oxidative stress. Int J Biol Macromol 2024; 282:136890. [PMID: 39490488 DOI: 10.1016/j.ijbiomac.2024.136890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
In the present study, a novel nanoliposome loaded with curcumin (Cur) (NNLs-Cur) was established to overcome the gastrointestinal digestive barrier and enhance mitochondrial targeting capacity, exerting the antioxidant capacity of Cur. Noteworthy, NNLs-Cur was modified by pectin, whey protein isolates and hyaluronic acid. The results showed that the structure of traditional nanoliposomes loaded with Cur (NLs-Cur) was destroyed during digestion. However, NNLs-Cur maintained intact structural morphology, and the release of Cur in the stomach and intestines was consistent with zero-order and first-order kinetic models, respectively. Interestingly, the survival rate of HL-7702 cells after being damaged by H2O2 was 40.53 %, while the survival rate after treated with NNLs-Cur reached 99.87 %. Besides, the fluorescence localization indicated Cur in NNLs-Cur could escape lysosomal and achieve mitochondria targeting. Compared with NLs-Cur, the damaged cells treated with NNLs-Cur increased activities of catalase (CAT), glutathione peroxide (GSH-Px) and superoxide dismutase (SOD) from 16.16 ± 0.52, 16.92 ± 2.28 and 30.10 ± 0.93 U/mgprot to 19.09 ± 0.52, 20.41 ± 1.79 and 33.81 ± 0.29 U/mgprot, respectively. Malondialdehyde (MDA) content and reactive oxygen species (ROS) level of the oxidative damaged cells were reduced, mitochondrial membrane potential was restored, and cell apoptosis was reduced. This study provides theoretical guidance for realizing the industrial application of efficient targeted delivery Cur.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jiayin Zhao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Maowei Wu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Chunlu Qian
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
10
|
Wu L, Zhao P, Wu P, Jiang W, Liu Y, Ren H, Jin X, Zhou X, Feng L. Curcumin attenuates ochratoxin A and hypoxia co-induced liver injury in grass carp (Ctenopharyngodon idella) by dual targeting endoplasmic reticulum stress and apoptosis via reducing ROS content. J Anim Sci Biotechnol 2024; 15:131. [PMID: 39363374 PMCID: PMC11451059 DOI: 10.1186/s40104-024-01089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/14/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Ochratoxin A (OTA) is a toxin widely found in aquafeed ingredients, and hypoxia is a common problem in fish farming. In practice, aquatic animals tend to be more sensitive to hypoxia while feeds are contaminated with OTA, but no studies exist in this area. This research investigated the multiple biotoxicities of OTA and hypoxia combined on the liver of grass carp and explored the mitigating effect of curcumin (CUR). METHODS A total of 720 healthy juvenile grass carp (11.06 ± 0.05 g) were selected and assigned randomly to 4 experimental groups: control group (without OTA and CUR), 1.2 mg/kg OTA group, 400 mg/kg CUR group, and 1.2 mg/kg OTA + 400 mg/kg CUR group with three replicates each for 60 d. Subsequently, 32 fish were selected, divided into normoxia (18 fish) and hypoxia (18 fish) groups, and subjected to hypoxia stress for 96 h. RESULTS CUR can attenuate histopathological damage caused by coming to OTA and hypoxia by reducing vacuolation and nuclear excursion. The alleviation of this damage was associated with the attenuation of apoptosis in the mitochondrial pathway by decreasing the expression of the pro-apoptotic proteins Caspase 3, 8, 9, Bax, and Apaf1 while increasing the expression of the anti-apoptotic protein Bcl-2, and attenuation of endoplasmic reticulum stress (ERS) by reducing Grp78 expression and chop levels. This may be attributed to the fact that the addition of CUR increased the levels of catalase (CAT) and glutathione reductase (GSH), increased antioxidant capacity, and ensured the proper functioning of respiratory chain complexes I and II, which in turn reduced the high production of reactive oxygen species (ROS), thus alleviating apoptosis and ERS. CONCLUSIONS In conclusion, our data demonstrate the effectiveness of CUR in attenuating liver injury caused by the combination of OTA and hypoxia. This study confirms the feasibility and efficacy of adding natural products to mitigate toxic damage to aquatic animals.
Collapse
Affiliation(s)
- Liangqin Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
11
|
Sleiman A, Miller KB, Flores D, Kuan J, Altwasser K, Smith BJ, Kozbenko T, Hocking R, Wood SJ, Huff J, Adam-Guillermin C, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to learning and memory impairment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:57-84. [PMID: 39228295 DOI: 10.1002/em.22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Understanding radiation-induced non-cancer effects on the central nervous system (CNS) is essential for the risk assessment of medical (e.g., radiotherapy) and occupational (e.g., nuclear workers and astronauts) exposures. Herein, the adverse outcome pathway (AOP) approach was used to consolidate relevant studies in the area of cognitive decline for identification of research gaps, countermeasure development, and for eventual use in risk assessments. AOPs are an analytical construct describing critical events to an adverse outcome (AO) in a simplified form beginning with a molecular initiating event (MIE). An AOP was constructed utilizing mechanistic information to build empirical support for the key event relationships (KERs) between the MIE of deposition of energy to the AO of learning and memory impairment through multiple key events (KEs). The evidence for the AOP was acquired through a documented scoping review of the literature. In this AOP, the MIE is connected to the AO via six KEs: increased oxidative stress, increased deoxyribonucleic acid (DNA) strand breaks, altered stress response signaling, tissue resident cell activation, increased pro-inflammatory mediators, and abnormal neural remodeling that encompasses atypical structural and functional alterations of neural cells and surrounding environment. Deposition of energy directly leads to oxidative stress, increased DNA strand breaks, an increase of pro-inflammatory mediators and tissue resident cell activation. These KEs, which are themselves interconnected, can lead to abnormal neural remodeling impacting learning and memory processes. Identified knowledge gaps include improving quantitative understanding of the AOP across several KERs and additional testing of proposed modulating factors through experimental work. Broadly, it is envisioned that the outcome of these efforts could be extended to other cognitive disorders and complement ongoing work by international radiation governing bodies in their review of the system of radiological protection.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, St. Paul Lez Durance, Provence, France
| | - Kathleen B Miller
- Department of Health and Exercise Science, Morrison College Family of Health, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Danicia Flores
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jaqueline Kuan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Robyn Hocking
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Janice Huff
- NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Perales-Salinas V, Purushotham SS, Buskila Y. Curcumin as a potential therapeutic agent for treating neurodegenerative diseases. Neurochem Int 2024; 178:105790. [PMID: 38852825 DOI: 10.1016/j.neuint.2024.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function, posing a tremendous burden on health systems worldwide. Although the underlying pathological mechanisms for various neurodegenerative diseases are still unclear, a common pathological hallmark is the abundance of neuroinflammatory processes, which affect both disease onset and progression. In this review, we explore the pathways and role of neuroinflammation in various neurodegenerative diseases and further assess the potential use of curcumin, a natural spice with antioxidant and anti-inflammatory properties that has been extensively used worldwide as a traditional medicine and potential therapeutic agent. Following the examination of preclinical and clinical studies that assessed curcumin as a potential therapeutic agent, we highlight the bioavailability of curcumin in the body and discuss both the challenges and benefits of using curcumin as a therapeutic compound for treating neurodegeneration. Although elucidating the involvement of curcumin in aging and neurodegeneration has great potential for developing future CNS-related therapeutic targets, further research is required to elucidate the mechanisms by which Curcumin affects brain physiology, especially BBB integrity, under both physiological and disease conditions.
Collapse
Affiliation(s)
| | | | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia; The MARCS Institute, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
13
|
Ogunsuyi OB, Ogunruku OO, Umar HI, Oboh G. Effect of curcumin-donepezil combination on spatial memory, astrocyte activation, and cholinesterase expressions in brain of scopolamine-treated rats. Mol Biol Rep 2024; 51:864. [PMID: 39073463 DOI: 10.1007/s11033-024-09712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The study investigated the effect of co-administration of curcumin and donepezil on several markers of cognitive function (such as spatial memory, astrocyte activation, cholinesterase expressions) in the brain cortex and hippocampus of scopolamine-treated rats. METHOD AND RESULTS For seven consecutive days, a pre-treatment of curcumin (50 mg/kg) and/or donepezil (2.5 mg/kg) was administered. On the seventh day, scopolamine (1 mg/kg) was administered to elicit cognitive impairment, 30 min before memory test was conducted. This was followed by evaluating changes in spatial memory, cholinesterase, and adenosine deaminase (ADA) activities, as well as nitric oxide (NO) level were determined. Additionally, RT-qPCR for glial fibrillary acidic protein (GFAP) and cholinesterase gene expressions was performed in the brain cortex and hippocampus. Also, GFAP immunohistochemistry of the brain tissues for neuronal injury were performed in the brain cortex and hippocampus. In comparison to the control group, rats given scopolamine had impaired memory, higher levels of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ADA activities, as well as elevated markers of oxidative stress. In addition to enhanced GFAP immunoreactivity, there was also overexpression of the GFAP and BChE genes in the brain tissues. The combination of curcumin and donepezil was, however, observed to better ameliorate these impairments in comparison to the donepezil-administered rat group. CONCLUSION Hence, this evidence provides more mechanisms to support the hypothesis that the concurrent administration of curcumin and donepezil mitigates markers of cognitive dysfunction in scopolamine-treated rat model.
Collapse
Affiliation(s)
- Opeyemi Babatunde Ogunsuyi
- Department of Biomedical Technology, School of Basic Medical Sciences, The Federal University of Technology, Akure, Nigeria.
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure, Nigeria.
| | | | - Haruna Isiyaku Umar
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
- Molecular Biology and Bioinformatics Lab, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, The Federal University of Technology, Akure, Nigeria
- Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
14
|
Rawani NS, Chan AW, Dursun SM, Baker GB. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants (Basel) 2024; 13:709. [PMID: 38929148 PMCID: PMC11200831 DOI: 10.3390/antiox13060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Psychosis, defined as a set of symptoms that results in a distorted sense of reality, is observed in several psychiatric disorders in addition to schizophrenia. This paper reviews the literature relevant to the underlying neurobiology of psychosis. The dopamine hypothesis has been a major influence in the study of the neurochemistry of psychosis and in development of antipsychotic drugs. However, it became clear early on that other factors must be involved in the dysfunction involved in psychosis. In the current review, it is reported how several of these factors, namely dysregulation of neurotransmitters [dopamine, serotonin, glutamate, and γ-aminobutyric acid (GABA)], neuroinflammation, glia (microglia, astrocytes, and oligodendrocytes), the hypothalamic-pituitary-adrenal axis, the gut microbiome, oxidative stress, and mitochondrial dysfunction contribute to psychosis and interact with one another. Research on psychosis has increased knowledge of the complexity of psychotic disorders. Potential new pharmacotherapies, including combinations of drugs (with pre- and probiotics in some cases) affecting several of the factors mentioned above, have been suggested. Similarly, several putative biomarkers, particularly those related to the immune system, have been proposed. Future research on both pharmacotherapy and biomarkers will require better-designed studies conducted on an all stages of psychotic disorders and must consider confounders such as sex differences and comorbidity.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (S.M.D.)
| |
Collapse
|
15
|
Xue M, Huang X, Zhu T, Zhang L, Yang H, Shen Y, Feng L. Unveiling the Significance of Peroxiredoxin 6 in Central Nervous System Disorders. Antioxidants (Basel) 2024; 13:449. [PMID: 38671897 PMCID: PMC11047492 DOI: 10.3390/antiox13040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Peroxiredoxin 6 (Prdx6), a unique 1-Cys member of the peroxiredoxin family, exhibits peroxidase activity, phospholipase activity, and lysophosphatidylcholine acyltransferase (LPCAT) activity. Prdx6 has been known to be an important enzyme for the maintenance of lipid peroxidation repair, cellular metabolism, inflammatory signaling, and antioxidant damage. Growing research has demonstrated that the altered activity of this enzyme is linked with various pathological processes including central nervous system (CNS) disorders. This review discusses the distinctive structure, enzyme activity, and function of Prdx6 in different CNS disorders, as well as emphasizing the significance of Prdx6 in neurological disorders.
Collapse
Affiliation(s)
- Min Xue
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
| | - Xiaojie Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Tong Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Lijun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Hao Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.X.); (X.H.); (T.Z.); (L.Z.); (H.Y.); (Y.S.)
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
16
|
Khedr SI, Gomaa MM, Mogahed NMFH, Gamea GA, Khodear GAM, Sheta E, Soliman NAH, El Saadany AA, Salama AM. Trichinella spiralis: A new parasitic target for curcumin nanoformulas in mice models. Parasitol Int 2024; 98:102810. [PMID: 37730195 DOI: 10.1016/j.parint.2023.102810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Trichinosis spiralis is a global disease with significant economic impact. Albendazole is the current-treatment. Yet, the world-widely emerging antimicrobial resistance necessitates search for therapeutic substitutes. Curcumin is a natural compound with abundant therapeutic benefits. This study aimed to evaluate the potential of crude-curcumin, chitosan and for the first time curcumin-nano-emulsion and curcumin-loaded-chitosan-nanoparticles against Trichinella spiralis adults and larvae in acute and chronic trichinosis models. Trichinosis spiralis was induced in 96 Swiss-albino mice. Infected mice were divided into 2 groups. Group I constituted the acute model, where treatment started 2 h after infection for 5 successive days. Group II constituted the chronic model, where treatment started at the 30th day-post-infection and continued for 10 successive days (Refer to graphical abstract). Each group contained 8 subgroups that were designated Ia-Ih and IIa-IIh and included; a; Untreated-control, b; Albendazole-treated (Alb-treated), c; Crude-curcumin-treated (Cur-treated), d; Curcumin-nanoemulsion-treated (Cur-NE-treated), e; Albendazole and crude-curcumin-treated (Alb-Cur-treated), f; Albendazole and curcumin-nanoemulsion-treated (Alb-Cur-NE-treated), g; Chitosan-nanoparticles-treated (CS-NPs-treated) and h; Curcumin-loaded-chitosan-nanoparticles-treated (Cur-CS-NPs-treated). Additionally, six mice constituted control-uninfected group III. The effects of the used compounds on the parasite tegument, in-vivo parasitic load-worm burden, local pathology and MDA concentration in small intestines of acutely-infected and skeletal muscle of chronically-infected mice were studied. Results showed that albendazole was effective, yet, its combination with Cur-NE showed significant potentiation against adult worms and muscle larvae and alleviated the pathology in both models. Cur-CS-NPs exhibited promising results in both models. Crude-curcumin showed encouraging results especially against muscle larvae on long-term use. Treatments effectively reduced parasite load, local MDA level and CD31 expression with anti-inflammatory effect in intestine and muscle sections.
Collapse
Affiliation(s)
- Safaa Ibrahim Khedr
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt.
| | - Maha Mohamed Gomaa
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| | | | - Ghada A Gamea
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | - Gehan A M Khodear
- Medical technology center, Medical Research Institute, Alexandria University, Egypt
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Nada A H Soliman
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Egypt
| | | | - Amina M Salama
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
17
|
Xue Y, Tran M, Diep YN, Shin S, Lee J, Cho H, Kang YJ. Environmental aluminum oxide inducing neurodegeneration in human neurovascular unit with immunity. Sci Rep 2024; 14:744. [PMID: 38185738 PMCID: PMC10772095 DOI: 10.1038/s41598-024-51206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024] Open
Abstract
Aluminum oxide nanoparticle (AlNP), a ubiquitous neurotoxin highly enriched in air pollution, is often produced as an inevitable byproduct in the manufacturing of industrial products such as cosmetics and metal materials. Meanwhile, ALNP has emerged as a significant public health concern due to its potential association with neurological diseases. However, the studies about the neurotoxic effects of AlNP are limited, partially due to the lack of physiologically relevant human neurovascular unit with innate immunity (hNVUI). Here, we employed our AlNP-treated hNVUI model to investigate the underlying mechanism of AlNP-driven neurodegeneration. First, we validated the penetration of AlNP across a blood-brain barrier (BBB) compartment and found AlNP-derived endothelial cellular senescence through the p16 and p53/p21 pathways. Our study showed that BBB-penetrating AlNP promoted reactive astrocytes, which produced a significant level of reactive oxygen species (ROS). The astrocytic neurotoxic factors caused neuronal damage, including the synaptic impairment, the accumulation of phosphoric-tau proteins, and even neuronal death. Our study suggests that AlNP could be a potential environmental risk factor of neurological disorders mediated by neuroinflammation.
Collapse
Affiliation(s)
- Yingqi Xue
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Minh Tran
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yen N Diep
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seonghun Shin
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jinkee Lee
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| | - You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
18
|
Wang K, Zhang X, Zhang M, Li X, Xie J, Liu S, Huang Q, Wang J, Guo Q, Wang H. Hyperoside Prevents Aβ42-Induced Neurotoxicity in PC12 Cells and Caenorhabditis elegans. Mol Neurobiol 2023; 60:7136-7150. [PMID: 37535309 DOI: 10.1007/s12035-023-03521-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
Traditional Chinese medicines such as hyperoside-rich Acanthopanax senticosus and Crataegus pinnatifida have been confirmed to exhibit anti-oxidative stress properties. Hyperoside, the main ingredient of numerous antioxidant herbs, may have the ability to postpone the onset of neurodegenerative diseases. This study investigates the possible therapeutic mechanism of hyperoside as a natural antioxidant against Alzheimer's disease (AD) in Caenorhabditis elegans and PC12 cells. Specifically, hyperoside reduced reactive oxygen species (ROS) level and Aβ42-induced neurotoxicity in C. elegans worms. Meanwhile, hyperoside reduced ROS production and increased mitochondrial membrane potentialin Aβ42-induced PC12 cells, which possibly due to the increase of antioxidant enzymes activity and the diminution of malondialdehyde levels. Hoechst 33,342 staining and flow cytometry analysis results suggested that hyperoside reverses cell apoptosis. Network pharmacology predicts potentially relevant hyperoside targets and pathways in AD therapy. As anticipated, hyperoside reversed Aβ42-stimulated downregulation of the PI3K/Akt/Nrf2/HO-1. The PI3K inhibitor LY294002 partially abolished the protective capability of hyperoside. The results of molecular docking further indicated that the PI3K/Akt pathways may be involved in the protection of Aβ42-induced PC12 cells by hyperoside treatment. The study provides theoretical information for research and development of hyperoside as an antioxidant dietary supplement.
Collapse
Affiliation(s)
- Kexin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, No. 29, 13Th Avenue, Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Xinyue Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, No. 29, 13Th Avenue, Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Miaosi Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, No. 29, 13Th Avenue, Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Xin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, No. 29, 13Th Avenue, Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Jiao Xie
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, 550025, People's Republic of China
| | - Suwen Liu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004, Hebei, China.
| | - Qun Huang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou, 550025, People's Republic of China.
| | - Jilite Wang
- Department of Agriculture, Hetao College, Inner Mongolia Bayannur, 015000, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, No. 29, 13Th Avenue, Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, No. 29, 13Th Avenue, Economic and Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China.
| |
Collapse
|
19
|
Hoffman TR, Emsley SA, Douglas JC, Reed KR, Esquivel AR, Koyack MJ, Paddock BE, Videau P. Assessing Curcumin Uptake and Clearance and Their Influence on Superoxide Dismutase Activity in Drosophila melanogaster. BIOTECH 2023; 12:58. [PMID: 37754202 PMCID: PMC10526445 DOI: 10.3390/biotech12030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
While normal levels of reactive oxygen and nitrogen species (RONS) are required for proper organismal function, increased levels result in oxidative stress. Oxidative stress may be managed via the scavenging activities of antioxidants (e.g., curcumin) and the action of enzymes, including superoxide dismutase (SOD). In this work, the uptake and clearance of dietary curcuminoids (consisting of curcumin, demethoxycurcumin, and bisdemethoxycurcumin) was assessed in Drosophila melanogaster larvae following chronic or acute exposure. High levels of curcuminoid uptake and loss were observed within a few hours and leveled off within eight hours post treatment onset. The addition or removal of curcuminoids from media resulted in corresponding changes in SOD activity, and the involvement of each of the three SOD genes was assessed for their contribution to total SOD activity. Taken together, these data provide insight into the uptake and clearance dynamics of curcuminoids and indicate that, while SOD activity generally increases following curcuminoid treatment, the individual SOD genes appear to contribute differently to this response.
Collapse
Affiliation(s)
- Tammy R. Hoffman
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Sarah A. Emsley
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Jenna C. Douglas
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Kaela R. Reed
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Abigail R. Esquivel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Marc J. Koyack
- School of Arts and Sciences, Gwynedd Mercy University, Gwynedd Valley, PA 19437, USA
| | - Brie E. Paddock
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| |
Collapse
|
20
|
Attia MA, Soliman N, Eladl MA, Bilasy SE, El-Abaseri TB, Ali HS, Abbas F, Ibrahim D, Osman NMS, Hashish AA, Alshahrani A, Mohamed AS, Zaitone SA. Topiramate affords neuroprotection in diabetic neuropathy model via downregulating spinal GFAP/inflammatory burden and improving neurofilament production. Toxicol Mech Methods 2023; 33:563-577. [PMID: 36978280 DOI: 10.1080/15376516.2023.2196687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023]
Abstract
The current study aimed to test the neuroprotective action of topiramate in mouse peripheral diabetic neuropathy (DN) and explored some mechanisms underlying this action. Mice were assigned as vehicle group, DN group, DN + topiramate 10-mg/kg and DN + topiramate 30-mg/kg. Mice were tested for allodynia and hyperalgesia and then spinal cord and sciatic nerves specimens were examined microscopically and neurofilament heavy chain (NEFH) immunostaining was performed. Results indicated that DN mice had lower the hotplate latency time (0.46-fold of latency to licking) and lower von-Frey test pain threshold (0.6-fold of filament size) while treatment with topiramate increased these values significantly. Sciatic nerves from DN control mice showed axonal degeneration while spinal cords showed elevated GFAP (5.6-fold) and inflammatory cytokines (∼3- to 4-fold) but lower plasticity as indicated by GAP-43 (0.25-fold). Topiramate produced neuroprotection and suppressed spinal cord GFAP/inflammation but enhanced GAP-43. This study reinforces topiramate as neuroprotection and explained some mechanisms included in alleviating neuropathy.
Collapse
Affiliation(s)
- Mohammed A Attia
- Department of Pharmacology, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nema Soliman
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shymaa E Bilasy
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- College of Dental Medicine, California Northstate University, Elk Grove, CA, USA
| | - Taghrid B El-Abaseri
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Howaida S Ali
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Faten Abbas
- Physiology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Dalia Ibrahim
- Physiology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Noura M S Osman
- Department of Human Anatomy and Embryology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Abdullah A Hashish
- Basic Medical Sciences Department, College of Medicine, University of Bisha, Bisha, Saudi Arabia
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Asma Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, KSA
| | - Abir S Mohamed
- Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia
| | - Sawsan A Zaitone
- Deparment of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
21
|
Barthels D, Prateeksha P, Nozohouri S, Villalba H, Zhang Y, Sharma S, Anderson S, Howlader MSI, Nambiar A, Abbruscato TJ, Das H. Dental Pulp-Derived Stem Cells Preserve Astrocyte Health During Induced Gliosis by Modulating Mitochondrial Activity and Functions. Cell Mol Neurobiol 2023; 43:2105-2127. [PMID: 36201091 PMCID: PMC11412198 DOI: 10.1007/s10571-022-01291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/27/2022] [Indexed: 11/03/2022]
Abstract
Astrocytes have been implicated in the onset and complication of various central nervous system (CNS) injuries and disorders. Uncontrolled astrogliosis (gliosis), while a necessary process for recovery after CNS trauma, also causes impairments in CNS performance and functions. The ability to preserve astrocyte health and better regulate the gliosis process could play a major role in controlling damage in the aftermath of acute insults and during chronic dysfunction. Here in, we demonstrate the ability of dental pulp-derived stem cells (DPSCs) in protecting the health of astrocytes during induced gliosis. First of all, we have characterized the expression of genes in primary astrocytes that are relevant to the pathological conditions of CNS by inducing gliosis. Subsequently, we found that astrocytes co-cultured with DPSCs reduced ROS production, NRF2 and GCLM expressions, mitochondrial membrane potential, and mitochondrial functions compared to the astrocytes that were not co-cultured with DPSCs in gliosis condition. In addition, hyperactive autophagy was also decreased in astrocytes that were co-cultured with DPSCs compared to the astrocytes that were not co-cultured with DPSCs during gliosis. This reversal and mitigation of gliosis in astrocytes were partly due to induction of neurogenesis in DPSCs through enhanced expressions of the neuronal genes like GFAP, NeuN, and Synapsin in DPSCs and by secretion of higher amounts of neurotropic factors, such as BDNF, GDNF, and TIMP-2. Protein-Protein docking analysis suggested that BDNF and GDNF can bind with CSPG4 and block the downstream signaling. Together these findings demonstrate novel functions of DPSCs to preserve astrocyte health during gliosis.
Collapse
Affiliation(s)
- Derek Barthels
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Prateeksha Prateeksha
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Yong Zhang
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Sejal Sharma
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Sarah Anderson
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Md Sariful Islam Howlader
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Adarsh Nambiar
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, ARB Suite 2116, 1406 South Coulter Street, Amarillo, TX, 79106, USA.
| |
Collapse
|
22
|
Sheikholeslami MA, Parvardeh S, Ghafghazi S, Sabetkasaei M. Curcumin attenuates morphine dependence by modulating μ-opioid receptors and glial cell-activated neuroinflammation in rat. Neuropeptides 2023; 98:102318. [PMID: 36640553 DOI: 10.1016/j.npep.2022.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
In recent years, the association between neuroinflammation and opioid dependence has attracted considerable attention. Curcumin, a component of the Curcuma longa, has been shown to act as a suppressor of glial cells and inflammatory cytokines. The main goal of this study was to explore the attenuating effects of curcumin on morphine dependence with a focus on neuroinflammation and μ-opioid receptors in the rat prefrontal cortex. To induce morphine dependence in male Wistar rats, morphine was administered i.p. once daily for 18 days in an escalating dose of 10, 20, and 40 mg/kg. Curcumin (2.5, 5, and 10 mg/kg, i.p.) was given from the days 10th to 18th. Immunofluorescence staining and ELISA methods were used to evaluate glial cells activity and inflammatory cytokines levels, respectively. Western blotting was used to evaluate the expression of μ-opioid receptors. The administration of curcumin (2.5, 5, and 10 mg/kg) for 9 days significantly attenuated the symptoms of morphine withdrawal syndrome. The prefrontal cortex concentration of TNF-α and IL-6 was also reduced by curcumin (2.5, 5, and 10 mg/kg) significantly. Furthermore, curcumin decreased the number of Iba1 and GFAP positive cells in morphine-dependent rats. Moreover, the expression of μ-opioid receptors was significantly reduced by curcumin (10 mg/kg). The results of this study demonstrate that curcumin attenuates morphine dependence in rats through an inhibitory effect on neuroinflammation and a decrease in the expression of μ-opioid receptors in the prefrontal cortex.
Collapse
Affiliation(s)
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sabetkasaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Sabouni N, Marzouni HZ, Palizban S, Meidaninikjeh S, Kesharwani P, Jamialahmadi T, Sahebkar A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J Drug Target 2023; 31:243-260. [PMID: 36305097 DOI: 10.1080/1061186x.2022.2141755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Curcumin from turmeric is a natural phenolic compound with a promising potential to regulate fundamental processes involved in neurological diseases, including inflammation, oxidative stress, protein aggregation, and apoptosis at the molecular level. In this regard, employing nanoformulation can improve curcumin efficiency by reducing its limitations, such as low bioavailability. Besides curcumin, growing data suggest that stem cells are a noteworthy candidate for neurodegenerative disorders therapy due to their anti-inflammatory, anti-oxidative, and neuronal-differentiation properties, which result in neuroprotection. Curcumin and stem cells have similar neurogenic features and can be co-administered in a cell-drug delivery system to achieve better combination therapeutic outcomes for neurological diseases. Based on the evidence, curcumin can induce the neuroprotective activity of stem cells by modulating their related signalling pathways. The present review is about the role of curcumin and its nanoformulations in the improvement of neurological diseases alone and through the effect on different categories of stem cells by discussing the underlying mechanisms to provide a roadmap for future investigations.
Collapse
Affiliation(s)
- Nasim Sabouni
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Sepideh Palizban
- Semnan Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Advances in Human Mitochondria-Based Therapies. Int J Mol Sci 2022; 24:ijms24010608. [PMID: 36614050 PMCID: PMC9820658 DOI: 10.3390/ijms24010608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are the key biological generators of eukaryotic cells, controlling the energy supply while providing many important biosynthetic intermediates. Mitochondria act as a dynamic, functionally and structurally interconnected network hub closely integrated with other cellular compartments via biomembrane systems, transmitting biological information by shuttling between cells and tissues. Defects and dysregulation of mitochondrial functions are critically involved in pathological mechanisms contributing to aging, cancer, inflammation, neurodegenerative diseases, and other severe human diseases. Mediating and rejuvenating the mitochondria may therefore be of significant benefit to prevent, reverse, and even treat such pathological conditions in patients. The goal of this review is to present the most advanced strategies using mitochondria to manage such disorders and to further explore innovative approaches in the field of human mitochondria-based therapies.
Collapse
|
25
|
Diabetic Striatopathy: Case Report and Possible New Actors. Case Rep Neurol Med 2022; 2022:4176419. [PMID: 36578653 PMCID: PMC9792229 DOI: 10.1155/2022/4176419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic striatopathy is a very rare neurological complication of diabetes. We report the case of an 86-year-old woman with poorly controlled type 2 diabetes admitted to the internal medicine ward for sudden onset of altered sensorium and severe bilateral choreiform and ballistic movements. The precise pathophysiology of this condition is not well understood. Our communication aims to remind clinicians to consider the possibility of diabetic striatopathy when poor-controlled diabetic patients have sudden-onset choreiform and ballistic movements. Moreover, this case suggests the possibility that oxidative and endoplasmic reticulum stress may be involved in this process.
Collapse
|
26
|
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a Therapeutic Target in Alzheimer's Disease-Comprehensive Review and Recent Developments. Int J Mol Sci 2022; 23:13630. [PMID: 36362415 PMCID: PMC9654484 DOI: 10.3390/ijms232113630] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/20/2023] Open
Abstract
Alzheimer's disease (AD) is a frequent and disabling neurodegenerative disorder, in which astrocytes participate in several pathophysiological processes including neuroinflammation, excitotoxicity, oxidative stress and lipid metabolism (along with a critical role in apolipoprotein E function). Current evidence shows that astrocytes have both neuroprotective and neurotoxic effects depending on the disease stage and microenvironmental factors. Furthermore, astrocytes appear to be affected by the presence of amyloid-beta (Aβ), with alterations in calcium levels, gliotransmission and proinflammatory activity via RAGE-NF-κB pathway. In addition, astrocytes play an important role in the metabolism of tau and clearance of Aβ through the glymphatic system. In this review, we will discuss novel pharmacological and non-pharmacological treatments focused on astrocytes as therapeutic targets for AD. These interventions include effects on anti-inflammatory/antioxidant systems, glutamate activity, lipid metabolism, neurovascular coupling and glymphatic system, calcium dysregulation, and in the release of peptides which affects glial and neuronal function. According to the AD stage, these therapies may be of benefit in either preventing or delaying the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia
| |
Collapse
|
27
|
Trends in Gliosis in Obesity, and the Role of Antioxidants as a Therapeutic Alternative. Antioxidants (Basel) 2022; 11:antiox11101972. [PMID: 36290695 PMCID: PMC9598641 DOI: 10.3390/antiox11101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity remains a global health problem. Chronic low-grade inflammation in this pathology has been related to comorbidities such as cognitive alterations that, in the long term, can lead to neurodegenerative diseases. Neuroinflammation or gliosis in patients with obesity and type 2 diabetes mellitus has been related to the effect of adipokines, high lipid levels and glucose, which increase the production of free radicals. Cerebral gliosis can be a risk factor for developing neurodegenerative diseases, and antioxidants could be an alternative for the prevention and treatment of neural comorbidities in obese patients. AIM Identify the immunological and oxidative stress mechanisms that produce gliosis in patients with obesity and propose antioxidants as an alternative to reducing neuroinflammation. METHOD Advanced searches were performed in scientific databases: PubMed, ProQuest, EBSCO, and the Science Citation index for research on the physiopathology of gliosis in obese patients and for the possible role of antioxidants in its management. CONCLUSION Patients with obesity can develop neuroinflammation, conditioned by various adipokines, excess lipids and glucose, which results in an increase in free radicals that must be neutralized with antioxidants to reduce gliosis and the risk of long-term neurodegeneration.
Collapse
|
28
|
The Credible Role of Curcumin in Oxidative Stress-Mediated Mitochondrial Dysfunction in Mammals. Biomolecules 2022; 12:biom12101405. [PMID: 36291614 PMCID: PMC9599178 DOI: 10.3390/biom12101405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are associated with the pathogenesis of several human diseases. The excessive generation of reactive oxygen species (ROS) and/or lack of adequate antioxidant defenses causes DNA mutations in mitochondria, damages the mitochondrial respiratory chain, and alters membrane permeability and mitochondrial defense mechanisms. All these alterations are linked to the development of numerous diseases. Curcumin, an active ingredient of turmeric plant rhizomes, exhibits numerous biological activities (i.e., antioxidant, anti-inflammatory, anticancer, and antimicrobial). In recent years, many researchers have shown evidence that curcumin has the ability to reduce the oxidative stress- and mitochondrial dysfunction-associated diseases. In this review, we discuss curcumin’s antioxidant mechanism and significance in oxidative stress reduction and suppression of mitochondrial dysfunction in mammals. We also discuss the research gaps and give our opinion on how curcumin research in mammals should proceed moving forward.
Collapse
|
29
|
Sp1-Mediated Prdx6 Upregulation Leads to Clasmatodendrosis by Increasing Its aiPLA2 Activity in the CA1 Astrocytes in Chronic Epilepsy Rats. Antioxidants (Basel) 2022; 11:antiox11101883. [PMID: 36290607 PMCID: PMC9598987 DOI: 10.3390/antiox11101883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial degeneration (a non-apoptotic (type II) programmed cell death) whose underlying mechanisms are fully understood. Peroxiredoxin-6 (Prdx6), the “non-selenium glutathione peroxidase (NSGPx)”, is the only member of the 1-cysteine peroxiredoxin family. Unlike the other Prdx family, Prdx6 has multiple functions as glutathione peroxidase (GPx) and acidic calcium-independent phospholipase (aiPLA2). The present study shows that Prdx6 was upregulated in CA1 astrocytes in chronic epilepsy rats. 2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) and N-acetylcysteine (NAC, a precursor of glutathione) ameliorated clasmatodendrosis accompanied by reduced Prdx6 level in CA1 astrocytes. Specificity protein 1 (Sp1) expression was upregulated in CA1 astrocyte, which was inhibited by mithramycin A (MMA). MMA alleviated clasmatodendrosis and Prdx6 upregulation. Sp1 expression was also downregulated by CDDO-Me and NAC. Furthermore, 1-hexadecyl-3-(trifluoroethgl)-sn-glycerol-2 phosphomethanol (MJ33, a selective inhibitor of aiPLA2 activity of Prdx6) attenuated clasmatodendrosis without affecting Prdx6 expression. All chemicals shortened spontaneous seizure duration but not seizure frequency and behavioral seizure severity in chronic epilepsy rats. Therefore, our findings suggest that Sp1 activation may upregulate Prdx6, whose aiPLA2 activity would dominate over GPx activity in CA1 astrocytes and may lead to prolonged seizure activity due to autophagic astroglial degeneration.
Collapse
|
30
|
Laliwala A, Daverey A, Agrawal SK, Dash AK. Alpha Tocopherol Loaded Polymeric Nanoparticles: Preparation, Characterizations, and In Vitro Assessments Against Oxidative Stress in Spinal Cord Injury Treatment. AAPS PharmSciTech 2022; 23:195. [PMID: 35831684 DOI: 10.1208/s12249-022-02345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) is characterized by mechanical injury or trauma to the spinal cord. Currently, SCI treatment requires extremely high doses of neuroprotective agents, which in turn, causes several adverse effects. To overcome these limitations, the present study focuses on delivery of a low but effective dose of a naturally occurring antioxidant, α-tocopherol (α-TP). Calcium alginate nanoparticles (CA-NP) and poly D,L-lactic-co-glycolic acid nanoparticles (PLGA-NP) prepared by ionotropic gelation and solvent evaporation technique had particle size of 21.9 ± 11.19 and 152.4 ± 10.6 nm, respectively. Surface morphology, surface charge, as well as particle size distribution of both nanoparticles were evaluated. Entrapment of α-TP into CA-NP and PLGA-NP quantified by UPLC showed entrapment efficiency of 4.00 ± 1.63% and 76.6 ± 11.4%, respectively. In vitro cytotoxicity profiles on human astrocyte-spinal cord (HA-sp) showed that blank CA-NP at high concentrations reduced the cell viability whereas blank PLGA-NP showed relatively safer cytotoxic profiles. In addition, PLGA nanoparticles encapsulated with α-TP (α-TP-PLGA-NP) in comparison to α-TP alone at high concentrations were less toxic. Pretreatment of HA-sp cells with α-TP-PLGA-NP showed two-fold higher anti-oxidative protection as compared to α-TP alone, when oxidative stress was induced by H2O2. In conclusion, CA-NP were found to be unsuitable for treatment of SCI due to their cytotoxicity. Comparatively, α-TP-PLGA-NP were safer and showed high degree of protection against oxidative stress than α-TP alone.
Collapse
Affiliation(s)
- Aayushi Laliwala
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, 68178, USA
| | - Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Alekha K Dash
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, 68178, USA.
| |
Collapse
|
31
|
Liu K, Li W, Yuen M, Yuen T, Yuen H, Wang M, Peng Q. Sea Buckthorn Proanthocyanidins are the Protective Agent of Mitochondrial Function in Macrophages Under Oxidative Stress. Front Pharmacol 2022; 13:914146. [PMID: 35873561 PMCID: PMC9307083 DOI: 10.3389/fphar.2022.914146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Sea buckthorn proanthocyanidins (SBP) are the most important antioxidant components of sea buckthorn, which are widely used in functional foods and cosmetics. Studies have shown that SBP have significant protective effects on macrophages against oxidative stress induced by hydrogen peroxide (H2O2). However, the mechanism remains uncertain. In the present study, we explored the effects of SBP on mitochondrial function and the mechanism of their protective effects against oxidative stress in cells. Our results showed that SBP could increase mitochondrial membrane potential, inhibit mPTP opening, reduce mitochondrial swelling, and enhance mitochondrial synthesis and metabolism. Thus, they alleviated oxidative damage and protected the cells against mitochondrial function. Western blot analysis showed that SBP had a protective effect on RAW264.7 cells by activating the AMPK-PGC1α-Nrf2 pathway. These results showed that SBP alleviated mitochondrial damage and dysfunction caused by oxidative stress. This study revealed the mechanism of SBP in reducing oxidative damage and provided a theoretical basis for further research on natural bioactive compounds to exert antioxidant activity and prevent arteriosclerosis and other diseases.
Collapse
Affiliation(s)
- Keshan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | | | | | | | | | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- *Correspondence: Qiang Peng,
| |
Collapse
|
32
|
Joshi P, Bisht A, Joshi S, Semwal D, Nema NK, Dwivedi J, Sharma S. Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways. Phytother Res 2022; 36:3143-3180. [PMID: 35790042 DOI: 10.1002/ptr.7522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Curcumin, isolated from turmeric (Curcuma longa L.) is one of the broadly studied phytomolecule owing to its strong antioxidant and anti-inflammatory potential and has been considered a promising therapeutic candidate in a wide range of disorders. Considering, its low bioavailability, different curcumin analogs have been developed to afford desired pharmacokinetic profile and therapeutic outcome in varied pathological states. Several preclinical and clinical studies have indicated that curcumin ameliorates mitochondrial dysfunction, inflammation, oxidative stress apoptosis-mediated neural cell degeneration and could effectively be utilized in the treatment of different neurodegenerative diseases. Hence, in this review, we have summarized key findings of experimental and clinical studies conducted on curcumin and its analogues with special emphasis on molecular pathways, viz. NF-kB, Nrf2-ARE, glial activation, apoptosis, angiogenesis, SOCS/JAK/STAT, PI3K/Akt, ERK1/2 /MyD88 /p38 MAPK, JNK, iNOS/NO, and MMP pathways involved in imparting ameliorative effects in the therapy of neurodegenerative disorders and associated conditions.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.,R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sushil Joshi
- R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Deepak Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Neelesh Kumar Nema
- Paramount Kumkum Private Limited, Prestige Meridian-1, Bangalore, Karnataka, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
33
|
Zhu G, Wang X, Chen L, Lenahan C, Fu Z, Fang Y, Yu W. Crosstalk Between the Oxidative Stress and Glia Cells After Stroke: From Mechanism to Therapies. Front Immunol 2022; 13:852416. [PMID: 35281064 PMCID: PMC8913707 DOI: 10.3389/fimmu.2022.852416] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Stroke is the second leading cause of global death and is characterized by high rates of mortality and disability. Oxidative stress is accompanied by other pathological processes that together lead to secondary brain damage in stroke. As the major component of the brain, glial cells play an important role in normal brain development and pathological injury processes. Multiple connections exist in the pathophysiological changes of reactive oxygen species (ROS) metabolism and glia cell activation. Astrocytes and microglia are rapidly activated after stroke, generating large amounts of ROS via mitochondrial and NADPH oxidase pathways, causing oxidative damage to the glial cells themselves and neurons. Meanwhile, ROS cause alterations in glial cell morphology and function, and mediate their role in pathological processes, such as neuroinflammation, excitotoxicity, and blood-brain barrier damage. In contrast, glial cells protect the Central Nervous System (CNS) from oxidative damage by synthesizing antioxidants and regulating the Nuclear factor E2-related factor 2 (Nrf2) pathway, among others. Although numerous previous studies have focused on the immune function of glial cells, little attention has been paid to the role of glial cells in oxidative stress. In this paper, we discuss the adverse consequences of ROS production and oxidative-antioxidant imbalance after stroke. In addition, we further describe the biological role of glial cells in oxidative stress after stroke, and we describe potential therapeutic tools based on glia cells.
Collapse
Affiliation(s)
- Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Tang W, Guo ZD, Chai WN, Du DL, Yang XM, Cao L, Chen H, Zhou C, Cheng CJ, Sun XC, Huang ZJ, Zhong JJ. Downregulation of miR-491-5p promotes neovascularization after traumatic brain injury. Neural Regen Res 2022; 17:577-586. [PMID: 34380897 PMCID: PMC8504397 DOI: 10.4103/1673-5374.314326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
MicroRNA-491-5p (miR-491-5p) plays an important role in regulating cell proliferation and migration; however, the effect of miR-491-5p on neovascularization after traumatic brain injury remains poorly understood. In this study, a controlled cortical injury model in C57BL/6 mice and an oxygen-glucose deprivation model in microvascular endothelial cells derived from mouse brain were established to simulate traumatic brain injury in vivo and in vitro, respectively. In the in vivo model, quantitative real-time-polymerase chain reaction results showed that the expression of miR-491-5p increased or decreased following the intracerebroventricular injection of an miR-491-5p agomir or antagomir, respectively, and the expression of miR-491-5p decreased slightly after traumatic brain injury. To detect the neuroprotective effects of miR-491-p, neurological severity scores, Morris water maze test, laser speckle techniques, and immunofluorescence staining were assessed, and the results revealed that miR-491-5p downregulation alleviated neurological dysfunction, promoted the recovery of regional cerebral blood flow, increased the number of lectin-stained microvessels, and increased the survival of neurons after traumatic brain injury. During the in vitro experiments, the potential mechanism of miR-491-5p on neovascularization was explored through quantitative real-time-polymerase chain reaction, which showed that miR-491-5p expression increased or decreased in brain microvascular endothelial cells after transfection with an miR-491-5p mimic or inhibitor, respectively. Dual-luciferase reporter and western blot assays verified that metallothionein-2 was a target gene for miR-491-5p. Cell counting kit 8 (CCK-8) assay, flow cytometry, and 2?,7?-dichlorofluorescein diacetate (DCFH-DA) assay results confirmed that the downregulation of miR-491-5p increased brain microvascular endothelial cell viability, reduced cell apoptosis, and alleviated oxidative stress under oxygen-glucose deprivation conditions. Cell scratch assay, Transwell assay, tube formation assay, and western blot assay results demonstrated that miR-491-5p downregulation promoted the migration, proliferation, and tube formation of brain microvascular endothelial cells through a metallothionein-2-dependent hypoxia-inducible factor-1α/vascular endothelial growth factor pathway. These findings confirmed that miR-491-5p downregulation promotes neovascularization, restores cerebral blood flow, and improves the recovery of neurological function after traumatic brain injury. The mechanism may be mediated through a metallothionein-2-dependent hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway and the alleviation of oxidative stress. All procedures were approved by Ethics Committee of the First Affiliated Hospital of Chongqing Medical University, China (approval No. 2020-304) on June 22, 2020.
Collapse
Affiliation(s)
- Wei Tang
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zong-Duo Guo
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-Na Chai
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong-Lin Du
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Min Yang
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lang Cao
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Zhou
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong-Jie Cheng
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Jian Huang
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Jun Zhong
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
35
|
Abstract
Curcumin is the major biologically active polyphenolic constituent in the turmeric plant (Curcuma longa) that has been shown to have antioxidant, anti-inflammatory, neuroprotective, anticancer, antimicrobial, and cardioprotective effects. Interest in curcumin as a treatment for mental health conditions has increased and there is an expanding body of preclinical and clinical research examining its antidepressant and anxiolytic effects. In this narrative review, human trials investigating the effects of curcumin for the treatment of depression or depressive symptoms are summarised. Using findings from in vitro, animal, and human trials, possible biological mechanisms associated with the antidepressant effects of curcumin are also explored. To increase the understanding of curcumin for the treatment of depression, directions for future research are proposed.
Collapse
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, 38 Arnisdale Rd, Duncraig, Perth, WA, 6023, Australia.
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
36
|
Quincozes-Santos A, Santos CL, de Souza Almeida RR, da Silva A, Thomaz NK, Costa NLF, Weber FB, Schmitz I, Medeiros LS, Medeiros L, Dotto BS, Dias FRP, Sovrani V, Bobermin LD. Gliotoxicity and Glioprotection: the Dual Role of Glial Cells. Mol Neurobiol 2021; 58:6577-6592. [PMID: 34581988 PMCID: PMC8477366 DOI: 10.1007/s12035-021-02574-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023]
Abstract
Glial cells (astrocytes, oligodendrocytes and microglia) are critical for the central nervous system (CNS) in both physiological and pathological conditions. With this in mind, several studies have indicated that glial cells play key roles in the development and progression of CNS diseases. In this sense, gliotoxicity can be referred as the cellular, molecular, and neurochemical changes that can mediate toxic effects or ultimately lead to impairment of the ability of glial cells to protect neurons and/or other glial cells. On the other hand, glioprotection is associated with specific responses of glial cells, by which they can protect themselves as well as neurons, resulting in an overall improvement of the CNS functioning. In addition, gliotoxic events, including metabolic stresses, inflammation, excitotoxicity, and oxidative stress, as well as their related mechanisms, are strongly associated with the pathogenesis of neurological, psychiatric and infectious diseases. However, glioprotective molecules can prevent or improve these glial dysfunctions, representing glial cells-targeting therapies. Therefore, this review will provide a brief summary of types and functions of glial cells and point out cellular and molecular mechanisms associated with gliotoxicity and glioprotection, potential glioprotective molecules and their mechanisms, as well as gliotherapy. In summary, we expect to address the relevance of gliotoxicity and glioprotection in the CNS homeostasis and diseases.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Camila Leite Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Amanda da Silva
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Naithan Ludian Fernandes Costa
- Programa de Pós-Graduação Em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Becker Weber
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lara Scopel Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lívia Medeiros
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Bethina Segabinazzi Dotto
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Filipe Renato Pereira Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
37
|
The effect of turmeric on primary dysmenorrhea: Prospective case-control study. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.828571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Akbari A, Sedaghat M, Heshmati J, Tabaeian SP, Dehghani S, Pizarro AB, Rostami Z, Agah S. Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancers. Biomed Pharmacother 2021; 141:111849. [PMID: 34214729 DOI: 10.1016/j.biopha.2021.111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a bioactive ingredient found in the Rhizomes of Curcuma longa. Curcumin is well known for its chemopreventive and anti-cancer properties. Recent findings have demonstrated several pharmacological and biological impacts of curcumin, related to the control and the management of gastrointestinal cancers. Mechanistically, curcumin exerts its biological impacts via antioxidant and anti-inflammatory effects through the interaction with various transcription factors and signaling molecules. Moreover, epigenetic modulators such as microRNAs (miRNAs) have been revealed as novel targets of curcumin. Curcumin was discovered to regulate the expression of numerous pathogenic miRNAs in gastric, colorectal, esophageal and liver cancers. The present systematic review was performed to identify miRNAs that are modulated by curcumin in gastrointestinal cancers.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Javad Heshmati
- Songhor Healthcare Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sadegh Dehghani
- Radiation Sciences Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Rostami
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Huang L, Li X, Liu Y, Liang X, Ye H, Yang C, Hua L, Zhang X. Curcumin Alleviates Cerebral Ischemia-reperfusion Injury by Inhibiting NLRP1-dependent Neuronal Pyroptosis. Curr Neurovasc Res 2021; 18:189-196. [PMID: 34109908 DOI: 10.2174/1567202618666210607150140] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury is caused by a blood reperfusion injury in the ischemic brain and usually occurs in the treatment stage of ischemic disease, which can aggravate brain tissue injury. OBJECTIVE Curcumin was reported to exert a good therapeutic effect on neural cells against ischemia-reperfusion injury, while the mechanism was unclear. METHODS In this study, oxygen glucose deprivation (OGD) model of fetal rat cerebral cortical neurons and the middle cerebral artery occlusion (MCAO) model of rats were employed to mimic cerebral ischemia-reperfusion injury in vitro and in vivo,respectively. RESULTS We confirmed that curcumin has a promotive effect on neuronal proliferation and an inhibitory effect on neuronal pyroptosis. Furthermore, we found that curcumin could improve cerebral infarction. The results of western blotting showed that curcumin down-regulated the expression of nucleotide-binding oligomerization domain-containing protein-, leucine-rich repeats-, and pyrin domain-containing protein 1 (NLRP1), cysteinyl aspartate-specific protease 1 (caspase-1), gasdermin D (GSDMD), IL-1β, IL-6, TNF-α, and iNOS proteins in OGD and MCAO models. NLRP1-dependent neuronal pyroptosis played an important role in cerebral ischemia-reperfusion injury. CONCLUSION Curcumin could effectively inhibit NLRP1-dependent neuronal pyroptosis by suppressing the p38 MAPK pathway and therefore exerted neuroprotective effects against cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Lifa Huang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Xu Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Yajun Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Xiaolong Liang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Hui Ye
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Chao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Lin Hua
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
40
|
Yang M, Xuan Z, Wang Q, Yan S, Zhou D, Naman CB, Zhang J, He S, Yan X, Cui W. Fucoxanthin has potential for therapeutic efficacy in neurodegenerative disorders by acting on multiple targets. Nutr Neurosci 2021; 25:2167-2180. [PMID: 33993853 DOI: 10.1080/1028415x.2021.1926140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fucoxanthin, one of the most abundant carotenoids from edible brown seaweeds, for years has been used as a bioactive dietary supplement and functional food ingredient. Recently, fucoxanthin was reported to penetrate the blood-brain barrier, and was superior to other carotenoids to exert anti-neurodegenerative disorder effects via acting on multiple targets, including amyloid protein aggregation, oxidative stress, neuroinflammation, neuronal loss, neurotransmission dysregulation and gut microbiota disorder. However, the concentration of fucoxanthin required for in vivo neuroprotective effects is somewhat high, and the poor bioavailability of this molecule might prevent its clinical use. As such, new strategies have been introduced to overcome these obstacles, and may help to develop fucoxanthin as a novel lead for neurodegenerative disorders. Moreover, it has been shown that some metabolites of fucoxanthin may produce potent in vivo neuroprotective effects. Altogether, these studies suggest the possibility for future development of fucoxanthin as a one-compound-multiple-target or pro-drug type pharmaceutical or nutraceutical treatment for neurodegenerative disorders.Trial registration: ClinicalTrials.gov identifier: NCT03625284.Trial registration: ClinicalTrials.gov identifier: NCT02875392.Trial registration: ClinicalTrials.gov identifier: NCT03613740.Trial registration: ClinicalTrials.gov identifier: NCT04761406.
Collapse
Affiliation(s)
- Mengxiang Yang
- Ningbo Kangning Hospital, Ningbo, People's Republic of China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Zhenquan Xuan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo, People's Republic of China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Jinrong Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China.,Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, People's Republic of China
| | - Wei Cui
- Ningbo Kangning Hospital, Ningbo, People's Republic of China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
41
|
Jia F, Chibhabha F, Yang Y, Kuang Y, Zhang Q, Ullah S, Liang Z, Xie M, Li F. Detection and monitoring of the neuroprotective behavior of curcumin micelles based on an AIEgen probe. J Mater Chem B 2021; 9:731-745. [PMID: 33315037 DOI: 10.1039/d0tb02320e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, the role of mitochondrial injury in the pathogenesis of Alzheimer's disease (AD) has attracted extensive attention. Studies have shown that curcumin (Cur) can protect nerve cells from beta-amyloid (Aβ)-induced mitochondrial damage. However, natural Cur encounters limited application due to its poor biocompatibility and bioavailability. To improve the solubility and biocompatibility of natural Cur, we prepared water-soluble curcumin micelles (CurM). Furthermore, the mitochondria-specific aggregation-induced emission (AIE) probe (TPE-Ph-In) was employed to observe the protective effect of CurM on the damage of mitochondrial morphology, distribution, and membrane potential caused by Aβ. Results showed that CurM had higher solubility, stronger stability and retention effect, and better cellular uptake than that of natural Cur. Furthermore, the inhibitory effects of CurM on mitochondrial morphology, distribution, and membrane potential damage induced by Aβ25-35 were observed utilizing TPE-Ph-In as an indicator of mitochondrial morphology and membrane potential. Thus, this method provides a useful strategy for experimental research and clinical treatment of AD with mitochondrial damage as the pathogenic mechanism.
Collapse
Affiliation(s)
- Fujie Jia
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
El Feky SE, Ghany Megahed MA, Abd El Moneim NA, Zaher ER, Khamis SA, Ali LMA. Cytotoxic, chemosensitizing and radiosensitizing effects of curcumin based on thioredoxin system inhibition in breast cancer cells: 2D vs. 3D cell culture system. Exp Ther Med 2021; 21:506. [PMID: 33791015 DOI: 10.3892/etm.2021.9937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Targeting the thioredoxin/thioredoxin reductase (Trx/TrxR) system is a promising strategy to overcome cancer resistance to conventional therapy. The present study investigated the effect of curcumin on the Trx/TrxR system either alone or in combination with chemotherapy, or radiotherapy in human MCF-7 breast cancer cells seeded in 2 and 3D culture systems. Cell viability, thioredoxin reductase 1 (TrxR1) activity, and the genetic expression of Trx, TrxR1, Bcl2 and BAX genes were studied. The findings showed that the mode of culture significantly affected the response of cancer cells to different treatment modalities, as well as their gene expression patterns. Curcumin treatment resulted in a reduction of breast cancer cell proliferation and induction of apoptosis, an effect that may be mediated by manipulating Trx system components, mainly Trx expression, and to a lesser extent TrxR1 expression and concentration. Furthermore, curcumin increased the sensitivity of breast cancer cells to chemotherapy and radiotherapy by reducing Trx and TrxR1 expression levels. Thus, curcumin may have a potential role as a dose-modifying agent that can be used either to sensitize resistant cells to therapy or to reduce the dose of these therapeutic agents.
Collapse
Affiliation(s)
- Shaymaa Essam El Feky
- Department of Radiation Sciences, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Magda Abdel Ghany Megahed
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Nadia Ahmed Abd El Moneim
- Department of Cancer Management and Research, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Ebtsam Rizq Zaher
- Department of Radiation Sciences, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Shadwa Ahmed Khamis
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| | - Lamiaa Mohamed Ahmed Ali
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandra 21561, Egypt
| |
Collapse
|
43
|
Daverey A, Agrawal SK. Regulation of Prdx6 by Nrf2 Mediated Through aiPLA2 in White Matter Reperfusion Injury. Mol Neurobiol 2021; 58:1275-1289. [PMID: 33159299 DOI: 10.1007/s12035-020-02182-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia and reperfusion produces overproduction of ROS (reactive oxygen species), which may lead to mitochondrial dysfunction leading to cell death and apoptosis. Here, we explore the hypothesis that Prdx6 protects the spinal cord white matter from hypoxia-reperfusion injury and elucidate the possible mechanism by which Prdx6 elicits its protective effects. Briefly, rats were deeply anesthetized with isoflurane. A 30-mm section of the spinal cord was rapidly removed and placed in cold Ringer's solution (2-4 °C). The dissected dorsal column was exposed to hypoxia with 95% N2 and 5% CO2 and reperfusion with 95% O2 and 5% CO2. The expression of Prdx6 significantly upregulated in white matter after hypoxia compared to the sham group, whereas reperfusion caused a gradual decrease in Prdx6 expression after reperfusion injury. For the first time, our study revealed the novel expression and localized expression of Prdx6 in astrocytes after hypoxia, and possible communication of astrocytes and axons through Prdx6. The gradual increase in Nrf2 expression suggests a negative regulation of Prdx6 through Nrf2 signaling. Furthermore, inhibition of aiPLA2 activity of Prdx6 by MJ33 shows that the regulation of Prdx6 by Nrf2 is mediated through aiPLA2 activity. The present study uncovers a differential distribution of Prdx6 in axons and astrocytes and regulation of Prdx6 in hypoxia-reperfusion injury. The low levels of Prdx6 in reperfusion injury lead to increased inflammation and apoptosis in the white matter; therefore, the results of this study suggest that Prdx6 has a protective role in spinal hypoxia-reperfusion injury.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| |
Collapse
|
44
|
Hamdi H, Abid-Essefi S, Eyer J. Neuroprotective effects of Myricetin on Epoxiconazole-induced toxicity in F98 cells. Free Radic Biol Med 2021; 164:154-163. [PMID: 33429020 DOI: 10.1016/j.freeradbiomed.2020.12.451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023]
Abstract
Epoxiconazole is one of the most commonly used fungicides in the world. The exposition of humans to pesticides is mainly attributed to its residue in food or occupational exposure in agricultural production. Because of its lipophilic character, Epoxiconazole can accumulate in the brain Heusinkveld et al. (2013) [1]. Consequently, it is urgent to explore efficient strategies to prevent or treat Epoxiconazole-related brain damages. The use of natural molecules commonly found in our diet represents a promising avenue. Flavonoids belong to a major sub-group compounds possessing powerful antioxidant activities based on their different structural and sterical properties [2]. We choose to evaluate Myricetin, a flavonoid with a wide spectrum of pharmacological effects, for its possible protective functions against Epoxiconazole-induced toxicities. The cytotoxicity induced by this fungicide was evaluated by the cell viability, cell cycle arrest, ROS generation, antioxidant enzyme activities, and Malondialdehyde production, as previously described in Hamdi et al., 2019 [3]. The apoptosis was assessed through the evaluation of the mitochondrial transmembrane potential (ΔΨm), caspases activation, DNA fragmentation, cytoskeleton disruption, nuclear condensation, appearance of sub-G0/G1 peak (fragmentation of the nucleus) and externalization of Phosphatidylserine. This study indicates that pre-treatment of F98 cells with Myricetin during 2 h before Epoxiconazole exposure significantly increased the survival of cells, restored DNA synthesis of the S phase, abrogated the ROS generation, regulated the activities of Catalase (CAT) and Superoxide Dismutase (SOD), and reduced the MDA level. The loss of mitochondrial membrane potential, DNA fragmentation, cytoskeleton disruption, chromatin condensation, Phosphatidylserine externalization, and Caspases activation were also reduced by Myricetin. Together, these findings indicate that Myricetin is a powerful natural product able to protect cells from Epoxiconazole-induced cytotoxicity and apoptosis.
Collapse
Affiliation(s)
- Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Joel Eyer
- Laboratoire Micro et NanomédecinesTranslationnelles (MINT), Inserm 1066, CNRS 6021, Institut de Biologie de La Santé, Centre Hospitalier Universitaire, 49033, Angers, France.
| |
Collapse
|
45
|
Musial C, Siedlecka-Kroplewska K, Kmiec Z, Gorska-Ponikowska M. Modulation of Autophagy in Cancer Cells by Dietary Polyphenols. Antioxidants (Basel) 2021; 10:123. [PMID: 33467015 PMCID: PMC7830598 DOI: 10.3390/antiox10010123] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
The role of autophagy is to degrade damaged or unnecessary cellular structures. Both in vivo and in vitro studies suggest a dual role of autophagy in cancer-it may promote the development of neoplasms, but it may also play a tumor protective function. The mechanism of autophagy depends on the genetic context, tumor stage and type, tumor microenvironment, or clinical therapy used. Autophagy also plays an important role in cell death as well as in the induction of chemoresistance of cancer cells. The following review describes the extensive autophagic cell death in relation to dietary polyphenols and cancer disease. The review documents increasing use of polyphenolic compounds in cancer prevention, or as agents supporting oncological treatment. Polyphenols are organic chemicals that exhibit antioxidant, anti-inflammatory, anti-angiogenic, and immunomodulating properties, and can also initiate the process of apoptosis. In addition, polyphenols reduce oxidative stress and protect against reactive oxygen species. This review presents in vitro and in vivo studies in animal models with the use of polyphenolic compounds such as epigallocatechin-3-gallate (EGCG), oleuropein, punicalgin, apigenin, resveratrol, pterostilbene, or curcumin and their importance in the modulation of autophagy-induced death of cancer cells.
Collapse
Affiliation(s)
- Claudia Musial
- Department of Medical Chemistry, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | | | - Zbigniew Kmiec
- Department of Histology, Medical University of Gdansk, 80-211 Gdansk, Poland; (K.S.-K.); (Z.K.)
| | | |
Collapse
|
46
|
Curcumin and Its Derivatives as Theranostic Agents in Alzheimer's Disease: The Implication of Nanotechnology. Int J Mol Sci 2020; 22:ijms22010196. [PMID: 33375513 PMCID: PMC7795367 DOI: 10.3390/ijms22010196] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a polyphenolic natural compound with diverse and attractive biological properties, which may prevent or ameliorate pathological processes underlying age-related cognitive decline, Alzheimer's disease (AD), dementia, or mode disorders. AD is a chronic neurodegenerative disorder that is known as one of the rapidly growing diseases, especially in the elderly population. Moreover, being the eminent cause of dementia, posing problems for families, societies as well a severe burden on the economy. There are no effective drugs to cure AD. Although curcumin and its derivatives have shown properties that can be considered useful in inhibiting the hallmarks of AD, however, they have low bioavailability. Furthermore, to combat diagnostic and therapeutic limitations, various nanoformulations have also been recognized as theranostic agents that can also enhance the pharmacokinetic properties of curcumin and other bioactive compounds. Nanocarriers have shown beneficial properties to deliver curcumin and other nutritional compounds against the blood-brain barrier to efficiently distribute them in the brain. This review spotlights the role and effectiveness of curcumin and its derivatives in AD. Besides, the gut metabolism of curcumin and the effects of nanoparticles and their possible activity as diagnostic and therapeutic agents in AD also discussed.
Collapse
|
47
|
Choi JW, Kim S, Yoo JS, Kim HJ, Kim HJ, Kim BE, Lee EH, Lee YS, Park JH, Park KD. Development and optimization of halogenated vinyl sulfones as Nrf2 activators for the treatment of Parkinson's disease. Eur J Med Chem 2020; 212:113103. [PMID: 33387904 DOI: 10.1016/j.ejmech.2020.113103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
The Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway plays a pivotal role in the cellular defense system against oxidative stress by inducing antioxidant and anti-inflammatory effects. We previously developed Nrf2 activators that potentially protect the death of dopaminergic (DAergic) neuronal cells against oxidative stress in Parkinson's disease (PD). In this study, we designed and synthesized a class of halogenated vinyl sulfones by inserting halogens and pyridine to maximize Nrf2 activation efficacy. Among the synthesized compounds, (E)-3-chloro-2-(2-((2-chlorophenyl)sulfonyl)vinyl)pyridine (9d) significantly exhibited potent Nrf2 activating efficacy (9d: EC50 = 26 nM) at least 10-fold compared with the previous developed compounds (1 and 2). Furthermore, treating with 9d remarkably increased Nrf2 nuclear translocation and Nrf2 protein levels in microglial BV-2 cells. 9d was shown to induce the expression of antioxidant response genes HO-1, GCLC, GCLM, and SOD-1 at both the mRNA and protein levels and suppress proinflammatory cytokines and enzymes. Also, 9d remarkably protected DAergic neurons and restored the PD-associated motor dysfunction in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model.
Collapse
Affiliation(s)
- Ji Won Choi
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Siwon Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jong Seok Yoo
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyeon Ji Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Byung Eun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Elijah Hwejin Lee
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yong Sup Lee
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Chang X, Zhang W, Zhao Z, Ma C, Zhang T, Meng Q, Yan P, Zhang L, Zhao Y. Regulation of Mitochondrial Quality Control by Natural Drugs in the Treatment of Cardiovascular Diseases: Potential and Advantages. Front Cell Dev Biol 2020; 8:616139. [PMID: 33425924 PMCID: PMC7793684 DOI: 10.3389/fcell.2020.616139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are double-membraned cellular organelles that provide the required energy and metabolic intermediates to cardiomyocytes. Mitochondrial respiratory chain defects, structure abnormalities, and DNA mutations can affect the normal function of cardiomyocytes, causing an imbalance in intracellular calcium ion homeostasis, production of reactive oxygen species, and apoptosis. Mitochondrial quality control (MQC) is an important process that maintains mitochondrial homeostasis in cardiomyocytes and involves multi-level regulatory mechanisms, such as mitophagy, mitochondrial fission and fusion, mitochondrial energy metabolism, mitochondrial antioxidant system, and mitochondrial respiratory chain. Furthermore, MQC plays a role in the pathological mechanisms of various cardiovascular diseases (CVDs). In recent years, the regulatory effects of natural plants, drugs, and active ingredients on MQC in the context of CVDs have received significant attention. Effective active ingredients in natural drugs can influence the production of energy-supplying substances in the mitochondria, interfere with the expression of genes associated with mitochondrial energy requirements, and regulate various mechanisms of MQC modulation. Thus, these ingredients have therapeutic effects against CVDs. This review provides useful information about novel treatment options for CVDs and development of novel drugs targeting MQC.
Collapse
Affiliation(s)
- Xing Chang
- China Academy of Chinese Medical Sciences, Beijing, China.,Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenjin Zhang
- China Academy of Chinese Medical Sciences, Beijing, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhenyu Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology, Jinan, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyan Meng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuping Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
49
|
Curcumin prevents cognitive deficits in the bile duct ligated rats. Psychopharmacology (Berl) 2020; 237:3529-3537. [PMID: 32761362 DOI: 10.1007/s00213-020-05633-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
RATIONALE Bile duct ligation (BDL) in rodents can cause impaired liver function and cognition deficits. Curcumin has shown a preventive and therapeutic role in memory impairment. OBJECTIVES Therefore, this study aimed to explore the effect of curcumin on the performance of male adult Wistar rats that underwent BDL, a model of hepatic encephalopathy (HE) in the Morris water maze (MWM). METHODS Four weeks after surgery, sham (manipulation of common bile duct without ligation) and BDL rats underwent the MWM test. RESULTS The representative data showed that BDL rats exhibited impairments in spatial learning and reference memory in the MWM compared with the sham rats. Treatment of BDL rats with curcumin (40 mg/kg, i.p., for 4 weeks) prevented these impairments, while it did not affect spatial learning and memory in the sham rats, by itself. Curcumin increased expression levels of the pro-survival B cell lymphoma extra-large (Bcl-xL) gene and two genes involved in mitochondrial function, peroxisome proliferative-activated receptor-γ co-activator 1α (PGC-1α) and mitochondrial transcription factor A (TFAM), in the hippocampus of BDL rats compared with the vehicle-treated sham or BDL rats, while it decreased the pro-apoptotic Bcl-2-associated X protein (Bax) gene expression level. BDL up-regulated Bax and down-regulated TFAM, by itself. Furthermore, curcumin reduced the mRNA level of Bax, while it increased Bcl-2 and TFAM mRNA levels. CONCLUSIONS These findings demonstrate the beneficial effect of curcumin on cognitive function in BDL rats of the HE model. The curcumin effect may be related to mitochondrial function improvement in the HE.
Collapse
|
50
|
Esquivel AR, Douglas JC, Loughran RM, Rezendes TE, Reed KR, Cains THL, Emsley SA, Paddock WA, Videau P, Koyack MJ, Paddock BE. Assessing the influence of curcumin in sex-specific oxidative stress, survival and behavior in Drosophila melanogaster. J Exp Biol 2020; 223:jeb223867. [PMID: 33037110 DOI: 10.1242/jeb.223867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022]
Abstract
Oxidative stress, which occurs from an imbalance of reactive oxygen and nitrogen species (RONS) and both endogenous and exogenous antioxidants, promotes aging and underlies sex-specific differences in longevity and susceptibility to age-related neurodegeneration. Recent evidence suggests that curcumin, a yellow pigment derived from turmeric and shown to exhibit antioxidant properties as a RONS scavenger, influences the regulation of genetic elements in endogenous antioxidant pathways. To investigate the role of curcumin in sex-specific in vivo responses to oxidative stress, Drosophila were reared on media supplemented with 0.25, 2.5 or 25 mmol l-1 curcuminoids (consisting of curcumin, demethoxycurcumin and bisdemethoxycurcumin) and resistance to oxidative stress and neural parameters were assessed. High levels of curcuminoids exhibited two sex-specific effects: protection from hydrogen peroxide as an oxidative stressor and alterations in turning rate in an open field. Taken together, these results suggest that the influence of curcuminoids as antioxidants probably relies on changes in gene expression and that sexual dimorphism exists in the in vivo response to curcuminoids.
Collapse
Affiliation(s)
- Abigail R Esquivel
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Jenna C Douglas
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Rachel M Loughran
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Thomas E Rezendes
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Kaela R Reed
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Tobias H L Cains
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - William A Paddock
- Department of Institutional Research, Arcadia University, Glenside, PA 19038 USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Marc J Koyack
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Brie E Paddock
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| |
Collapse
|